F.J. Ragep

Nașīr al-Dīn al-Ṭūsīs Memoir on Astronomy

(al-Tadhkira fī cilm al-hay’a)

Volume I
Introduction, Edition, and Translation

With 96 Illustrations

Springer-Verlag

F.J. Ragep
Department of the History of Science
University of Oklahoma
601 Elm Street \#622
Norman, OK 73019 USA

Printed on acid-free paper.
© 1993 Springer-Verlag New York, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Hal Henglein; manufacturing supervised by Vincent R. Scelta.
Camera-ready copy prepared by the author.
Printed and bound by Edwards Brothers, Inc., Ann Arbor, MI. Printed in the United States of America.

to Anwar to Lina
 who endured
 this most recalcitrant of siblings

$V \ell$

كم كتاب كتبته بيدي
 سوف تبلا يدي ويبقى الكتاب كانت الدنيا لتوم غيرنا رحلوا منها وخلوها لنا سوف نسكنيا ونرحل بعدهم ونخليها كـا خليت لنا

How many books have I written with my hand!
My hand shall wither but the book will remain.
Once the world was to another people
But they have since departed
Leaving it with us.
We too shall dwell in it
But we also shall follow them
Leaving it as it was left for us.

Anon., Damascus, Zāhiriyya MS 4871, f. 36a
vie

Preface

I was introduced to Ṭūsī and his Tadhkira some 19 years ago. That first meeting was neither happy nor auspicious. My graduate student notes from the time indicate a certain level of confusion and frustration; I seem to have had trouble with such words as tadwir (epicycle), which was not to be found in my standard dictionary, and with the concept of solid-sphere astronomy, which, when found, was pooh-poohed in the standard sources. I had another, even more decisive reaction: boredom. Only the end of the term brought relief, and I was grateful to be on to other, more exciting aspects of the history of science.

A few years later, I found myself, thanks to fellowships from Fulbright-Hays and the American Research Center in Egypt, happily immersed in the manuscript collections of Damascus, Aleppo, and Cairo. Though I had intended to work on a topic in the history of mathematics, I was drawn, perhaps inevitably, to a certain type of astronomical writing falling under the rubric of hay'a. At first this fascination was based on sheer numbers; that so many medieval scientists could have written on such a subject must mean something, I told myself. (I was in a sociological mode at the time.) As I began to read, or rather try to read, these manuscripts, some of daunting size, I became more and more engaged in a world of mostly forgotten scientists, many from a period that modern scholarship had deemed, with the hubris that only modernism can muster, both invisible and unworthy. But these late medieval astronomers of "decline" seemed to me to be saying interesting things, and significantly they themselves thought they were saying interesting things as they spoke to one another over geographical and chronological distance. And two names kept recurring with astonishing frequency in these works: Naṣīr al-Dīn al-T़ūsī and his Tadhkira fí ${ }^{\mathrm{c}} \mathrm{ilm}$ al-hay'a. I had come full circle.

To write this book, I have incurred enormous debts to both institutions and individuals, and it gives me great pleasure to be able at long last to express my gratitude in print. They are, of course, neither responsible for the opinions expressed nor for the remaining shortcomings. The National Endowment for the Humanities generously awarded me a research grant (RL-20578-84) that allowed me to work without interruption on the edition and translation. Another grant, this one from the National Science Foundation (SES-8618656), was for research on trepidation, and I have incorporated some of the results in the com-
mentary. The Department of the History of Science at Harvard University appointed me a postdoctoral fellow on two occasions and provided me with the necessary facilities to take full advantage of those grants. A year at the Society for the Humanities at Cornell was enormously stimulating and gave me the opportunity both to learn and to test my ideas with a very talented group of nonhistorians of science. Travel funds from the Department of the History of Science at the University of Oklahoma allowed me to check and recheck countless details and footnotes during preparation of the final copy.

During the many years of research and writing, I have benefited from my acquaintance and friendship with a number of extraordinary individuals, far more than I had ever expected to meet in a lifetime. In Cairo, I had the great fortune to have Edward S. Kennedy and David King as next-door neighbors ($y a^{c} n \bar{i}$), and they were, despite some scepticism concerning my project, always ready and able to provide advice and guidance on matters great and small. Also in Cairo, Ahmad Haridì was unceasingly patient in teaching this khwäja about the beauty and intricacy of Arabic and Arabic paleography. Back home, Aron Zysow, my next-carrel neighbor at Widener Library, shared his very considerable knowledge of Islam and Islamic history, Wheeler Thackston offered advice and assistance on all things Persian, and Marina Tolmacheva graciously looked over the maps and made several helpful suggestions. Over many long, sometimes difficult years, Raine Daston, Mollie Palchik, and Noel Swerdlow provided inspiration and encouragement and were always there when needed most.
A. I. Sabra, shaykhunā al-ra'is, was the one who introduced me to the Tadhkira those many years ago and, for reasons known only to himself, thought that I could be entrusted with its study. His teachings, methodology, and inspiration are such an integral part of this work that it would be less than elegant to provide a list; let me simply say that it was he who made hay'a such an important part of my intellectual vocabulary.
D. E. Pingree, hakim extraordinaire, has been unceasing in his efforts to help me broaden my horizons and use what he calls common sense, which, in his version, is quite uncommon. I very much benefited from his critique and suggestions on an earlier draft of a chapter concerning the tradition of the Tadhkira, and his "common sense" led me to uncover the relationship between the various versions of the text.
 book a degree of attention that went far beyond what the designation editor normally calls for. He saved me from innumerable blunders of detail and interpretation, and his stern kindness made me feel that I should and could meet his soaring standards.
S. P. Ragep, friend and co-worker of some twenty years, drafted and photographed the figures and collated them with those in the manuscripts, prepared the concordance of manuscripts, typed the Arabic text and apparatuses (in multiple versions), offered advice on both style and substance, much of which was adopted, helped prepare the index, and somehow managed in addition to have a career and the dedicatees. But above all, she helped me find words and meaning where once there was only a cacophony of silence.

Table of Contents

Preface vii
Volume One
Part I General Introduction 1
§1. Naṣīr al-Dīn al-Ṭūsī 3
A. Life 3

1. Introduction 3
2. Education and Early Life 4
3. The Ismā ${ }^{\text {cinlī }}$ Stage 9
4. The Mongol Period 13
5. Țūsi's Astronomy and Its Relation to His Hellenism and Religious Beliefs 15
B. Works 20
C. Chronology of Țüsi's Life 23
§2. The Tadhkira 24
A. Purpose of the Tadhkira 24
B. The Tadhkira's Ancient Forebears 25
C. The Islamic Tradition of the Tadhkira 29
D. The Tadhkira as Genre 33
E. The Physical Principles Underlying the Tadhkira 41
F. Modeling 46
6. Ptolemaic Modeling 46
7. Tūsi’s Criticism of Ptolemaic Models 48
8. Țūsi's Models 51
G. Sources Named (and Unnamed) by Țūsī in the Tadhkira 53
H. The Influence of the Tadhkira 55
I. The Commentaries on the Tadhkira 58
J. The Evolution of the Text of the Tadhkira 65
9. Țūsi’'s Other hay'a basiṭa Works and Their Relationship to the Tadhkira 65
10. The Marāgha (α) Version of the Tadhkira 70
11. The Baghdad (β) Version of the Tadhkira 71
K. List of Manuscripts 76
L. Concordance of Manuscripts 82
M. Editorial Procedures 85
12. Previous Work on the Tadhkira 85
13. Establishment of the Edition 85
14. The Translation 88
15. The Commentary 88
Part II Edition and Translation 89
PREFACE 90
BOOK I: Concerning That Which Must Be Presented
by Way of Introduction 90
CHAPTER ONE: An Account of What Needs to Be Known That Pertains to the Geometry [Corpus] 92
CHAPTER TWO: An Account of What Needs to Be Accepted from Natural Philosophy in This Science 98
BOOK II: The Configuration of the Celestial Bodies 102
CHAPTER ONE: On the Sphericity of the Sky and the Earth; On the Earth Being in Relation to the Sky As the Center of a Sphere to Its Circumference; and on [the Earth] Being Completely Stationary 102
CHAPTER TWO: On the Arrangement and Order of the Bodies 108
CHAPTER THREE: On the Well-Known Great Circles 112
CHAPTER FOUR: On the Circumstances Occurring Due to the Two Primary Motions, and the Situation of the Fixed Stars 120
CHAPTER FIVE: On Basing Some of the Apparently Irregular Motions Upon Models That Bring About Their Uniformity 130
CHAPTER SIX: On the Orbs and Motions of the Sun 144
CHAPTER SEVEN: On the Orbs and Motions of the Moon 148
CHAPTER EIGHT: The Orbs and Longitudinal Motions of Mercury 164
CHAPTER NINE: On the Orbs and Longitudinal Motions of the Remaining Planets 178
CHAPTER TEN: On the Latitudes of the Five Planets 188
CHAPTER ELEVEN: An Indication of the Solution-ofThat Which Is Amenable to Solution-of the DifficultiesReferred to Previously That Arise from the AforementionedMotions of the Planets194
CHAPTER TWELVE: On Parallax 222
CHAPTER THIRTEEN: On the Variation in the Moon's
Illumination and on Lunar and Solar Eclipses 228
CHAPTER FOURTEEN: On Sectors and Conjunctions and the Situation of Visibility and Invisibility 240
BOOK III: On the Configuration of the Earth and the[Consequences] Accruing to It Due to the Changing Positionsof the Celestial Bodies244
CHAPTER ONE: A General Summary of the Configuration and Circumstances of the Earth 244
CHAPTER TWO: On the Characteristics of the Equator 254
CHAPTER THREE: On the Characteristics of Locations Having Latitude Which Are Called the Oblique Horizons 258
CHAPTER FOUR: On the Characteristics of Locations Whose
Latitude Does Not Exceed the Complement of the Obliquity 262
CHAPTER FIVE: On the Characteristics of Locations Whose
Latitude Exceeds the Complement of the Obliquity But Does Not Reach One-Quarter Revolution 268
CHAPTER SIX: On the Characteristics of Locations Whose Latitude Is Exactly One-Quarter Revolution 278
CHAPTER SEVEN: On the Co-ascensions of the Ecliptic 282
CHAPTER EIGHT: On the Lengths of the Nychthemerons 286
CHAPTER NINE: On Dawn and Dusk 294
CHAPTER TEN: On Understanding the Units of the Day, Namely Hours, and What Is Composed of Days, Namely Months and Years 298
CHAPTER ELEVEN: On the Degrees of Transit of the Stars on the Meridian and on Their [Degrees of] Rising and Setting 302
CHAPTER TWELVE: On Finding the Meridian Line and the qibla Bearing 306
BOOK IV: On Finding the Measurements of the Distances and the Bodies 310
CHAPTER ONE: On the Measure [misäha] of the Earth 310
CHAPTER TWO: On Finding the Distances of the Moon from the Center of the World 314
CHAPTER THREE: On the Sizes of the Diameters of the Moon, the Sun and the Shadow, and the Distances of the Sun and the Shadow from the Earth 318
CHAPTER FOUR: On the Volume of the Two Luminaries 326
CHAPTER FIVE: On the Rest of the Distances of the Sun and the Distances and Body [Sizes] of the Two Lower Planets 328
CHAPTER SIX: On the Distances of the Upper Planets and Their Body [Sizes] 334
CHAPTER SEVEN: On the Distance of the Fixed Stars and Their Body [Sizes] and a Concluding Discussion Regarding This Section 338
Part III Commentary Figures 343

Volume Two

Part IV Commentary 373
BOOK I 375
Preface 375
Introduction 375
Chapter One 376
Chapter Two 380
BOOK II 382
Chapter One 382
Chapter Two 389
Chapter Three 392
Chapter Four 394
Chapter Five 411
Chapter Six 415
Chapter Seven 416
Chapter Eight 420
Chapter Nine 422
Chapter Ten 424
Chapter Eleven 427
Chapter Twelve 458
Chapter Thirteen 459
Chapter Fourteen 463
BOOK III 465
Chapter One 465
Chapter Two 472
Chapter Three 473
Chapter Four 474
Chapter Five 476
Chapter Six 478
Chapter Seven 479
Chapter Eight 482
Chapter Nine 485
Chapter Ten 489
Chapter Eleven 495
Chapter Twelve 496
BOOK IV 500
Chapter One 500
Chapter Two 512
Chapter Three 513
Chapter Four 516
Chapter Five 517
Chapter Six 524
Chapter Seven 526
Part V Critical Apparatus 531
Explanation of Signs and Conventions Used in Apparatus 532
§1. Text Apparatus 533
§2. Figure Apparatus 569
Part VI Appendices and Indices 583
§1. Maps of Places Cited 585
§2. Conventions 588
A. Transliteration System for Arabic and Persian Words 588
B. Transcription System for Arabic Letters in Figures 589
C. Abbreviations and Symbols 589
D. Miscellaneous 590
§3. Glossary 591
§4. Works Cited 615
§5. Indices 637
A. Subject Index 637
B. Parameter Index 654

Volume One

Part IGeneral Introduction
Part II
Edition and Translation
Part III
Commentary Figures
XV \&

Part I

General Introduction
1\&

§1. Naṣīr al-Dīn al-Ṭūsī

A. Life

1. Introduction

Abū Jacfar Muḥammad b. Muḥammad b. al-Hasan Naṣīr al-Dīn al-Ṭūsī was born on Saturday (at dawn according to Riḍawī1), 11 Jumādā I, 597 H./17 February 1201 A.D. in Țüs or its environs ${ }^{2}$ and died in Baghdad (at sunset according to Baḥrānī ${ }^{3}$), 18 Dhū al-Hijja 672 H. 25 June 1274 A.D. In a remarkable century that began with the death of Chu Hsi and further witnessed the birth, death or both of such luminaries as Roger Bacon, Ibn ${ }^{\text {c Arabī, Maimonides, }}$ Gregory Chioniades, Ibn Taymiyya, Thomas Aquinas and Levi ben Gerson, Tūsi's breadth and depth of learning stand out. Even in his lifetime he was something of a legend and acquired the honorific title of khwāja (distinguished scholar and teacher); ${ }^{4}$ later he came to be referred to by the rather more impressive ustādh al-bashar (teacher of mankind) and al-mucallim al-thālith (the third teacher, i.e. after Aristotle and Fārābī). ${ }^{5}$ After his death, Tūusi's influence, which can only be described as monumental, continued in fields as diverse as ethics, natural philosophy, mathematics, Sufism, astronomy, kalām (dialectical theology), fiqh (law), and logic.

A full-scale political and intellectual biography of Naṣir al-Dīn, though much needed, would be out of place here; my much more limited aim is simply to provide a chronology of his life and to give a sense of why he maintained a

[^0]lifelong interest in astronomy. But even this circumscribed goal must inevitably lead us into difficult questions of the typicalness of his education, the role of Hellenism in his worldview, the importance of patronage on the quantity and content of his scientific production, and the impact of his changing religious beliefs on his science. In order to approach these questions and, in general, to organize the details of Țūsi's multifaceted life, I shall make a basic assumption, namely that Țūsĩ was committed throughout his life, though in varying degrees, to what we may broadly call a Hellenistic attitude. This does not mean that he abandoned Islam (though he was accused of such); it does mean that he was heir to the intellectual traditions of late Greek antiquity that had begun to be "naturalized" 6 within an Islamic context by such personages as Kindī (fl. 3rd/ 9th c.), Fārābī (fl. 4th/10th c.) and Ibn Sīnā (fl. 5th/11th c.). Țūsī's contribution to this tradition was to continue the rapprochement of Hellenism and the Islamic disciplines. But more fundamentally, Țūsi's Hellenism led him to pursue knowledge for its own sake; thus we would be deeply mistaken to view his pursuit of the sciences as being primarily for the purpose of serving the practical needs of the Islamic community or his patrons. Only by situating Țūsī within this "ancient" tradition can we hope to comprehend his lifelong love and devotion to astronomy, a commitment that should be understood as epistemological rather than utilitarian. ${ }^{7}$

2. Education and Early Life

How did one come to be educated in this Hellenistic tradition over and above the more customary religious one? Although Ṭūsi’s education may not be typical, it does provide some insight into the factors that would lead a young student to pursue the ancient sciences and the manner in which he might go about such a task. Over the course of his life, Nașīr al-Dīn would travel widely to satisfy his craving to be educated in virtually all fields of learning; his first instruction, however, occurred in his own home under the tutelage of his father, Wajīh al-Dīn Muḥammad b. al-Ḥasan al-Ṭūsi. Wajīh al-Dīn could trace his own education through a line of Shīㄹite scholars back to ${ }^{\text {c Alam }}$ al-Hudā al-Murtaḍā (355-436/966-1044), the naqïb (head) of the ${ }^{\text {c Alīds in Baghdad and defender of }}$

[^1]the Imāmī (Twelver) Shī ${ }^{c}$ ites ${ }^{1}$ against the attacks of the Mu^{c} tazilite ${ }^{2}$ Judge ${ }^{\text {c Abd al-Jabbār (died 415/1024); }}{ }^{3}$ he continued this lineage by teaching his son $\operatorname{shari}^{-} a$ (law) through the reading of al-Murtaḍā's works. The young Nașīr al-Dīn also studied with his father's maternal uncle, Nașīr al-Dīn 'Abdalläh b. Hamza al-Țūsī, another eminent Imāmī scholar, and his own maternal uncle Nūr al-Dīn ${ }^{c} A l i \bar{i}$ b. Muḥammad al-Shīci. ${ }^{4}$ But there was evidently more to Naṣīr al-Dīn's family than a simple adherence to exoteric Shīcite dogma. In his so-called autobiography, Țūī tells us that his father, someone who had seen the world [jahān-dīdah], encouraged the young boy to study different sciences and listen to the masters of various sects and opinions. ${ }^{5}$ This seemingly broad-minded attitude may have been indirectly inspired by Tāj al-Dīn al-Shahrastānī, who had been a teacher of Nașir al-Dīn ${ }^{\text {c Abdallāh b. Heamza, }}$ who had in turn taught his nephew, i.e. Tūsi’s father. Täj al-Dīn had what Madelung calls "crypto-Ismā ${ }^{\mathrm{C}} \overline{\mathrm{l}}_{1} \overline{\mathrm{i}}$ thought," ${ }^{6}$ and this may have given the otherwise rather strait-laced Twelver family a somewhat more "worldly" view; at least it may have been part of the widened horizon that would lead the young Nașīr al-Dīn to give both philosophy and perhaps the heretical Ismā ${ }^{C} \overline{1} \bar{l} \bar{i}$ doctrine a hearing. At any rate, Tūsi took his father up on his suggestion and studied the branches of philosophy (hikma) and especially mathematics with a certain Kamāl al-Dīn Muḥammad al-Ḥāsib, a student of Afḍal al-Dīn al-Kāshī. ${ }^{7}$

After this initial period of his education, Nașir al-Dīn apparently traveled to Nīsābūr, a major city in Khuräsān located to the west of Țūs, to study with the noted physician Quṭb al-Dīn al-Miṣrī and with the polymath Farīd al-Dīn Dāmādh. Both provide us with evidence that he was actively pursuing further education in the ancient sciences and philosophy.

Quṭb al-Dīn, though originally from the Maghrib, had studied for some time in Egypt (whence the appellation al-Misrī [the Egyptian]), and then had traveled

[^2]eastward to study with the well-known mutakallim (dialectical theologian) Fakhr al-Dīn al-Rāzī (ca. 543-606/1149-1209). Eventually he came to reside in Nīsābūr where Țūsī studied medicine and hikma (presumably philosophy) under him. ${ }^{8}$ Quṭb al-Dīn wrote a commentary on the Kulliyyāt (which is the part dealing with general topics) of Ibn Sinnā's medical work, the Qänün, in which he is reported to have been rather critical of the author. ${ }^{9}$

Farīd al-Dīn Dāmādh was well-versed in philosophy, usūl (jurisprudence), logic, and medicine. ${ }^{10}$ Hé also had studied with Fakhr al-Dīn al-Rāzī and, of even more interest, could trace his pedagogical lineage back to Ibn Sinā. ${ }^{11}$ Presumably then, Nașir al-Dīn studied the works of his famous Persian predecessor with Farìd al-Dīn. ${ }^{12}$

We can, with a fair degree of confidence, place Nașīr al-Dīn in Nīsābür sometime after 610/1213, when he would have been a mere lad of twelve or thirteen, and before 618/1221, when the armies of Chingiz Khān completed their devastation of Khurāsān. Indeed, Ibn abĩ Ușaybica informs us that Quṭb al-Dīn al-Miṣrī was one of the victims of the final Mongol onslaught on Nīsābür that occurred in that year. ${ }^{13}$

Perhaps because of the precarious situation in his native Khurāsān, or perhaps simply out of a desire to further his studies, Nașīr al-Dīn traveled to Iraq ${ }^{14}$ to study with the Shīcite legal scholar Mucin al-Dīn Sālim b. Badrān al-Miṣrī ${ }^{15}$ and with the extraordinary Kamāl al-Dīn ibn Yūnus (551-639/1156-1242), whose expertise ranged from Qur'ān exegesis to the Almagest. ${ }^{16}$

We know from several sources that Tūsī studied with this $\mathrm{Mu}^{\mathrm{C}} \mathrm{i} \mathrm{n}$ al-Dīn; in addition, there is extant an $i j \bar{a} z a$ (a license allowing the recipient to teach a given work) granted by $\mathrm{Mu}^{\mathrm{c}} \mathrm{i}$ al-Dīn to Naṣīr al-Dīn in $619 / 1222 .{ }^{17}$ Little more is

[^3]known about $\mathrm{Mu}^{\mathrm{c}}{ }^{\text {in }}$ al-Din, however. That he or his ancestors came from Egypt (or perhaps simply passed through as we saw above with Quṭb al-Dīn al-Miṣrī) is clear from his name. Safadī and Kutubì both inform us ${ }^{18}$ that he was also al-Mu ${ }^{c}$ tazilī ${ }^{19}$ and al-Rāfidī. ${ }^{20}$ Despite the little we do know about him, he does seem to have played an important part in Naṣīr al-Dīn's education. Ibn Kathïr (ca. 700-74/1300-73), for example, states that his basic education came from $\mathrm{Mu}^{\mathrm{c} i n}$ al-Dīn who, he continues, influenced Ṭüsī to such an extent that he undermined his religious belief (afsada $i^{c} t i q \bar{a} d a h u$). ${ }^{21}$ Ibn Kathīr, who held strong Hanbalī biases, ${ }^{22}$ may have somewhat exaggerated the influence of $\mathrm{Mu}^{{ }^{\mathcal{1}} \mathrm{in}}$ al-Din who was, as far as he was concerned, twice cursed-once with Shicism and a second time with Mu^{c} tazilism. We should keep in mind, however, that his influence is also implied in the account of Safadi/Kutubi by the fact that he is referred to twice. Furthermore he is one of only two of Nasiir al-Dīn's teachers who there receive specific mention.

The other is Kamāl al-Dīn ibn Yūnus. ${ }^{23}$ In all probability, Naṣīr al-Dīn studied astronomy and mathematics with Kamāl al-Dīn who was noted for his

[^4]expertise in these subjects; ${ }^{24}$ it is less probable that Ṭūsī pursued religious studies with him since Kamāl al-Dīn was a Sunnī of the Shāficite school of law. ${ }^{25}$ Ibn al-Fuwaṭi tells us that students came to study with him from east and west (i.e. of Islamdom); we may assume that Țūsī was one of them, most likely traveling to Mosul sometime in the 620's/1223-32 after completing his legal studies with Mucin al-Dīn b. Badrăn. ${ }^{26}$

Although there can be little doubt that both Naṣir al-Dīn and his education were in many ways unique, we may yet draw some preliminary conclusions that can help us understand the initiation of a 13th c. individual into the "Ancient Sciences." An obvious point is that during this period the rift between those who studied the $a w \bar{a} ' i l$ sciences and those who dealt mainly with the Islamic sciences was not as great as it had been in earlier centuries. ${ }^{27}$ Farīd al-Dīn Dämādh, Quṭb al-Dīn al-Miṣī, Kamāl al-Dīn b. Yūnus, and Nasiir al-Dīn himself are clear examples of this trend to do work in both the manqülāt (the transmitted, i.e. traditional Islamic, sciences) and the $m a^{c} q u \bar{u} l a \bar{t}$ (the rational sciences). ${ }^{28}$ It is also evident from the diverse religious affiliations of these individuals that we are here dealing with a tendency current among both Shī ${ }^{\mathrm{C}}$ ites and Sunnīs. ${ }^{29}$

An important consequence of the closing of the gap between religious and nonreligious studies was the opportunity this afforded to bring the $a w \vec{a} ' i l$

[^5]sciences into the religious schools (madrasa; pl. madäris). ${ }^{30}$ Though this probably did not mean that mathematics, the sciences, and philosophy became a part of the curriculum of the madrasa, whose purpose, above all, was the teaching of law, it did mean that someone like Kamāl al-Dīn b. Yūnus, who directed or taught at various schools in Mosul, had the opportunity to teach nonreligious subjects if he so chose. ${ }^{31}$ Naṣīr al-Dīn's appropriation of waqf (religious endowment) funds at the Marāgha observatory, one of the few known instances of the use of such funds for a nonreligious purpose, may perhaps be better understood in the context of this changing relation between religious and nonreligious disciplines. ${ }^{32}$

A second point that should be stressed concerning Tūsi's education is that a student was willing to travel a considerable distance to study with the teacher of his choice. The trek of Naṣīr al-Dīn from Khurāsān to Mosul is an example of this; we have also seen that Quṭb al-Dīn al-Miṣrí traveled from the Maghrib to Egypt and from there on to Nīsābūr. Furthermore, one may conclude that, based on the example of Țūsī, a $\operatorname{Shi}^{-}{ }^{c} \bar{i}$ would not hesitate to study with persons of other sects. Kamāl al-Dīn b. Yūnus and Quṭb al-Dīn al-Miṣrī, for example, were both Sunnis of the Shāfícī school of law. As we shall see in the concluding section below, this broad-minded attitude is an important part of 'Tūsi's mature philosophy.

3. The Ismā ${ }^{c} \bar{l} \bar{l}$ Stage

His studies completed, the young Nasir al-Dīn faced the unenviable task of finding an appropriate position. We know that sometime around 632/1235 Naṣir al-Dīn found a patron in ${ }^{\text {c Abd al-Raḥìm b. abī Manṣūr Nāṣir al-Dīn Muḥtasham }}$ (died 655/1257), the last Ismā ${ }^{-} \overline{1} \overline{1} \bar{i}$ governor of Qūhistān, who ruled from the town of Qā'in during the reigns of the seventh and eighth Grand Masters of Alamūt, 'Alā' al-Dīn Muḥammad (ruled 618-53/1221-55) and his son Rukn

[^6]${ }^{32}$ Sayili [1960], pp. 207-211.
al-Dīn Khurshāh (ruled 653-54/1255-56). ${ }^{1}$ The Nizārī Ismācīī̄s, whose allegiance was to Nizār, the defeated son of the Fätimid ${ }^{2}$ Imām al-Mustanṣir (died 487/1094), had in the late eleventh and early twelfth centuries established themselves in Syria and Iran under their redoubtable leader Hasan-i Sabbāh. ${ }^{3}$ Their headquarters were located at the fortress of Alamūt in the Alburz mountains of Daylamān from which they ruled, in theory, the other Ismā ${ }^{\mathrm{C}} \overline{\mathrm{i}} \mathrm{I} \bar{i}$ strongholds in Iran and Syria, some of which were located in Qūhistān in eastern Iran.

What led Țūsì to enter the service of the Ismā ${ }^{\mathrm{c}} \overline{\mathrm{i}} \mathrm{li} \mathrm{s}$, a group greatly despised by the Sunnis and more often than not shunned by the other Shī \mathbf{c} a? Nașir al-Din gives us one answer in his Risālah-i sayr wa-sulūk (Epistle on the Journey and Conduct). Nașĩr al-Din in no uncertain terms tells us that he had become disillusioned with the exoteric Islam of his childhood and had "converted" to esoteric
 to make the Truth known. ${ }^{4}$ But after the fall of the Ismā ${ }^{c} \bar{i} l i=1$ strongholds to the Mongols in 1256, TTūsī had a rather different story to tell. In the introduction to the $\bar{I} l k h a \bar{a} \bar{\imath} Z \bar{l}$, for example, he states:

At the time that [Hülegü] seized the dominions of the heretics [i.e. the Ismā $\left.{ }^{c} \bar{i} l \bar{l} s\right]$, I Nașīr al-Dīn who am of Țūs and had fallen into the power of the heretics-me he brought forth from that place and ordered to observe the stars. ${ }^{5}$

Furthermore in the Akhlāq-i Näṣiri, he tried to justify his earlier praise of the "heretics":
...to save both himself and his honour, he [i.e. Naṣī al-Dīn speaking in the third person] completed the composition of an exordium in a style appropriate to the custom of that community for the eulogy and adulation of their lords and great ones. This is in accordance with the sense of the verse:

And humour them while you remain in their house; And placate them while you are in their land.

[^7]And also the well-attested tradition: "With whatsoever a man protects himself and his honour, it shall be recorded to him as a favour." While such a course is contrary to the belief, and divergent from the path, of the People of the Shari ${ }^{-}$a and the Sunna, there was nothing else I could do. ${ }^{6}$

Lending some credence to TTūsi's obviously self-serving recantation is the historical reality that he, as many Persians, had to face during the period of the Mongol invasions. Naṣir al-Dīn, after his sojourn in Iraq, would have needed a secure refuge if he wished to return to his homeland; but that refuge could hardly be Tūs or any other town in Khurāsān. ${ }^{7}$ In Rabī ${ }^{\mathrm{c}}$ I 617/May 1220 the initial contingent of the Mongol forces arrived at Nīsābūr; by the Spring of 618/1221, Tūs and its environs had been subjected to wholesale slaughter and destruction while in Nīsäbūr itself virtually all the inhabitants who had remained in the city were killed. ${ }^{8}$ The historian Juwaynī, who lived through the ensuing chaos, tells us that even by 658/1259-60, Khurāsān was still in ruin from years of turmoil. ${ }^{9}$ A graphic example of this was Tūs where in $637 / 1239$ only fifty houses remained in the once thriving city. ${ }^{10}$ Nașir al-Dīn himself was, no doubt, away from Khurāsān during the years 617-18/1220-21; we have seen that he was studying in 619/1222 with Mucīn al-Dīn b. Badrān, probably in Baghdad. ${ }^{11}$ But wherever he was at the time, returning to or remaining in Khurãsān was out of the question. One of his few options was to seek refuge with the Ismā ${ }^{c} \bar{i} l i \bar{s}$, who seemed to be the only group in Iran that could offer any security. ${ }^{12}$ Tūsĩ himself confirms this in the revised introduction to his Akhlāq-i Nāṣirí:
...he [i.e. Nașir al-Dīn] had been compelled to leave his native land on account of the turmoil of the age, the hand of destiny having shackled him to residence in the territory of Qūhistān. ${ }^{13}$

But whether he felt shackled or not, Tūsī did spend many secure and productive years at the court of Nāṣir al-Din Muhtasham. But sometime before $654 / 1256$, Tūsī moved, or was relocated, from Qūhistān and ended up in Alamūt, which was the Ismä ${ }^{C} \bar{i} l \bar{i}$ capital. The reason for this move is not entirely

[^8]clear and to a certain extent its interpretation depends on how one is to understand Țūsi’s relationship with his hosts. There is evidence that during this time Tūsī was not entirely content to remain with the Ismã ${ }^{c} i \bar{i} l i ̄ s ; ~ a c c o r d i n g ~ t o ~ o n e ~ a c-~$ count he communicated with Mu'ayyad al-Dīn Muhammad ibn al-cAlqamī, the Shī ${ }^{\text {Cite }}$ Imämï (i.e. non-Ismä ${ }^{c} \overline{1} 1 \overline{1}$) wazīr to al-Musta ${ }^{c}$ ṣim, the last ${ }^{c}$ Abbāsid caliph (ruled 640-56/1242-58), apparently in hopes that his fellow Twelver would rescue him from Qūhistān with an invitation to the court in Baghdad. ${ }^{14}$ But according to this version, Nāṣir al-Dīn Muḥtasham discovered his plans and placed him under arrest. ${ }^{15}$ During his next trip to Alamūt, he deposited Ṭūsī with the Grand Master ${ }^{\text {C }}$ Alã' al-Dīn Muḥammad for safekeeping.

Whether these latter events actually occurred in the way described or whether this account was a precautionary fiction invented by Ṭūsĩ or his friends, we do know that Naṣir al-Dīn was in Alamūt at its fall to the Mongols in 654/1256. We do not know, however, when he arrived there from Qühistän. A: reasonable possibility is between 642/1244-45, the year of the assumption of the wazīrship by Ibn al- ${ }^{-}$Alqamī and the date of composition of the Asās al-iqtibās, Tūsī’s Persian work on logic written while still in the service of Nāṣir al-Dīn, and Şafar 644/June-July 1246, the date on which the Hall mushkilāt "al-Ishärāt," a commentary on Ibn Sinā's well-known Al-Ishārāt wa-'l-tanbīhāt, was completed. In this latter work, dedicated to Shihāb al-Dīn Muhtasham who was probably in Alamūt at the time (thus providing us with some indication of Nașīr al-Dīn's whereabouts), Ṭūsī complains bitterly about "the difficult circumstance" (hāl ṣacb) and the "disturbed state of mind" (kudūrat $b \bar{a} l$) under which the work was written, which seems oddly out of character with the convert's fulsome prose in the Sayr. Since the latter can be dated between 644 and $654,{ }^{16}$ and it was almost certainly written while he was still in Qūhistān, 644/1246 becomes a likely candidate for a rather significant crisis that would eventually lead to his relocation to Alamüt.

However one takes his Ismā $\bar{c}_{\bar{i} l i ̄}$ stage, one must admit that some of his most creative work dates from this period. In addition to the influential work on ethics, the Akhläq-i Nāsiciri, Țūsī presented the first of his new lunar and planetary models in his Hall-i Mushkilāt-i Mucïniyya, a work dedicated to $\mathrm{Mu}^{\mathrm{c}}{ }^{\text {in }}$ al-Dīn Shams, the son of Nāṣir al-Dīn Muhtasham. These models were to appear many years later in the Tadhkira. ${ }^{17}$ And if one accepts our assumption

[^9]that Țūsī was relocated, for whatever reason, to Alamūt in or about 644/1246, then one may conclude that his scholarly activity continued unabated-indeed flourished-during this time when one may assume that he had access to the famous Alamūt library. One would then be able to date many of his recensions of Greek and early Islamic works-and perhaps even his decision to undertake such a formidable task-to the period of his Alamüt residence. Interestingly enough, he began with the most difficult first, completing his edition of the Al magest on 5 Shawwāl 644/13 February 1247 and of the Elements on 22 Sha'bān 646/10 December 1248. He continued to work on this project until it was concluded in Marāgha under the Mongols in Shacbān 663/June 1265 with his edition of the Spherics of Menelaus. ${ }^{18}$

Nașīr al-Dīn's relationship with the Ismā̄ilis, whatever it was, ended on the first of Dhū al-Qac da $654 / 19$ November 1256 with the fall of Alamüt to the Mongols. It is significant that he himself played some role in the final negotiations and in fact accompanied Rukn al-Dīn Khurshäh, who had replaced his assassinated father a year earlier, down the steep path from the mountaintop to Hülegü. ${ }^{19} \mathrm{He}$ may have even been instrumental in persuading Khurshāh to give up what by then must have appeared a hopeless cause. ${ }^{20}$ This, of course, tends to put a somewhat different light on Țūsi's true position at Alamūt. On the other hand, it would not be unreasonable to assume that Țūsi's fidelity to Ismā $\overline{\mathrm{C}}_{\bar{i}} \mathbf{i} \overline{\mathrm{i}}$ dogma must have seemed far less important than the pressing need to use his skills during the sensitive negotiations.

4. The Mongol Period

Whatever the true explanation, Naṣir al-Din was immediately enlisted into the service of Hülegü; he even accompanied him during the campaign against Baghdad and provided an eyewitness account of the end of the ${ }^{c}$ Abbāsid Caliphate. ${ }^{1}$ When asked by Hülegü whether the attack on Baghdad would lead to a series of cataclysms as predicted by one of the Muslim astrologers in the Mongol entourage, Ṭūsī, "frightened and thinking he was being tested," answered in the negative. ${ }^{2}$

[^10]Naṣir al-Dīn thereafter became a trusted advisor to Hülegü. Ṣafadī/Kutubī report that Hülegü was dependent on him to such an extent that he would not ride or travel without his sanction. Naṣīr al-Dīn was also made a wazīr and put in charge of waqf (religious endowments). ${ }^{3}$

But for our purposes, the major event that resulted from the relationship between Nașīr al-Dīn and Hülegü was the building of the Marāgha observatory. ${ }^{4}$ Apparently both Hülegü and his brother Möngke, who ruled the vast Mongol domains from China, were patrons of the sciences. The latter wished to construct an observatory in Beijing, but this was not accomplished in his lifetime. However an observatory was constructed-whether at the instigation of Hülegü or Naṣīr al-Dīn is not clear-in Ādharbayjān at Marāgha under the direction of Tūsī. It was begun shortly after the fall of Baghdad in Jumäda I 657/April-May 1259.

The significance of the Marāgha observatory has been well documented by Sayili. Naṣir al-Din invited the most renowned scientists of the time, among whom we should mention Mu'ayyad al-Dīn al-CUrḍi and Muḥyì al-Dīn al-Maghribī, to participate in the construction of the instruments as well as the actual observations. A fairly substantial number of students was also in attendance who benefited from an impressive library. ${ }^{5}$ The observatory also had an international character due to the several Chinese astronomers on its staff. To pay for such a massive undertaking, Naṣir al-Dïn, in his capacity as administrator of waqf funds, used the proceeds from these religious endowments to finance the observatory. This was a striking and significant departure from past practices; it would seem to indicate, as we have mentioned previously, a breaking down of the barrier between the Islamic and the pre-Islamic sciences. The use of waqf funds for the Marāgha observatory would also explain its relatively long life of some fifty years.

It is unfortunate that we know so little about the astronomical significance of the Marāgha observatory. The $\bar{I} l k h \bar{a} n i \bar{i} Z \bar{j} j$ itself contains surprisingly little that is new, but this seems to be more a function of the intended audience than of what actually occurred in Marāgha. It hardly seems likely that this work, in which TTūsī felt the necessity to inform his Mongol patrons that Muhammad was from Mecca, was intended for the Muslim intellectual community. ${ }^{6}$ Fortunately, other

[^11]$z \bar{\jmath} j e s$ that were based on the Marāgha observations exist and await scholarly examination. ${ }^{7}$

In 672/1274, Naṣīr al-Dīn left Marāgha with a group of his students for Baghdad. The reasons for this trip are unknown but it would seem that he intended to remain for awhile since his students had decided to accompany him. In the same year, Nasiir al-Dīn died and was given a memorable funeral attended by a number of leading dignitaries. ${ }^{8}$ It was during this brief final sojourn in Baghdad that Țūsi made his final revision of the Tadhkira, the version that is the basis for the edition contained herein.

5. Ṭüsi's Astronomy and Its Relation to His Hellenism and Religious Beliefs

Because Țūsī's religious beliefs ostensibly changed several times during his lifetime, it is well worth asking whether these changes had any effect upon his scientific, and in particular his astronomical, work. In other words, were Țūsī's Hellenistic cosmology and astronomy independent of his apparently distinct religious commitments that entailed, by his own account, different epistemological positions? An answer to this sort of question depends upon a much more thorough analysis of Țūsi's writings than is possible here; I would, though, like to offer a preliminary response since I believe that there are larger lessons to be learned concerning the attempt by Islamic astronomers to immunize the mathematical core of their discipline from the charge that it was inextricably tied to a suspect Aristotelian metaphysics.

Before discussing the implications of these "conversions" for his astronomy, we should briefly review the nature and justifications of his religious beliefs during the different stages of his life. For Țūsī's conversion to Ismã ${ }^{c}$ ̃lism, we are in the fortunate position of having his spiritual autobiography written when he was in the service of Nāṣir al-Dīn Muhtasham, the Ismā ${ }^{\mathrm{c}} \mathrm{i} 1 \overline{1}$ governor of Qūhistān. This work, which we have had occasion to mention previously, his Risälah-i sayr wa-sulük (Epistle on the Journey and Conduct), ${ }^{1}$ is a kind of intellectual and spiritual autobiography with a liberal dose of $\operatorname{Isma} \bar{a}^{\mathrm{C}} \overline{\mathrm{i}} \overline{1} \mathrm{i}$ apologetics thrown in. In the introduction, the author states his name to be Muhammad al-Ṭūsī, and several crucial details agree with what we know independently of his life; there

[^12]can be little question of attributing the book to our Tūsī. ${ }^{2}$ In the main body of the work itself, Țūsī tells of his growing disenchantment with exoteric theology (kaläm), which he came increasingly to see as little more than apologetics; this transformation he seems to attribute in part to the subtle influences of his father, his uncle and his mathematics teacher Kamāl al-Dĩn Mụhammad al-Ḥāsib. ${ }^{3} \mathrm{He}$ then became attracted to philosophy (hikma), which he felt gave an opportunity to the intellect for finding truth; but Tūsī came to believe that intellect was deficient in apprehending the "Giver of intellect" and thus philosophy could not give him answers to the ultimate questions. But philosophy, he tells us, did teach him the important lesson about potentiality and actuality. Taking the example of a body that is potentially in motion, he argues that it could never become actually in motion unless there is something else influencing it. Likewise a potential knower needed someone else, i.e. a teacher, to actualize that knowledge. ${ }^{4}$ Eventually he chanced upon the Fuṣūl-i muqaddas (Sacred Articles) of the Ismā̄̄̄̄̄̄̄̄̄ Lord of Alamūt Ḥasan Calā dhikrihi al-salām (reigned 1162-66), and he at last found the religious teacher he was seeking, namely the divinely chosen Ismācīlī Imām. He thus decided to join the court of Nāṣir al-Dīn Muḥtasham. ${ }^{5}$

After the fall of Alamūt, Țūsī, as we have seen, felt it necessary to repudiate his previous service to the "heretics." But Tūsī did more than protest his "innocence"; he also sought to disestablish his Ismā${ }^{-} \bar{i} l i s m$ by returning to an essentially philosophical worldview. During this post-Ismā $\bar{C}_{\overline{1} 1 i ̄}$ period he wrote a devastating attack upon Tāj al-Dīn al-Shahrastānìs refutation of Ibn Sīnā's philosophical position. ${ }^{6}$ We should recall that it was this Tāj al-Dīn who had Ismā̄̄̄̄̄ī sympathies and had taught Nașìr al-Dīn's great-uncle (also a Naṣìr al-Dīn). Țūsī in this work came down strongly in favor of (Hellenistic) philosophy, especially the Ibn Sinā variety, and returned to his earlier notion that special pleading for a particular religious cause (and in Tāj al-Dīn's case this was Ismā \bar{a}^{C} lism) was incompatible with the search for truth. As he would state in his new introduction to the Ethics, philosophy (hikmat) "bears no relation to the agreement or disagreement of school or sect or denomination." ${ }^{" 7}$

[^13]One could engage in a long, but inevitably fruitless, debate about which Naṣir al-Din was the true one. But leaving aside the question of the sincerity-or expediency-of his conversions, we should ask whether his association with the Ismā ${ }^{-} \bar{i} l i \bar{s}$ and their doctrines had any significance for his scientific work. Was there any discernible change in it due to his new found faith? And more to the point, did the submission to a religious authority parallel any similar submission to scientific authority? ${ }^{8}$ The answer must be negative for both; although Tūsī was not a scientific revolutionary-he remained committed throughout his career to a modified Ptolemaic worldview, for example-he was not hesitant to criticize and modify both his Greek and Islamic predecessors. And this attitude is clearly detectable during his Ismā $\bar{a}^{\mathrm{c}} 1 \mathrm{l} \overline{\mathrm{i}}$ period. As we shall see, ${ }^{9}$ several of the original versions of the non-Ptolemaic models of the Tadhkira were first presented in his Hall-i mushkilät-i Muciniyya, which was written for Mucin al-Dīn, the son of his patron Nāsir al-Dīn Muhtasham. And despite the ups and downs of a tumultuous life, Țūsī's interest in astronomy and the content of his work in it remained remarkably stable. But then we are faced with another question. Can we separate TTūsì's scientific work from his philosophical and religious views? Here I would go beyond a mere positive response to anticipate my argument in the following chapter on hay'a, namely that Islamic astronomers themselves were seeking-sometimes consciously, sometimes not-to free their physical theories from a metaphysical taint. ${ }^{10}$ In short, I would argue that whatever the effects of TTūsi's conversion on his philosophical worldview, and thus on his "Hellenism" (taken here to mean a commitment to rational discourse in all matters), I believe that we may safely conclude that the effects on his astronomy were nonexistent. ${ }^{11}$

How influential was Tūsi's attitude? Was his attempt to place philosophy, and by implication the mathematical sciences, above religious disputes successful? As we shall see later, his position was quite influential in the East and we
${ }^{8}$ Cf. Sabra's [1984] attempt to draw a connection between Averroes's glorification of Aristotle and the theological literalism of Ibn Hazm (d. 1064). As he puts it, "it is difficult not to regard this attitude of Averroes's and the commentatorial style he adopted in most of his philosophical writings as a literalism in philosophy that paralleled the theological literalism of Ibn Hazm" (p. 144). Though Sabra does not dwell on the problem, he opens up the possibility that Averroes's change in attitude toward Ptolemaic astronomy-from embracing it in his earlier epitome (talkhiṣ) of Aristotle's Metaphysics to rejecting its fundamental basis in his large commentary (tafsir) of the same work-had something to do with a parallel change in religious philosophy. Averroes's exaltation of Aristotle represents a rather extreme position in Islamic intellectual history. A much more sceptical approach toward authority is manifested in Ibn al-Haytham's Shukūk, pp. 3-4. (For a translation of this latter passage, see Sabra [1989], 2: 3.)
${ }^{9}$ See pp. 66, 69-70 of this volume.
${ }^{10}$ See pp. 38-41, 45-46.
${ }^{11}$ On the other hand there could be possible consequences for such things as his ethics; cf. Madelung [1985].
even have a very spirited defense of astronomy by the astronomer/theologian ${ }^{\text {cAlī al-Qūshjī (d. 879/1474) that explicitly attempts to raise it above religious }}$ objections. ${ }^{12}$ But this philosophical position should be seen within the context of a broader intellectual trend in Eastern Islam, especially Iran, one that was not always well received further west in Syria and Egypt. To understand this we must examine how Ṭūsi's intellectual positions came to be played out on the political stage.

First one must acknowledge Țüsi's political genius, ${ }^{13}$ which is nowhere more in evidence than in his ability not only to convince the Mongols, certainly not a gullible lot, that he had been an unwilling resident of Alamūt but more importantly in his skill in protecting the interests of the $\mathrm{Shi}^{-} \mathrm{C}$ ites in particular, and the Muslim community in general, from the caprice of the Mongol rulers. As we have seen, part of this involved writing new introductions to a number of works in which he had lavished praise on his former patrons, ${ }^{14}$ and one could well conclude that this was the worst type of opportunism. One might even go so far as to claim that this is just an example of Ismā $\overline{\mathrm{c}}_{\mathrm{i}} \mathrm{i} \mathrm{i}$ taqiyya (dissimulation); indeed, the author of Rawdat al-Taslïm, which has been attributed to Tūsī, tells his audience that he must write "in a hurry, secretly, in a dark corner" during a period of satr (concealment) ordered by the Imām. ${ }^{15}$ But this seems hardly in character with the reports in Şafadi/Kutubī that during his years of service under Hülegü, Muslims in general and, as one might expect, the Shica in particular benefited from him. ${ }^{16}$ One of the Sunnis he aided was none other than the historian Juwaynī, whom Naşīr al-Dīn saved through elaborate astrological trickery from a death sentence imposed by Hülegü. ${ }^{17}$ It is not beside the point to note here that it was this Juwaynī who, as he himself tells us, asked permission from Hülegü after the taking of Alamūt

[^14]to examine the library, from which I extracted whatever I found in the way of copies of the Koran and [other] choice books...As for the remaining books, which related to their heresy and error and were neither founded on tradition nor supported by reason, I burnt them all [emphasis added]. ${ }^{18}$

It is difficult to believe that Tuusi's taqiyya would extend to saving the life of someone who had almost single-handedly destroyed the literary heritage of his religious faction.

The reason this is an important point to keep in mind is that Tūsi's subsequent reputation in the East was very high among both Sunnīs and Shicis, a state of affairs that would be very hard to imagine if he had not acted to protect all Muslim interests during the Mongol hegemony. Indeed one need only refer to his theological work, the Tajrid al- ${ }^{c} a q \bar{a}^{\prime} i d$, to note that it was commented on and used by both Sunnīs and $\mathrm{Shi}_{\mathrm{i}}^{\mathrm{c}} \mathrm{i}$. As with astronomy so also with kaläm (dialectical theology) itself, Ṭüsĩ would seem to have been at least partially successful in transcending the religious disputes that had disturbed him so much as a youth.

But Țūsī did not fare so well further West in the Mamlūk areas of Syria and Egypt. There he was mercilessly denounced by such Hanbalì luminaries as Ibn Kathïr (ca. 700-74/1300-73) ${ }^{19}$ and Ibn Qayyim al-Jawziyya (691-751/ 1292-1350). One may quote the latter to get the flavor of these invectives:

We now reach the time of the defender (nasir) of idolatry, unbelief and heresy, the minister to the heretics, al-Naṣir al-Tūsī, the minister to Hülegü. He relieved himself from following the Prophet and the members of his religion, putting them to the sword so as to satisfy his fellow heretics and save himself. He killed the Caliph, judges, jurists, and traditionists; he protected the philosophers, astrologers, natural philosophers, and magicians. He transferred the endowments of the religious schools, the mosques, and the hospices attached to them, making them his personal property...He also established schools for the heretics. He hoped to substitute the Ishārāt of the leader of the heretics Ibn Sīnä in place of the Qur'ān, but he could not accomplish that! He said: "The former is the 'Qur'än' of the elect while the latter is for the masses."...Finally he taught magic, for he was a sorcerer who worshipped idols. ${ }^{20}$

[^15]In wading through the hyperbole of this passage, one should keep in mind the real issue involved. Tūsī, insofar as he was a follower of Ibn Sīnā, did place philosophy beyond the pale of religious disputation or, as we have seen him put it in the Ethics, it "bears no relation to the agreement or disagreement of school or sect or denomination." 21 This was the crux of the battle between the philosophers and the traditionists of Islam, and Țūsi's power and influence were rightly seen by the latter as a direct threat. ${ }^{22}$ They also rightly saw that Țūsī was seeking to carry on the work, if not the details, of Fakhr al-Din al-Rāzī in "naturalizing" the Hellenistic heritage in Islam. ${ }^{23}$

In this regard one might put into perspective the work on religious cosmology by the Egyptian al-Suyūṭī (849-911/1445-1505). As A. Heinen has noted, he hoped it would be the Islamic cosmology and he even went so far as to appropriate the word hay'a, the term for mathematical cosmology, into his title. ${ }^{24}$ But in the East, TTūsi's legacy would have made the possibility of a religious cosmology in competition with (and potentially supplanting) a mathematical one far less likely. For Ṭūsī and his successors, science and religion could coexist within the intellectual scheme he was so instrumental in establishing. ${ }^{25}$

B. Works

A comprehensive evaluation of Țüsi's enormous corpus would be premature. Sheer size is only the beginning of the problem; ${ }^{1}$ Nașirr al-Dīn saw fit to try his hand at virtually all fields of both ancient and Islamic learning. Since neither my training, taste nor ability can match Tūsi's, my rather modest aim is simply to

[^16]give some sense of his writings and to provide a context within which to place his writings on hay'a.

Tūsi's work has often been characterized as being that of "revival" rather than of "origination." ${ }^{2}$ But this seriously misrepresents his contribution to astronomy and, perhaps, to other fields as well. There is a kernel of truth to this "revivalist" tag, however. His role in post-13th century A.D. Islamic intellectual history cannot easily be underestimated when we consider that many of his works became the standard in a variety of disciplines up until modern times. His recensions of Euclid's Elements, Ptolemy's Almagest and the "Middle Books" of mathematics and astronomy virtually replaced earlier editions. His works in logic and kaläm were also widely read and commented on, and it is hard to imagine Ibn Sīnā's $A l$-Ishärāt wa-l-tanbīhät being studied without Naṣīr al-Dīn's valuable commentary. His work on ethics, the Akhlāq-i Nāsirī, was also of considerable importance, especially in the eastern domain of Islam. We should in addition mention here that among his works are books on fiqh and șūfism. In all these examples we have, for the most part, a consolidation of the endeavors of earlier generations of Islamic scholars. This occurred at an important point in Islamic history as there had been an unmistakable, but not easily understood, lull in intellectual activity in the century or so previous to that of Ṭūsi. Historically, then, Nașir al-Din easily falls into the role of consolidator rather than innovator.

But I would hesitate to leave the matter here. As is clear from astronomy, most of Țūsi's work can be viewed as simply a well-integrated account of what others had previously accomplished. Nevertheless his own contributions are not insubstantial and, when seen in the perspective of future developments, take on added importance.

I would like to venture a number of preliminary, working hypotheses about Țūsi's writings that, needless to say, may need to be revised as more of them are examined and edited. First, many of Tuusis's most creative and original work was composed while in the service of Nāṣir al-Dīn Muḥtasham in Qūhistān (ca. 630/1232 or 1233-ca. 643/1245 or 1246). Among these are the Akhläq-i Näsisir, the Risälah-i Mu ${ }^{c}$ iniyya and its sequel the Hall-i mushkilät-i Muciniyya in which one finds Nasiir al-Din's new models for the moon and planets, and the logical work Asās al-iqtibās. Furthermore, he worked on the commentary to Ibn Sīnā's Al-Ishārāt wa-l-l-tanbīhāt during these years. As one might expect, all these works, with the notable exception of the latter, were written in Persian. Second, after going to Alamūt (ca. 643 or $644 / 1245,1246$ or 1247), Țūsī seems to have devoted himself in large measure to working on his recensions of Greek and early Islamic scientific work. Many of the editions of the so-called "Middle Books," in addition to his editions of the Almagest and Elements, date from this period. The next, and final, period of his life (654-72/1256-74), which coincides with his service under the Mongols, seems to have been a time of consolidating earlier gains rather than of making new departures. An important

[^17]preoccupation during this period was the Arabizing of earlier Persian works. The Tadhkira, completed in 659/1261, is basically an Arabic synthesis of the $M u^{c}$ iniyya and the Hall-i mushkilät-i Mu ${ }^{c}$ iniyya, which were composed some 25 years previously. It is likely that we are dealing with a similar situation in the case of the Arabic treatise on logic, Tajrid al-mantiq (written 656/1258) and the earlier Persian work, the Asās al-iqtibās (written $642 / 1244$ or 1245), though we should mention that the Arabic version is considerably abridged. It was also during this latter part of his life that Tūsī attempted to diminish the significance of his former relationship with the Ismācilis by claiming that he had only served them out of dire necessity. As we have noted, he even went so far as to rewrite the introductions of several works that had been composed for his Ismācilī patrons. ${ }^{3}$ A final point we should make is that longer and shorter versions of works on the same subject matter occur among TTūi's writings. Whether the purpose of these different versions is pedagogical or otherwise is not immediately clear. One example we shall note later (pp. 66-67) is the Zubdat al-idräk fi al-hay' a, which is an abridged version of the Tadhkira.

Inventories of Țüsì's works are given by Brockelmann (GAL, 1: 508-512 [=670-676] and S1: 924-933) and Riḍawī (Ahwāl, pp. 333-628), but each should be used with the standard caution. His Persian astronomical works are listed in Storey (Persian Literature, II.1, pp. 52-60); Matvievskaya/Rozenfeld catalogue his works in the exact sciences (Mat. i astr., 2: 392-408).

[^18]C. Chronology of TTūsī's Life*
597/1201 Naṣĩr al-Dīn born in Țūs, N.E. Iran
ca. 603-10/1206-13 Early education with father, uncles, and Kamālal-Dīn al-Ḥāsibca. 613/1216 Studies philosophy (hikma) and medicine inNīsābūr
Chingiz Khān ravages Khurāsān
Țūsī studying with $\mathrm{Shī}^{\mathrm{C}}$ ite jurist $\mathrm{Mu}{ }^{\mathrm{C}} \mathrm{i} \mathrm{n}$ al-Dīn inIraq
ca. $625 / 1228$ Studies astronomy and mathematics with Kamālal-Dīn ibn Yūnus in Mosul
ca. 630/1233 Finds patron in Nāṣir al-Dīn Muhtasham, Ismācīlīgovernor of Qūhistān
632/1235
Dedicates Risälah-i Muciniyya on astronomy to$\mathrm{Mu}^{\mathrm{C}} \mathrm{i}$ al-Dīn, son of Nāsir al-Dīn Muḥtasham
ca. 632-33/1235-36 Writes Ḥall-i mushkilät-i Muciniyya; first ap-
ca. 633/1235-36
642/1244-45
Completes Asäs al-iqtibās on logic while still in
644/1246 Probable date of completion of autobiographypearance of rectilinear Țūsī coupleDedicates Akhlāq-i Nâsirī (Nasirean Ethics) toNāṣir al-Dīn MuḥtashamQūhistān(Sayr wa-sulük) as well as relocation to Ismā $\bar{c}_{\overline{1}} 1 \bar{i}$fortress of Alamūt; completes Hall mushkilät"al-Ishārāt," a commentary on Ibn Sinā'sAl-Ishārāt wa-'l-tanbīhāt
644/1247Beginning of project to edit "Middle Books" ofmathematics and astronomy as well as Almagestand Euclid's Elements; recension of Almagestcompleted
646/1248
Recension of Elements
654/1256 Alamūt falls to Mongols; Țūsī begins his serviceto Hülegü
656/1258 Baghdad falls to Mongols; end of ${ }^{\text {c }}$ Abbāsidcaliphate
657/1259 Construction of Marāgha observatory begins un-der Ṭüsī's direction
659/1261 Marāgha version of Tadhkira appears
663/1265 Recension of Menelaus's Spherics; "Middle
Books" project completed; Hülegü dies
ca. 670/1271672/1274

Zīj-i I lkhānī completed
Baghdad version of Tadhkira completed; Ṭūsī dies in Baghdad

[^19]
§2. The Tadhkira

The full title of the work is Al-Tadhkira fi cilm al-hay'a, meaning "Memoir on the science of hay'a." Although hay'a is used to mean astronomy in a general sense, we shall find that it has a more specialized meaning as well that we shall explore to help us situate the Tadhkira within both an astronomical tradition and a literary genre. In addition to tradition, we shall also need to discuss its innovations, the rather remarkable history of the text, and its enormous influence.

A. Purpose of the Tadhkira

To understand a work, we would be well-advised to begin by asking what is its purpose. For the Tadhkira, we are fortunate that we have Tüsi's own words to guide us:

The scientific exposition that we wish to undertake will be a summary account of [astronomy] presented in narrative form. The details are expounded and proofs of the validity of most of them are furnished in the Almagest. Indeed, ours would not be a complete science if taken in isolation from the Almagest for it is a report of what is established therein.

The idea of a summary seems innocent enough and, up to a point, it is. Anyone who has ventured beyond the introductory sections of the Almagest knows that a summary of the contents or a running commentary can be of great help (not to say indispensable). But the Tadhkira is neither a commentary nor a straightforward summary of the contents of the Almagest. It rather sets forth those contents within a textual structure meant to give a physical accounting of the Universe-in short, a cosmography. Why was it that someone in the 13th c. came to feel that the Almagest should be summarized from the point of view of physical bodies, bodies that made a cameo appearance there but can hardly be said to have been a main feature? And furthermore, why did this someone, namely our Nașir al-Dīn, adopt the textual structure that he did? To answer these
questions, it will be convenient to distinguish the tradition within which the Tadhkira falls from the genre of astronomical work that came to be characterized by the Tadhkira itself. In what follows, I shall attempt to sketch an answer to these questions using a rather broad stroke indeed. ${ }^{1}$

B. The Tadhkira's Ancient Forebears

To understand the tradition of the Tadhkira, we need to isolate three aspects of his work that Tuusī feels are crucial. First the notion that astronomy has a strong physical component is put forth explicitly in I.Intr. [2] when he states that "the subject of astronomy is the simple bodies." Second he makes clear how he views the relationship between his work and the Almagest in II. 5 [10] with the following, revealing passage:

These then are models and rules that should be known. We have only stated them here; their geometric proofs are given in the Almagest. Restricting oneself to circles is sufficient in the entirety of this science for whoever studies the proofs. However, one who attempts to understand the principles of the motions (mabädi') must know the configuration (hay'a) of the bodies.

Here we can gain some understanding of what Țūsì meant in the introductory passage quoted above in which he indicated that the Tadhkira stood in a kind of dependent relationship to the Almagest inasmuch as the proofs of the statements being "narrated" in the former could presumably be found in the latter. But again, because Ptolemy in the Almagest did not go out of his way to discuss the bodies, Tūsī would surely be aware that he was doing something that, though arguably implicit there, was certainly not explicit. ${ }^{2}$ The Almagest then, despite what Ṭūī at times seems to be saying, is clearly not the only source for his work. Third Ṭūsí, though he never comes right out and says so, is clearly attempting to give a coherent and unified account of astronomy. Again we can contrast this with the Almagest, where Ptolemy treats each planetary system separately and is seemingly unconcerned there with such problems as how all

[^20]the individual parts fit into a complete whole, how one system might affect another, and the actual (as opposed to relative) size and distance of the orbs. On the other hand, Ṭusii provides just such an accounting. ${ }^{3}$

Can we find in antiquity works that could be considered earlier instances of a tradition of which the Tadhkira is a later member? I would venture to answer yes though I am thinking of an earlier tradition that should be considered in terms of providing inspiration rather than of establishing a specific genre. The first example I wish to consider occurs in Book λ, Chapter 8 of Aristotle's Metaphysics. In seeking to determine the actual number of eternal movers, Aristotle finds that he needs help from the "mathematicians" ($\tau \tilde{\omega} v$ $\mu \alpha \theta \eta \mu \alpha \pi \kappa \tilde{\omega} v)$ so that "our thought may have some definite number to grasp." But though he is dependent on the astronomers, he is clearly not afraid to propose modifications in order to "explain the phenomena." In practice, this means that Aristotle accepts that the Eudoxan-Callippic mathematical theory of the celestial motions accounts for the phenomena of each individual planet. What he is seeking to rectify is the problem that results from Eudoxus having treated the orbs of each planet separately. When one fits the individual sets of homocentric spheres inside one another, the lower spheres will necessarily partake of the motion of the higher orbs thus upsetting the mathematical modeling for each planet. Hence Aristotle proposes "unrolling" spheres whose purpose is to undo the motions (with the exception of the daily motion) for a given planet so that one can in effect start over for the next one.

How should we understand this relationship between Aristotle and the astronomers? The traditional view would have it that Aristotle is acting as a physicist whereas Eudoxus and Callippus are astronomers whose purpose is to use geometrical (rather than physical) hypotheses to "save the phenomena." 4 Recent studies, however, have pointed out that the use of spheres and uniform rotation indicate physical commitments, and it would be a mistake to view Eudoxus and Callippus as exponents of some ancient version of instrumentalism. ${ }^{5}$ How then should we view the relationship between Aristotle and Eudoxus? L. Wright has argued we should not regard Aristotle as someone who physicalized purely mathematical models, but rather as someone who took preexisting physical models and "showed how this model could be fitted into a

[^21]unified planetary system which had consequences that the model as used by Eudoxus did not." ${ }^{1}$ If this is the case, then we can point to the same three fundamental aspects that we have identified with Tūsi’s Tadhkira: (1) Aristotle is providing a physical account of the All; (2) he is accepting as given the models of the astronomers, which he assumes to be at base physical; and (3) he is attempting to provide a coherent and unified account, which compels him to provide additional spheres. It is on this basis that I would claim kinship between the Tadhkira and this chapter of the Metaphysics.

A second example of an "inspirational" ancient predecessor of the Tadhkira is undoubtedly Ptolemy's Planetary Hypotheses, which is composed of two books. ${ }^{7}$ Writing sometime after completing the Almagest, Ptolemy begins the first book by proclaiming his desire to set forth the results of the Almagest in a summary fashion ($\kappa \varepsilon \phi \alpha \lambda \alpha \iota \omega \delta \tilde{\omega} \varsigma$; Arabic trans. jumal) ${ }^{8}$ so that they might be more easily conceived and also as an aid to those who wish to construct a mechanical model. ${ }^{9}$ He then proceeds to catalogue the celestial circles, giving their positions, motions, and relative sizes (with the largest circle for each system of circles being 60). This part of Book I is followed by a discussion of the order of the planets, which, once determined, allows one to use the relative sizes of the circles to establish the absolute distances (in either Earth radii or stades) of the planets from the Earth. Computations of the sizes of the planets and stars followed by a passage on planetary visibility round out Book I. This part of the Planetary Hypotheses can then be understood as a summary of the main results of the Almagest presented without proofs for those who wish to gain a general picture of the heavens and their motions or who wish to construct actual physical models.

[^22]Book II is a summary of a rather different sort. Ptolemy tells us that
having pictured ($j a^{c} a l n \bar{a}$ al-mithālāt) their motions and the arrangements of their positions in a simple manner on great circles (afläk), which they describe by their motions, it remains for us to describe the forms ($a s h k \bar{a} l$) of the bodies by which we may understand those circles (afiāk). ${ }^{10}$

Ptolemy then plunges into a rather involved discussion of the nature of the celestial bodies. ${ }^{11}$ This is followed by a description of how the bodies are arranged for each planetary system. ${ }^{12}$

It is not difficult to cite numerous differences between the Planetary Hypotheses and the Tadhkira as well as other Arabic and Persian works of its type. ${ }^{13}$ The two-book structure of the Hypotheses-the first a summary of the Almagest and the second an attempt to represent physically the orbs-is not followed in any Islamic astronomical text known to me. More importantly, the attempt to make the orbs into manshürät [$\pi \rho \tau \sigma \mu \alpha \tau \alpha$ or "sawed-off sections"] is rejected by Arabic astronomers out of hand. ${ }^{14}$ Nevertheless, I would maintain that the Planetary Hypotheses is a prototype for the Tadhkira. The dual treatment of the motions and orbs in the two books of the Hypotheses have in the Tadhkira been combined to form a unified account for each body. The section on sizes and distances of the celestial bodies at the end of Book I of the Hypotheses has been placed in the final book ($b \bar{a} b$) of the Tadhkira, which is meant to provide a unified view of the system taken as a whole. And most importantly, the purpose of each work is basically the same: (1) both seek to provide a summary of the Almagest and both assume the results and proofs of the Almagest as given; (2) both seek to provide a physical account of the celestial

[^23]bodies and their motions based on the mathematical models of the Almagest; and (3) both seek to give a unified account of the entire system, perhaps best exemplified by the sizes and distances section of each (I. 1 of the Planetary Hypotheses and Book IV of the Tadhkira). It is these three fundamental aspects, which we have also identified in a somewhat different form in Aristotle's account of the Eudoxan-Callippan system, that I would maintain link the Hypotheses to the Tadhkira.

C. The Islamic Tradition of the Tadhkira

The existence of classical texts that correspond in some fashion with the Islamic tradition of which the Tadhkira is a member does not imply, of course, that those texts are in a direct historical line with, or are responsible for, that tradition. In particular, there is little evidence that any Islamic writer would have connected his work with Aristotle and Ptolemy in quite the way this 20th century writer has done above. We also are in the unfortunate position of not understanding very clearly how late Hellenistic astronomy was assimilated into the early Islamic science of the 8 th and early 9 th centuries. Though theoretical concerns seem to have been at a minimum during this period, there are at least hints that an interest in cosmography and the physics underlying astronomy may have been present at the earliest stages of Islamic science. ${ }^{1}$ Yacqūb ibn Taāriq gave one of his works the suggestive title Tarkīb al-afläk ("the arrangement of the orbs"), which was probably written in 161/777-78. Though only fragments have reached us, one of these, significantly for our purposes, is a table of planetary sizes and distances; although Bīrūnī thinks these are Indian, Pingree feels they are more in the spirit of Planetary Hypotheses $\mathrm{I}, 2$ though he is quick to point out that it is difficult to be definitive about a Greek influence. ${ }^{2}$ Indeed, Ibn Hibintā (ca. 950) in his Astrology points to an Indian source for Ibn Tāriq's system of orbs. ${ }^{3}$ Another work that is possibly from this period based on its attribution to the astrologer Māshā'allāh (762-ca. 815) is De scientia motus orbis (also known as De elementis et orbibus coelestibus). ${ }^{4}$ This astronomical treatise in 27 chapters, which is extant only in Latin translation, has sections on the physical basis of astronomy, though the motivation here may be astrological. ${ }^{5}$ Pingree has postulated a Syriac source that may be connected with the Hellenized pagan community of Ḥarrān; though this is far from proved, it does provide us with a

[^24]possible conduit for the early interest in physical cosmography within Islam as well as a possible motivation having to do with the desire to put forth a unified system that would provide the rational basis for astrology. ${ }^{6}$

But were these early Islamic forays into physical cosmography sufficient to define a genre or to establish a tradition that can account for the Tadhkira? Based on the testimony of Ibn al-Haytham, a prominent, not to say crucial, figure in developing that tradition, the answer must be no. In the introduction to his Al-Maqāla fi hay'at al-cālam, no dọubt written at a fairly early stage in his career, ${ }^{7}$ he identifies a group of mathematicians ($a s$ hāab al-tac ${ }^{c} \bar{z} m$) who have published works dealing with astronomical problems "by speaking generally" [lit., "grossly"] (bi-'l-jalil min al-qawl), but at the same time have "followed a procedure in apparent conformity with the detailed investigation of the science of astronomy" (li-l-daqīq min al-nazar fî cilm al-hay'a). ${ }^{8}$
...their goal is to collect that which has been stated in a detailed way and to present it as a summary (jumal) free of proofs...for the sole [purpose] of simplifying for those who would benefit from an acquaintance ($m a^{c} r i f a$) with the configurations of those motions by acceptance rather than inquiry and by following the practitioners of the science rather than by reflection... ${ }^{9}$

One can see that Ibn al-Haytham is characterizing a relationship not unlike the one Ṭūsī describes between his Tadhkira and the Almagest, i.e. one of a general account that takes for granted an existing detailed study replete with mathematical proof. But the two other aspects we have identified as fundamental to the Tadhkira, a summary that takes the bodies as explicit starting points rather than simply implied and a presentation that is holistic rather than particular, are lacking in these earlier accounts according to Ibn al-Haytham. For he states that they are
based upon the motions of imaginary points on the circumferences of intellected circles...resulting in what they [i.e. earlier writers] have expounded being limited to those circles and points alone since they have not made it their intention to clarify the way in which those various motions may be consummated while being assumed on the surface of solid spheres. ${ }^{10}$

[^25]Furthermore these summarizers have not provided a coherent account since neither have they clarified "the manner, given the various centers involved, that spheres can carry [other spheres]." ${ }^{11}$

It is important to recognize that Ibn al-Haytham is not saying that previous astronomical work has been "instrumentalist" in some Duhemian sense; in fact, he seems to go out of his way to indicate that previous work has assumed the existence of solid spheres. He will refrain, he tells us, from "criticism and rebuke" since the earlier summarizers "despite ignoring the things they neglected," a clear reference to the solid spheres, nevertheless "probably conceived of them and appreciated their importance" (mutasawwirīn lahā wa-muqayyimin [text: qayyiminn bihā). ${ }^{12}$ Ibn al-Haytham even gives an explanation for this neglect. Since they were dependent upon works that used figures and proofs based on circles, their summaries likewise were "limited to those circles and points alone." ${ }^{13}$ But what of those who made these detailed studies with proofs that ignored the solid bodies, Ptolemy being for Ibn al-Haytham the most eminent? Ibn al-Haytham excuses him by remarking that his "aim was to construct proofs for which circles and points sufficed"; ${ }^{14}$ there is no hint that he thinks that his great predecessor did not understand the importance of the solid orbs for astronomy.

Rather than seeing himself as a realist who must combat the instrumentalism of his predecessors, Ibn al-Haytham instead wishes to make explicit what is implicit in previous work, ${ }^{15}$ namely to assume
the imaginary circles and points that [Ptolemy] took to be detached (akhadhahā mujarrada) ${ }^{16}$ to be on the surfaces of spheres moving on their own... since that is more true in terms of reality (min sifat al-hāl) and more clear for [providing] an understandable explanation. ${ }^{17}$

Here then is the first aspect that we have identified as crucial for the tradition we are tracing, namely providing a physical account that would explain the

[^26]celestial motions. Ibn al-Haytham obliges us with clear statements of the other two aspects as well. He explicitly acknowledges the dependence of his work on the Almagest when he states that
our statements concerning all the motions are according to the opinion and belief of Ptolemy; but all that we shall present is a summary by which one can understand the general picture of the form, the position and the motion but not the particulars of these. ${ }^{18}$

As for the problem of fitting all the parts together into a coherent whole, he addresses this as follows:
...it is possible to combine together all those bodies assumed for each one of the motions without there occurring any hindrance, resistance, or impediment; rather their motions in being combined are [still] continuous and permanent. ${ }^{19}$

Ibn al-Haytham's importance in establishing the Tadhkira's tradition should not be underestimated. Not only has he defined explicitly the crucial elements of that tradition, he has also placed himself in the historical position of being its originator. And insofar as his successors believed his story, and there is no reason to doubt that Țūsī, for one, did, this would more or less solve our problem of situating the Tadhkira within an Arabic tradition.

There remain, however, numerous problems with our privileging of Ibn al-Haytham's position. First there is the inescapable problem of the Planetary Hypotheses and the relation of the Hay'at al-cälam to it. Since Ibn al-Haytham does not mention it in the Hay'at al-calam, we are in the rather uncomfortable position of claiming a work, i.e. the Hypotheses, as an important source for a tradition that is either unknown or ignored by a prime member of that tradition. I have little in the way of a solution of this puzzle except to offer the following facts. Ibn al-Haytham does know it by the time of writing his later Al-Shukūk ${ }^{c}$ alā Batlamyūs (Doubts about Ptolemy) and in fact presents a blistering attack on it. ${ }^{20}$ Besides the fact that he considered the Hypotheses defective in not providing a physical body for each motion, a criticism applicable to his own ear-

[^27]lier work, he also is disenchanted with the use of truncated orbs, the manshūrāt or $\pi \rho i \sigma \mu \alpha \tau \alpha .^{21}$ Without attempting to be definitive, I would suppose that Ibn al-Haytham, if we assume that he knew the Hypotheses at the time of writing the Hay'at al-calam, may have regarded the use of anything other than spheres as so idiosyncratic as to disqualify it from the tradition he saw himself as establishing. ${ }^{22}$ There is also the problem of how much we should accept Ibn al-Haytham's assertion that his predecessors had been derelict in attending to the physical side of astronomy. ${ }^{23}$ Another problem I have not attempted to deal with here is that of his contemporaries, such as Ibn Sīnā and his student al-Jüzjānī, who may have been engaged in similar enterprises. ${ }^{24}$

Despite these difficulties in establishing Ibn al-Haytham as having single-handedly established physical cosmography in Islam, a position I would not at all wish to maintain, there remains the fact that he and several of his successors saw him in that light. The role of al-Khiraqi (d. 533/1138-39) seems to me particularly germane. He explicitly cites Ibn al-Haytham in both his Muntahā al-idrāk and al-Tabșira as inspiration for his work. In particular, he states that he wishes to continue the work of Ibn al-Haytham in considering solid spheres as opposed to imaginary circles in astronomy. ${ }^{25}$ And Ṭūsī specifically cites the Muntahā in his Hall-i mushkilāt-i Muciniyya. ${ }^{26}$ But of even more importance is the fact that it is this Khiraqī, working explicitly under the influence of Ibn al-Haytham, who establishes the basic structure, the genre, that Tūsī follows in both his Mu'īniyya and Tadhkira.

D. The Tadhkira as Genre

Ibn al-Haytham's advocacy of an astronomical summary in which the celestial bodies played a fundamental role was quite influential. But his Hay'at al-c $\bar{a} l a m$ acted more as a pioneering inspiration rather than as a prototype to be emulated. This latter role was assumed by Țūsī's Persian Risälah-i Muciniyya

[^28]and by its later Arabic incarnation the Tadhkira; they defined by their structure and their approach to the problems of astronomy a certain category of work that would be the model for a distinct genre of astronomical writing. ${ }^{1}$

The development of this genre reflected a certain conceptualization of astronomy in Islam that seems to have evolved during the early centuries of Islamic science. Though a detailed examination would neither be appropriate nor possible here, even a brief discussion of this problem will be useful for situating the Tadhkira within the discipline of Islamic astronomy and for dispelling the notion that Țūsi's understanding of astronomy represents a new departure.

Encyclopedias and popular accounts of the sciences provide some of our primary sources for how astronomy was conceived. In the 10 th century, cilm al-nujūm (the science of the stars) was used by Fārābī, Abū ${ }^{c}$ Abd Allāh Muḥammad al-Khwārazmī, and the Ikhwān al-ṣafā' (Brethren of Purity) to designate astronomy in its widest sense, and Khwārazmī indicates that the term is equivalent to the Greek $\dot{\alpha} \sigma \tau \rho o v o \mu i \alpha{ }^{2}{ }^{2}$ For all three, cilm al-nujüm includes both mathematical astronomy ${ }^{3}$ and astrology. ${ }^{4}$ Khwārazmi and the Ikhwãn al-ṣafa'' use the term 'cilm al-hay'a (the science of hay'a) to designate a certain branch of astronomy that Khwārazmĩ specifically identifies with "knowledge ($m a^{c} r i f a$) of the arrangement (tarkib) of the orbs, their configuration (hay'a), and the configuration of the Earth." 5

With Avicenna (980-1037), however, we find something new. In his Aqsām al- $^{-}$ulūm al-caqliyya (Classification of the Rational Sciences), ${ }^{c}$ ilm al-hay'a has replaced ${ }^{c}$ ilm al-nujūm as the general term for the discipline, ${ }^{6}$ and astrology is no longer considered part of this reformulated astronomy. ${ }^{7}$ This move is of more than passing significance. For what had once been considered a subdivision of astronomy has now been made to encompass the entire field. Thus whether one is composing an astronomical handbook ($z i \bar{j}$), making instruments, finding the direction of Mecca, or doing anything astronomical, one would be engaged in this cilm al-hay'a, which literally means "the science of configuration"; thus astronomy has implicitly come to designate, at least in this classification, a discipline having to do with bodies inasmuch as cilm al-hay'a originally was used to indicate the study of the configuration of the Earth and orbs, and the arrangement of the latter. Without offering an explanation of why this might have occurred at this time, we can point to the related work of Avicenna's contemporary Ibn al-Haytham, who, as we have discussed at length above, was also intent on making the physical bodies central to astronomy.

[^29]While Avicenna is making hay'a synonymous with astronomy, he also is, as we have seen, removing astrology from its purview. This may seem odd at first sight since one would assume that an emphasis on the physical aspects of astronomy would make astrology even more central to it. I believe the reason this did not happen was that 'cilm al-hay'a was held to deal with the external aspect of the physical bodies and not their internal character, a point we shall return to below.

This new understanding of astronomy was not confined to Avicenna; one need merely look at late medieval (i.e. post-12th c.) classifiers of the sciences such as Țāshkubrīzāde (901-68/1495-1561) and Tahānawī (12th/ 18th c.) to see that this view of cilm al-hay'a and all that it entailed had become commonplace. ${ }^{8}$ Thus under this classification one finds, among other things, theoretical works, astronomical handbooks ($z \bar{\jmath} j e s$), books on the making and use of instruments, treatises on observational astronomy, and tables of prayer times. In addition, certain topics in geography are accepted as being part of this astronomy. ${ }^{9}$ But just as with Avicenna, ${ }^{c}$ ilm al-hay'a among these later categorizers does not include works on astrology or the body of literature related to Aristotle's De caelo (al-samā' wa-'l- ${ }^{c} \bar{a} l a m$), both of which were usually considered to fall under the Peripatetic rubric of physics.

But while cilm al-hay'a came to mean astronomy in its most general sense, the original meaning of the term was not completely lost; those works that were intended to give a general view of astronomy from the perspective of the configuration of the orbs would, of course, be hay'a works par excellence. But in order to distinguish this usage from the all-inclusive one, works of this genre were categorized under hay'a basitta (plain hay'a) since, as Ṭāshkubrizzäde tells us, they "lack (yujarrada ${ }^{c} a n$) proofs; they are limited to conceptualizing (tasawwur) and imagining (takhayyul) without certainty (yaqin)." ${ }^{10}$ It is this type of work that is exemplified both by Al-Tadhkira fic cilm al-hay'a (Memoir on the science of hay'a) and by one of its more elementary, and consequently very widespread, offshoots, Jaghmīnī's Al-Mulakhkhaṣ fí al-hay'a al-basịta (Epitome of plain hay'a). ${ }^{11}$

[^30]The three general aspects we have identified above as fundamental to the tradition of physical cosmography underlie, of course, hay'a basita; it is at this level of generality that we can connect the Tadhkira with the Planetary Hypotheses and the Hay'at al-ālam. But the Tadhkira has certain other features-both stylistic and substantive-that distinguish it in varying degrees from these predecessors. Many, if not most, of these became codified in the large number of works modeled after the Tadhkira and it is in this sense that I believe we can refer to it as exemplifying a certain genre over and above its role of continuing the tradition of physical cosmography. In what follows, we shall list and discuss these features.

1. The Structure of the Tadhkira. As I have indicated above, we need to look at the Tadhkira not only as part of a tradition of cosmographical summaries but also as structured in a way that Țūsī felt would most effectively allow him to give a summary of astronomy from the point of view of the physical bodies. The structure comes from the four-part division of the work itself: (a) an introduction that gives the mathematical and physical principles used in the discipline; (b) a section divided into several chapters dealing with the configuration ("cosmography") of the celestial region (hay'at al-samä'); (c) another section also divided into several chapters dealing with topics related to the configuration ("geo-graphy") of the Earth (hay'at al-ard) in which TTūsi deals with the astronomically determined divisions of the Earth as well as with other astronomically determined phenomena that in general vary depending on the latitude of the observer; and (d) a section dealing with the size of the Earth and the celestial bodies, and the distances of those bodies from the Earth.

A four-part structure, as far as I have been able to determine, first appears in Khiraqi's Muntahā al-idräk, which has an introduction and three books dealing with the arrangement ($\operatorname{tark} \bar{i} b$) of the celestial bodies and their motions, the configuration (hay'a) of the Earth, and chronology. Tūsī himself has basically taken this structure as a model for both his Risālāh-i Mu u^{c} īniyya and his Tadhkira, but he has made the sizes and distances chapter of the cosmographical section of the Muntahā into a separate part (Book IV) and has more or less dispensed with chronology. ${ }^{12}$ It is this structure that came to define the genre of writing referred to as hay'a basiṭa (plain hay'a).
2. A hay'a basīta work should contain no geometrical proofs. Since a hay'a basitta work was an account meant to give a general overview of astronomy, it was generally held that it should be devoid of mathematical proof.

[^31]TTūsī emphasizes this in I.Intr. [3], as we have seen earlier (p. 24), where he refers the reader to the Almagest for proofs of what is being presented "in narrative form." This is stated again in II. 5 [10]: "These then are models and rules that should be known. We have only stated them here; their geometric proofs are given in the Almagest." And in IV. 1 [4], he forgoes presenting one of Bīrūnī's methods for determining the size of the Earth since "it contains geometrical proofs." The one major exception occurs in $\Pi .11$, where he gives several proofs related to his new models for planetary motion. But this exception is acknowledged by Țūsī in such a way that it proves the more general rule; for he states that he is presenting proofs "even though it was not our intention to provide geometrical proofs in this compendium" (II. 11 [3]).
3. The Tadhkira as a summary for nonspecialists. In addition to not giving proofs, Țūsī also indicates his desire to avoid too much detail; for this he refers his reader to specialized accounts. That he could depend on these other works is a clear indication that Islamic astronomy was a highly developed field of study. I also think that this is an indication that Țūsĩ saw the Tadhkira as a work useful both for students of astronomy and for nonspecialists. ${ }^{13}$

As examples of this, we find in. II. 4 [12] that he cuts his discussion of the fixed stars short with the following remarks:

Knowledge of the fixed stars and that which concerns them being a separate discipline, it is best that we confine ourselves to just what has been presented.

For those interested in numbers, he sends his readers to the "practical handbooks" (kutub al-camal) in II. 14 [1]14-15 (for sector measurements) and in III. 8 [8]4 (for the equation of time). When an example is needed, he usually will give the simplest one possible as in the case of the qibla determination in III. 12 [4]; as we saw earlier, he avoided Bīrūnī's determination of the size of the Earth since it involved geometrical proofs.

[^32]Finally we "should note that Țūsī seems quite cognizant of disciplinary boundaries and will not hesitate curtailing his discussion when he feels a boundary is about to be traversed. As we have noted earlier with reference to Khiraqi's Muntah \bar{a}, he dispenses with the historical aspects of chronology since he feels that it has nothing to do with astronomy.

Every people has an epoch to which they refer the years of their history; understanding the details of that does not pertain to this science. (III. 10 [3])
4. All simple bodies as the subject matter of astronomy. TTūī is quite explicit on this point in that he states in I.Intr. [2]:

The subject of astronomy is the simple bodies, both superior and inferior, with respect to their quantities, qualities, positions, and intrinsic motions.

Several points need to be noted. First it is the simple bodies that are the subject matter of astronomy, i.e. the four elements plus the celestial aether. Second the fact that the four elements are included means that a hay'a work would need to pay some attention to the sublunar world. In the Tadhkira we find that not only is the shape and situation of the Earth considered, ${ }^{14}$ the cosmographical wrap-up given in 11.2 includes a paragraph listing the various levels of the sublunar region. In addition, the entirety of Book III is devoted to "the configuration of the Earth" (hay'at al-ard), and the measurement of the Earth is taken up in IV.1.

The inclusion in a hay'a work of a distinct section on the configuration of the Earth was often taken to distinguish the Islamic and Greek astronomical tradition. ${ }^{15}$ This seems something of an exaggeration since Ptolemy devoted Book II of the Almagest to many of the problems referred to in Book III of the Tadhkira. But the fact that some Islamic astronomers saw themselves as doing something new is significant and again highlights the importance they attached to the notion that astronomy should deal with all the simple bodies.
5. Hay'a should only deal with the external aspect of the bodies. Although Tūsĩ makes bodies the subject of astronomy, he is not thereby making astronomy a branch of physics. For one thing, it is clear that he follows Aristotle in taking it to be a "mixed science" inasmuch as he states that its principles come from metaphysics, geometry, and natural philosophy. Furthermore, he tells us that astronomy is interested in bodies in a particular way, namely "with respect to their quantities, qualities, positions, and intrinsic motions" (I.Intr. [2]).

[^33]The significance of such a restriction is underscored by Tahānawī who addresses this question in the introduction to his Dictionary of Scientific Terms. He notes that ${ }^{\text {cilm }}$ al-hay'a should be distinguished from works on al-sama' wa-'l-cālam, i.e. the De caelo tradition of Aristotle, which was taken to be part of the physical or natural philosophy corpus. The reason was not because of subject matter but because of the different aspects of the subject matter studied by each discipline. Though both investigate the simple bodies, ${ }^{c}$ ilm al-hay'a examines them with regard to their "quantities, qualities, positions, and motions." On the other hand, al-sam \bar{a} ' wa-' l - ${ }^{c} \bar{a} l a m$ studies them from the point of view of "their natures" ($\left.\operatorname{taba}{ }^{\prime}{ }^{c}{ }^{c} i h \bar{a}\right) .{ }^{16}$ Thus it was for $c^{c} i l m$ al-hay'a to examine the outward manifestations of simple bodies, whereas it was for al-sama' wa-'l-cālam to investigate their essential nature. ${ }^{17}$

What this means in practice is illustrated in II.1, which deals with proofs for such things as the sphericity of the Earth and sky. In the final paragraph of the chapter, Ṭusii tells us that the proofs presented
are inniyya, which convey existence; those which convey the necessity of that existence are limmiyy $\bar{a} t$ proofs and are given in natural philosophy in the book De caelo.

These innē "proofs" are based upon observations; for example, the observations listed in $\amalg .1$ [2] are the evidence Țūsì feels is sufficient to prove that [inna] the Earth is, generally speaking, a sphere. This sort of proof does not, however, indicate the physical or metaphysical reasons that would show us why [limä] the Earth must be spherical and no other shape. This would require that one investigate the nature of the bodies, but that, as we have seen, is the province of natural philosophy, not astronomy.

Although the notion of inni and limmi proofs ultimately derive from the fact/reasoned fact distinction made by Aristotle in the Posterior Analytics (Bk. II, Ch. 13), the manner being used here to differentiate two sciences that study the same subject matter has no real precedent in the Aristotelian corpus. ${ }^{18}$ There are, however, other Greek works that one might point to as sources for the dichotomy made in Islamic astronomy. Simplicius (6th c. A.D.), in his commentary on Aristotle's Physics, quotes Geminus (1st c. A.D.) ${ }^{19}$ to the effect that
in many cases the astronomer and the physicist will propose to prove the same point, e.g. that the sun is of great size or that the Earth is spherical, but they will not proceed by the same road. The

[^34]physicist will prove each fact by considerations of essence or substance, of force, of its being better that things should be as they are, or of coming into being and change; the astronomer will prove them by the properties of figures or magnitudes, or by the amount of movement and the time that is appropriate to it. ${ }^{20}$

Ptolemy in Book I of the Almagest would seem to exemplify this attitude since his proofs of the basic cosmological features (the sphericity of the Earth and universe, the Earth's centrality, and so forth) generally rely upon mathematics and observations. This, of course, would be perfectly in keeping with his stated preference for the potential certainty of mathematics over the "guesswork" of physics and metaphysics. ${ }^{21}$

But some Islamic astronomers felt he had not gone far enough. Bīrūnī, for example, chides Ptolemy for using arguments based on physics in Almagest I. 3 to prove the sphericity of the heavens. Going outside one's disciplinary boundaries, he asserts, does not strengthen one's arguments but makes them merely persuasive rather than necessary. ${ }^{22}$ Birūnī may be mildly upset with Ptolemy for some of his antics in the Almagest, but he is truly exasperated with what he sees as a blatant disregard for the confines of astronomy in the Planetary Hypotheses.

> Ptolemy in his book al-Manshürāt [i.e. the Planetary Hypotheses] deviated from the path which he had followed in the Almagest [and took up] that which is related to opinions outside of this science, that is in the belief of people (al-qawm) that the celestial bodies have life (hayäh), perception (shuc ${ }^{c} \ddot{r}$), sensation (ihsās), and the choice (ikhtiyār) of the noblest (al-afdal) motions...so that he even said that the paths of the planets traverse spheres that resemble anklets (khaläkhil) or bracelets (aswira) and are called manshürät. He then eliminated (asqata) the rest of the sphere...he thus repudiated (nabadha) his physical and persuasive proofs (istidlālātihi) in the Almagest concerning the sphericity of the sky...and he did not explain what is on either side of the mansh $\bar{u} r \bar{a} t$, whether it is of the genus of the aether thereby returning to what he rejected...or whether it is of a genus of what is below the aether...or whether it is a sixth genus...These are separate subjects of investigation that are [dealt with] in their own particular places. ${ }^{23}$

[^35]Bīrūnì's attitude represents an extreme, but by no means unique, position among Islamic astronomers. TTūsī would certainly have agreed that Ptolemy had broken a cardinal rule of hay'a by discussing the essential nature of the heavenly bodies in an astronomical work. But he would not have agreed that astronomy could do without natural philosophy; in II.1 [6] he acknowledges that he must depend on the physical principle of the Earth's rectilinear inclination, rather than on observational evidence, to prove that the Earth does not rotate. This position did not go unchallenged, however; Țūsì's own student Quṭb al-Dīn al-Shīrāzī opposed him on this point and the debate continued for several centuries after Tūsī. ${ }^{24}$

That Islamic astronomers were insistent that hay'a should only deal with the external aspect of bodies, with some even holding that this meant that astronomy could be independent of physics and metaphysics, leads us into fascinating questions concerning the reasons this development took the form it did in Islam and the possible relationship of this with the emergence of non-Ptolemaic astronomy. Even to begin answering these questions, however, would take us very far afield; as Tūsī might have said, "it is best that we confine ourselves to just what has been presented." 25

E. The Physical Principles Underlying the Tadhkira

TTūsī tells us in I.Intr. [2] that the principles (mabādi') of astronomy come from metaphysics, geometry, and natural philosophy. Geometry is mainly dealt with in I.1, ${ }^{1}$ while metaphysical principles of astronomy are generally ignored. ${ }^{2}$ On the other hand, many of the principles of natural philosophy, or physics, are listed in I.2, while others are implied. Starting with Duhem, modern historians have tended to view these physical principles as somehow "metaphysical" in the modern sense; this is often reflected in the rather dismissive way in which they are referred to as "philosophical." ${ }^{3}$ But this seriously misrepresents the historical situation of these principles and the manner in which they were understood by the practitioners of hay'a. For one thing, the physical principles of astronomy were conceived in a way that conformed to the notion that hay'a was about the external aspect of bodies. As we shall see later (p. 46), motion, within astronomy, was said to be "investigated [in terms of] its quantity and direction"; the ultimate origin of the motion and like questions was left to natural philoso-

[^36]phy. This is clearly analogous to the innïllimmi dichotomy discussed above. Thus Tūsī formulates his principles, in particular Principle 5, in a way that circumvents the "why" (limā) and concentrates on the "that" (inna).

But despite this disciplinary separation of astronomy from natural philosophy, Tūsī, as we have already noted, is not willing to dispense with natural philosophy. ${ }^{4}$ As if to emphasize this, Ṭūsī gives his physical principles a certain prominence by placing them in a separate chapter at the beginning of his work (I.2). This is reinforced by a liberal sprinkling of references to these principles throughout the text in order to emphasize the inadequacies of certain of Ptolemy's models. Such a formalistic methodology is not nearly so manifest in earlier hay'a works, whose aims had not included the proposal of new models. Ibn al-Haytham's physical principles occur in an appendix to his Hay'at al-c ${ }^{c}$ alam and this only in one manuscript. ${ }^{5}$ In the Tabsira, Khiraqī does provide a separate introduction on the geometrical principles but his physical principles are in a chapter on the ordering of the four elements. ${ }^{6}$

In the following, I shall present a listing of these principles, indicate their origins, which are mainly but not exclusively Aristotelian, and discuss their implications for Tūsī's astronomy.

1. A void is impossible (I.1 [1]4). This most fundamental of the principles requires that the universe be completely filled with bodies and thus provides the "raison d'etre" for hay'a itself. This, of course, is central to Aristotelian physics. ${ }^{7}$
2. The universe is finite. Although Tūsī does not specifically state this principle, it is obviously implied in II.2, which deals with the arrangement and order of the orbs; the ninth orb, responsible for the daily motion, is the "highest orb"

[^37](II. 2 [4]) and all the other orbs and elemental levels are embedded within it. Aristotle sets forth his proofs for the impossibility of an infinite body in $D e$ caelo, Book I, Chapters 5-7. In particular, an infinite heavenly body could not complete a rotation in a finite time (i.e. every 24 hours). ${ }^{8}$
3. A body is either simple...or compound (I.2 [1]20-21). From (1) and (2), we have established that the universe is a finite plenum; therefore, it must be filled in some manner. Since the universe is finite in size and Aristotle precludes infinitely small bodies, ${ }^{9}$ there must be a finite number of distinct bodies. Of these, some will be simple while others will be composed of simple bodies. One could probably take this to follow more or less automatically from Aristotle's often repeated position that the simple is prior to the compound. ${ }^{10}$ The identity of these simple bodies is more problematic; in De caelo, Aristotle uses the reality of simple motion, which he takes to be straight-line and circular, to establish that there must be simple bodies that perform these simple motions. ${ }^{11}$ It is fairly straightforward then to establish that the celestial region is made up of one of these simple bodies, the so-called aether, since the heavens as a whole perform a perfectly regular daily rotation. The identity and uniqueness of the four sublunar elements cannot be established from an appeal to simple motion alone, however, since there are only two simple, natural motions in the sublunar region (i.e. up and down). Ultimately Aristotle must depend on the different approach of De Generatione et Corruptione (Bk. II, Chs. 1-8) where he identifies four elementary tactile qualities-hot and cold, moist and dry-whose combination in the substratum accounts for the four elements; earth and water, the heavy elements, can then be characterized by simple downward motion while air and fire, the light elements, can be characterized by simple upward motion. ${ }^{12}$

With these three principles, Țūsī can begin the task, undertaken in Book II, of filling his universe with spherical celestial bodies and elements with the Earth at the center of the whole but not, as required by Aristotle, the center for each individual part. ${ }^{13}$ He still needs a means for accounting for the motions of the simple bodies, which we should recall are the subject matter of astronomy, ${ }^{14}$ and this is provided by two final principles.

[^38]4. Every motion has a principle (I. 2 [2]5). A moving body will, according to him, fall into one of the following four groups (I. 2 [2]):
A. Self-Moved

1. monoform
2. nonuniform
B. Moved by an External Agent
3. accidental
4. by compulsion

In I. 2 [2]5, Tūsī states that "every motion has a mabda'," which literally means "beginning," but since it translates Aristotle's ' $\alpha \rho \chi \alpha<$ it is more appropriately rendered "principle [of motion]." In the case of a body moved by an external agent, the principle of motion is in the external agent, while in the case of a self-moved body the principle is internal or, in Tūsi's terms, "does not become positionally separate" from the moved body (I. 2 [2]5-6).

Astronomy is primarily concerned with the monoform self-moved motion of simple bodies, which will be dealt with in Principle 5 below, and in the accidental motion resulting from one orb moving another. An example of the latter would be an epicycle embedded within a deferent that as a result is moved accidently as the deferent rotates. ${ }^{15}$

5. A simple body has a single nature and what issues forth from that na-

 ture does so monoformly (I.2 [1]20-21). Since this is the basis for holding that the celestial bodies move with uniform, circular motion, and that the elements move naturally with straight-line motion, we will need to examine with some care how Naṣir al-Dīn conceives this principle in the name of which he will proffer models to replace those of Ptolemy.Tüsī states the principle in a very general way, but he really only uses it to establish the principle of motion for the simple bodies. For the elements and the celestial bodies, Ṭūsī, as a corollary to Principle 5, states that each has a nature $\left(t a b^{C}\right)$ as their particular "principle of motion." 16 This is meant to account for their self-moved motion that is "monoform" (calā nahj wähid) ${ }^{17}$. In I. 2 [3], he then identifies the three categories of "motion due to a nature" with the five elementary bodies: (1) earth and water, the heavy elements, move "by nature" toward the center; (2) air and fire, the light elements, move "by nature" away from the center; and (3) the celestial bodies move "by nature" with a circular motion about the center. The first two categories of natural motion are

[^39]monoform in direction but not uniform in speed; celestial motion, however, is both monoform in its movement and uniform in speed. This uniformity has a precise definition: "every point on [a single, simple celestial body] produces at the center equal angles in equal times or cuts equal arcs from the circumference." This, of course, is the basic rule of celestial motion; because it arises as an immediate corollary from one of the physical principles, its violation by Ptolemy, as we shall see, is completely unacceptable to Țūsī.

In addition to establishing the simple motions and their character, this principle has other consequences. Because it results in an absolute dichotomy between straight-line and circular motion, Țūsī feels compelled in II.1 [6] to assert that the Earth's state of rest at the center of the Universe is the result of a physical principle, namely its "having a principle of rectilinear inclination" which causes it to be "precluded from moving naturally with a circular motion" (II.1 [6]13). His argument against the ability of observation to establish geostasis means that a geocentric Universe ultimately rests for him upon Principle $5 .{ }^{18}$ Another consequence of this principle is that the celestial bodies do not undergo "any change of state except for their circular motion"; this is because they do not experience any rectilinear motion, which is the efficient cause of generation and corruption. ${ }^{19}$ Thus the perfection of the heavens is not a metaphysical doctrine but rather the result of this physical principle.

The idea that simple bodies move with a natural motion is undeniably Aristotelian. ${ }^{20}$ Nașīr al-Dīn, however, has made a significant shift in the way he has presented this idea, a shift that, I believe, tells us a great deal about the way he understands the role of physical principles in astronomy. As we have seen, TTūsī divides self-moved motion into that which is due to what he calls "a nature" if it is monoform, "a soul" if it is not. Clearly, motion due to a nature is characteristic of simple bodies irrespective of the ultimate source of such motion since that of the elements is described as being natural (tabiciyya) while that of the orbs is voluntary (irädiyya). ${ }^{21}$ Thus even though the motion of the orbs may be due to a soul, which would make it in some sense "unnatural," this is not relevant here since the motion of the orbs is regular. On the other hand, the principle of irregular motion, as is the case of vegetative and animal motion, is said to be a soul (nafs). In short, the principle of internal motion is dichotomized in terms of regularity and not in terms of soul.

Let us not underestimate what Țūsï has done; he has in essence disentangled the physical underpinnings of astronomy from the metaphysical by stating his.

[^40]physical principles for the motion of the celestial bodies in a way that avoids any reference to the ultimate source of that motion. Tahänawi nicely summarizes the situation:

> In this science [i.e. hay'a], motion is investigated [in terms of] its quantity and direction. The inquiry into the origin (asl) of this motion and its attribution (ithbāt) to the orbs is part of Natural Philosophy (al-tabciyyāt [sic]). ${ }^{22}$

Thus Țūsī qua astronomer can simply point to the observed regularity of celestial motions and, using Principle 5, attribute it to "a nature." The philosophical question of the ultimate source of the celestial motion is simply not of concern to him here. Uniform, circular motion of the celestial orbs is for him based on a physical principle that is self-evidently confirmed by the overwhelming weight of experience; the metaphysical explanation of that motion may interest him qua natural philosopher or metaphysician, but here in the Tadhkira he simply does not need it to develop his cosmography. ${ }^{23}$

F. Modeling

1. Ptolemaic Modeling

The physical principles enumerated by Țūsī provide the necessary basis for establishing a cosmography. They do not, however, correspond to the laws or assumptions of a deductive system; these principles are guidelines against which various models are judged, not laws from which they are deduced. This is most easily seen by simply noting that a Ptolemaic methodology could not lead unequivocally to a unique celestial configuration. Ptolemy himself had long before conceded the point when he remarked that the solar anomaly could be represented by either an epicyclic or eccentric model, which are mathematically, but not physically, equivalent; ${ }^{1}$ this is echoed by Țūsì in II. 6 [2]. A homocentric cosmology, with a single center for all the celestial bodies, could conceivably provide a unique set of orbs, and this is what would seem to be demanded by a strict adherence to Aristotelian physics; indeed, Tūsī himself states that celestial motion is "that which is about the center" (I.2 [3]14-15). Homocentrism, however, had not seriously been considered since at least-and more than likely

[^41]before-the time of Apollonius (ca. 240-170 B.C.), ${ }^{2}$ and its advocacy in 12 th c. Spain was an exceedingly limited affair. ${ }^{3}$

That the Ptolemaic system could not provide a definitive cosmology has sometimes been taken to mean that the Ptolemaic orbs were not "real"; 4 a further consequence that has been advocated is that Ptolemy himself held this position. ${ }^{5}$ But the question of the reality, or lack thereof, of the orbs should be seen as both logically and historically distinct from what I consider a far more important question, namely how various astronomers viewed the relationship between the physical principles and the mathematical models. The antiquated and quaint notion that Ptolemy was an instrumentalist in the modern sense seems miraculously to be fading rapidly. ${ }^{6}$ An alternative view, however, one that would take into account his various writings, actual procedures, and possibly changing positions, is still awaited. My objective here is simply to provide some rather preliminary and brief remarks in order to understand Ṭūis's reservations and objections to his predecessor.

There can be little doubt that Ptolemy was committed to certain physical principles in astronomy despite his reservations about Physics as a discipline. ${ }^{7}$ The evidence from the Planetary Hypotheses is incontrovertible, and even in the Almagest he relies on physical notions for one of his proofs for the sphericity of the World. ${ }^{8}$ Furthermore Ptolemy commits himself in various places to the perfection of the heavens and to their uniform, circular motion. ${ }^{9}$ Irregular motion is

[^42]to be explained by means of the "hypotheses" of eccentrics and epicycles. ${ }^{10}$ Thus Ptolemaic "modeling" essentially comes down, in theory, to putting together an interlocked set of uniformly rotating concentric, eccentric, and epicyclic orbs. But Ptolemy's commitment to this scheme goes only so far. Whenever phenomenal reality intrudes, it is the physical principles that come to be modified. Ptolemy would seem not to have been oblivious to what he was doing; in his more chatty moments, such as in Almagest IX. 2 and XIII.2, he evidently is attempting to justify some of his complicated models and his departures from standard procedure. My own tentative interpretation is that Ptolemy is a compromiser of a certain type; he is certainly willing to modify the physical principles when they cannot accommodate the phenomena but he is equally unwilling to abandon them. The result is a rather spectacular success as far as planetary prediction is concerned but a muddle for those interested in a coherent and consistent science. At least, this is the way many of his Islamic successors chose to view him.

2. Tūsì's Criticism of Ptolemy's Models

There are several types of objections one finds in Islamic astronomy to Ptolemy's models. First there are criticisms of deficiencies in their predictive ability. These begin at a surprisingly early period in the history of Islamic science; for example, Ptolemy's failure to discover the motion of the solar apogee led to a rather severe rebuke by the 9 th c . author of $F i$ sanat al-shams (On the Solar Year). ${ }^{11}$ Next there is the blanket objection to his multicentered cosmology that targets his use of epicycles and/or eccentrics; this type of criticism is associated with the Spanish Aristotelians of the 12th c. ${ }^{12}$ Finally we have the criticisms that accept the modeling that uses eccentrics and epicycles but cannot abide any further compromises. TTūsi's criticisms fall into this last category.

It is difficult at present to date in a precise manner when this type of criticism began. Qabīṣī (d. 967) mentions a book of his called Shukūk fì "al-Majist!i" (Doubts on the Almagest), but it is not clear to what these doubts refer. ${ }^{13}$ We are on firmer ground by the time we reach the first half of the 11th c. Ibn Sīnā's student and biographer, Abū ${ }^{c}$ Ubayd al-Jūzjānī, tells us that his teacher had informed him that he had spent some time trying to understand the equant as well

[^43]as the components of latitude (mayl, iltiwă', and inhirāf) and eventually had reached an understanding of them. Reconstructing the details, however, has proven elusive, perhaps because, as he told his student Abū ${ }^{\text {C Ubayd, he had in- }}$ formed no one of his result. Jūzjānī himself offered a solution to the equant problem that has recently been published. ${ }^{14}$ As far as we know, Ibn al-Haytham provided the first comprehensive criticism of the Almagest and the Planetary Hypotheses (as well as Ptolemy's Optics) in his Shukūk ${ }^{\text {calā Baṭlamyūs (Doubts }}$ Concerning Ptolemy). ${ }^{15}$

It is an open question whether Țūsī knew the Shukūk directly, but I am inclined to believe, despite what Naṣir al-Din himself seems to say, ${ }^{16}$ that the objections to Ptolemy's models were fairly well-known by his time. ${ }^{17}$ After Țūsī, they were to become such a commonplace that they were referred to simply as the sixteen "difficulties" (ishkälät). ${ }^{18}$ Although Țūsī is not as systematic as his successors, he does manage to identify all sixteen and in the following table I list them, where he identifies them in the Tadhkira, and the location of his alternative solutions.

[^44]Table 1. The "Difficulties" of the Almagest.

Difficulty	Identified in Tadhkira	Tִūsi's Solution
1. Irregular Motion of the Moon's Deferent	II. 7 [25]	II. 11 [1-8]
2. Irregular Motion of Mercury's Deferent	Ш. 8 [19]	$\begin{gathered} \text { II. } 11 \text { [11] } \\ \text { admission of no solution } \end{gathered}$
3-6. Irregular Motions of the Deferents of Venus, Mars, Jupiter, and Saturn	I. 9 [15]	II. 11 [10]
7-11. Motions on Small Circles of Epicyclic Apices of Upper and Lower Planets (Latitudinal Deviation)	$\begin{aligned} & \text { II. } 10 \text { [6] } \\ & \text { II.11. [15] } \end{aligned}$	II. 11 [19]
12-13. Motions on Small Circles of Endpoints of Mean Epicyclic Diameters of Lower Planets (Latitudinal Slant)	$\begin{aligned} & \text { II. } 10 \text { [6] } \\ & \text { II. } 11 \text { [15] } \end{aligned}$	II. 11 [19]
14-15. Oscillation of Equators of Deferent Orbs of Lower Planets	I. 10 [2]	I. 11 [20]
16. Oscillation of Lunar Epicycle Due to Prosneusis Point	$\begin{aligned} & \text { II. } 7 \text { [25] } \\ & \text { II. } 11 \text { [13] } \end{aligned}$	I. 11 [21]

For a detailed discussion of these objections and their solutions, the reader is referred to the commentary to II.11. For now we can note that these objections fall into two main categories: those that involve irregular motion and those that concern an incomplete rotation. Difficulties $1-6$ are in the former category and arise from the motion of the deferent being about a point other than its own center. In the case of the upper and lower planets, this is due to Ptolemy's introduction of the equant as the point of reference for uniform motion, a point not coincident with the deferent center. For the moon, the center of the World, which is distinct from the moon's deferent center, has the role of reference point for uniform motion. Difficulties $14-16$ violate the requirement that celestial motion be continuously circular. In all three cases there is an oscillation that clearly con-
travenes this. Difficulties 7-13 are "mixed" violations. In each case the endpoints of diameters perform circular motions without the epicycle as a whole doing so, which goes against the requirement that the entire celestial orb must be rotating uniformly. Furthermore since these motions are coordinated with the motions of the epicycle center on the deferent, they will be subject to the objections concerning irregular motion raised in Difficulties 2-6.

3. TTūsū's Models

Nașir al-Dīn dutifully presents his version of Ptolemy's planetary models in Book II, Chapters $6-10$. He has a standard procedure that he follows: first, he gives the observations that need to be explained; he then lists the orbs and their motions that are meant to account for these phenomena; and finally he enumerates the anomalies that arise from these motions for the observer. Pursuant to his assessment in II. 5 [10] that "one who attempts to understand the principles of the motions must know the configuration of the bodies," his orbs (aflāk) are solid bodies as defined in I. 1 [15]. These are indicated in Figures T5, T6, T8, and T10. Although these models are avowedly Ptolemaic, they do not precisely correspond to those of Ptolemy in either the Almagest or the Planetary Hypotheses. In the case of the former, this is due to Ptolemy's use of circles rather than bodies to present his models. To give a simple example: an eccentric deferent in the Almagest is a circle on which the epicycle center moves whereas Tūsī represents it as a solid body bounded by two parallel spherical surfaces in which one embeds the solid epicycle sphere. ${ }^{19}$ In Book II of the Planetary Hypotheses, Ptolemy does transform his circles into bodies, and the result is generally, though not exactly, that of the Tadhkira. ${ }^{20}$

Țūsì comes up with a Ptolemaic count of 22 solid orbs; he also gives a "circle" count that comes to 32 . The difference results from the 2 additional circles for the upper and lower planets, the equant and inclined, that are not needed when only solid orbs are considered. ${ }^{21}$ In Book II, Chapter 11, he presents his alternative models, which necessitate the addition of 45 extra orbs.

[^45]Table 2. Orbs and Circles.

Planet	Ptolemaic Models		Tūsis's Models Additional Orbs
	Solid Orbs	Circles \& Motions	
Sun	2	2	0
Moon	4	4	6 [3(long.) +3 (prosneusis)]
Mercury	4	6	9 [0 (long.) +3 (deviation) +3 (slant) +3 (inclination)]
Venus	3	5	$12 \quad$ [3 (long.) +3 (deviation) +3 (slant) +3 (inclination)]
Mars	3	5	6 [3 (long.) +3 (deviation)]
Jupiter	3	5	6 [3 (long.) +3 (deviation)]
Saturn	3	5	6 [3 (long.) +3 (deviation)]
Totals	22	32	45

Tūsī therefore needs 67 orbs simply to accomplish what he admits is only a partial success. ${ }^{22}$ This enormous loss in economy must be justifiable on some grounds, and it is clear that the benefit to Ṭūsī, as well as to his contemporaries and successors, came from the consistency of mathematical and physical principles resulting from these new models. Using the rectilinear version of his couple, Tūsì was able to use uniformly rotating orbs to solve the problem of the irregular motions of the planetary deferents with the exception of Mercury (Difficulties 1, 3-6) while his curvilinear version could bring about the oscillations of Difficulties 7-16, again with uniformly rotating orbs. ${ }^{23}$

There is another facet of Țūsi’s achievement, namely his ability to isolate specific aspects of celestial motion, in particular rectilinear and curvilinear components. Thus with the rectilinear version of his couple he is able to bring the epicycle center linearly toward and away from the reference point for uniform motion (the equant for the upper and lower planets, the center of the World for the moon); this allows him to circumvent Ptolemy's need for a circumference, that of the deferent, to effect what is essentially a variation in rectilinear distance. For the curvilinear version, Țūsī can have an oscillation along an arc which can give him an inclination in either latitude or longitude; with Ptolemy, these inclinations, when he brings them about with a mechanism, are the result of motions on a small circle that result in both latitudinal and longitudinal displacements. ${ }^{24}$ Historically it is interesting to note that Ibn al-Haytham's attempt

[^46]to give Ptolemy's small latitude circles a hay'a, or configuration, merely sought to reproduce those circles using a Eudoxan-style technique. ${ }^{25}$ With Naṣĩr al-Dīn, it is his additional circles, ironically, that helped break the stranglehold of circular motion.

G. Sources Named (and Unnamed) by Țūsī in the Tadhkira

Nașir al-Dīn was one of the best informed savants of the 13th century in both the ancient and religious sciences; there can be little doubt that he had a wide variety of sources to choose from in compiling the Tadhkira. But it is clear, both from his explicit statements and from his implicit choices, that he saw his primary source as the Almagest; even when more "modern" parameters are cited, TTusī tends to use those from the Almagest. ${ }^{1}$ There is little wonder then that "Ptolemy" and the "Almagest" are explicitly cited far more times (21) than any other author or text. (The next closest is Ibn al-Haytham at 2.)

In addition to explicitly cited sources, we can easily infer that TTūsī has depended on a number of classical and Islamic authors. For the mathematics introduction of I.1, Euclid is of course primary, but Țūsī has also used various works of Theodosius, Autolycus and possibly Hero. Archimedes is explicitly cited in IV. 1 [1] for the measures of circles and spheres, and a proposition from Menelaus's Spherics is used in II. 7 [2]. ${ }^{2}$ Euclid is referred to by name in IV. 4 [2] for finding the volume of a sphere.

For physical principles, the Aristotelian corpus provides the fundamental basis, but there have been some important shifts in formulation and emphasis whose inspiration is by way of Ibn Sinā. ${ }^{3}$ But neither Aristotle nor any other philosopher or physicist is mentioned in this connection, and in fact the only philosophers or theologians referred to at all are Ibn Sīnā and Fakhr al-Dīn al-Rāzī, both with regard to the temperateness of the equatorial region in III. 2 [2-4]. As for metaphysics, which is referred to as one of three disciplines from which hay'a derives its principles (the other two being natural philosophy and mathematics), it receives scant, if any, attention. There is one reference to divine providence in III. 1 [6]. ${ }^{4}$

Turning to practical astronomy, again the Almagest is fundamental, but my impression is that Bīrūnī's manifold and multifaceted works were an important

[^47]resource though he is explicitly referred to only once. ${ }^{5}$ As for the early period of Islamic astronomy, T Tūsī does mention Ma'mün's astronomers in connection with the measurement of the Earth in IV.1 [2] and he knows of Ibrāhīm ibn Sinā̀n's work on trepidation; in both cases, though, there is some question of how well-informed he actually is on these matters. ${ }^{6}$

I have discussed at some length above Țūsì's indebtedness to his predecessors in theoretical astronomy. Curiously he himself does not mention the major works I have identified as part of the hay'a tradition, namely Ptolemy's Planetary Hypotheses, Ibn al-Haytham's Al-Maqāla fi hay'at al-cālam and Khiraqi's Muntahā al-idrāk and al-Tabsirira. (The Muntahā, though, is mentioned in Tūsī's Hall-i mushkilät-i Mu ${ }^{c}$ ïniyya. ${ }^{7}$) The lack of any explicit mention of the Planetary Hypotheses I find particularly surprising since a good deal of the material in Book IV on sizes and distances comes from there rather than the Almagest. But he uses expressions such as "they have stated" or "it seemed likely to them" rather than telling his readers that the material comes from the Hypotheses. ${ }^{8}$

As for the proposals to reform the Ptolemaic system, Ṭūsī leaves the reader with the strong impression that little, if anything, has been done by earlier astronomers. (He makes the point in both II. 7 [25] and in II. 11 [1] that none of his predecessors have ventured an explanation or solution of the irregular motion of the moon's deferent.) He does, though, mention an anonymous author in II. 11 [12] who proposed a solution to the moon prosneusis problem. He also gives a fairly thorough explanation of Ibn al-Haytham's attempt to provide a hay'a (configuration) to resolve the difficulty of part of Ptolemy's latitude theory.

I do not wish to leave the impression that Naṣīr al-Dīn has willfully ignored his predecessors. Although he was quite well informed, there are real questions about what was generally available to someone in Persia during the middle (as opposed say to the end) of the 13th century. For example I am far from certain whether Țūsi knows the Planetary Hypotheses directly or even Ibn al-Haytham's Shukük calä Batlamyūs (Doubts Concerning Ptolemy). ${ }^{9}$ It is salutary to realize that Țūsì does not know the greatest of Ibn al-Haytham's works, namely his Optics. ${ }^{10} \mathrm{We}$ are still a long way from being able to write a true history of the influences on and the relationships between the principals of Islamic science.

[^48]
Explicit References in the Tadhkira to Persons and Works

1. Ptolemy: II. 5 [6]; II. 6 [1], [2], [3], and [4] (2 occurrences); II. 11 [14], [16] and [18]; IV. 2 [2] and [4]; IV. 3 [1]; IV. 5 [1]; IV. 6 [1], [4] and [6].
2. Ibn al-Haytham: II. 11 [16] (2 occurrences).
3. Abū ${ }^{\mathrm{C}}$ Alī ibn Sīnā: III. 2 [2] and [4].
4. Archimedes: IV. 1 [1].
5. Abū al-Rayḥān al-Bīrūnī: IV. 1 [4].
6. Euclid: IV. 4 [2].
7. Fakhr al-Dĩn al-Rāzī: III. 2 [3].
8. Ma'mūn's scientists: IV. 1 [2].
9. The Almagest: I.Intr. [3] (2 occurrences); II. 5 [10]; II. 10 [6]; II. 11 [14].
10. Natural Philosophy Corpus (al-tabī $\left.{ }^{c} i y y \bar{a} t\right)$: I.Intr. [4]; I. 2 [title]; II. 1 [8].
11. Geometry Corpus (al-handasiyyāt): I.Intr. [4]; I. 1 [title].
12. De caelo (al-samä' wa-'l- cālam): П. 1 [8].

H. The Influence of the Tadhkira

The Tadhkira had an enormous influence on the subsequent history of astronomy-so much so that it would be foolhardy to pretend to do justice to it in a few pages. I propose here simply to sketch a program for dealing with that influence and to summarize what we know so far.
"Influence" is one of those tricky historical concepts whose meaning is usually assumed rather than delineated. Most of the discussion of the influence of the Tadhkira has focused on its non-Ptolemaic models in II.11, the part these played in the so-called "Marägha school," and the significance of this "school" in the astronomy of the European Renaissance and, in particular, that of Copernicus. But besides displaying a Eurocentric bias, such a viewpoint has serious historical limitations. "Marāgha," for all its importance in the history of Islamic observational astronomy and teaching, was simply one episode in a very long and complex story of Islamic theoretical astronomy. As we shall see in Section J, Țūsī had developed his non-Ptolemaic models long before coming to

Marāgha and compiling his Tadhkira. ${ }^{\text {C Urḍī as well seems to have developed his }}$ models prior to his Marāgha residence, ${ }^{1}$ and Shïrāzī's Nihāya and Tuhfa were written after leaving Marāgha. And to call an Ibn al-Shāṭir, a Qūshjī, a Bīrjandī or any other late medieval Islamic astronomer writing in various regions of the Islamic world part of this "Marāgha school" substitutes shorthand for history. Later astronomers certainly acknowledged the importance of what had occurred in the 13th c., not only at Marāgha but elsewhere, but they would have seen this as part of a long historical process that, for some, had begun with Ibn al-Haytham, for others even earlier; in short, they considered themselves not part of some "school" but ongoing members of the hay'a tradition.

As we have discussed at length above, the Tadhkira was an important part of this tradition since it provided, first and foremost, a summary of astronomy from the point of view of the solid bodies. Its influence as a hay'a basita work can be seen in numerous ways. The large number of extant manuscript copies stand in silent testimony to this. I suspect that from the 13th until the 18th centuries, the Tadhkira was the text of choice for beginning students of astronomy as well as educated laypersons who wanted an introduction providing more meat than Jaghmini's Mulakhkhas. ${ }^{2}$ It is, for example, quoted extensively by the encyclopaedists Țāshkubrīzāde (16th c.) and Tahānawī (18th c.) and is mentioned by Safadī (14th c.) in one of his literary works. ${ }^{3}$ In addition I believe that the Tadhkira was an important model for those texts promising a taste of hay'a without tears. In addition to Țūsi’'s own Zubdat al-idrāk fi hay'at al-aflāk and to a lesser degree his Persian Zubdah-i hay'a, ${ }^{4}$ several elementary textbooks seem to derive both their form and contents from the Tadhkira. An instructive example is Kitāb al-Nuzha al-cAla'iyya, an otherwise inconsequential school text by a certain Tāj al-Dīn al-Tabrizi. Though incomplete, the table of contents shows that this late simplified introduction to astronomy follows the basic form of the Tadhkira, an indication that its approach was influential at all levels of astronomical writing. An even more important example of this may be Jaghmini's Al-Mulakhkhas fi al-hay'a al-basiṭa (Epitome of plain hay'a), which has been mentioned previously. There is some rather strong evidence that this extremely popular and simplified introduction to astronomy, which was the subject of numerous commentaries and supercommentaries, was dependent on the Tadhkira. ${ }^{5}$

[^49]The Tadhkira was also influential on another level. It formed an important basis for more detailed and elaborated studies such as Shïrāzí's Nihāya and Tuhfa, which themselves became the primary basis for future work in hay'a. It goes without saying that the many commentaries on the Tadhkira, listed in the next section, also continued, at times in very interesting and exciting ways, the development of hay'a in Islam. Țūsì's programmatic approach to the ishkālāt (difficulties) of astronomy in II.11, and his admission that several problems remained to be resolved such as Mercury and the latitude theory, provided a significant, indeed crucial, step-and challenge-to the further evolution of nonPtolemaic modeling in Islam. One can hardly imagine any work after Ṭūsī dealing with the ishkālāt that did not mention the Tūsī couple, known in subsequent literature as the "model of the big and the small."

The influence of the Tadhkira was also felt in cultures beyond the borders of Islam. Jayasiṃha, who ruled in Rājasthāna from 1700 until 1743, clearly had an interest in the astronomy of the Yavanas (Muslims) that led to the acquisition, among other texts, of a copy of Nīsäbüri's commentary on the Tadhkira. ${ }^{6}$ Of even greater interest, and somewhat surprising, is the Sanskrit translation by Nayanasukha and his assistant Muḥammad Ābida of II. 11 of Bīrjandī's commentary on the Tadhkira, which is one of the more sophisticated and extensive discussions of non-Ptolemaic astronomy in Islam. But according to Pingree, the work had little lasting influence, ${ }^{7}$ which is not surprising inasmuch as the theoretical aspects of Ptolemaic astronomy made few inroads into traditional Indian astronomy. Nevertheless this episode in Indian astronomy is of considerable historical interest, especially as it came when European influence was beginning to be felt.

Further west, the impact of the Tadhkira may also be detected. This was originally, but rather obliquely, suggested by Dreyer in a footnote in the course of his discussion of Țūsi's models that referred the reader to Book III, Chapter 4 of Copernicus's De revolutionibus, where the Țūsī couple is introduced. ${ }^{8}$ But Dreyer suggests nothing beyond this curiosity; postulating a connection between late Islamic astronomy and Copernicus had to await another time and place. This came in the 1950s with the discovery by E. S. Kennedy of the models in Ibn al-Shātir's Nihāyat al-sūl, which were virtually identical with several of those used by Copernicus. In a series of articles culminating with Kennedy [1966], Kennedy and his collaborators laid out the circumstantial evidence linking late Islamic astronomy, including that of Tūsī, and Copernicus. ${ }^{9}$ More substantive

[^50]evidence came with the discovery by Neugebauer that MS Vatican Gr. 211, which was in Italy by 1475, has in it a short treatise dealing with planetary theory that contains diagrams of a Ṭūsī couple and lunar model; the treatise itself is a Greek translation by Gregory Chioniades of an Arabic original. ${ }^{10}$ Furthermore Swerdlow [1972] has shown that the Țūsī couple was used by at least one other Renaissance astronomer, and Copernicus himself indicates that the device was hardly a novelty by his time. ${ }^{11}$ As the evidence for contacts between late medieval Islamic and Renaissance astronomy has piled up, "the question," to quote Swerdlow and Neugebauer, "is not whether, but when, where, and in what form [Copernicus] learned of Marägha theory." 12

I would certainly concur in that judgment; but I think we should both refocus and reformulate the problem away from models and "Marāgha" and toward the hay'a tradition itself. Copernicus shared with his Islamic predecessors an approach to astronomy that emphasized the reintegration of physics into mathematical astronomy; ${ }^{13}$ in that sense I would consider him as much part of the hay'a tradition as TTūsī-or for that matter Aristotle and Ptolemy. So the problem is not simply one of change in mathematical models but of the evolution of classical physics as well. In my commentary to II. 1 [6], I present an interesting coincidence of views between Ṭūsī and Copernicus regarding the Earth's rotation. Both use the same arguments; each comes to a different conclusion. But as I point out, the debate involving Țūsi's position regarding the Earth's stasis went on in Islam until the 16th century-if not later-and involved major reformulations of Aristotelian physics. Did Copernicus know of these debates? I simply do not know. I would argue, though, that to foreclose the possibility is just as "biased" as to assert a connection without further proof. But whatever the outcome of the debate concerning Copernicus's predecessors and motivations, the role of the Tadhkira and its author in the history of astronomy would seem secure.

I. The Commentaries on the Tadhkira

The large number of commentaries written on the Tadhkira provide compelling evidence for its enormous influence. But they also provide a vast resource for studying the development and fate of hay'a in Islam. Unfortunately, our modern insistence on "creativity" and "originality" has led to a sharp downgrading of such "mere commentaries"; indeed the large number of them in astronomy and other fields has often been taken as a symptom of the declining

[^51]centuries of Islamic science. It is clear that those who have made these judgments have never read these works with any care or attention to detail. Even the more mediocre of them are written by competent scholars who are responding to a continuing interest in theoretical astronomy by both students and the educated public. The best of them are highly original works that provide new solutions to the ishkālāt (difficulties) of astronomy as well as very interesting passages concerning the status of astronomy, the relation of theory and observation, the role of physics in astronomy, and other theoretical concerns. The commentary style is simply that-a style within which the author can exhibit creativity and criticism to the extent of his abilities. In Birjandi's massive commentary of over 250 folios, the Tadhkira often becomes almost incidental as he discusses matters that TTūsī had either barely touched upon or ignored entirely. In short, these commentaries as a group represent an important part of the history of astronomy that need to be edited and studied if we are ever to go beyond our very fragmentary view of late medieval astronomy.

One also sees in many of these commentaries a very "modern" concern with textual criticism and historical reconstruction. This has greatly facilitated my own work, and I have not hesitated to use them as my basic "secondary" sources. My favorite quickly became that of Bĩrjandī, who seems to have known almost everything there was to know about hay'a. My own commentary owes an enormous debt to his elaborations and insights. (I long since have forgiven him his arrogance and nit-picking.)

The following list contains those works that are self-declared commentaries or supercommentaries on one or more passages of the Tadhkira. They range in size from Kamāl al-Dīn al-Fārisi's 4-folio treatise, which is restricted to the Tadhkira's discussion of retrograde and direct motion, all the way up to Shïrwānī's nearly 400 -folio commentary on the entire work. It should be noted that virtually all the authors are Persians, but they worked and studied in places as far afield as Hamāh, Syria (no. 6) and Samarqand (no. 8). I have not listed those texts that are clearly derivative from the Tadhkira (which would include most subsequent works on hay'a) or that appropriate large parts of it (such as Quṭb al-Dīn al-Shīrāzī's Nihāyat al-idrāk and Tuhfa) since they do not follow the standard format of a commentary or supercommentary. I should also mention that many copies of the Tadhkira and its commentaries contain extensive notes and glosses, which would be well worth studying to gain insight into the influence of the Tadhkira as well as the history of hay'a.

Unless otherwise indicated, all the works are in Arabic. (Note: As a general rule, I have throughout referred to the commentaries by the book, chapter, paragraph and line number of the Tadhkira established in my edition. In this way, I have avoided referring to specific copies of manuscripts that may be either unfoliated or inaccessible.)
(1) Tibyān maqāṣid al-Tadhkira (Exposition of the Intent of the Tadhkira) by Muḥammad b. cAlī b. al-Ḥusayn al-Munajjim al-Ḥimādhī, composed some-
time between Jumādā I, 684/July-August 1285 and 4 Ramaḍān 710/ca. 25 January 1311; the former is the date of composition of Al-Tuhfa al-Shāhiyya by Quṭ al-Dīn al-Shīräzĭ, who claims in (2) that Himādhī has substantially plagiarized his work, and the latter is the date of Shiräzi's death. This commentary is only extant as an incorporated part (and therein substantially contracted) of (2).

Begins:

(2) $F a^{c}$ alta fa-lā tatum (lit., You have Done It, So Do Not Condemn), by Maḥmūd b. Mas ${ }^{\text {cu}}$ d Quṭb al-Dīn al-Shīrāzĩ, composed sometime between the boundary dates of (1). This work is a rather caustic reply to (1) that, among other things, attempts to defend the honor of the deceased Nasiir al-Dīn, accuses Himādhi of plagiarism with regard to the Tuhfa, and generally directs sarcastic and at times vicious comments at that hapless astronomer.

I have used Tehran, Majlis-i Shūrā MS 3944 (= Arab League, Bacathat Īrān film no. 228); 232 ff .; copied 826/1422-23 from an autograph.

Cf. GAL I, p. 511 (= 675), SI, p. 931 (no. 40a); Matvievskaya/Rozenfeld, Mat. i astr., 2: 432 (no. 387, A4).

Begins:
أما بعد حمد الله خالق الأفلاك ومديرها ... فإن أحوج خلت الله إليه محمود بن هسعود بن المصلح الشيرازي ختم الله له بالحسنى يقول إني لأنفكَ في صناعة التصنيف وأجيل نظري على جمهور أصحاب التأليف
(3) Tawdīh al-Tadhkira (Elucidation of the Tadhkira), by al-Hasan b. Muhammad Nizaảm al-Dīn al-Nīsābūrī, completed the first of $\operatorname{Rabi}^{-1}{ }^{\mathbf{C}}$, 711/18 July 1311. Hajji Khalīfa (under the entry for al-Tadhkira) remarks that this commentary is well-known and widely appreciated.

I have mainly used Najaf, Āyat Allāh al-Hakīm Library MS 649, 1 (= Arab League, uncatalogued falak film no. 315), 107 ff . I have also occasionally used London, British Library MS Add. 7472 for comparison.

Cf. GAL I, p. 511 (=675), SI, p. 931 (no. 40b); Matvievskaya/Rozenfeld, Mat. i astr., 2: 438-439 (no. 395, A3).
Begins:
الحمـد لله اللذي جعلنـا مـن المتفكريـن في خلت الأرض والسموات وشرفنـا

(4) Glosses (Hāshiya) on Nisābūrī's Tawdīh al-Tadhkira; by a certain Faṣịh al-Dīn. The only extant manuscript is Leiden or. MS 1010; 50 ff .

Cf. GAL I, p. $511(=675)$.
Begins:
أما على الإطلات كالعدد للحسناب قلت فيه بحث
 Retrograde and Direct Motion as Described in the Tadhkira), by Kamāl al-Din al-Ḥasan b. ${ }^{c}$ Alī b. al-Husayn al-Fārisī (d. ca. 720/1320). Fārisī was a student of Shïrāzī and is particularly noted for his Tanqïh al-Manāzir, an incisive commentary on Ibn al-Haytham's Optics.

The only copy of this short work known to me occurs at the end of a manuscript containing Nīsābūri's commentary, namely Najaf, Āyat Allāh al-Ḥakïm Library MS 649, 2 (= Arab League, uncatalogued falak film no. 315), 4 ff .

Begins:

قال مولانا الأعظم الحبر الأعلم رئيس الحكهاء سلطان المهندسين كمال الملة والدين الحسن بن علي بن الحسين الفارسي ستاه الله شآبيب رضوانه وكساه
 التذكرة الخط المستقيم المواجه في الغاية هو الذي ينصفه سهر سهم شعاع البصر ويكون عمودا عليه
(6) Takmil al-Tadhkira (Complement to the Tadhkira), by ${ }^{\mathrm{C} U m a r} \mathrm{~b}$. Da'ūd b. Sulaymān al-Fārisī, completed during the last part of Ramaḍān 711/ Jan-uary-February 1312 for Abū al-Fidā', the governor of Hamäh and author of a famous work on geography.

The unique manuscript is Cairo, Taymūr riyāḍa MS 128, 99 ff.; cf. King [1986], p. 152.
Begins:

$$
\begin{aligned}
& \text { قال المفتقر إلى رحمة ربه عمر بن داود بن الشيخ سليمان الفارسي... الحمد } \\
& \text { لله الذي فطر النسموات بغير عمد إرشادأ للخلت الصمد }
\end{aligned}
$$

(7) Bayān al-Tadhkira wa-tibyān al-tabsira (Explanation of the Tadhkira and Exposition of the Enlightenment [a pun on Khiraqi's Tabșira]), by Jalāl
 February 1328.

Two copies of this work are Ahmed III MS 3325, 2 (= Topkapı Saray MS 7058, 2), ff. 34b-131b and Ahmet III MS 3313 (= Topkapı Saray MS 7083). I have used the former.

Begins:

الحمد لله الذي خلق السماء متحركة على القطب والمحور واللأرض ساكنة على

(8) Shark al-Tadhkira (Commentary on the Tadhkira), by al-Sayyid al-Sharif ${ }^{\text {cAAlī b. Muhammad al-Jurjänī (740-816/1339-1413), completed Tuesday, in the }}$ middle of Dhū al-hịija, 811/(probably) 30 April 1409, in Shīrāz. Jurjānī is mainly noted today as a philosopher/theologian whose commentary on $\overline{\mathrm{I} j} \mathrm{i}$'s Mawäqif became a standard work. He was for a time (1387-1405) part of Timur's entourage at Samarqand and has been described as having been a kind of court theologian there. If the evidence of extant MSS is any indication, this was an extremely popular work.

I have used Damascus, Zähiriyya MS 3117, 160 ff .
Cf. GAL I, p. 511 (= 675), SI, p. 931 (no. 40c); Matvievskaya/Rozenfeld, Mat. i astr., 2: 476 (no. 424, A1).

Begins:

(81) A work listed in $G A L$ I, p. 511 (no. 40e) as a commentary by Mūsā Qāḍizāde (Biblioteca Medicea Laurenziana or. MS 271 [= Palat. MS 311, not 313 as in GAL]) is actually a copy of Jurjānī's Sharh lacking the introduction and part of Book I, Chapter One.
(9) Sharh al-Tadhkira (Commentary on the Tadhkira), by Fath Allāh b. ${ }^{\text {c Abd Allāh al-Shīrwānī (al-Rūmī al-Hanafī) (d. 891/1486), completed (accord- }}$ ing to the colophon of Ahmet III MS 3314) Wednesday evening, 3 Ramaḍān 879/Tuesday-Wednesday, 10-11 January 1475. Shīrwānï tells us that he wished to write a more detailed commentary than those of Nīsäbürī and Jurjānī; this mammoth work is certainly that. Among other things, it contains a long tadhnïb (appendix) on optics at the end of Book I of about 28 folios. The text is in Arabic.

Baghdādī (Hadiyya, 1: 815) claims that Shīrwānī was a resident of Qastamūnī (in Anatolia), studied with al-Sharīf al-Jurjānī, and died in 857/1453; the last two claims are untenable based on the date of composition given above as are Sarton's statements that this commentary was written in Turkish and completed in 1414 A.D. (Introduction, 2: 1007). I have taken Shīrwāni's death date
from GAL SII, p. 290; repeated by Matvievskaya/Rozenfeld, Mat. i astr., 2: 513. I do not know the basis of their information.

There do not seem to be many extant copies; I have used Ahmet III MS 3314 (= Topkapı Saray MS 7093), 370 ff.

Cf. Matvievskaya/Rozenfeld, Mat. i astr., 2: 513 (no. 444v, A1).

Begins:

Cf. the anonymous commentary listed by Riḍawī, Ahwäl, pp. 405-406 (no. 9).
(10) Sharh al-Tadhkira (Commentary on the Tadhkira), by ${ }^{\mathrm{c} A b d}$ al- ${ }^{\mathrm{c} A l i ̄} \mathrm{~b}$. Muḥammad b. Ḥusayn al-Bīrjandī (d. 932/1525-26), completed Rabī ${ }^{\text {c }}$ I, 913/July-August 1507. He was a student of Manṣūr al-Kāshī, the son of $\mathrm{Mu}^{\mathrm{c}} \mathrm{in}^{\text {n }}$ al-Dīn al-Käshī; both father and son may well have been on the staff of the Samarqand observatory (823-53/1420-49). Bïrjandī himself is noted for having written a commentary on Ulugh-beg's Astronomical Tables as well as a supercommentary on Qaadizäde's commentary on Jaghmīnī's Mulakhkhas (Sayili [1960], p. 267).

The commentary on the Tadhkira makes it clear that he is well-informed not only about what took place at Samarqand, but also about earlier astronomical work. In addition to the commentaries on the Tadhkira, Biirjandi refers to numerous other works in a variety of fields, all of which he is careful to cite. Curiously it contains both sophisticated criticism of previous work and rather extensive (some might say long-winded) explanations of elementary points; clearly Bïrjandì had colleagues as well as students in mind as an audience. The text is in Arabic and should not be confused with a Persian work by the same author entitled Risälah-i hay'a (also called Sharh Mukhtasar al-hay'a?); for the latter, see Storey, Persian Literature, I.1, p. 82 (no. 121, 3).

I have used Cambridge, Harvard College Library, Houghton MS Arabic 4285, 258 ff .

Cf. GAL SI, p. 931 (no. 40g) and Matvievskaya/Rozenfeld, Mat. i astr., 2: 542 (no. 456, A9). (Note: Brockelmann apparently is confusing it with the Persian work noted above.) Book II, Chapter 11 was translated into Sanskrit; see p. 57 in this volume.

Begins:

الحمد لله الذي خلق السموات والأرض وجعل الظلمات الـدات والنور وبسط على بساط الساهرة بميامن[؟] قدرته الباهرة الظل والحرور
(11) Al-Takmila fi sharh al-Tadhkira (The Complement to the Commentary on the Tadhkira), by Shams al-Dīn Muḥammad b. Aḥmad al-Khafrī, completed

Monday, 4 Muḥarram 932/23 October 1525. The commentary to which this is a complement is Jurjānī's. Khafr is the name of a small village near Shīrāz (just east of Fīrūzābād) that I take to be the basis for the nisba of this writer. This reading is attested by Damascus, Zähiriyya MS 6727 as well as by Riḍawī (Ahwāl, p. 404). Other possibilities, which seem less plausible, are "Khidri"" and "Khafari," which are given in GAL. This work appears to have been quite popular despite its late date. In addition to Jurjānī, Khafrī depends on Nīsābūrī's commentary as well as on Shīrāzī's Tuhfa. Though written during the assumed precipitous decline of Islamic science, Khafrī shows real insight into and understanding of the major problems of hay'a.

I have mainly used Damascus, Zāhiriyya MS 6727, 323 ff.; Damascus, Zāhiriyya MS 6782, 297 ff. was used for comparison.

Cf. GAL SI, p. 931 (no. 40d) and Matvievskaya/Rozenfeld, Mat. i astr., 2: 471 (no. 422a, A1).

Begins:
وتعاليت يا ذا الحرش الأعلى وما أعظم شأنك وتباركت يا مبدع السموات العلي... فيقول الفتير إلى الله الغني محمد بـن أحمد الخفري لما كان أجل العلوم بيانا وأوثقها تبيانا هو علم ألهيئة
(12) Taclīqāt (annotations) on the Tadhkira, by Ghiyāth al-Dīn Manṣūr. This is presumably Ibn Amīr Ṣadr al-Dīn Muḥammad al-Shīrāzī (d. ca. 950/1543-44), a prince who had been charged by the Șafavid King Shāh Ismā ${ }^{\mathrm{c}}{ }_{\mathrm{i}} \mathrm{l}$ I (ruled 1501-24) with restoring the Marägha observatory, a task that was never brought to fruition (Sayili [1960], p. 288). Riḍawī (Ahwāl, p. 406 [no. 10]) refers to a single manuscript of this work in the Madrasah-i cālī-i Sipahsālār Library; it is not mentioned by any other source.
Begins (according to Riḍawī):
ان هذه تذكرة فمن شاء اتخخذ إلى ربه سبيلا
(13) A commentary by Kamāl al-Dīn Husayn b. Sharaf al-Dīn ${ }^{\text {CAbd al-Haqq }}$ al-Ardabili (d. 950/1543-44). As far as I know, this work is not extant. See Riḍawī, Aḥwāl, p. 405 (no. 8), who cites Baghdādī, Hadiyyat al- ${ }^{c}$ ārifin, 1:318.
(14) Another anonymous commentary is contained in Paris, Bibliothèque nationale MS ar. 6085. This incomplete manuscript lacks all of Book I and Book II, Chapters One through Seven. The illustrations are missing but otherwise the text seems complete. It was copied on Thursday, 18 Rajab 1091/15 August 1691.

Cf. GAL SI, p. 931 (no. 40f).

J. The Evolution of the Text of the Tadhkira

1. Tüsì's Other hay'a basiṭa Works and Their Relationship to the Tadhkira

The Tadhkira was in large measure modeled after one of Țūsi’s Persian works, the Risālah-i Muciniyya, written during the early period of his residence at the Ismācīlī stronghold in Qūhistān. Tūsī subsequently published an appendix (dhayl) to it, usually called Hall-i mushkilät-i Mu ${ }^{\text {ciniyy }}$, whose contents, which included the first appearance of the rectilinear Țūsi couple, were also incorporated into the Tadhkira. The Muciniyya thus forms an essential part of the background to the Tadhkira. Of the many astronomical and astrological writings attributed to Nasiir al-Din, the only other work that I would classify within the genre of hay'a basita (plain or simplified hay'a) is his Zubdat al-idrāk fī hay'at al-afläk. This small treatise seems to be an abridgment of his larger hay'a productions, but further study will be needed to establish a more precise relationship.

Brief accounts of these works follow:
(a) Risälah-i Mucïniyya [or, mistakenly, al-mufid and al-mughniya] dar hay'a (the Mu'iniyya treatise on hay'a), a treatise written in Persian and completed Thursday, 2 Rajab 632/22 March 1235. ${ }^{1}$ This work was written in Qūhistān for $\mathrm{Mu}^{\mathrm{C}} \mathrm{ī}$ al-Dīn Abū al-Shams, the son of Nāṣir al-Dīn Muhtasham, the Ismā ${ }^{\mathrm{c}} \mathrm{i} \mathrm{li}$ governor of Qühistãn and patron of Nașīr al-Dīn. There are two different versions of the introduction, one in which Tūsï lavishes praise upon his Ismā ${ }^{\mathrm{C}} \mathrm{ili}$ in patrons and the other in which he leaves out any direct mention of them altogether. Clearly, the second was written after the fall of Alamūt in 654/1256.

The text itself has the characteristic four-part division of a hay'a basitta work and in fact quite closely, but not exactly, anticipates the Tadhkira in both structure and content: Both have an introductory section consisting of two chapters dealing with geometry and natural philosophy; both have a section on the configuration of the celestial bodies (hay'at-i ajrām-i calaw $\bar{\imath}$) divided into fourteen chapters; both have a section on the configuration of the Earth (hay'at-i zamin) divided into twelve chapters; and both have a section on distances and sizes ($a b^{c} \bar{a} d$ wa-ajräm), the Mu ${ }^{c} \bar{n} n i y y a$ having six chapters whereas the Tadhkira has seven.

A facsimile reproduction of this work is due to Muhammad Taqi Dānish-Pizhüh, who provides both versions of the introduction in his intro-

[^52]ductory remarks. ${ }^{2}$ Kennedy [1984] gives a table of contents and reports that the work has been described by Usmanov [1978].

For further bibliographical details, see GAL I, p. 511 (no. 40), SI, p. 931; Krause [1936], pp. 494-495 (no. 2); Storey, Persian Literature, II.1, p. 56 (no. 7); Riḍawī, Ahwāl, pp. 384-388 (no. 30)); King [1986], p. 152; and Matvievskaya/Rozenfeld, Mat. i astr., 2: 404 (A10).
(b) Hall-i mushkilāt-i Muciniyya $=$ Sharh-i Mu'iniyya $=$ Dhayl-i $M^{c}{ }^{c}$ īniyya ("A Solution to the Problems," "A Commentary," or "An Appendix" to the Risālah-i Muciniyya), also in Persian, and meant to be an appendix or completion of the $M u^{c}$ ininya. This short work was also written for $\mathrm{Mu}^{\mathrm{c}} \mathrm{i}$ n al-Dīn Abu al-Shams, who asked that certain obscure points from the $M u^{c}$ ininya be clarified. Once again we have the curious situation of two prefaces, one extolling the virtues of Tūsī's Ismā ${ }^{\mathrm{c}} \mathbf{i} l \bar{i}$ patrons and the other neglecting any mention of them altogether.

There are nine chapters with a rather wide range of content. ${ }^{3}$ Dānish-Pizhūh has also brought forth a facsimile reproduction of a manuscript of this work that begins with the second preface; ${ }^{4}$ in his own introduction, he supplies the other preface. Kennedy [1984] gives a table of contents. An unpublished edition has been completed by Wheeler M. Thackston; a translation, also unpublished, is due to him and the present writer.

For further bibliographical details, see Krause [1936], p. 495 (no. 3); Storey, Persian Literature, pp. 56-57 (no.7); Riḍawī, Ahwäl, pp. 388-390 (no. 31); and Matvievskaya/Rozenfeld, Mat. i astr., 2: 403-404 (A18 \& A18a).
(c) Zubdat al-idräk fī hay'at al-aflāk (The Essential Understanding of the Configuration of the Orbs), a short work in Arabic of unknown date. ${ }^{5}$ It consists of an introduction and two chapters (one on the hay'a of the celestial region, the other on the hay'a of the Earth), and a concluding section on sizes and distances. Tūsī states in the introduction that his intention is to epitomize the available

[^53]works on hay'a. Ḥäjji Khalifa compares it, sizewise, to Al-Mulakhkhas by Jaghminin.

A copy of the work, which I have examined, is Istanbul, Topkapı Saray, Ahmet III MS 3430 (5), ff. 59b-92b (=Arab League falak, no. 123). Another copy is Paris, B. N. MS ar. 2511 (1). Further bibliographical details may be found in GAL I, p. 511 (no. 44) and SI, p. 931; Krause [1936], p. 497 (no. 14); Riḍawī, Ahwäl, p. 391 (no. 33)); and Matvievskaya/Rozenfeld, Mat. i astr., 2: 403-404 (A11).

An obvious question that needs to be addressed is the relationship of these works to the Tadhkira. The Zubdat al-idrāk is clearly meant to be an even more abridged and simplified work than the Tadhkira. For the most part Țūsì here eschews criticisms of Ptolemy; the one exception I have been able to find is a very brief reference to Ibn al-Haytham's alternative models for latitude. ${ }^{6}$ But without a date of composition, I am unable to say whether it was made with the Tadhkira in hand. The audience is also not entirely self-evident; unlike what one finds in the introduction to the Zubdah-i hay'a, Țūsī does not say here that the work was meant for his students. Perhaps it was intended, as implied by Heajjjī Khalifa, for the lay audience that was captured by Jaghminni's Mulakhkhaş; if so, it was a dismal failure, to judge from the small number of extant manuscripts and the apparent lack of any commentaries on it. The Persian Zubdah-i hay'a and its Arabic translations were clearly more successful in that regard.

We are on firmer ground when we come to the question of the relationship of the Tadhkira to the $M u^{c_{i n i n y y}^{c}}$ and its Hall . As stated above, the $M u^{c_{i}} \boldsymbol{i} i y y a$ itself is a straightforward exposition of Ptolemaic astronomy in the hay'a mode, such as one finds in Khiraqi's Muntahā or Tabșira. However the young Naṣir al-Dīn, who was 34 at the time, had clearly been thinking about the "difficulties" of Ptolemaic astronomy and their solutions when he was writing the Mu'iniyya, which was completed in $632 / 1235$. For in the midst of his exposition of the moon (Section II, Chapter 5), he remarks that there is a doubt (shakk) concerning the motion of the moon's epicycle center on the deferent. In a passage rather reminiscent, but in important ways different, from II. 7 [25] of the Tadhkira, he concludes:

Then one of two things must follow: either the invariability of distance and closeness of the epicycle center from the center or the variability in speed and slowness in the motion of the center. And

[^54]these two are prohibited. This is a serious doubt (shakk-i $\left.{ }^{c} a z i m\right)$ concerning this account, which no one among the practitioners of the science has ventured anything or, if they have put it forth, it has not reached us. There is an elegant way (wajh-i latif) of solving (hall) this doubt whose presentation in this compendium would not be appropriate. If in the future the blessed disposition of the prince of Iran, may God multiply his eminence, commands the pleasure of investigating this question, in that chapter $(b \bar{a} b)$ an account will be given, God willing. ${ }^{7}$

In the next chapter (Section II, Chapter 6), which deals with the upper planets and Venus, ${ }^{8}$ Țūsī again points to the problem of the irregular motion of the deferent, this time due to the equant, and claims a solution:

The doubt which occurs with regard to the moon occurs in exactly the same way for the motion of the epicycle center on the deferent equator with the lack of uniformity about its center and the uniformity about another center different from it...the solution of this doubt, which no one from the practitioners of the science has ventured anything, is among the puzzles (asrār) of the science of hay'a. God willing, in the future an explanation (bayān) of that will be made. ${ }^{9}$

Naṣīr al-Dĩn also has doubts about Ptolemy's latitude theory, which he expresses in Section II, Chapter 8. Here, though, the work of one of his predecessors, namely Ibn al-Haytham, has reached him, and he gives a sketch of his theory. ${ }^{10}$ But Țūsì is not content with what he finds:

Yet even with this establishing [of orbs?], this variation (ikhtiläf) has not become ordered (manzūu). Concerning that, several other defects come to the fore; but this [work] is not the place to expound on that. ${ }^{11}$

[^55]To summarize, we have the following situation in March 1235: (a) Țūsī has published his $M u^{c}$ ininya as a relatively short summary of astronomy in the hay'a mode and dedicated it to the son of his patron; (b) he claims to have a solution to the irregular motion of the deferents of the moon and planets; (c) he has been studying Ibn al-Haytham's treatise on latitude and though he presents its main results he believes there remain problems that need to be resolved; (d) he promises to present his results in a future work.

From this, it is reasonable to draw the following conclusions. Nasīr al-Din had been inspired at a fairly early period of his career with the rectilinear version of his couple, which he can use to resolve the irregular deferent motions in longitude (Difficulties 1-6; see p. 50). ${ }^{12} \mathrm{He}$ has also studied Ibn al-Haytham's treatise on latitude and accepts that it can give a hay'a (configuration) to the small circles of Ptolemy's latitude theory. But he still feels that Ibn al-Haytham has not resolved the problem completely and refers to unspecified "defects" that remain. These presumably would be Objections 2 and 3 that he refers to in II. 11 [15]. ${ }^{13}$ Unlike the case with the irregular motion on the deferents, he does not claim a solution for these problems. As far as I can tell, he also does not mention the difficulty of the moon's prosneusis nor does he make the critical connection between that problem and the difficulties of Ptolemy's latitude theory. ${ }^{14}$ In other words, though he points to Difficulties 7-15 (see pp. 50-51), he does not yet have the curvilinear version of his couple with which to resolve them. He still depends on Ibn al-Haytham despite his reservations.

The confirmation of this reconstruction comes in the Hall. There can be little if any question that it is the work that Nașir al-Din tantalizingly dangled before his patron in the Muciniyya. And since there is nothing in the Hall that is not forecast in the Mu'iniyya, there is little to recommend putting its date of composition more than a few months, perhaps a year at most, after that of the $M u^{c}$ iniyya. ${ }^{15}$ It could then be viewed, as it was, simply as an appendage to the

[^56]earlier work. ${ }^{16}$ Of the nine chapters of the Hall, seven are of a fairly pedestrian nature. The two that are of greatest interest are Chapter Three, rather cumbrously entitled "Concerning the Solution of the Doubt Occurring with Regard to the Motion of the Center of the Lunar Epicycle on the Circumference of the Deferent, and the Uniformity of That Motion About the Center of the World," and Chapter Five, entitled "On the Configuration of the Epicycles of the Wandering Planets According to the Doctrine of Abū ${ }^{\text {c} A l i ̄ ~ i b n ~ a l-H a y t h a m . " ~}$ Chapter Three presents the rectilinear version of the couple, while Chapter Five simply presents Ibn al-Haytham's theory. There is no hint of the curvilinear version of the couple that he would use in the Tadhkira for resolving Difficulties 7-16 (on latitude and the moon's prosneusis); he is basically at the same place he was when he completed the Mu ${ }^{c}$ iniyya.

Between 632/1235 and 644/1247, the date of the completion of his recension of the Almagest, Nasịr al-Dīn has developed the idea, if not the final form, of the curvilinear version of the couple. He has also made the crucial connection between the prosneusis problem and the latitude problem. ${ }^{17}$ The stage for the final synthesis in the Tadhkira is now set.

2. The Marāgha (α) Version of the Tadhkira

The process of Arabizing Țūsì's Persian works went on both in his lifetime and afterwards; in the former category we may note his Arabic treatise on logic, Tajrīd al-mantiq (written 656/1258), which seems to be an abridged version of his earlier Persian work, the Asās al-iqtibās (written 642/1244-45). In the latter category, there are several Arabic translations of the Zubdah-i hay'a. One translator of the treatise, a certain 'Imād al-Dīn cAlī al-Qāshī (?), tells us in his introduction that the work, though "of great usefulness," was not "of general benefit" since it was in the "Persian language whose understanding is denied to the intelligent Arab." ${ }^{18}$

One of the motivations for composing the Tadhkira was, no doubt, likewise to have his Persian $M u^{c}$ īniyya reach a wider audience. He would furthermore have wished in the latter part of his life to synthesize the Hall as well as his more recent discoveries mentioned in passing in the Tahrir al-Majisṭi (Recen-

[^57]sion of the Almagest) into a more coherent whole. The immediate occasion for the Tadhkira was provided by his friend ' ${ }^{\text {CIzz al-Dīn al-Zinjānī (d. 660/1261-62), }}$ who requested a work in Arabic on hay'a. ${ }^{19}$ It is this Zinjānī who is evidently being referred to in the preface as "one of our dear friends" and to whom the work is being presented as a "memento" (tadhkira). ${ }^{20}$

This first version of the Tadhkira, which was completed in Marāgha, may be confidently dated as the beginning part (awā'il) of Dhū al-qa ${ }^{\text {c }}$ da $659 /$ September or October 1261, based on the following note that occurs in the margin of the last page of a copy of Faḍl Allāh al-cUbaydi's commentary on the Tadhkira (Istanbul, Topkapı Saray, Ahmet III MS 3325, f. 131b):

The author completed drafting (taswid) the text (matn) during the beginning part ($a w \bar{a}^{\prime} i l$) of Dhū al-qa ${ }^{\text {c }}$ da in the year 659 in the town of Marāgha. ${ }^{21}$

It is rather curious that none of the twenty or so manuscripts of the Tadhkira that I have examined gives the date of composition, a point to which we shall return.

3. The Baghdad (β) Version of the Tadhkira

The completion of a muswadda ("draft," i.e. the original manuscript) did not imply an unalterable text; corrections could be made and revisions carried out either by the author alone or in the course of having it read to him by a student or copyist. There is ample evidence to indicate that this is precisely what happened to the Tadhkira between the time of its original completion in 659/1261 and Țūsi's death in 672/1274. In the following, I shall first present the evidence, both textual and secondary, for the existence of the final revision of the Tadhkira, the Baghdad (β) version, which was probably compiled sometime during the latter part of 672 H . (January-June 1274). I shall then discuss the nature of these revisions and the evidence that some of them were made before 672 H .

[^58]The most clear-cut evidence for a later, revised text comes from a number of the commentators in their discussion of II. 4 [2]23-[3]16, which has to do with the possible motion of the ecliptic equator with respect to the equinoctial. One version of the text has four possibilities for this motion, another has eight. ${ }^{22}$ Jurjānī, whose commentary is dated $811 / 1409$, states that the newer version with eight possibilities was made an extended period (mudda madida) after the first. Shīrwānī, writing some 65 years later in 879/1474, adds that the new version was completed more than 20 years after the first and that this was done in Baghdad. Bïrjandī in $913 / 1507$ also states that the change was made in Baghdad. Khafrī, writing in $932 / 1525$, gives the 20 -year period of separation.

Certain problems immediately arise. The first, which is not serious, concerns the 20 -year period between the two versions. Obviously the greatest length of time possible between the Marägha version and this Baghdad revision would be 13 years. Could some version earlier than Marägha, or perhaps the Mucīniyya, be intended by the earlier one? There is absolutely no evidence for the first possibility and I think that it can be safely dismissed. The second is also untenable since the $M u^{c}$ iniyya has neither the four nor eight possibilities. ${ }^{23}$ Clearly the 20 years is simply a minor exaggeration.

Another more serious problem is whether we are justified in attributing the revisions to Tūsī himself since they were seemingly done in the last year of his life. For we know from the historical sources that he left Marāgha for Baghdad in 672 H . (July 1273-June 1274), just a few months before his death. ${ }^{24} \mathrm{We}$ also know that he was accompanied by a number of his students, and it might be supposed that one of them revised the text after his death. However, there is considerable evidence that Țūsī himself was responsible for several of the revisions and some of these can be dated prior to the relocation to Baghdad. The best evidence for this comes from MS M, which is based upon Shïräzī's working copy of the Tadhkira. ${ }^{25}$ Now we know that Shīrāzī left Marāgha, whether or not estranged from Tuūsi being unclear, in the period ${ }^{26}$ between $667 / 1268$ and $672 / 1274$; it is then reasonable to conclude that the revisions recorded in the text of MS M were effected before Shïräzī's departure. And since Shīräzī, according

[^59]to the note at the end of MS M, read the entire text to Țūī (qara'ahā ila $\bar{a} k h i r i h \bar{a}{ }^{c}$ al \bar{a} musannifih \bar{a}), all the revisions to the Marāgha version were authorized ones.

An important example of a revision done before Shürāzī's departure occurs in I.1 [2]19-20, where Tūsī gives his definition of a plane surface. ${ }^{27}$ MSS DGT ${ }^{28}$ contain what Jurjānī refers to as the older and incorrect version. MS M contains a definition that Jurjānī tells us was read (and presumably approved) by Tūsī; from what we have established above this would have been done while Shīrāzı̄ was in Marāgha. Now there is a second definition contained in MSS FL and in the margin of MS T, which Jurjäni gives as an alternative to the definition of MS M. For reasons that I shall come to presently, I take this latter definition to be of a later date than MS M and more than likely to be after Shïräzī's departure from Marāgha.

Very strong evidence that revisions continued to be made after Shïrāzī left Marāgha come from Shīrāzī himself. In his Facalta fa-lā talum, which is a supercommentary on an early commentary of the Tadhkira, Shirrāzī informs us that Tūsi's addition to II.2 [3]22-23 of the Tadhkira occurred after he left the service (khidma) of Naşir al-Dīn. ${ }^{29}$ MS M gives the addition but a note, perhaps due to Shïrāzī, advises the reader to ignore it. ${ }^{30} \mathrm{MSS}$ GFL, however, incorporate the revision into their texts without further comment whereas MSS DT do not have it at all.

We have now established that certain revisions were made at various times between $659 / 1261$ and $672 / 1274$, but we still need some means for identifying the original Marägha text and the various stages in the revision process. The manner in which certain critical revisions are handled in MSS DT provide the key we need for establishing the original text. In the major revision to II. 4 [2]23-[3]16 mentioned above, both manuscripts give the original version in the body of the text and provide the revision in the margin. ${ }^{31}$ In virtually all the cases in which we can identify an older and newer version, this is the pattern that emerges. For example, in the text of MS D we find what Jurjānī, Khafrī, and Birjandi identify as the original version of I. 1 [16]8-9, while in the margin of MS D there occurs what they identify as the revision; the copyist has also added the following remark: "The author, may God have mercy on him, changed to this text." Khafrì also specifically indicates that the change is due to the author. For II. 5 [8]6-8, MS D specifically attributes the variant given in the margin to "the new, emended version" (al-isläh al-jadid); the variant occurs in the text of

[^60]MSS FL and in the margin of MS T, where the copyist indicates it comes from another version or manuscript ($k h$).

Now MS D has another interesting feature; in the colophon it claims that it is from an autograph. The conclusion then seems inescapable that the texts of MSS DT represent to a fairly high degree the original Marägha version. In the margins, the copyists have placed the revisions. ${ }^{32}$ My very strong suspicion is that this is precisely the way revisions were handled during much of the period between $659 / 1261$ and $672 / 1274$. Tūsī would approve an original version and then have the copyist place the revisions he had made up to that point in the margins; ${ }^{33}$ or he might do the job himself as is indicated by a note at the end of a copy of the Tadhkira preserved in Tehran, Sipahsālār MS 4727:

I voweled and collated [this copy] with a copy that was read to its author, may God continue to protect him, and I transcribed its marginal notes that were in his noble handwriting and what he added to it; I indicated some of them in haste according to [my] effort and ability. ${ }^{34}$

At various points an approved text with the revisions incorporated into a faircopy of the text might be produced; this is what Shīräzī's copy, exemplified by MS M, represents. ${ }^{35}$ (This could also help us understand why no copies of the Tadhkira I have examined give the date of composition; it would not have made sense to date these later fair copies with the original 659/1261 year of composition.) After T Tūsī went to Baghdad, there seems to have been a final version produced and this is represented by MSS FL, which incorporate virtually all the revisions previously made into a new fair copy of the text; it cannot be ascertained whether this occurred before or after his death but because the major revisions can be verified as being due to Ṭūsī himself (either from the evidence of MSS DT or from the commentators), there is no reason to doubt that the other minor changes one finds in MSS FL are also due to him.

What are the nature of these changes? Compared with the changes from the Mu ${ }^{c}$ iniyya and the Hall to the Tadhkira, they are fairly insignificant. A large number simply correct grammatical mistakes or stylistic infelicities, such as one finds in I. 1 [14]1. In the following list of revisions, I generally ignore these but

[^61]list the others in somewhat arbitrary categories. Starred citations (*) indicate corrections that have been discussed in the commentary.
(a) Simplifications: I.Intr. [1]10; II. 11 [6]2.
(b) Corrections of Mistakes: ${ }^{*}$ I.1 [2]19-20; * I .1 [16]8-9; * I .1
[17]12-13; І. 7 [1]1; *II.9 [1]9; ІІ. 10 [2]14-15; ІІ. 10 [2]17; *II. 11
[5]22; II. 12 [5]12; II. 12 [6]18; II. 14 [2]21; III. 2 [1]9; III. 8 [7]1; *III. 10 [1]13-14; ${ }^{*}$ IV. 1 [2]7; ${ }^{*}$ IV. 1 [3]18-19; IV. 3 [1]24; ${ }^{*}$ IV. 4 [2]17-18; IV.6 [5]11; *IV.6 [5]17.
(c) Amplifications: I. 1 [13]19; II.1 [7]14; *II. 2 [3]22-23; * II .4 [2]2-[3]16; II. 8 [14]10-11; *II. 9 [6]12; II. 10 [3]10; II. 10 [3]11-12; II. 11 [2]5; ${ }^{*}$ II. 11 [5]14-15; II.11 [5]19-20.
(d) Clarifications: I. 1 [14]21; I. 1 [14]22-23; II. 3 [10]20; II. 4 [2]23; ${ }^{*}$ II. 5 [8]6-8; ${ }^{*}$ II. 5 [9]3 ${ }_{2}$; II. 7 [9]8; II. 7 [14]10; II. 7 [16]2-4; II. 8 [1]15; І. 8 [1]20; *II. 8 [15]5; II. 8 [16]8; II. 9 [1]14; *II. 9 [8]21; II. 9 [14]11; *II. 11 [4]2-4; *II. 11 [4]9-10; II. 11 [10]9-10; II. 12 [1]16; II. 12 [3]8; I. 13 [9]15; III. 3 [1]15; ІІІ. 3 [2]5; ІІІ. 3 [3]1; III. 9 [1]11; IV. 1 [3]12; IV. 1 [3]17; IV. 5 [3]19.

In addition the original of Figure T25 in III. 9 [1] was revised in the Baghdad version.

In general, the revisions are more numerous in the first two books than the last two. Few, if any, can be called sensational; in particular, the revisions made in the chapter that presents Ṭūsi's new models (II.11) are fairly minor. Some of the changes are surprisingly for the worse. This is especially true of the one in II. 5 [8]6-8, which in the Baghdad version gives an incorrect proportion for finding retrograde motion. Other examples are I.1 [13]18 and II. 11 [5]19-20. In this regard, it is interesting that a revision might be marked for deletion; this seems to be the case for II. 9 [6]12, where a phrase that was added in the margins of MSS MT, and into the text of MS G, is marked for deletion in MS F and is missing entirely in MS L, these latter two manuscripts being my best witnesses to the Baghdad version. Finally we should note that though the vast majority of the revisions are due to Țūsī, there are a few suspicious ones that might be due to Shïrāzī or perhaps another student or colleague. Three that I strongly suspect are due to Shïrāzī, and that occur in MS M, are variants to II. 9 [1]9, П. 11 [9]1-2 2_{2} and IV. 3 [5]19; both Jurjānī and Birjandī suggest that this is so for II. 9 [1]9.

K. List of Manuscripts

In the following list, nos. 1-6 are the principal manuscripts that have been used to establish the edition (see Section M.2). The other five manuscripts that have sigla were used at an earlier stage of editing, but their variants added little to the final edition; consequently I decided to leave them out of the final apparatus. On occasion, though, they are referred to in the apparatus and commentary. In addition to the eleven manuscripts with sigla, I have also examined, with varying degrees of thoroughness, nos. $7,10,11,12,13,16,29,31,32,33$, 35.

A convenient listing of manuscript collections and their catalogues is in Sezgin, GAS 6.

Sigla
Description of Manuscript

D ض 1. Istanbul, Feyzullah MS 1330, 1; ff. 1b-83a; ca. 14-16 lines/page; numerous annotations, especially in the beginning; copy completed on 17 Safar 757/ca. 20 February 1356 from an autograph by Aḥmad b. Maḥmūd b. Muḥammad al-Qazwīnī.

Colophon:

I copied this book from the handwriting of its author Muhammad b. Muḥammad b. al-Ḥasan al-Ṭūsī, may God have mercy on him, successfully completing it on the 17 th of Safar of the year 757. And I am Aḥmad b. Maḥmũd b. Muhammad al-Qazwīnī, of God's creation the most in need of His forgiveness.
2. Vatican, ar. MS 319, 1; ff. 1b-64a; 17 lines/page; has occasional Latin annotations [15th-16th c. ?]; copied Friday, 5 Muḥarram 683/24 March 1284 by Maḥmūd b. Muḥammad b. al-Qāḍī Taqī al-Dīn in Baghdad at the Nizaāmiyya College.

Colophon:

$$
\begin{aligned}
& \text { فرغ من تحريره العبد المذنب المغتقر إلى رحمة ربه الغفور } \\
& \text { محمود بن محمد بن القاضي تتي الدين يوم الجمعة } \\
& \text { محرم سنة ثلاث وثمانين وستمائة في مدرسة نظام الملك بمدين } \\
& \text { السلام حماها الله تعالى عن نوائب الدهر وحدثانه حامداً الله } \\
& \text { تعالى ومصليا على نبيه والحمد اله رب العالمين }
\end{aligned}
$$

The writing of this was completed by the sinner in need of the mercy of his forgiving Lord Maḥmüd b. Muḥammad son of the Judge Taqī al-Dīn on Friday, the 5th of Muḥarram of the year 683 at the College of Nizām al-Mulk in the City of Peace, may God Almighty protect it from the misfortunes and afflictions of time, praising God Almighty and praying for His Prophet; Praise be to God, Lord of the Worlds.

G $\dot{\varepsilon}$ 3. St. Petersburg (a.k.a. Leningrad), Oriental Institute MS A 437; ff. 1b-43b; 17 lines/page; incomplete, folios disordered; copy completed 3 Ramaḍān 673/ca. 2 March 1275.

Colophon:

Completed with the aid of God and the goodness of His granting success on the 3rd of Ramaḍān of the year 673.

L J 4. Leiden, University Library MS or. 905 (= 1093); ff. 1b-95a; 15 lines/page; very readable pointed script with numerous vowel markings; no colophon but a marginal note on f. 95a indicates that it was compared with a "reliable copy."

M p 5. Istanbul, Lâleli MS 2116; ff. 1b-83b; 17 lines/page; copy completed on 8 Ramaḍān 681/ca. 10 December 1282.

Colophon (in margin of f .83 b):
قوبـل بالنسخـة التي بخـط مولاتا المعظم عـلامة العالم أفضـل المتقـدمين والمتأخرين زبـدة خلت الله في العـالميـن قطب الملة والدين أسبـغ الله ظلال جالاله وكان يحدّث عنها وقراها إلى آخرها على مصنفها محمد بن محمد الطوسي رضي الله عنه في ثامن[؟] رمضان المبارلُ[؟] في[؟؟] إحدى[؟؟] (وڭثمانين [؟؟؟]〉و

This has been collated with the copy in the hand of our great master, the most erudite in the World, the most excellent of the ancients and the moderns, the cream of God's worldly creation, the pole ($q u t b$) of the community and creed, may God widen the shadows of his grandeur, and he used to narrate from it and he read it in its entirety to its author Muḥammad ibn Muḥammad al-Țūsī, may God be pleased with him, on the 8th of blessed Ramaḍān in 681 [Krause [1936] reads 684].

T b 6. Istanbul, Ahmet III MS 3453, 19 (= Topkapı Saray MS 7005, 19); ff. 261b-281a; 27 lines/page; an important manuscript containing, in addition to the Tadhkira, Tūsi's recensions of the "Middle Books"; copied 12 Rabīc I, 677/ca. 3 August 1278 by cAbd al-Kāfī b. cAbd al-Majīd b. cAbd Allāh al-Tabrīzī in Baghdad.

Colophon:
وأكتب المصنفـ رحمـة الله إليـه هذا سوّده أحورج خلت الله محمد بن محمد الحسن الطوسي فرغ نستخ هذا الكتاب عبد الله الفتيـر إليـه عبـد الكافيـيـن عبـد المجــد بـن عبـد الله التبـيـزي في الثاني عشـر من شهر ربيع الأول سنـة سبـع وسبعين وستمائة في مديـنة بغداد دامتـ محميـي عن الآفات حامدا الله تعالى ومصليا على أشرف خلقه هحمد وآله الطيبين الطاهرين

The author, God's mercy upon him, dictated this: The most needy of God's creation, Muḥammad b. Muḥammad b. al-Ḥasan al-Țusĩ, drafted this. The copying of this book was completed by the needful servant of God cAbd al-Käfì b. cAbd al-Majīd b. cAbd Allāh al-Tabrīzī on the 12th of the month of Rabī̄ I in the year 677 in the city of Baghdad, may its protection from harm continue, praising God Almighty and praying for Muḥammad, the most noble of His creation, and for his most excellent and virtuous family.
7. Aleppo, Aḥmadiyya (waqf) Library MS 1284.
8. Aligarh, Subḥānullāh Oriental Library MS 121, 3; 44 ff.; ShaCbān 1300/June-July 1883.
9. Baghdad, MS 2958 [? see Matvievskaya/Rozenfeld, Mat. i Astr., 2: 403 (no. 368, A9)].
10. Cairo, al-Azhar MS 18079, 1; ff. 1-94; copied 1290/1873-74 by Muḥammad Amīn Riḍā.
11. Cairo, National Library MS K 3957, 3; ff. 155b-253a; n. d. (ca. 900/1500) [see King [1986], p. 151].
12. Cairo, National Library, Talcat hay'a MS 38, 1; ff. 1a-62a; copied 1076/1665-66 [see King [1986], p. 151].
13. Cairo, National Library, Taymūr majāmīc MS 181, 1; pp. (sic) 1-120; copied ca. 1114/1702-03 [see King [1986], p. 151].
14. Diyarbakır (Turkey), MS 2213 A, 8; ff. 82a-113a; copied in 727/ 1326-27 (see Şeşen, 3: 33).
15. Edirne (Turkey), Selimiye MS 1244, 3; ff. 197b-250b; copied in 879/1474-75 (see Şeşen, 3: 33).
16. Heidelberg, University Library MS or. A 144; 88 ff.; n. d. (ca. 1650 A. D.).
17. Istanbul, Ahmet III MS 3317 (= Topkapı Saray MS 7081); ff. 1b-60a; copy owned by Sultan Bāyazīd II.
H^{2} 18. Istanbul, Ahmet III MS 3333, 1 ($=$ Topkapı Saray MS 7082, 1); ff. 1b-32a; copied in 728/1327-28 by Muḥammad b. Muḥammad al-Samarqandī.
19. Istanbul, Ali Emiri Arabi MS 2735; 150 ff.; n. d. (ca. 9th-10th c./ 15th-16th c.) [see Krause [1936], p. 494].
20. Istanbul, Aşir Hafid MS 203, 2; 90 ff.; copied 797/1394-95 [see Krause [1936], p. 494].
21. Istanbul, Carullah MS 1457, 2; 26 ff.; copied ca. 712/1312-13 in Tabrīz; incomplete [see Krause [1936], p. 494].
22. Istanbul, Fatih MS 3388; 77 ff.; copied 955/1548-49 in Istanbul [see Krause [1936], p. 494].
23. Istanbul, Fatih MS 3389; 56 ff.; n. d. (ca. 7th-8th c./13th-14th c.) [see Krause [1936], p. 494].
24. Istanbul, Feyzullah MS 1331; 66 ff.; copied 749/1348-49 in Aleppo [see Krause [1936], p. 494].
25. Istanbul, Lâleli MS 2115; 88 ff .; n. d. (ca. 9th-10th/15th-16th c.) [see Krause [1936], p. 494].
26. Istanbul, Ragıp Paşa MS 919, 2; ff. 71b-134a; copied 877/ 1472-73 [see Krause [1936], p. 494].

N

- 27. Leiden, University Library MS 188, 4 ($=$ 1092); ff. 38b-111a; copied in 785/1383-84.

C
28. Leipzig, University Library MS 261 (= K. 203); ff. 1b-40a; copied 14 Shawwāl 790/ca. 16 October 1388.
29. London, British Library MS 1339, 1 (= Add. 23,394); copied in 1107/1695-96 by Muḥammad Riḍã b. cAzīz Allāh al-Tūnī.
30. Los Angeles, UCLA Library Arabic MS 1117 [courtesy of Aḥmad Harīdī, Cairo].
31. Mashhad, Āstān Quds Riḍawī MS 8568.
32. Najaf, Āyat Allāh al-Hakīm MS 1099 (= Arab League uncatalogued falak film no. 321); 91 ff.; copied 1324/1906-07.
33. Paris, Bibliothèque nationale MS ar. 2330, 8; ff. 83b-86b (contains only part of Book I).

B 34. Paris, Bibliothèque nationale MS ar. 2509 (= Suppl. ar. 962); ff. 2b-82a; used by Carra de Vaux [1893] for his translation of II.11, but the text is a jumble of the two versions and the figures are rather inaccurate; copied Monday (end of day) 2 Shacbãn 791/26 July 1389.
35. Princeton, MS 4881 (Mach); 56 ff.; copied Muḥarram 771/ August-September 1369.
36. Tashkent, Oriental Institute MS 8990, 1 [see Matvievskaya/ Rozenfeld, Mat. i Astr., 2: 403 (no. 368, A9)].
37. Tehran, Dānishkadah-i Ilăhiyyāt Library MS 275 G; 45 ff.; n. d.
38. Tehran, Kitäbkhāna Najm Ābādī; copied in 671/1272-73 [see Riḍawī, Aḥwāl, p. 400].
39. Tehran, Sipahsālār MS 4727; 19 ff .; collated with a copy that had been read to Țūsĩ and that had marginal notes in his hand, which were incorporated into this manuscript; copy completed 10 Rabï c II, 761/ca. 29 Feb. 1360 [see Mudarrisī, Sar-gudhasht, p. 114].

L. Concordance of Manuscripts

page of edition	D	F	G	L	M	T
91.	1b,1	1b,1	1b,1	1b,1	1b, 1	261b, 1
93.	1b,14	1b,13	1b,11	2a,1	2a,1	261b, 7
95.	2b,1	2a,8	2a,3	2b, 3	2b, 1	261b,14
97.	3a,6	2b,8	2a,16	3a,10	3a,7	261b,23
99.	3b,9	3a,6	2b,11	4a,1	3b,10	262a,4
101.	4a,10	3b,2	3a,3	4b,4	4a,9	262a, 10
103.	5a,6	4a,5	3b,2	5b,1	5a,2	262a,21
105.	5b,11	4b,3	3b,14	6a,7	5b,6	262b,2
107.	6b,9	5a,6	4a,12	7a,6	6b,1	262b,12
109.	7b,3	5b,7	4b,9	8a,1	7a,11	262b,22
111.	8a,9	6a,7	5a,5	8b,10	7b,16	263a,3
113.	9a,2	6b,8	5b,3	9b, 7	8b,9	263a,14
115.	9b,6	7a,6	5b,15	10a,13	9a,15	263a, 22
117.	10a,14	7b,9	6a,13	11a,11	10a,9	263b,6
119.	11a,4	$8 \mathrm{a}, 9$	6b,10	12a,5	10b,17	263b,15
121.	11b,9	8b,9	7a,6	12b,14	11b,8	263b,25
123.	12a,12	9a, 7	7b,2	13b,6	12a,14	264a,6
125.	12b,9	9b,4	7b,10	14a, 12	12b,11	264a, 11
127.	13b, 2	10a, 7	8a, 7	15a,9	13b,4	264a,20
129.	14a,10	10b, 10	8b,5	16a, 6	14a,15	264b, 2
131.	15a,3	11a, 13	9a,3	17a, 4	15a,9	264b,13
133.	15b,12	11b,14	9a,15	18a, 2	16a,3	264b,23
135.	16a,8	12a, 9	9b,7	18b, 8	16b, 7	265a,5
137.	16b, 7	12b, 7	33a,3	19a,14	17a,9	265a,13
139.	17b, 6	13b,3	33a, 17	20a,13	18a, 3	265a,23
141.	18a,5	13b, 15	33b, 7	20b,14	18b, 2	265b,2
143.	19a,10	14b, 7	34a, 9	22a, 2	19b,10	265b,17
145.	19b,6	15a,1	34b,3	22b,1	20a,7	265b,23
147.	20b, 7	15b,9	34b,16	23b, 3	21a,7	266a, 7
149.	21a,9	16a,5	35a, 8	24a, 6	21b, 8	266a,16
151.	22a, 4	16b,16	35b,5	25a, 9	22b,5	266a,27
153.	22b,10	17a, 16	35b,16	26a, 2	23a,13	266b,9
155.	23b, 4	17b,17	36a, 12	26b,15	24a,6	266b,20
157.	24a, 8	18a, 16	36b,6	27b, 7	24b,12	266b,27
159.	24b,13	18b, 16	36b,17	28b,1	25b, $4^{\text {m }}$	267a,10
161.	25b, 7	19b, 2	37a,13	29a,14	26a,13	267a,21
163.	26a, 3	20a, 1	37b,2	30a, 1	27a,1	267a,25
165.	26b,6	20a,16	37b,12	30b, 8	27b, 3	267b,6
167.	27a,12	20b, 16	38a, 8	31a,15	28a, 9	267b,15

page of edition	D	F	G	L	M	T
169.	28a,6	21a,17	38b,3	32a,12	29a, 2	268a,5
171.	28b,13	22a,1	38b,14	33a,10	29b, 9	268a, 15
173.	29b,9	22b, 3	39a,9	34a, 7	30b,4	268a, 25
175.	30b, 2	23a,5	39b,4	35a, 3	31a,15	268b,9
177.	30b,5	23b,1	39b,6	35a,6	31b, 2	268b,11
179.	31a, 1	23b,7	39b,12	35b,9	32a, 1	268b,16
181.	31b,5	24a,7	40a, 9	36a,15	32b, 9	268b,24
183.	32a,10	24b, 7	40b, 3	37a,7	33a,16	269a,9
185.	33a,5	25a,9	40b,16	38a, 3	34a, 8	269a,20
187.	33b, 7	25b, 6	41a,8	38b, 7	34b,11	269a,27
189.	34a,2	26a, 4	41a, 15	39a,5	35a, 1	269b,6
191.	34b,9	26b,5	41b,10	39b,15	36a,2	269b,18
193.	35b,4	27a, 7	42a,6	40b, 12	36b,17	270a,1
195.	36b, 2	27b,12	42b,4	41b,13	37b,7	270, 13
197.	37a,8	28a, 12	42b,16	42b,6	38a,11	270a,22
199.	37b,1	28b,1	12a, 1	43a,1	38b,1	270b,1
201.	38a, 1	29a,4	12a,15	43b,13	39a, 7	270b,9
203.	38b,4	29b,6	12b,9	44b, 9	40a, 3	270b, 17
205.	39a,7	30, 5	13a,3	45b, 4	40b, 9	270b,26
207.	39b, 2	30b, 2	13b;1	46a, 3	41a,2	271a,6
209.	39b, 7	30b, 8	13b,5	46a,11	41a,10	271a,18
211.	40a,14	31a,11	14a,1	47a, 12	42a,3	271b,3
213.	41a,8	31b,14	14a,16	48a,11	42b,12	271b,13
215.	42a, 2	32b,1	14b,13	49a,10	43b,6	271b, 23
217.	42b,13	33a,6	15a,11	50a,8	44a,17	272a,6
219.	43a,8	33a, 15	15a,16	50b,6	44b,11	272a,10
221.	43b,3	33b,5	15b,5	51a,7	45a,4	272a,14
223.	44b,4	34a,15	16a,5	52a,9	46a,3	272a,27
225.	45a,8	34b, 14	16a,17	53a,3	46b,8	272b,9
227.	45b, 2	35a,7	16b,8	53b,1	47a,2	272b,12
229.	46a,5	35b, 10	17a,4	54a,11	47b,9	272b,21
231.	46b,10	36a,13	17a,17	55a,3	48a,15	273a,2
233.	46b,14	36b,2	17b,2	55a, 7	48b, 2	273a,5
235.	48a, 1	37b,4	18a,4	56a,11	49b,9	273a,21
237.	48b, 9	38a, 7	18b,1	57a,7	50b, 1	273b,4
239.	49a, 3	38a,13	18b, 4	57b,1	50b,10	273b,6
241.	49b,7	38b,16	19a,3	58a,10	51a,16	273b,18
243.	50a,11	39a, 15	19a,15	59a,3	52a,6	273b,26
245.	50b,15	39b, 13	19b, 8	59b, 8	52b,12	274a,6
247.	51b,1	40a,9	20a, 1	60a,11	53a,15	274a, 13
249.	52a,11	40b, 15	20a,16	61a,9	54a,11	274a,23
251.	53a,6	41b,2	20b,14	62a,6	55a, 7	274b,6

page of edition	D	F	G	L	M	T
253.	53b,16	42a, 7	21a,11	63a,4	56a,2	274b,16
255.	54b,9	42b,10	21b, 7	64a,2	56b,10	274b,24
257.	55a,12	43a,11	23a,2	64b,11	57b,1	275a,6
259.	56a,5	43b,13	23a,15	65b,6	58a,10	275a,15
261.	56b,12	44a, 13	23b,11	66a,14	58b,17	275a,24
263.	57a,8	44b,5	23b,17	66b,12	59a,11	275b,1
265.	57b,12	45a,4	24a, 12	67b,6	59b,16	275b,9
267.	58b,3	45b,5	24b, 7	68b,1	60b,5	275b, 18
269.	59a,11	46a, 7	25a, 3	69a,15	61a,13	275b,27
271.	60a,6	46b,10	25a,16	70a,13	62a,7	276a,10
273.	60b, 3	47a, 2	25b,5	70b,10	62b,3	276a,16
275.	61b,2	47b,4	25b,13	71a,14	63a,4	276a,22
277.	62a,1	48a,6	26a,5	72a,1	$63 \mathrm{~b}, 7^{\text {m }}$	276b,3
279.	62b,4	48b,6	26a,12	72a,10	63b,8	276b, 8
281.	63b,5	49a,15	26b,9	73a, 7	64b, 1	276b,20
283.	64a, 12	49b,16	27a,4	74a,4	65a, 7	277a, 1
285.	65a,6	50a,16	27a,16	74b,13	65b,13	277a,9
287.	66a,4	51a,4	27b,14	75b,12	66b, 8	277a,19
289.	66b,11	51b,5	28a,10	76b,5	67a,15	277a,27
291.	67b, 7	52a,10	28b, 7	77b,3	68a, 12	277b,11
293.	68a,6	52b,4	28b,16	78a,3	68b,12	277b,19
295.	68b,5	53a, 3	29a,4	78b, 2	69a,6	277b,23
297.	69a, 1	53a,14	29a,16	79a,4	69b,5	278a,4
299.	69a,5	53b,1	29b, 2	79a,12	69b, 13	278a, 7
301.	69b,13	54a,10	29b,13	80a,3	70a,16	278a,15
303.	70b, 3	54b,11	30a,8	80b, 13	71a,6	278a,24
305.	71a,8	55a,12	30b,4	81b,10	71b,14	278b,6
307.	71b,15	55b,14	30b,16	82b,6	72b,6	278b,16
309.	72b,3	56a,11	31a,9	83a,11	73a,9	278b,24
311.	73a,4	56b, 7	31b,1	83b,15	73b,10	279a, 3
313.	73b,7	57a,5	31b,11	84b, 7	74a,14	279a,11
315.	74a,15	57b,6	32a, 7	85b,1	75a,5	279a,20
317.	75a,5	58a,6	32b,2	86a,9	75b,12	279b,1
319.	75b,4	58b, 1	32b,10	86b,8	76a,9	279b,7
321.	76a,13	59a, 4	22a,8	87b, 7	76b,18	279b,19
323.	76b,3	59a,8	22a,11	88a,1	77a,1	279b,21
325.	77b, 3	59b,15	22b,10	89a,1	78a,2	280a,6
327.	78a, 7	60a,13	-	89b,6	78b,3	280a,13
329.	78b,6	60b, 7	-	90a,9	79a,2	280a,19
331.	79a,9	61a,5	-	90b,14	79b,6	280a,27
333.	80a,2	61b,6	-	91b,8	80a,15	280b,9
335.	80b, 11	62a,8	-	92b, 3	81a,6	280b,19

page of edition	D	F	G	L	M	T
337.	$81 \mathrm{a}, 14$	$62 \mathrm{~b}, 7$	43 a	$93 \mathrm{a}, 10$	$81 \mathrm{~b}, 11$	$280 \mathrm{~b}, 27$
339.	$82 \mathrm{a}, 5$	$63 \mathrm{a}, 9$	$43 \mathrm{a}, 4$	$94 \mathrm{a}, 6$	$82 \mathrm{~b}, 4$	$281 \mathrm{a}, 10$
341.	$82 \mathrm{~b}, 10$	$63 \mathrm{~b}, 7$	$43 \mathrm{a}, 13$	$94 \mathrm{~b}, 12$	$83 \mathrm{a}, 9$	$281 \mathrm{a}, 17$

Notes: (1) In MS G, pp. 327-335 are missing. The text ends on p. 325, line 14 and resumes on p. 337, line 20. (2) ${ }^{\mathrm{m}}=$ margin.

M. Editorial Procedures

1. Previous Work on the Tadhkira

The French orientalist Carra de Vaux seems to have been the first modern European to have become interested in the Tadhkira. He made a translation into French of Book II, Chapter 11 (i.e. the part in which Naṣīr al-Dīn presents his non-Ptolemaic models), which Paul Tannery saw fit to include as Appendix VI of his Recherches sur l'histoire de l'astronomie ancienne published in 1893. Except for a brief discussion in Dreyer [1906], which followed Carra de Vaux's translation, interest in the Tadhkira waned until Roberts [1957], in which the similarity between the models of the 14th c. Damascene astronomer Ibn al-Shāṭir and Copernicus was first noted. (This was based on a discovery by E. S. Kennedy and the recognition of the connection to Copernicus by O. Neugebauer.) Kennedy [1966] established the historical continuity of the work of Ibn al-Shāṭir with that of Ṭūsī and his immediate successors, dubbing the whole lot, rather ahistorically, the "Marāgha School." Hartner as well dealt with various aspects of TTūsi's work, in particular the lunar theory [1969] and the connection to Copernicus ([1973] and [1975]). Except for Livingston [1973], who discussed the Tadhkira as a genre of astronomical writing, the main interest in it has centered on the non-Ptolemaic modeling.

I have seen little need of providing a systematic criticism of my predecessors; obviously I owe them an enormous debt. But this has not meant that I have avoided indicating those places where my own understanding and interpretation have differed from theirs.

2. Establishment of the Edition

The very large numbers of extant manuscripts of the Tadhkira, either standing as independent texts or incorporated into a commentary, considerably complicates the problem of establishing the or even a text. I had originally conceived of the task as one of collating as many manuscripts as possible and producing a
"Platonic text" that assumed Naṣir al-Dīn was flawless to a fault. But after producing shoebox after shoebox of variants, and an endless assortment of stemmata that bore an increasing resemblance to a New York subway map, I concluded that I, and I hope my readers, would be better off if I followed the classicists a bit less and the evidence of the manuscripts and the commentators a bit more. That evidence, which I have discussed in detail in Section J, leads inexorably to the conclusion that there was an original version of the Tadhkira produced in Marägha in 659/1261 and that there was an emended version (which the copyist of MS D refers to as al-iṣläh al-jadīd) finalized in Baghdad in the last few months of Tuusi’s life-or perhaps shortly after his death-in 672/1274. I therefore decided to present as the main edited text this final revision (or more precisely as close an approximation to it as I could manage). I refer to this throughout as the Baghdad (β) version, which would have been Tūsi's final word on the subject. Revisions are marked off by slashes and the readings from the original Marāgha (α) version are presented at the foot of the page as are those from an intermediate stage (MS M).

No manuscript can be said to establish alone the Marāgha or Baghdad version; of the manuscripts I have examined, the ones that had most completely incorporated into their texts the revisions that had been made from the time of the completion of the Marägha version in 659/1261 until Țūsi's death in 672/1274 were MS F (Vatican ar. MS 319, 1) and MS L (Leiden, University Library MS or. 905). I do not know the date or provenance of MS L, but MS F was completed just 10 years after Țūsi's death in 683/1284 and, by a happy coincidence, at the Nizāmiyya College in Baghdad itself. MS F has thus served as my main source, but MS L has been used to corroborate it. Furthermore the marginal variants in MSS DMT have also been used to confirm that what one finds in MSS FL were indeed Țūsī's revisions. The main text of MS D (Istanbul, Feyzullah 1330,1), which was copied from an autograph, is in my estimation very close to the original Marāgha version; revisions have usually been scrupulously put into the margins. Another manuscript that is very close to MS D, and in which the revisions are marginalized, is MS T (Istanbul, Ahmet III MS 3453,19). As I discuss in Section J.3, MS M (Istanbul, Lâleli MS 2116) is a special case; it has been used to establish the revisions to the Marägha version that were made before Shīrāzī left Marāgha (and Țūsī), probably in 667/1268.

Although I have examined some twenty manuscripts of the Tadhkira (excluding commentaries) and compared at least eleven of them in detail, I decided to restrict the final apparatus for the most part to the variants from only six manuscripts. ${ }^{1}$ In addition to the five mentioned above (MSS DFLMT), I also included MS G (St. Petersburg (a.k.a. Leningrad), Oriental Institute, MS A 437) mainly because of its early date (673/1275). But in addition to being incomplete and hopelessly corrupt due to an incompetent copyist, it incorporates material

[^62]from the new version without indication and sometimes puts it in the wrong place, which would seem to show that the copyist found some of Țūsi's marginal revisions but did not know quite where to put them (see, for example, II. 10 [3]). What is interesting is that it has very late revisions, such as II. 2 [3]22-23, which was added after Shïrāzi’s departure from Marāgha. On the other hand, it has a variant on II. 4 [2]23-[3]16 that I have not found elsewhere, which would indicate a very early revision since it retained but modified the original four-possibility version before it was changed to eight possibilities. ${ }^{2}$ MS G is indicative of a highly contaminated text that brings together original texts and revisions in a haphazard and confusing way; in fact, many, if not most, of the manuscripts I have looked at do this. It is only because of the care taken by the commentators and by a few copyists that "purer" textual versions can be presented here.

Let me turn to some specific points. Though MS F is fairly close to my Baghdad version, there are some differences. In the main this is due to my reluctance to assume that a variant in it represents one of Țūsi's revisions unless there are other witnesses or corroborating evidence. An important example where MS F was not used is IV.1 [3]18-19, where I could not confirm that its recalculated value of $3,756,231 \frac{1}{2}$ was due to Tūsï. On the other hand, MS F does not contain all the revisions that can be ascertained elsewhere; examples are I.1 [14]22-23 and IV. 6 [5]11. But I would maintain that it is a better witness to the final revised version than MS L, which lacks the revisions of II. 8 [14]10-11, II. 9 [1]9, II. 13 [9]15, II. 13 [9]19-20, III. 8 [7]1, III. 10 [1]13-14, III. 12 [2]15, and IV. 5 [3]19. As for my best witnesses to the original (α) version, namely MSS DT, they occasionally seem to place revisions into the text rather than the margins. For MS T, this is the case for II. 9 [8]21; for MS D, examples are $\Pi .10$ [3] 10 and II. 10 [3]11-12.

I have not seen it as my job to correct Țūsi's mistakes; where it would seem that these were not corrected in the Baghdad revision, they have been retained. In addition to the particularly egregious case of II. 5 [8]6-8, where the revision itself is nonsensical, examples are II. 1 [6]11, II.11 [10]11\&12, II. 13 [6]12, and IV. 3 [5]19. ${ }^{3}$ In general, such "mistakes" are indicated by an exclamation mark. On the other hand, I have standardized the spelling of numbers as well as such words as hāhunā and have used the modern rules for hamzas. The spellings in the manuscripts are indicated in the text apparatus. Furthermore I have attempted to have subjects and verbs agree despite the distance between them; even though the grammarians disagree on this, as do the copyists, such a course seemed best for a scientific treatise where the minimization of ambiguity is desirable.

As for the text figures, I have generally followed MSS FL and have given variations in the figure apparatus. Labels that are absent in MSS FL but present

[^63]in the other manuscripts are put in parentheses. For Figure T25, where the divergence between the Marägha and Baghdad versions was especially great, I placed the Baghdad figure in the text and the Marägha version in the commentary (Figure C34).

3. The Translation

I have attempted to be as literal as possible, but I have also been concerned to make the translation sound like reasonable English; the Tadhkira is written with a precise, structured, scientific Arabic that developed over many centuries, and I have felt strongly that the English should reflect this. For the most part, I have followed the English vocabulary that has evolved during this century to translate scientific Arabic (which is fairly consistent with that of the classicists and Latin medievalists), but I have not hesitated to coin new renditions when this seemed appropriate (for example, dirigent for mudīr and monoform for ${ }^{c} a l \bar{a}$ nahj wāhid). A complete listing of technical terms and their translations is given in the glossary.

Țūsī normally writes his numbers and fractions in words; an exception occurs in $\Pi .6$ [4], where he gives the sun's eccentricity alphanumerically. He is not consistent in the way he gives fractions, employing sexagesimals, sums of unit fractions, and non-unit fractions. I have retained this inconsistency in the translation, but, for the sake of clarity, generally rendered his numbers numerically.

The translation itself follows the text of the Baghdad (β) version; with the exception of untranslatable grammatical variants, the variant readings from the Marāgha (α) version and from MS M have been indicated at the bottom of the page. Line numbers in the margin follow the edited text and not the actual lines of the translation.

4. The Commentary

Neugebauer's History of Ancient Mathematical Astronomy, Pedersen's Survey of the Almagest, and Toomer's translation of the Almagest have made it unnecessary to explain the Ptolemaic system in detail in a work such as this. I have therefore not belabored Tūsi's "summary" of the Almagest in the commentary but rather concentrated on those points that are rather more obscure. In general these involve matters in which Islamic astronomers had modified or recast the science they had inherited from antiquity. But I have also felt it necessary to elaborate on points that were of interest, or that may have been unclear, to Țūsi's successors; on these matters I have relied heavily upon Shïrāzī and the commentators.

Each comment is generally numbered in the following sequence: Roman numeral of the book; number of the chapter; bracketed number of the paragraph; and line number. The line number invariably refers to the edited text. This is usually followed by an identifying transliterated phrase followed by the English translation in parentheses.

r

Part II

Edition and Translation

89ℓ

In the Name of God the Beneficent, the Merciful

[1] Praise be to God Who brings forth good and Who inspires truth. And may His blessings be upon Muhammad, who was sent with the Final Message, upon his family, the most excellent of families, and upon his Companions, the most excellent of Companions.
[2] We wish to present a summary of astronomy as a memento for one of our dear friends, and we ask God to grant us success for its completion; for He is the One who grants success and to Him is the Final Return. Let us now set forth what we have in mind in chapters that are contained within four books.

BOOK I

Concerning That Which Must Be Presented by Way of Introduction

[1] / Every science has: [a] a subject, which is investigated in that discipline; / [b] principles, which are either self-evident or else obscure, in which case they are proved in another science and are taken for granted in this science; and [c] problems, which are proved in this science.
[2] The subject of astronomy is the simple bodies, both superior and inferior, with respect to their quantities, qualities, positions, and intrinsic motions. Those of its principles that need proof are demonstrated in three sciences: metaphysics, geometry, and natural philosophy. Its problems aim at gaining knowledge of these bodies in and of themselves, of their shapes, of the manner of their arrangement and motions, of the amounts of their motions and distances, and of the reasons for changes in position.

[^64]

[1] الحمد للَّه مفيض الخير وملهم الصواب ، وصلواته على
محمد المبعوث بفصل الخطاب وعلى آله خير آل وأصحابه خير أصحاب
s s] [r] نريد أن نورد جملاَ من علم الهيئة تذكرة لبعض الأحباب ونسأل الها أن يوفق لإتمامه ، إنه الموفق وإليه المآب . فلنورد ما

قصدناه في فصول تشتمل عليها أربعة أبواب .

الباب الأول
 هيمها يجبـ تقكيـمه

101 [1] لكل علم موضوع يُبحث / في ذلك العلم عنه / ، ومبادئ
 العلم على أنها مسلهة ، ومسائل تُبْيَن في ذلكُ العلم • كr] [r] وموضوع الهيئة الأجرام البسيطةً العلوية والسفلية من حيث كسياتها وكيفياتها وأوضاعها وحركاتها اللازمة لها . ومبادينها 15 المحتاجة إلى البيان تتبين في علوم ثلاثة : ما بعد الطبا لطبيعة، واللهندسة ، والطبيعيات . ومسائلها معرفة تلكا الأجرام بأعيانها وأشكالها ، وكيغية نضدها وحركاتها ، ومقادير الحركات والأبعاد، ، وعلل اختلاف الأوضاع •

$$
\text { / } \beta \text { = M [... فيه عن أعراضه الذاتية] ـ . }
$$

[3] The scientific exposition that we wish to undertake will be a summary account of this presented in narrative form. The details are expounded and proofs of the validity of most of them are furnished in the Almagest. Indeed, ours would not be a complete science if taken in isolation from the Almagest for it is a report of what is established therein.
[4] In this [study], it is necessary that there be a familiarization with certain definitions and rules, which will be presented by way of introduction. For their elucidation, one is referred to the above-mentioned sciences. Despite the fact that the explanations of these [definitions and rules] occur in various places, they will be grouped into two divisions: one of them pertaining to the geometry [corpus] and the other pertaining to the natural philosophy [corpus]. Let us then present an account of them in two chapters.

CHAPTER ONE

An Account of What Needs to Be Known That Pertains to the Geometry [Corpus]

[1] Among those things having position, i.e. that can be indicated by the senses, are: [a] a point, which is that without part; [b] a line, which is that with length only and which ends in a point; [c] a surface, which is that with length and width only and which ends in a line; and [d] a solid, which is that with length, width, and depth and which ends in a surface. These "ends" are called boundaries.
[2] A straight line is the one on which all the given points are facing one another. / A plane surface is the one on which the assumption of straight lines in all directions is possible. /
$/ 19-20 / \ldots] \beta=$ a plane surface is the one of which it is possible to produce straight lines in all directions] $\mathrm{M}=\mathrm{a}$ plane surface is the one whereby the lines assumed on it in all directions are straight] α.
[٪] والفن الذي نريد أن نشرع فيه تقرير جمل من ذلك تورد على سُبيل الخكاية . وتُبَيَن تفاصيلها وتُقام البراهيـن علـي صحة أكثرها في المجسطي ، فهو ليس بعلم تام إذا أفرز عن المجسطي لانه حكاية / ما / عما ثبت فيه .
5 سبيل التصدير ، ويحال بيانها على العلوم المذكورة • وهي ، على إلى اختلاف مواضع بياناتها ، تنتسم إلى قسمين : أحدها لمها مان الما يتعلق بالهندسيات والآخر ما يتعلق بالطبيعيات . فلنقدم ذكرها في ف فصلين
[1] من الأشياء التي لها وضع أي التي يمكن أن يشار إليها
بالحس : النتطة وهي ما لا جزء له ، والخط وهو وهو ما له طول فتط 15 وينتهي بالنتطة ، والسطح وهو ما له طول وعرض لا غلا غير وينتهي بالخط ، والجسم وهو ما له طول وعرض وعمق وينتهي بالسطح • وتسمى النهايات حدوداً .
[r] التي تفرض عليه . / والمستوي من السطوح هو الذي يكي 20 الخطوط المستقيدة عليه في جميع الجهات مدكناً / .

M السطوح هو الذي يمكن أن تخرج منه الخطوط المستقيمة في جميع الجهاتر = M الجهات مستقيمة]
[3] An angle is either: [a] a surface bounded by two lines meeting at a point in such a way that they do not form a single line; or [b] a solid bounded by surfaces meeting at a point in such a way that any two of its surfaces join at a line without forming a single surface.
[4] The point at which two lines join or intersect is a common part for them; and, similarly, a line for surfaces and a surface for solids.
[5] If a straight line stands erect on another straight line and there result two equal angles on its two sides, then these are right angles, and each one of the two lines is perpendicular to the other. An angle which is smaller than a right angle is acute, and that which is larger is obtuse.
[6] A straight line that stands erect on a plane surface in such a way that it along with any given line lying in the [plane] and meeting it bound a right angle is perpendicular to that surface. When one plane surface stands erect on [another] plane surface in such a way that any two perpendiculars that are produced in the [planes] from any given point on their common part bound a right angle, then the two [planes] intersect at right angles.
[7] Straight lines occurring in a plane that do not meet even if extended without limit in both directions are parallel. Similarly planes that do not meet even if extended without limit in all directions are also [parallel]. Non-straight [lines] and non-plane [surfaces] may also be called parallel if distances between them are completely invariable.
[8] A circle is a plane surface bounded by a curved line in whose interior is a point such that all the straight lines extending from it to the [curved line] are equal. That line is its circumference, and the point is its center. The extended lines are radii. A line extending in both directions from the [point] to the circumference is a diameter of the circle, which it bisects.
[؟] والزاوية سطح أحاط به خطان ملتقيان عند نتطة من غير
 واحداً . كل سطحين منها عند خط من غير أن يتحدا سطحاً

لهما ، وكذلك الخط" للسطوح والسطح للأجسام .

جنبتيه زاويتان متساويتان فهما قائمتان وكل من الخطين عمود على صاحبه . والزاوية التي هي أصغر من قائمة حادة والتي هي 10 أعظم منفرجة .
[7] والخط المستقيم القائم على سطح مستو, بحيث يحيط مع

سطح مستو, على سطح مستوٍ بحيث يحيط كل عمودين يخرجان

15 يتقاطعان على قوائم .
 وإن أخرجت في الجهتين إلى غير / نهاية / همي المتوازية ، ، وكذلك الـك السطوح المستوية التي لا تتلاقى وإن أخرجت في جيم غير / نهاية / . وقد يتال في غير المستقيمة والمستوية منهما

20 متوازية إذا لم تختلف الابعاد بينهما أصلاً .

 وذلك الخط محيطها وتلك النتطة مركزها والخطوط المار الخارجة أنصاف أقطارها . والخارج منها إلى المحيط في الجهتين قطر لها وها وهو 25 يُنصتف الدائرة .
[9] Every straight line that divides the circle into any two parts whatever is a chord, and what is separated off from the circumference is an arc. Half a chord is the sine of half the arc. The perpendicular extending from the midpoint of an arc to the midpoint of the chord is the versed sine of half that arc.
[10] A sphere is a solid bounded by a curved surface in whose interior is a point such that all straight lines extending from it to the [curved surface] are equal. That surface is its circumference, and the point is its center. The extended lines are radii. A line extending in both directions from the [point] to the circumference is a diameter of [the sphere].
[11] Every plane that divides a sphere into two segments produces a circle in it, which is the common part between them. If it bisects it, then this is the largest circle that can occur in that sphere and it will pass through its center; thus their two centers coincide.
[12] If a sphere rotates about itself, every point marked on it describes by its motion in / each / complete rotation a circle, which is the point's circuit. The exceptions to this are two points, which are the poles of the sphere. The diameter that connects them does not move either; it is the axis.
[13] The great circle that is equidistant from the two poles is the sphere's equator. All the circuits are parallel to one another as well as being parallel to the equator. The axis is perpendicular to each. Any two circuits on the two sides of the equator and equidistant from it are equal. Every great circle / or small one in the sphere / has an axis and two poles as is the case with the equator.
[14] Two given great / circles / on a sphere bisect one another at two points, and their [common] part is a straight line / that passes through the center. / The greatest distance between the two circles is the same as the distance between

[^65][9] وكل خط مستقيم يتطعها بقطعتين كيف اتفق فهو وتر
وما يُقرزز من المحيط قوس • ونصف الوتر لنصف القوس جيب والعمود الخارج من منتصف القوس إلى منتصف الوتر سهم لنصف
[1.] الكرة حسم بحسط بـه سطح مستدير في داخله نقطة يكون كل الخطوط المستقيمة الخارجة منها إليه متساوية ، وذلك السطح محيطها وتلك النتطة مركزها والخطوط أنصاف أقطارها والخارج منها إلى المحيط في الجهتين قطر لها . [11] وكل سطح مستو, يقطع الكرة إلى قطعتين يُحدثِ دائرة 10 فيها هي الفصل المشترك بينهما . فإن نصتّها فهي أعظم دائرة تقع

 نقطتين هما قطباً الكرة . والقطر الواصل بينهما أيضاً لا يتحرك 15

وتكون المدارات جميعاً متوازية وموازية للمنطقة ، والمحور عموداً على الكل • وكل مدارين عن جنبتي المنطقة / متساويتي / البعد عنها متساويان • ولكل دائرة عظمى / أو صنرى فـر في الكـرة / 20 محور وقطبان كما للمنطقة .
[1] إ وإذا فرضـت عـلى كـرة / دائرتـان / عظيمتـان فهمـا
 بالمركـز / ، ويكون أعظم الابععاد بـيـن الدائـرتـين كالبعـد بـيـن
\[

$$
\begin{aligned}
& \text {. }-\alpha,-\mathrm{M}=\beta[\ldots / 22-23 / .-\alpha,-\mathrm{M}=\beta[\ldots / 21 / .-\alpha,-\mathrm{M}=\beta[\ldots / 19 /
\end{aligned}
$$
\]

their two poles. If they intersect at right angles, each of the [circles] passes through the poles of the other; the converse also holds.
[15] An orb is a spherical solid bounded by two parallel surfaces having the same center. The outer [surface] is called convex and the other concave. Someduces a quadrilateral in the cylinder and a triangle in the cone. If the plane is parallel to the base, then in both cases it will produce a circle.

CHAPTER TWO

An Account of What Needs to Be Accepted from

Natural Philosophy in This Science

[1] A body is either simple, in which case it has a single nature and what issues forth from that nature does so monoformly, or else compound, in which case it is composed of
$/ 8-9 / \ldots] \beta=$ The line that joins the two centers is perpendicular to the planes of the two circles and it is the axis of the cylinder] $\alpha, \mathrm{M} . / 12-13 / \ldots$] $\beta=$ perpendicular to its base and it is its axis] α, M.

قطبيهما . فإن / تقاطعتـا / على قوائم مرّ كل منهما بقطبي -الأخرى وبالعكس
[10] الفلك جسم كري يحيط به سطحان متوازيان / مركزاهما / ورا واحـد : ويسمى الخارج منهما محدبّاً والآخـر مقعَراً ، وربما لا 5 يعتبر المتعّر كما في التداوير

 /ويكون الخط الواصل بين المركزين سهماً لها ، فإن كان عموداً على سطحي الدائرتين كانت الأسطوانة قائمة / . 10
 القاعدة / يكون سهمه ، فإن كان عموداً على قاعدته كان المخروط قائماً / .
[1A] وإذا فُصل الأسطوانة والمخروط بسطح يمر" بالسهم أحدث الماث 15 في الأسطوانة ذا أربعة أضلاع وفي المخروط مثلْثاً . فإن كان الماع المطح موازياً للقاعدة أحدث فيهما دائرة .

الفصل الثاني
 إلى تسليمه مس الطبيعيانت

20 ما يصـدر على نهج واحـد ، وإمـا مـركّبـب وهـو الـني يتـركـب مـن
[تقاطعا [$=\beta$, M [.../1/ الخط الـواصـل بـيـن المـركزيـن عمـوداً على سطحـي الدائـر

simple bodies and may turn out to be a species distinct from them. A simple body is either celestial or elemental. The celestial bodies are the orbs and the luminous bodies whose proper place is the orbs. The elemental bodies are the four well-known elements. The compound bodies are those things composed of them, namely minerals, plants, and animals. Their proper places are those of the elements. A void is impossible.
[2] Every motion has a principle. The mobile is said to be self-moved if its principle of motion does not become positionally separated from it. If it does separate from it, the movement is ascribed to the mobile, but the action of moving the mobile is attributed to that in which its principle of motion occurs. If the motion of a self-moved mobile is monoform, its principle of motion is called a nature whether the motion is natural and elemental or voluntary and celestial. Otherwise its [principle of motion] is called a soul whether the [motion] be vegetative or animal. When a mobile is moved by something other than itself, its motion is accidental if it is part of the mover or if the mover is the place for it naturally to be; otherwise its motion is by compulsion.
[3] Motion due to a nature is divided into: [a] that which is toward the center; its principle is heaviness and it is characteristic of the two heavy elements; [b] that which is away from the center; its principle is lightness and it is characteristic of the two light elements. These two [motions] are displacing and rectilinear. And [c] that which is about the center; this motion is in place and circular, and it is characteristic of the celestial bodies. The [latter motion] is divided into simple, which arises from a single, simple body with every given point on it producing at the center equal angles in equal times or cutting equal arcs from the circumference, and into composed, which arises from a combination of more than one simple body. Every motion whose angles or arcs vary in equal times is composed; however, the converse does not hold.
[4] Nothing having the principle of circular motion can undergo any rectilinear motion at all, and conversely, except by compulsion. Thus the celestial bodies neither tear nor mend, grow nor diminish, expand nor contract; neither does their motion intensify nor weaken. They do not reverse direction, turn, stop, depart from their confines, nor undergo any change of state except for their circular motion, which is uniform at all times.

بسائط /وقـد يصير / نوعاً غيرها .والبسيط إما فلكي وإنـا وإما عنصري :والفلكي هو الأفلاك والأجرام النيَرة التي مكانها الأفلالك ،
 المعادن وألنبات والحيوانات، وأمكنتها أمكنة العناصر . والخلاء مالماء محال . [[[قيل إنه يتحرك بنغسه ؛ وإن فارقه نُسب التحرك ما فيه مبدؤه . والمتحرك بنغ بنغسه إن كانت حركته على نهج واحـد سمي المبدأ طبعاً سواء كانت الحركة طبيعية عنصرية أو إرادية
 10 حيوانية . والمتحرك بغيره إن كان كجزء مسن المحرك أو كان المحرك مكاناً له بالطبع فالحركة عرضية ، وإلا فقسرية
[٪] والحركة بالطبع تنقسم إلى ما إلى المركز ومبدؤرؤ الثقـل
 وتختص بالعنصرين الخفيغين ، وهما أينيتّان مستقيمتان ؛ والمركي و وإلى 15 ما على المركز وهي وضعية مستديرة وتختص بالفلكيات ، وتنقسم إلى بسيطة تصدر عن جرم والمر واحد بسيط كل نتطة تفرض عليه تفعل عند المركز في أزمنة متساوية زوايا متساوية أو تقطع من
 واحدة . وكل حركة تختلف زواياها أو قسيها في الأزمنة المتساوية

$$
20 \text { مركبة ، ولا ينعكس . }
$$

 المستقيدة أصلاُ ، وبالعكس ، إلا بالتسر . والا فالفلكيات لا تنخرق ولا تلتئم ، ولا تنمو ولا تذبل ، ولا تتالخلخل ولا تتكاثف ، ولا ولا تشتد في حركاتها ولا تضعف ؛ ولا ولا يكون لها رجوع ولا انعطاف 25 ولا وقوف ولا خروج من حيز ولا اختلاف حـال غير حركتها المستديرة المتشابهة في جميع الأوقات .

BOOK II

The Configuration of the Celestial Bodies
 Fourteen Chapters

CHAPTER ONE

On the Sphericity of the Sky and the Earth; On the Earth Being in Relation to the Sky As the Center
of a Sphere to Its Circumference;
and on [the Earth] Being Completely Stationary

[1] The sphericity of the sky is evidenced by: the movement of the fixed stars along parallel circles about a stationary point; the occurrence of those [stars] nearest this [point] upon [relatively] small circuits of permanent visibility, while those further away occur on [progressively] larger circuits until those stars are reached that just touch the horizon but do not disappear and then are followed by those that disappear fleetingly, keeping one and the same rising and setting place; the proportional increase in the periods of invisibility thereafter according to the increase in distance until those [stars] are reached whose periods of visibility and invisibility are equal and then are followed by those whose period of invisibility exceeds their period of visibility; the increase as briefly and then are followed by those that just touch the horizon once every revolution but do not rise; the converse equality of the periods of visibility and invisibility of those [stars] equidistant and on the two sides of that circuit upon which the periods of visibility and invisibility are equal; the ascent of whatever rises occurring little by little up to a certain maximum that is at the midpoint of the visible segment of its circuit and then its descent little by little until it disappears; the [successive] rising of one part of its body after another, as also occurs during setting; the observed equality of size of a [celestial body] at all distances along its revolution except at the horizon [which can be explained by] the accumulation of vapors rising from the Earth causing objects behind them to appear larger than they should just as we find to be the case for things that we observe at one time in air and in another in water. Therefore size increases

الباب الثاني
 غِ هيـئة الأجرار العلِاِيـة
 أربعة عشر حْصلاً

الفصل الأول
هِ استحار
وكون الأرض عنح السماء كمركز الكرة عنك محيطها وكونها غير متحركة بالجملة
[1] تحرُرُّ الثوابت على دوائر متوازية حول نتطة لا تتحرك ؛ ؛ وكون ما هو أقرب منها على مدار أصغر أبدي الظلهور ، وما هو هو أبعد 10 على مدار أكبر إلى أن ينتهي إلى ما يماس آلألئق ولا يخفى ، ثم
 أزمنة الخفاء بعد ذلك بحسب تزايد البعد على نسبة إلى أن ينتهي إلى ما يتساور زمانا ظهوره وخغائه ، ثم إلى ما يز يزيد زمان خفا
 15 يظهر قليلاً ، ثم إلى ما يماس الأفق في دورة مـاء مرة ولا يلايطلع ؛ وتساوي زماني الظهور والخفاء للمتساوية الأبعاد عن المدار الذا يتساوى زمانا"ظهوره وخفائه عن الجنبتين على التبادل ؛ وارتفاع
 مداره ، ثم انحطاطه يسيرأ يسيرأ إلى أن يخغى ؛ وطلوعُّ شيئًا 20 بعد شيء من جرمه وكذلك غروبه ؛ وتساوي متداراه في النظر في
 من الأرض يُريم ما وراءهـا من الأشخاص أكبر مـا يجا يجب أن يُرى كما نشاهد فييا نرى تارة في الهواء وتارة في اللاء ولذلك يزداد
when the air becomes denser and the opposite holds; the permanent visibility of half the sky-or thereabouts-to everyone on Earth whatever his location; and, in addition to the above, other characteristics that are peculiar to sphericity.
[2] The general sphericity of the Earth is evidenced by: the earlier rising and for those in the west, and the increase and decrease of that [priority] according to farness and nearness; the increasing altitude of the pole and the northern stars and the decreasing altitude of the southern ones for those who advance northward and the opposite for those who advance southward, this being in both cases according to the extent of their advance; and the combining of these two variations for those traveling on a course between the two [cardinal] lines [i.e. east-west and north-south]. The [Earth's] undulations that occur due to cidence on a single straight line of the sun's shadows at the time of its rising and setting when it is on the [day-] circle on which its periods of visibility and invisibility are equal or when it is at opposite parts of the circle that it describes with its proper motion; and the eclipse of the moon at its true oppositions to the sun.
[5] The permanent visibility of half the ecliptic orb as well as the orbs below it down to the orb of the sun is evidence that the Earth does not have a perceptible size with respect to the orb of Mars and all orbs beyond; indeed, it is as a point since there is no difference

الكبر إذا صار الهواء أغلظ وبالضد ؛ وظهورٌ النصف أو قريب منه دائماً لكل من على الأرض في أي موضع يكون ؛ إلى غير ذلك من

الأعراض الخاصة بالاستدارة : يدل على الألى استدارة السَماء

5 وغروبها للمغربيين ، وزيادة الكـا ذلك ونقصانه بحسب بُعد المسافة
وقربها ؛ وازديـادُ ارتناع القطب والكواكب الشاكِ الشمالية وانحطاط

يدل على استدارة الأرض جملة . وتضاريسها التي تلزمها من منها 10 الجبـال والأغوار لا تُخـرِجها عـن أصـل الاستـدارة إذ لا نسبـة محسوسة لها إلى جملتها ؛ فإنَ جبلاً يرتفع نصف فرسخِ يكون
 بالتقريب - يتبين ذلك عند الوقوف على مساحة الأرض
 15 أعاليها المرتفعة وظهورها قليلاً قليلاً للمتقارب إليها ، مضالِاًاً إلى ما مرَ في الأرض ، يدل على استدارة سطح الماء الواقف على وجـ الأرض
[[[
 20 طلوعها وغروبها عند كونها على المدار الذي يتساوى زائلـا زمانا ظهوره
 من الدائرة التي تتطعها بسيرها الخاص بها ؛ إلـا وانخسافُ القهر في مقاطراته الحقيقية للشمس : يدل على كون الأرض في وسط الكل عند المركز
25 [0] وظهور النصف من فللـ البروج ومما تحته من الأفلاك إلى
 عند فلك المِرَيخ وما وراءه من الأفلالك ، بل هي كالنقطة إذ لا فرق
between the plane passing over the face of the Earth and separating the visible from the invisible part of these orbs, and the plane parallel to it passing through the center of the Universe. It does, however, have an appreciable size with respect to the moon's orb whose visible segment is therefore less than half; we shall make this clear in the appropriate place.
[6] The reliability of all the evidence we have adduced establishes that these bodies are according to the stated configuration. It is not possible to attribute the primary motion to the Earth. This is not, however, because of what has been maintained, namely that this would cause an object thrown up in the air not to fall to its original position but instead it would necessarily fall to the west of it, or that this would cause the motion of whatever leaves the [Earth], such as an arrow or a bird, in the direction of the [Earth's] motion to be slower, while in the direction opposite to it to be faster. For the part of the air adjacent to the [Earth] could conceivably conform to the Earth's motion along with whatever is joined to it, just as the aether conforms to the orb as evidenced by the comets, which move with its motion. Rather, it is on account of the [Earth] having a principle of rectilinear inclination that it is precluded from moving naturally with a circular motion.
[7] The sphericity of the Earth, / sky, / and water having been established, let it be known that the inclination of all heavy things is to the center of the Earth, which is the center of the Universe, and that the inclination of light things is to the circumference. Thus "up" from all sides of the Earth is what is toward the sky, while "down" is what is toward the Earth's center. Objects are situated on the Earth at the endpoints of its diameters; hence, the distance between their apices is greater than the distance between their bases. The amount of water a filled vessel contains when it is closer to the center, such as at the bottom of a well, is greater than what it contains when it is further away from it, such as at the top of a lighthouse. This is because in the former case the water is more greatly cupolaed than in the latter. This is one of the many things that those not acquainted with these matters find strange.
[8] The above proofs are inniyya, which convey existence; those which convey the necessity of that existence are limmiyyät proofs and are given in the book De caelo of the Natural Philosophy.
$/ 14 /$ sky $] \beta=-\alpha,-M$.

بين السطح المارَ بوجه الأرض الناصل بين الظاهر والخفي من تلك

 من فلكه أقل من النصف ، وسنبيَن ذللٌ في موضعه . 5 [4] وثبات جميع ما ذكرنا من الدلائل يدل على ثبات تلك الأجرام على الهيئة المذكورة . ولا يمكن إسناد الحركة الالون الوا إلى
 على موضعه الأول بل يجب أن يقع في الجانب الغربي منه ألو ئل يوجب
 أبطأ وفي خلافها أسرع ، فإنَ المتصل بها منا من الهواء يمكن أن
 ذوات الأذناب بحركته - بل لكونها ذات مبدأ ميل مستقيم ، فيمتنع أن تتحرك على الاستدارة بالطبع . (وإذا ثبت استدارة الأرض / والسماء / والماء فليُعلم أنَ
 ما هو خفينف إلى المحيط . فالفوق من جميع جوانب الأرض ما يلي السهاء ، والتحت ما يلي مركز الأرض • والأشخاص تقوم على الـي الأرض على أطراف أقطار لثا ، فيكون البعد بين رؤوسها أكثر من

 من اللمِيات ما يذكر في كتـاب السهاء والعالمُمن العلم الطبيعي الـمي

CHAPTER TWO

On the Arrangement and Order of the Bodies

[1] An observer of the two luminaries and the stars finds that they all move with the daily motion: those that rise do so in the east, travel westward and become invisible there. After a period of invisibility, they return to the east once more, rising there as they did before and continuing thus in the same way always. Those stars that do not rise have a parallel motion.
[2] With a more precise observation than the first, he will then find that they [also] move with a slower motion and in a direction opposite to the first, seemingly from west to east. Actually this latter motion may be distinguished from the former because of a difference in their equators and poles, as will be discussed more fully below, since it would be impossible to perceive two distinct motions occurring on the same sphere and sharing the same equator and poles. In such a case one would only perceive them as a single motion, either as the sum of the two motions if they are in the same direction or as the excess of the faster over the slower if they are in [opposite] directions. The same rule applies as well if more [than two motions] are involved. Both of these [primary] motions are uniform in and of themselves, and both embrace the entirety of the stars and bodies that are perceived above.
[3] [The observer] will then find that the two luminaries and the five planets have irregular motions that are neither uniform in themselves nor in relation to one another. Therefore the practitioners of this science established nine orbs upon their initial consideration-two for the above-mentioned motions and seven for the seven planets. Since the rest of the stars did not have any motion other than the two primary ones, they were satisfied with using one of these two orbs as the place for them even though their being on manifold orbs was conceivable. In addition, the attribution of one of these two primary motions to the whole rather than to a specific orb would not be precluded / if it were not for the other motion. They did not do this, however, because of its existence. /
$/ 22-23 /$ if it were not...existence] $\beta=$ they did not do this, however] α, M.

الفصل الثاني
 هِ تـرتيب الأجرام ونظكها

[1] الناظر في النيَرين والكواكب يجدها بأِبا بأسرها متحركة
بالحركة اليومية ، يطلع ما يطلع منها من المشرق ويسير إلى المغرب 5 ويخفى فيه ، وبَعد خفائه مدة يعود إلى المشرق ثانياً ويطلع كـا
 [r [
 الحركة من الأولى باختلاف المنطقتين والأقطاب كها سينجيء شرحه ، الما 10 وذلك لأنَ الإحساس بحركتين مختلفتين في كرة واحدة على منطـي

 أسرعهما على أبطئهها إن كانتا إلى جهتين ، وكذلـ وكلك الحكم فيما
 15 لجميع ما يحس به علواً من الكواكب والأجرام
[r] ثم إنه يجد النيّرين والخهسة من الكواكب ذوي حركات
مختلفة غير متشابهة لا في أنفسها ولا بتياس بعضها إلى إلى بعض . إلما

 20 لباقي الكواكب حركة غير الأوليين اكتفوا بأحد فلكيهنـا وإن 'كان كونها على أفلاك شتّى جائزاً . . وأيضاً إسناد إحدى
 الحركة الأخرى ، لكنهم لم يذهبوا إلى ذلك لوجودها / .
[4] They then made the highest orb, in view of its being without stars, for the most conspicuous motion and called it the orb of orbs and the atlas orb. The next was for the less conspicuous motion, and they made it the place for the rest of the stars and called it the orb of the ecliptic [lit., of the signs] and the orb of the fixed stars. Its stars they called "fixed" either because of the minuteness of their second motion or else because their [relative] positions are permanently 5 fixed. The seven remaining orbs were for the seven wandering planets, arranged according to the occultation of one by another. The most remote of these [orbs] was reserved for Saturn, followed by the one for Jupiter and then Mars. The lowest was for the moon, and above it were the [orbs] of Mercury and then Venus. They placed the sun in the medial orb between the former and the latter even though it was not occulted except by the moon, deeming this the most elegant arrangement and the most excellent structure inasmuch as the six were connected to it-the upper [planets] in a certain way, the lower in another and the moon in yet another. In addition, the known distance of the [sun] from the Earth corresponded with this positioning. There are also reports that Venus has been observed at its farthest and nearest distances occulting the [sun], appearing like a mole on its surface. Each of these seven orbs must be further divided into other orbs so that its planet's compound motion results from them, consistent with what is observed. A discussion of this will be forthcoming. These nine [orbs] then were the least number they could allow; as for a maximum, there was no upper limit.
[5] The orbs terminate with the orb of the moon. Below it are the elements and they are likewise divided into various levels: [a] a level of pure fire; [b] a level composed of fire and hot air in which the smoke rising from the lower region dissolves. Comets, meteors [nayäzik], and the like are formed in this [level], and they are sometimes found to move in conformity with the motion of the orb; [c] a level that is predominantly air in which shooting stars [shuhub] occur; [d] a level of intense cold [zamharir] that is the place of origin of clouds, thunder, lightning, and lightning bolts; [e] a level of dense air that is contiguous to the earth and water; [f] a level of water, part of which has been drawn aside, uncovering
[ع] فجعلوا أعلى الأفلاك للحركة الأظهر على أنه غير مكوكب ،
وسموه فلك الأفلاك والفلك الأطلس ؛ اللاك وتاليه للحركة الأخفىى وجعلوه مكاكاً لسائر الكواكب ، وسموه فلك البروج وفلك الثوابت ، وسموا كواكبه الثوابت إما لقلة حركتها الثانية أو لثبات أوضاعيها أبداً ؛
5 والسبعة الباقية للسيّارة السبعة على ترتيب خسنف بعضا أقصاها لزُحَل وما يليه للمُشْتْتري ثم للمِرَّيخ والأدنى اللقّر والذي

 - ذلك من حسن الترتيب وجودة النظام إذ الستة مربوطة عليها 10 العلوية بوجه والسفليان بوجه آخر والقمر بوجه غيرهمها . وكا وكان أيضاً بُعدها المعلوم من الأرض مناسباً لهذا الوضع ، وقد قيل إنَ الزهرة رُئيت في بعديها الأبعد والأقرب كاسفة إياها صفحتها • ويجب أن ينقسم كل واحد من الافالاك السبعة إلى أفلالك
 15 قيل فيه . فهذه التسعة هي التي كم يجوّزوا أن يكون أقل منها ، وأما في جانب الكثرة فلا قطع م [0] وبفلك التهر تتناهى الفلكيات ويكون ما دونه العنصريات وهي أيضاً طبقات : طبقة للنار الصرف ؛ ثم طبقة لما يمتزج من النار والهواء الحار التي تتلاشى فيها الأدخنة المرتفعة من السغل ، 20 تتكوّن فيها الكواكب ذِوات الأذناب والنَيازكِك وما يشبهها ، وربها توجد متحركة بحركة الفلك تشييعاً له ؛ ثْ طبقة الهواء الغالب
 السحب والرعد والبرق والصواعق ؛ ثم طبقة الهواء الكثيف المجاور للأرض والماء ؛ ثم طبـتة الماء وبعض هذه الطبقتة هنكشفـة عن المن
the earth; [g] a level of earth intermixed with other [elements] in which is generated mountains, minerals, and much plant and animal life; and, finally, [h] a level of pure earth surrounding the center.

CHAPTER THREE

On the Well-Known Great Circles

[1] When mathematicians wish to assign values to circles and their diameters, it is customary for them to divide [the circle] into 360 parts and the diameter into 120 parts. These parts are then subdivided into minutes, seconds, and so forth. Thus one-fourth of a revolution will be 90 . For every arc less than [90], its complement is what remains from one-fourth [of a revolution] after subtracting that [arc] from it.
[2] Let us now proceed with the main purpose [of this chapter]. We say: the most conspicuous of the great circles is the equator of the first motion, i.e. the daily universal motion. It is called the equinoctial orb and the equinoctial circle, their use of the name "orb" [falak] to designate its equator being permissible. It is named "equinoctial" because of the equality of night and day at all
15 locations when the sun occurs on it. Its poles are called the poles of the first motion, one of them being northern and the other southern. This [circle's] parts are in units of time because time is initially measured by its motion. Every given point on the orb produces by virtue of its daily motion a circle that is parallel to the equinoctial, and all [the circles thus produced] are called the day-circles.
[3] The equator of the slower second motion is called the equator of the ecliptic and the orb of the ecliptic, its poles being those of the ecliptic. It intersects the equinoctial at non-right angles in all the orbs that have these two motions, and there occur between the two equators two facing intersection points called the two equinox points. The sun

الأرض ؛ ثـم طبقة الأرض المخالطة / بغيرها التي فيها تتولد / الجبال والمعادن وكثير من النباتيات والحيوانات ؛ ثـم طبقة الأرض الصرفة المحيطة بالمركز

الفصل الثالث
غِ الكوائـر العظهى المشمورغْ
[1] مسن عـادة الحستّاب إذا أرادوا نتدير الـدوائر وأقطارهـا
 ثم تجزئة الأجزاء إلى دقائقها وثوانيها ونيا وما يتلوها من الدور تسعين ، وكل قوس أقل منه فتدامها ما يبقىى من الربع . 10 بعد نتصانها عنه
[؟ [
 ودائرة مُعدلِّل النهارِ ، وقد يطلقون اسم الفللك على منطقته تجوّزاً . وسئـيـت معدل النهار لتعادل الليـل والنهار في جـيـع البقاع عند 15 كون الشمسس عليها • ويسهمى قطباها قطبي الحـركـة الأولى : أحدهما شمالي والآخر جنوبي ، وأجزاؤها أزماناً لأنَ الزمان يتقدر

 [٪] ومنطقة الحركة الثانية البطيئة تسمى منطقة البروج وفلك 20 البروج وقطباها قطبي البروج • وهي تُقاطـع معدل النهار في جميع
 المنطتتين تُقاطُعان متقابلان يسميـان نقطتي الاعتـدال • والـشمس
/1/ .. [] = = بغيره التي تتولد فيها M = لغيره التي تتولد فيها] م .
adheres to this second equator, and the intersection point which is such that the [sun], when crossing it, comes to be north of the equinoctial is the vernal [equinox]; the other is autumnal. The maximum distance between the two equators is the distance between their two poles that are in the same direction and is called the total obliquity [lit., the complete declination].
[4] Now let there be imagined a great circle passing through the four poles, and it will be called by this name.* It is perpendicular to each one of the two equators, and its two poles are the equinox points. It passes through two points of the ecliptic orb at which occurs the maximum inclination from the equinoctial and which mark quarter points of the [ecliptic] equator. They are called the solstice points: the northern being the summer one, the southern being the winter. The arc that occurs on the solstitial colure between the two equators or between their two poles is the total obliquity whose value is found by observation. Its complement is that [arc] occurring on this [circle] between the pole of one of them and the other equator.
[5] The ecliptic equator is divided into 12 equal parts, each of which is called a zodiacal sign. Their 12 names are well-known; they were derived from forms fancied from among those fixed stars that happened to be in alignment with the [zodiacal signs] at the time they were named. Since these [forms] are no longer aligned with their [respective signs], it is up to those who name these things to change their names. A [zodiacal sign's] units are called degrees, and each zodiacal sign consists of 30 degrees. Every point describes by virtue of its second motion a circle parallel to the ecliptic orb, which is its circuit; all [the circles thus produced] are called parallels of latitude.
[6] If a circle is imagined to pass through an arbitrary part of the ecliptic orb, or through a given star, and through the poles of the equinoctial, it is a circle of declination. The arc occurring on it between that part [of the ecliptic] and the equinoctial is the declination of that part; this is known as a particular declination. The [arc] occurring between the star and the equinoctial is that star's distance from the equinoctial. For each [arc], its complement is the distance of [the part or the star] from the pole. The plane of this circle intersects the plane of the equinoctial at right angles.
[7] If a circle is imagined to pass through an arbitrary part of the ecliptic orb, or through a given star, and through the poles of the ecliptic orb, it is a circle of latitude.

[^66]تلازم هذه المنطتة فالتقاطع الذي إذا جازته صارت شمـالية عن معدل النهار ربيعي والآخر خريفي . وغاية الـيا البعد بين المنطتينين -هي البعد بين قطبيهما اللذين في جهة ويسمى الميل الكيلي

5 الاسم . وهي تقوم على كل واحدة من المنطتتين على زوايا قائمة ،
 عندهما غاية الميل من معدل النهار ، تُربُع المنطقة بهها وتسميان نتطتي الانتلابين - الشمالية صيفية والجنوبية شتوية المالـية . والقوس

منها بين قطب إحداهماً والمنطقة الأخرى .
[0] وتقسم منطقة البروج باثني عشر قسماً متساوية يسمى كل قسم بُرْجاً . وأسماؤها الاثنا عشر مشهورة وهي مأخوذة من صور تُوهِّت من كواكب وقعت وقت التسمية بحذائها من الثوابت . 15 وإذا انتقلـت عـن محـاذاتها فللمُسِّيَن أن يسـوهوهـا بغيـرهـا . وأجزاؤها تسمى درجاً فكل برج ثلاثون درجة . وكل وري نتطة تفعل بحركتها الثانية دائرة موازية لفلك البروج هي مدارها ورا ويسمى الجميع بالمدارات العرضية المانية
[7] وإذا توهمت دائرة تمرَ بجزء من فلك البروج ـ أي أي جزء 20 كان - أو بكوكب ما وبتطبي معدلّ النهار فهي دائرة الميلـ الميل والقوس الواقعة منها بين ذلك "الجزء وبين معدل المئ النهار هي ميل ذلك الجزء وهي من الميول الجزئية ، والواقعة بين الكوكب وبين
 بعداهما من القطب . . وسطح هذه الدائرة يقطع سطح معدل النهار 25 على زوايا قائمة .
وإذا توهمت دائرة تمرَ بجزء من فلك البروج - أي جزء [v] كان - أو بكـوكب ما وبتطبي فلك البروج فهي دائـرة العـرض

The arc occurring on it between that part [of the ecliptic] and the equinoctial is the latitude of that part. An [arc] on the circle of declination is sometimes called the first declination, while this latter is the second declination. At maximum declination, they are the same since the circles of declination and latitude
[extends] in latitude from pole to pole and in longitude 30 degrees. Everything falling in one of these divisions is considered to be in that zodiacal sign. The ecliptic equator passes through the midpoints of the zodiacal signs and hence is also called the orb of the middle of the zodiacal signs.
[10] These then are five circles that can be conceived without reference to the lower regions. Three of them-the equinoctial, the ecliptic orb, and the solstitial colure-are each individual circles. The other two-the circle of declination and the circle of latitude-are classes, each consisting of an unlimited number of individual members.
[11] By referring to the lower regions we have (among others):
[12] [a] the horizon circle. This is the great circle that divides the visible from the invisible on the celestial sphere. One of its poles is the zenith and the other is directly opposite it from below.

والقوس الواقعة منها بين ذلك الجزء وبين معدل النهار هي عرض
ذلك الجزء • وقد تسمى التي تكـون من دائرة الميـل ميّلاُ أوّلَ وهذه ميلاً ثانياً . وعند غاية الميـل يتحـدان لأنّ دائرتي الميـل
 5 الواقعة منها بين الكوكب وبين فلك البروج عرض الكو الكوكب ، والتي بينه وبين قطب البروج تمام عرضه .
[^] وطول الكوكب هو قوس من فلك البروج على التوالي تقع
بين نقطة الاعتدال الربيعية وبين الكوكب إن كان على فلك البروج عديم العرض ، أو بين النقطة التي تقطع دائرةٌ عرضه فلكَ البروِّ 10 عليها إن كان ذا عرض . وقد يسمى الطول تقويماً . وإنما اعتبر

نتطة الاعتدال الربيعية دون غيرها لأنجها جعلت مبدأ اصطلاحاً . [9] وإذا مرتت ستّ من دوائر العروض بأوائل البروج الاثنني عشر - وتكون إحداها لا محالة المارة بالأقطاب الأربعة - قسمت
 15 القطب إلى ألقطب وفي الطول ثلاثون درجة . وكل ما يـا يتع في كل قسم منها يكون في ذلكَ البرج • ومنطقة البروج تمرَ بأوساط البروج ولذلك تسمى أيضاً فلك أوساط البروج
[1.1] فهذه خمس دوائر تتوهم من غير ملاحظة السغليات : ثلاث منها أشخاص بأعيانها وهي هعدل الهار وفلك البروج 20 بالأقطاب / الأربعة / ، واثنتان نوعان لهما أشخاص بلا نهاية وهما

- دائرة الميل ودائرة العرض
[11] [1أما التي تنكون بملاحظة السفليات فمنها :

الفلك . وأحد قـطبيها سهـت الرأس والآخر ما يحاذيه من تحت .

$$
\text { . }-\alpha=\beta, \mathrm{M}[\ldots / 20 /
$$

The circles parallel to it above the Earth are called almucantars of altitude, while those below are almucantars of depression;
[13] [b] the meridian circle. This divides the eastern from the western half of the celestial sphere as well as the ascending from the descending with respect equinoctial and is perpendicular to beth the horizon and the equinocial It equinoctial and is perpendicular to both the horizon and the equinoctial. It bisects the visible and the invisible segments of the day-circles as well as those day-circles that are visible or invisible in their entirety. Since it passes through the poles of the equinoctial and of the horizon, these two will pass through the [meridian's] poles, which are the points of their intersection. These poles are the places of rising and setting of the equinoxes and are called the east and west points. The arc occurring on the [meridian] between the pole of the equinoctial and the horizon circle (or [alternatively] between the pole of the horizon and the equinoctial circle) is called the local latitude; its complement is the [arc] between the two poles or between the two equators;
[14] [c] the east-west circle. It passes through the poles of the horizon and through the poles of the meridian. Its poles are the points of intersection of the horizon and the meridian, which are called the north and south points. This circle is also called the circle of the initial azimuth [prime vertical]; the meaning of "azimuth" will be forthcoming.
[15] These three circles divide the celestial sphere into eight equal parts-triangles whose sides are quarter revolutions. Four of them are visible, while four are invisible;
[16] [d] the ecliptic meridian circle [lit., midheaven circle of appearances]. It passes through the poles of the ecliptic orb and the poles of the horizon, bisecting the visible and invisible halves of the ecliptic orb. It is also called the circle of the local ecliptic latitude [lit., the clime latitude circle of appearances]. The arc occurring on it between the pole of the ecliptic and the horizon circle (or [alternatively] between the pole of the horizon and the ecliptic equator) is the local ecliptic latitude;

وتسمى الدوائر الموازية لها فوق الأرض مُتَنْطَرات الارتناع والتي تحتها مقنطرات الانحطاط ؛
[٪! [والنصف الغربي من الفلك بل الصاعي s الأولى • وهي المأرّة بقطبي الأفق وقطبي معدل النهار ، وتقوم على الأفق وعلى معدل النهار على زوايا قائئة ، وتنصتَف التِطَع الظاهرة والخفية من المدارات اليومية والمدارات الظاهرة والخار وار الخفية / بأسرها أيضاً / . ولكونها مارَّة بأقطاب معدل النهار والأفق فهما تمرَّان بقطبيها فيكون قطباها نتطتي تقاطعيهما وهمـا مطلح الاعتدالين 10 ومغيبهما وتسهيان نقطتي المشرق والمغرب . والتوس الواقعة منها بين قطب معدل النهار ودائرة الأفق أو بين قطب الأفق ودائرة معدل النهار تسمى عرض البلد ، والتي بين القطبين أو المنطتتين تمامه ؛
[18] ودائرة المشرق والمغرب وهي المارة بتطبي الأفق وبتطبي
 وتسميان نقطتي الشهال والجنوب ." وتسمى هذه الدائرة أيضاً دائرة أول السموت وسيجيء معنى السمت .

مثلثثات أضلاعها أرباع الدور - أربعة ظاهرة وأربعة خفية ؛ 20 وبقطبي الأفق • وهي تنصتف النصفين الظاهر والخفّي من فلك
 بين قطب فلك البروج ودائرة الأفق أو بين قطب الأفق ومنطقة البروج هي عرض إقليم الرؤية ؛
/ 8/7- . .
[17] [e] the altitude circle. This passes through any given point on the celestial sphere and through the poles of the horizon circle. If the point is above the Earth, then the [arc] between it and the horizon is its altitude; if below, the [arc] is the point's depression. The [arc] between this circle and the prime vertical along the horizon circle is the point's azimuth. An azimuth may be northeast, southeast, northwest, or southwest. The altitude circle coincides with the meridian circle if the star is at the middle of the period of its visibility or of its invisibility, with the prime vertical if the star has zero azimuth, and with the ecliptic meridian circle if the star is at quadrature to the ascendent.
[18] Each of these five circles is a class with numerous individual members.
[19] These then are the best-known great circles.

CHAPTER FOUR

On the Circumstances Occurring Due to the Two Primary Motions, and the Situation of the Fixed Stars
[1] The total obliquity as found by ancient and modern observations is not the same; rather, what the ancients found is greater than that found by the moderns. It has been supposed that the value found by a more recent observer will be less than that of one more ancient, even though the maximum that was found did not come to 24°, while the minimum was not less than $(23+1 / 2+(1 / 2 \text { of } 1 / 10))^{\circ}$. Most have accepted the value of $(23+1 / 3+1 / 4)^{\circ}$.
[2] Because of this difference, some have maintained that the ecliptic equator moves in latitude and approaches the equinoctial. If this were true, then another orb would need to be established / whereby the ecliptic orb would move with that motion. / Now the [ecliptic] equator, if

[^67](lv] ودائرة الارتفاع وهي التي تمرَ بأي نتطة تُغرض على الغلك وبتطبي دائرة الأفق • فإن كانت النقطة فوق الأرض فما بينها
 هذه الدائرة ودائرة أول السموت من دائرة الأفق سمتها ، فـرئ
 جنوبي • وهي. تتُحد بدائرة نصف النهار إذا كأن الكوكب في في منتصف زمان ظهوره أو خفائه ، وبدائرة أول السموت إنا إلا كا كان عديم السمت ، وبدائرة وسط سماء الرؤية إذا كان على تربيع الطالع 10 [1^] [1] وهذه الدوائر الخمس وحدتها نوعية وتتكثر بالأشخاص . - [19] فهذه هي المشهورة من العظام

الفصل الرابع
 عِّ الأوضاع التي تـحكث بسبل الحركتين الأوليين وأُحوال الكواكب الثابتة

15 [15 [1 الميل الكلي الموجود بالأرصاد القديمة والحديثة ليس شيئاً

 أقدم مع أنّ أكثر ما وجدوه لم يبلغ أربعة وعشرين جزء أِّأ ، وأقله لم

 العرض فتترب من معدل النهار • وإن كان ذلك حقاً فيجب أن يُثبت فللٌُ آخر / يتحرَّك فلكُ البروج بتلك الحركة / ـ ـ ثم المنطتة إن
it moves, may complete a revolution or it may not complete it but instead move to a certain limit then return. / This limit may be after it has coincided twice with the equinoctial equator, or at the second coincidence, or between the two coin- cidences. If between, then the limit may be after half a revolution, or exactly at the halfway mark, or before it. If the equator does not reach the region between the two coincidences, then it will either return upon arriving at the first coincidence or else return before this [limit is reached].
[3] These then are eight possibilities. On the first five assumptions, the northern and southern halves of the surface of the ecliptic orb, along with whatever conditions pertain to them, would interchange. In the first three cases only, each of the two halves of the equator of the ecliptic orb would coincide with each of the two halves of the equinoctial equator. For the remaining three assumptions (those after the first five), only part of the surfaces would interchange. On the basis of the first seven assumptions, one half of the ecliptic equator would coincide with that half of the equinoctial equator adjacent to it; during each coincidence, day and night would be of equal length in all localities and the seasons of the year would cease to occur. On the eighth assumption, this would not be the case; however, altitudes [of stars] and the extent of days and nights would increase and decrease in a given locality. /
[4] Furthermore there was a divergence regarding the rate of the second motion. The ancients found it to describe one degree every 100 years, while the moderns observed it to be every 66 years. One reliable group among the latter found it to be
/2-16/ This limit...a given locality] $\beta=$ This limit may be after it has coincided with the equinoctial and departed from it; it may be at its coincidence; or, it may be before its coincidence. On the first assumption, the halves of the ecliptic orb, i.e. the northern and the southern, could completely interchange. On the second assumption, this could partially occur. On the third assumption, this could not occur; however, day and night would become equal during the coincidence under all circumstances and the seasons of the year would cease to occur. On the fourth assumption, this would not be the case; however, altitudes [of stars] and the extent of days and nights would increase and decrease in a given locality] α, M.

تحركت فيدكن أن تتّمَم الدورة ويككن أن لا تتمّمَ بل تتحرك إلى
 منطتة معدل النهار مرتّتين أو حال انطباقها الثاني أو فييا بين الالططباقين ، وذللٌ إما بعد قطح نصف دورتها أو خال قطع النصف سواءٌ أو قبله ، وإن لم تصل إلى ما بين الانطباقين فإما أن تعود حال انطباتها الأول أو قبل ذلك . [r] وهذه ثمانية احتمالات . وغلى التقديرات الخمسة الأول يتبادل نصفا سطح فلك البروج الشمالي والجنوبي مع ما يتبعهما من الاحكام . وفي الثلاثت الأول منها فتّط ينطبق كل كل واحد من من 10 نصفي منطةّ فلك البروج على كل واحد من نصفي منطقة معدل النهار" . وعلى التقديرات الثلاثلة الباقية بعد الخمسة الْأُول لا يتبادل غير البعض من السطح . وعلى التقديرات السبعة الأول ينطبق النصف من منطقة البروج على النصف المجاور إياه من منطقة معدل النهار وعند كل انطباق يتساوى النهار والليل في جميع البقاع s1 وتبطل فصول السنة . وعلى التقدير الثامن لا يكون ذلـي إلك إلا أنَ
الارتناعات ومقادير الأيام والليالي تزيد ونتنص في بتعة بعينها .
 التدماء وجدوها نتطع جزءأ وآحداً في كل مائة سنة والمحدثون وجدوها في كل ست وستّين سنة ، وقوم من محتقيعم وجدوها في
 ومغارقتها إياه ويمكن أن تكون حال انطباقها ويمكن أن تكون قبل انطباقها وعلى التقدير الأول يمكن تبادل نصفي فلـيك الكـ البروج أعني الشمالي والجنوبي بالتمام وعلى التقدير الثاني يمكن ذلثّ في البعض وعلى التقدير الثالث لالث يمكن ذلك إلا أن النهار وألنيل يصيران متساويين عند الانطباق في الأحوال وتبطل فصول السنة وعلى التقدير الرابع لا يمكن ذلكُ إلا إلا أن

every 70 years. Some of the practitioners of [the art of] talismans have claimed that the orb undergoes accession and recession, the maximum extent of each being 8 degrees, which is completed in / every / 640 years. Some of the practitioners of this discipline have entertained this idea and held that the [second] motion becomes slower due to the recession during which the vernal equinox, which is the starting point, shifts counter-sequentially from its position, and that the motion becomes faster due to the accession during which the vernal equinox shifts sequentially from its position. This would, if they are correct, also require that another mover be established other than those already mentioned.
[5] One [some?] of them came to be satisfied with one mover for both divergences. This mover would cause the ecliptic orb to move in such a way that every point on it moves about a small circle. Accession would then result from the motion in one of its halves, while recession would occur in the other half. [In addition], there would occur a decrease in the obliquity during the motion from the midpoint of one of these halves to the midpoint of the other half, while there would be an increase during the motion in the other half. This then is what has been said concerning this matter. But to establish conclusively the authenticity of a mover and its configurations depends upon ascertaining the true state of affairs; let us then put this matter aside.
[6] It should be noted that when one orb moves another, the moved retains its position with respect to the mover; its relation to it is as a part to the whole. Thus it along with its poles and the rest of its parts moves due to the motion of [the mover] just as an occupant on a ship moves by virtue of the ship's motion. At the same time, the [moved orb] has its own proper motion just as is the case with the occupant of a ship who moves back and forth on the ship-sometimes in the direction of the ship's motion, at other times opposite that motion.
[7] This having been determined, let there be imagined a similar situation with respect to the eighth orb, which is moved by the motion of the ninth orb. And it should be noted that the fixed stars-as indeed all given points on the eighth orb-do not depart from their latitude circles in any way nor do their positions relative to one another or relative to the ecliptic equator or its poles change. However, their positions relative to the equinoctial do change. Every star on the ecliptic equator crosses the equinoctial twice in

[^68]كل سبعين سنة . وقد زعم بعض أهل الطِلِسمات أنَّ للفلك إقبالاً وإدباراً غاية كل واحد منهما ثمانية أجزاء يتم في / كل / ستمائة ألما
 الحركة تبطؤ بسبب الإدبار وانتقال النتطة الربيعية التي هي المبيد 5 من موضعها إلي خلاف التوالي ، وتسرع بسبب الإقبال والتتقالنها من موضعها إلى التوالي . .وذلك أيضاً إن كان كما ظنوا محوج إلى إثبات محرك آخر غير ما مرَ .
[0] وذهب بعضهم إلى الاكتفاء بمحرّل واحد للاختـلافين
يحرّك فلكَ البروج فتتحرك كِ كل نتطة منه حول دائرة صغ
10 فيكون من الحركة في أحد نصفيهـ[!] الإقبال ومن الحرك الحـركة في
النصف الآخر الإدبار . ومن الحركة من منتئ الحنص أحد النصن النصغين إلى منتصف النصف الآخر انتقاص الميل ومن الحركة في النصف الآخر ازدياده . فهذا ما قيل فيه والتطع بإثبات محرّلٌ وهيئاته موقوف على تحقَّق الحال ، فلنُعرض عنه .
15 [7] وآعلم أنّ تحريك فللك فلكا يكون بملازمة المتحرك لمكانه من
 أجزائه بحركته مثل حركة ساكن المن السفينة بحركة السفينة .
 في السفينة تارة إلى جهة حركتها وتارة إلى خلاف تللك الجهة . 20 إذا تقرر ذلك فليتصورَ في الفلك الثامن المتحرك بحركة الفلك التاسع مثل ذلك . وليعلم أنّ الثوابت بـل جميع النقط المفروضة على الفلك الثامن لا تنارق مداراتها الـالـا العرضية البتة ولا تختلف أوضاعها بقياس بعضها إلى بعض ولا بلا بقياسها إلى منطقة البروج وقطبيها ، لكنّ أوضاعها بالتياس إلى معدل النهار تختلف اليا 25 فكل كوكب يكون على منطقة البروج فهو يـططع معدل النهار في

$$
-\alpha,-\mathrm{M}=\beta[\ldots / 2 /
$$

a revolution of the second motion; on one half of its circuit it is north of it and on the other half south. Every star having a latitude less than the total obliquity will also cross the celestial equator twice; however, the north and south seg- ments of its circuit are unequal, the larger being in the direction of the star's latitude. Every star whose latitude is equal to the total obliquity will not cross the equinoctial; rather, it will touch it once every revolution at the solstice point that is in the direction of its latitude. Every star whose latitude exceeds the total obliquity neither crosses the equinoctial nor touches it [at a point]; instead, it will approach and recede from it. If the star's latitude is equal to the complement of the total obliquity, once every revolution it will reach the equinoctial pole that is in its direction. On account of this change [relative to the equinoctial], the daycircles for each star will vary. No star remains on the same circuit but will instead shift to a larger circuit if it approaches the equinoctial or shift to a smaller one if the opposite is the case.
[8] The positions of the stars also vary with respect to the inhabitants of the climes. Those stars having a greater altitude come to have a lesser one and conversely. Some of them will transit the zenith after not having done so previously. This is so when their distance and direction from the equinoctial becomes the same as the local latitude. Some stars will become permanently visible or permanently invisible after not being so. This will occur when the complement of their distance from the equinoctial becomes equal to the local latitude in the direction of the visible pole or the invisible one after having been greater than this amount. Some stars will come to rise and set after having been permanently visible or permanently invisible. This will take place when the complement of their distance from the equinoctial becomes greater than the local latitude after having been less than or equal to it. Polaris is one of those stars that will eventually reach the northern pole. Rigil Centaurus and Canopus are two of the stars that will become permanently invisible in the Fourth Clime.

دورة من الحركة الثانية مرّتين ، ويكون في أحد نصفي مداره شمالياً عنه وفي النصف الآخر جنوبياً . وكل كوكب المر ذي عرض يكون عرضه أقل من الميل الكلي فهو يقطع / أيضاً معدل النهار / مرَتيـن ، لكن تختلفـ قطعتا مداره الشمـالية والجنوبيـة ويكون 5 أعظمهما ذات جهة العرض • وكل كوكب يساوي عرضه الميل الكلي فهو لا يقطع معدل النهار ولكن يماسه على نقطة الانقلاب التي في جهة عرضه في دورة مرة واحدة . وكل كول كوكب يفضل عرضه الْميل الكلي فهو لا يقطع معدل النهار ولا يماسه بـل يقرب منـه منه ويبعد عنه. . فإن كان عرضه مساوياً لتمام الميل الكلي فهو ينتهي في دور دورة 10 إلى قطب معدل النهار الذي في جهته مرة واحدة . وبحسب هذا الاختلاف تختلف المدارات اليومية لكل كوكب ولا يبقى كوكب على مدار واحد بل ينتتل إلى مدار أكبر إن كان يقرب من معدل . النهار أو إلى مدار أصغر إن كان بالضد [^] وتختلـف أيضاً أوضـاع الكـواكـب بـالقيـاس إلى سكـان 15 الأقاليم ، فيصير ما هو أكثر ارتفاعاً أقل وبالعكس • ويحد

 بعضها أبدي الظهور أو أبدي الخفاء بعد أن لم يكن ، وذلك وضلـو عند صيرورة تماة بعده عن معدلّ النهار مساوياً لعرض البلد الـو في جهة 20 القطب الظاهر أو الخني بعد أن كان أكثر من ذلك • ويحـدث لبعضها طلوع وغروب بعـد أن كانـ كان أبـدي الظهور أو الخفاء وذلك عند ازدياد تمام بعده عن معدل النهار على عرض البلد البـلد بعد أن كان أقل منه أو مساوياً له . والجُدَيَي مما سينتهي إلى التطب الشمـالي ، ورِجْل قَنْطُورِس وسُهَيل مما يصيران أبدي الخناء 25 الإقليم الرابع
.
[9] The fixed stars cannot possibly be enumerated, but 1022 of them have been observed and their positions in longitude and latitude are known. They arranged their magnitudes into six grades, the first being the greatest. In order to identify them, they imagined certain constellations [lit., forms] that the stars were either on or near; thus one could say "that star on the head of such and such a constellation" or "that one near the foot of such and such a constellation." The constellations are 48 in number, of which 21 are in the north, namely: Ursa Minor, Ursa Major, Draco, Cepheus, Boötes, Corona Borealis, Hercules, Lyra,
10 Cygnus, Cassiopeia, Perseus, Auriga, Aquila, Delphinus, Sagitta, Ophiuchus, Serpens, Equuleus, Pegasus, Andromeda, and Triangulum. Twelve are on the [ecliptic] equator; they are the zodiacal signs and their names are well-known. There are 15 southern [constellations] and they are: Cetus, Orion, Eridanus, Lepus, Canis Major, Canis Minor, Argo Navis, Hydra, Crater, Corvus,
15 Centaurus, Lupus, Ara, Corona Australis, and Piscis Austrinus. Three hundred sixty stars were observed in the northern constellations, 346 in the ecliptic constellations, and 316 in the southern constellations.
[10] The Milky Way, i.e. the galaxy, is made up of a very large number of small, tightly-clustered stars, which, on account of their concentration and smallness, seem to be cloudy patches. Because of this, it was likened to milk in color.
[11] As for the mansions of the moon, they are made up of the stars that are near the ecliptic equator. The Arabs used them as signs for the 28 divisions into which the [ecliptic] equator was divided so as to coincide with the number of days of the moon's revolution. Thus every night it was seen "residing" near one of these mansions whose names are well-known.
[12] Knowledge of the fixed stars and that which concerns them being a separate discipline, it is best that we confine ourselves to just what has been presented.
[9] والكواكب الثابتة لا يمكن أن تُحصى كثرة . وقد رُصد

 وهي : قِيْطُسِس ، والجَبَّار ، والنَهْرْ ، والأرْنَبَب ، والكَلْبِ الاكِبر ،

 الشمالية" ، وثلاثمائة وستة وأربعون على صور المنطقت ، وثلاثمائة وستة عشر على الصور الجنوبية
 متقاربة متشابكة كثيرة جداً صَارت من تكاثِّثها وصا وصغرها كأنها لطخات سحابية ، ولذلك شُبَهت باللبن لوناً
 البروج جعلته[[!] العرب علامات الأقسام الثمانية والعشرين التي

 هاهنا على هذا القدر .

CHAPTER FIVE

On Basing Some of the Apparently Irregular Motions Upon Models That Bring About Their Uniformity

[1] If a celestial motion is irregular from our perspective, we must require that it have a model according to which that motion is uniform; this model should also bring about its irregularity with respect to us. For irregular [motion] does not arise from the celestial bodies.
[2] One of these models is such that the motion is uniform about a point different from the center of the World, which is in our proximity. The circumference upon which the moved thing-a planet, for example-moves about that point must either enclose the center of the World or else not enclose it. In the first case it is called an eccentric, while in the second it is called an epicycle.
[3] If an eccentric is taken by itself and a planet is assumed to move upon it about its center with a simple, uniform motion, it will cause that motion, with respect to the center of the World (as well as to points other than the [eccentric] center) to be irregular. Thus in the segment that is farther away, the motion will be slower, while in the nearer segment it will be faster. This is so because for equal arcs whose distances vary, those that are farther away appear smaller than those that are nearer. If a line is produced that passes through the [eccentric] center and through the center of the World (or through some given point other than these two), it will pass through the farthest distance, which is the midpoint of the far segment, and through the nearest distance, which is the midpoint of the near segment. Then if a line is produced perpendicular to it passing through the center of the World (or through that [other given] point) and reaching the circumference on both sides, it will pass through the two mean distances, which are the common part between the two segments. At these two points the motion will be at its mean between the faster and slower motions.
[4] As for the epicycle, if it is taken by itself and the planet moves on its circumference, equal arcs will likewise vary with respect to the center of the World. The line joining the two centers passes through the farthest and nearest distances of the epicycle.

الفصل الخامس
 هِّ إسناك بعخ الحركات المنحتلفة يهِ
 الرؤيـة إلى أصول تق:تضي تشابـمـما

[1][إذا اختلفت حركة فلكية عندنا وجب أن نطلب لها أصلا 5 تتشابه تلك الحركة بحسبه ويتتضي ذلك الأصل أيضاً اختلافها

[[[

 10 إما محيطاً بمركز العالم وإما غير محيط به ، والأول يسمى الخارج

عليه حول مركزه حركة بسيطة متشابهة صيتر الحركةَ بالقيرَ القياس إلى مركز العالم وغيره من النتط التي هي غير ذلك المركي المركز مختلفة . المي 15 فتكون في القطعة التي هي أبعد منه بطيئة وفي التطعة التي هي

 وبمركز العالم أو بالنقطة المفروضة التي هي غير البيرهما مرّ بالبعد الأبعد وهو منتصف التطعة البعيدة وبالبعد الأقرب وهو مور منتصف القطعة 20 القريبة . ثم إذا قام عليه عهود يمرَ بمركز العالم أو بتلك النقطة ووصل إلى المحيط في الجانبين مرَّ بالبعدين الأوسطين ، وهمـا
 السرعة والبطء
[٪] وأما التدوير فإذا فُرض وحده وتحرك الكوكب على محيطه
 الخط الواصـل بين المركزين مارأ بالبعدين الأبعد والأقرب منه ،

The two lines produced from the center of the World tangent to the epicycle on both sides separate the far and near segments. [As distinct from the eccentric], however, the planet is observed to retrograde in one segment from the direction in which it had been proceeding in the other until it reaches the starting point of its motion. [Also] it does not traverse by that motion all parts of the orb that surrounds the center of the World. This is their illustration:

[5] Now if an epicycle is taken to be on a concentric orb that is its deferent such that the ratio of the deferent's radius to the radius of the epicycle is the same as the ratio of the eccentric radius to the eccentricity, and if the motion of the deferent is made the same as the motion of the eccentric and in the same direction so that they complete their revolutions simultaneously (with the epicycle center then also moving with this same motion), and if the epicycle is also made to move with a motion the same as the previous two in such a way that it is in the direction opposite the motion of the deferent in the far segment and in the same direction in the near segment, then the motion of the planet in the far segment is observed to be in the amount of the excess of the motion of the deferent over

والخطَان الخارجان من مركز العالم المماستان للتدوير من جانبيه يفصلان بين القطعتين البعيدة والقريبة ؛ إلا أنَّ الكوكب يُرى في في إحدى التطعتين راجعا عن السمت الذي يقصده في التطعة الأخرى
 s المحيط بمركز العالم جميعاً بتلكُ الحركة . وهذه صورتهما :

[ه] أما إن فُرض التدوير على فلك آخر حامل له موافق المركز على أنَ نسبة نصف قطر الحامل إلى نصف قطر التدرِّ المرير كنسبة

 10 الدورتين معاً فيتحرك مركز التدوير بتلك الْحركة ، وجُعل التدوير متحركا أيضا بحركة شبيهة بهما على وجه تكون في التطعة البعيدة البية إلى خلاف جهة حركة الحامل وفي القطعة القريبة إلى جهتها ، رُئيت حركة الكوكب في التطعـة البعيـدة بـــدر فضل حركة الحامل عـلى
that of the epicycle and in the near segment to be their sum. Thus the apparent motion is exactly the same as that observed in the previously mentioned eccentric model, there being no difference whatsoever. The planet will describe by this compound motion an eccentric circuit that is the same as with the eccentric orb. This is its illustration:
 eccentric model is realized by means of a single motion, whereas the epicyclic model is realized with two motions; second, the epicycle entails a circuit that is eccentric, while the eccentric does not entail an epicycle. Therefore Ptolemy considered the eccentric in this case to be simpler than the epicycle.
[7] If the epicycle is assumed to move in such a way that in the far segment it is in the direction of the motion of the deferent, the faster motion will be attained in that segment and the slower in the near segment, which is the opposite of what occurred in the first case. However, the period

حركة التدوير وفي القطعة القريبة بقدر مجموعهما ، فصارت الحركة المرئية مثل ما يُرى في أصل الخارج المركز المذكور بعينه من غير تناوت أصلاُ . ويغعل" الكوكب بحركته المركّ المركبة مداراً خارجَ المركز شبيها بالفلك الخارج المركز . وهذه صورته :

[7] والفرق بين الأصلين في هذا الموضع بشيئين : أحدهما أنَ

 -بأنَ الخارج المركز أبسط من التدوير الما
10 البعيدة إلى جهة حركة الحامل حصلت السرعة في والبطء في التطعة التريبة بـخلاف ما كان في الأول ؛" إلا أنَ زمان
of the faster motion will be longer than the period of the slower motion in this figure, whereas previously it was shorter. This is because the far segment is larger than the near one since the dividing [line] between them cannot pass through the center; hence, it will not bisect the epicycle but rather divide it into two unequal segments, the smaller of which is the one nearest the center of the deferent.
[8] Related to this discussion is the following: let us assume the eccentric also to have a concentric mover; / let us make the ratio of the line connecting the concentric center and the eccentric perigee to the eccentric radius the same as the ratio of the line connecting the concentric center and the epicyclic perigee to the radius of the epicycle; / and, let us make the two concentrics move, say, sequentially with equal motion, the eccentric counter-sequentially, and the epicycle in such a way that at its farthest distance it moves sequentially (these latter two motions likewise being assumed equal). Then the ratio of the motion of the eccentric or the epicycle to the motion of its [respective] concentric must either be: [a] less than the ratio of the line joining the center of the concentric and the nearest distance on either [the eccentric or the epicycle] to the radius of the eccentric or epicycle, respectively; [b] equal to it; or [c] greater than that [ratio]. If it is less, the planet on account of the two motions will only undergo a faster motion in the far segment and a slower motion in the near segment. For the eccentric this is because the amount reduced from the motion of the concentric in the far segment on account of the motion of the eccentric is less than the amount reduced from it in the near segment since the former arcs appear smaller. In the case of the epicycle, this is because the motion in the far segment is the sum of the two motions, while in the near one it is the excess of the motion of the concentric over the motion of the epicycle. If the ratio is equal to it, the planet will become stationary at the midpoint of the period of the slower motion, this occurring when it is at the nearest distance, which is located on the above-mentioned line. The planet, however, does not undergo retrogradation. If the ratio is greater, the planet will undergo retrograde motion in the near segment between two stations.
$/ 6-8 / \beta=$ let us make the ratio of the eccentric radius to the [distance] between the two centers the same as the ratio of the [epicycle's] deferent radius to the radius of the epicycle] α, M.

السرعة يكون في هذه الصورة أططل من زمان البطء وهناك كان أقصر • وذلك لأنَ القطعة البعيدة تكون أكبر من القريبة ، فإنَ

محركا موافق المركز ، / وجعلنا نسبة الخط الواصل بين المرا مركز الموافق وحضيض الخارج إلى نصف قطر الخارج كنسبة الخط الواصر الـول
 وجعلنا الموافتي المركز متحركين إلى التوالي مثلاً حركتين متشابهتين
 إلى التوالي وحركتاهما أيضاً متشابهتان ، فنسبة حركة الما الخارج المركز أو التدوير إلى حركة موافقيهما لا يخلو من أن تكون الـو إلما إما أصغر من نسبة الخط الواصل بين مركز الموافق وبين البعد الأقرب من كل واحـد منهما إلى نصف قطر الخارج المركز أو التدوير كل المل إلى الم 15 صاحبه ، وإما مساوية لها ، وإما أكبر منها . فإن كانت ألمركا الصر فلا يحدث للكوكب بسبب الحركتين إلا السرعة في القطعة البعيدة والبطء في التطعة القريبة : أما في الخارج المركز فلأنَ ما ما ينقص في القطعة البعيدة بسبب حركة الخارج المركز من حركي المركة الموافق المركز يكون أقل مها ينتص في التطعة القريبة لكون تلك التحن التسي ألصغر فير في 20 الرؤية ، وأما في التدوير فلأن" الحركة في التطعة البعيدة مجموع الحركتين وفي التريبة فضل حركة الموافق على حركة التدوير • وإن

 وإن كانت أكبر حدث للكوكب رجوع في القطعة القريبة بين وقوفين •
/8/6-16/.. كنسبة نصف قطر الحامل إلى نصف قطر التدوير

[Fig. T3]
[9] Let two lines be produced from the two concentric centers on both sides of the above-mentioned line, i.e. that joining the concentric center and the nearest distance for each of the two orbs, to the circumferences of the eccentric and the epicycle on both sides in such a way that the ratio of the motion of the eccentric or the epicycle to the motion of its respective concentric is equal to the ratio of that part of each of those two lines lying between the concentric center and the circumference of the eccentric or epicycle that is on the nearer side to half the chord, likewise from that line, that divides each of the orbs, respectively, into two segments. This is possible for this type of eccentric or epicycle [in after a gradual slowing down, become stationary when it reaches the first of the two lines in the near segment. From there until it reaches the second line, it will retrograde, gradually going from a slower to a faster speed whose maximum occurs at the nearest distance and then slowing until it reaches the second line whereupon it once more becomes stationary. After that, its motion becomes

[a] وليخرج خظَّان عن مركزي الموافق عن جنبتي الخط
المذكر - أعني الواصل بين مركز ألموافق وبين البعد الأقّرب في كل واحد من الفلكين - إلى محيطي الخارج المركز والتدير المدير في الجانبين بحيث تكون نسبة حركت الخارج المركز أو التدوير إلى
 واحد من ذينك الخطّين بين مركز الموافق ومحيط الخارج المركز أور

 وذلك يكون في مثل هذا الخارج المركز والتدوير مدكن [إـ؛ دون 10 الأولين . فيكون الكوكب عند وصوله إلى أول الخطّين في التطعة
 الخط الثاني راجعاً رجوعاً متدرجا من بطه إلى سرعة غايته في البعد الأقرب ، ثم منها إلى بطء ينتهي عند الخط الثاني ، وعند وصوله إلى الـخط الثاني واقنا وقوناً ثُانيا ، وبعد ذلـتّ يستقيم
direct as it gradually goes from being stationary to its fastest speed. The two mean speeds between the slower and faster speeds occur at the two mean distances. This speed / in the case of the epicycle / is that of the motion of the concentric alone. If the concentric and eccentric motions are set opposite the directions we have assumed previously, while the deferent's motion is as it was be-
5 fore and the motion of the epicycle is such that at the farthest distance it is counter-sequential, and all the rest of the conditions remain unchanged, then the situations of the near and far segments become reversed.
[10] These then are models and rules that should be known. We have only stated them here; their geometric proofs are given in the Almagest. Restricting oneself to circles is sufficient in the entirety of this science for whoever studies the proofs. However, one who attempts to understand the principles of the motions must know the configuration of the bodies, which move with these motions in such a way that these motions manifest themselves on their equators. He should conceive of the concentric and the deferent each as an orb bounded by
15 two parallel surfaces with the same center and the eccentric as an orb within the thickness of the concentric and bounded by two parallel surfaces with the same center, which is eccentric to the concentric center by an amount dictated by the anomaly. The convex of the two surfaces is tangent to the convex surface of the concentric at a single point that is the farthest point on it from the center of the concentric. Its concave surface is tangent to the concave surface of the concentric at a single point that is opposite the first and is the nearest point on it to the [concentric center]. Its thickness is such that it is large enough to include in it an epicycle or planet so that the latter's convex surface is tangent to the [eccentric's] two surfaces at two points. Its [inner] equator is the circuit of the epicycle's center or the planet's center. The [inner] equator of the concentric is a circle whose center is the concentric center and is equal to the [inner] equator of the eccentric, intersecting it in two points. One group makes it a circle that is tangent to the eccentric's [inner] equator at a point facing the farthest distance. The epicycle [should be conceived of] as a sphere in the thickness of its deferent with its convex surface tangent to the [deferent's] two surfaces at two points that are the farthest and nearest points on it
$13 /$ in the case of the epicycle] $\beta=-\alpha,-\mathrm{M}$.

متدرجاً من وقوف إلى سرعة سير • ويكون السيران المتوسطان بين

 5 خلاف التوالي ، وسائر الشروط بحالها ، تبادلت حالتا التطعتين القريبتين والبعيدتين
[.1] فهذه أصول وقوانين لا بد" من معرفتها أوردناها هـنـا

 أما لمن يحاول تصور مبادئ الحرُّاتِات فلا بدّ مِّ من معرفة هيئة الأجسام المتحركة بتلك الحركات على وجه تظهر تللك الحركات

 15 في ثخن الموافق المركز يحيط به سطحان متوازيانيان مركزاهواهما واحد

 من مركز الموافق ومقتّره مهاسن لمتعَر الموافق على نقّطة واحدة مقابلة

 الموافق دائرة مركزها مركز الموافق مساوية لمنطقة الخارج مقاطعـة

 25 محدبّها ممـاسَ لسطحيه على نتطتين هما أبعـد نقطة عليه وأقربها

$$
\text { . } \alpha, M[\text { [كانت }=\beta \text { [.../5/ . - } \alpha,-M=\beta[\ldots / 3 /
$$

from the center of its deferent. The planet is embedded in it in such a way that its outer surface is tangent to the convex surface of the epicycle at a point. For neither [planet nor epicycle] is their concave surface taken into account. The [inner] equator of [the epicycle] is a circle that is the circuit of the planet's center. The [inner] equator of the deferent is a circle that is the circuit of the epicycle center. After removing the eccentric from the concentric, there are left two solid, curved bodies that are thick in the middle, becoming more narrow until the thickness disappears altogether at a point opposite the maximum thickness. The two bodies bound the eccentric in accordance with the alternating position of their two thicknesses. They are called the complementary bodies.
[11] The farthest distance for the eccentric is called the apogee; for the epicycle, it is called the apex. For both, the nearest [distance] is called the perigee. The eccentric is sometimes referred to as the orb of the apogee. A moving object on either orb is [called] descending from the farthest distance to the nearest and ascending from the [nearest] to the farthest. This is their illustration:

من مركز حامله ، والكوكب مركوز فيه بحيث يماس سطحه الخارج محدّب التدوير على نقطة ولا يعتبر متعرهما ، ومنطتنه دائرة هي

 5 جسمان مستديران ثخينان غليظا الوسط يستدق ذلك الك الغلظ إلى ألن ينعدم عند نتطة مقابلة لغاية الغلظ يحيطان بالخارج المركز على

تبادل وضع غلظيهما ، ويسميان المُتِمَّمين .
[11] [البعد الأبعد في الخارج المركز يسمى الأوج وفي التدوير

 إلى الأقرب هابط ، ومنه إلى الأبعد صاعد . ومذه صورتهها :

CHAPTER SIX

On the Orbs and Motions of the Sun

[1] When the situation of the sun was considered, its motion was found to vary in different parts of the ecliptic equator: it was slower in a certain half, ecliptic equator, deviating neither north nor south of it; for this reason, the ecliptic is sometimes known as the solar circuit. By careful examination of solar eclipses, the solar body was found during the middle of the period of slower motion to be somewhat smaller than during the middle of the period of faster motion. It was inferred from this that during its slower motion the sun was farther away from the center of the World, while during the faster motion it was nearer.
10 The moderns have found the midpoints of its slower and its faster motions-and, indeed, every position whatever the circumstance-to have a movement through the parts of the ecliptic equator in the sequence [of the signs] that is approximately the movement of the fixed stars due to the second motion. This was something Ptolemy did not find.
[2] The above required that there be established for the sun either: [a] an eccentric whose equator would be in the plane of the ecliptic equator. The sun tions will be completed together. The center of the sun will undergo exactly the same motion as produced by the eccentric. This motion will be slower in the apogeal half, faster in the perigeal half. Ptolemy chose the former model-there being no necessity to do so-because it is simpler.
[3] For the eccentric model, there must be established a concentric orb in whose thickness occurs the eccentric and which exceeds the eccentric by its two complementary bodies. It is called the parecliptic orb since its center, equator, and two poles correspond to those of the [ecliptic orb].

الفصل السادس هِ أغلاك الشمس وحركاتـها

[1] لَا تـؤمتل في أحوال الشمس وُجدت حركتها مختلفة في
 5 النصف الآخر • ووُجد مركز جرمها البا دائماً ملازماً لمنطقة البروج غير
 الشـس • ووُجد بالنظر الدقيق في الكسوفات جرمها
 ذلك على كونها في البطء أبعد من مركز العـا العالم وفي السرعة أقرب .
 من أخوالها ـ انتقالاً في أُجراء منطقة البروج على التوالي قريباً من
 [T] فاقتضى ذلك أن يثبت لها إما خارج مركز ، منطقته في سطح منطقة البروج ، تكون الشدس في ثخنـه وهي [! 15 وتحرك الشمس على توالي البروج بقدر حركة وسط الشمس إذا نتص منها حركة أوجها عند منـ الي مركزها ؛ وإما تدوير وحامل ، منطقتاهما كذلك ، تكا تكون الشمس على التدوير وهو يحركّها في النصف الألى إلى خلاف التوالي بقدر حركة مركز الشمس ، والتحامل يحركّ التدوير إلى التوالي أيضاً

 النصف الأوجي بطيئة وفي النصف المرك الحضيضي سريعة . الحـر وبطلميوس اختار الأول من غير ضرورة لكونه أبسط .

According to the moderns, it has the motion of the fixed stars and moves the apogee and perigee. For the epicyclic model, the eighth orb suffices for the moving of the apogee and the perigee since it moves everything below it; thus the deferent is the parecliptic. Since the sun is always in the plane of the ec- centric or epicyclic equator, which are themselves in the plane of the parecliptic, [the sun] does not have any latitude. We have set forth the illustration of the sun's two orbs according to the eccentric model as was Ptolemy's preference.
[4] The sun has a single anomaly that is in the amount by which the sun's observed motion differs from its mean motion, it being an angle that is formed at the center of the sun from two lines produced from the centers of its two orbs to it. This angle attains its greatest possible value at the two mean distances and disappears at the two other distances; it depends upon the amount of the eccentricity. According to Ptolemy, it is $2 ; 30$; according to more recent observational [astronomers], it is about $2 ; 05$ (the radius of the eccentric being 60). The position of the apogee, according to Ptolemy, is $241_{2}{ }^{\circ}$ ahead of the summer solstice point. According to the moderns, the value varies, as they have stated in their $z \ddot{j} j e s$, depending on the date. This is the illustration of the orbs of the sun:

[Fig. T5]

يتحـرك حـركت الثوابت فيحـرك الأوج والحضيـض وذلـك عنـد المتأخرين • وأما على أصل التدوير فالفلك الثامن كاف الأوج والحضيض إذ هو محركّ لجميع ما دونه فالحامل هو المون المثل . ولكون الشمس دائها في سطح منطقة الخارج أو التدوير - وهما في في 5 سطح الممثل - لا يكون لها عرض . ونحن أوردنا صورة / فلكيها / على أصل الخارج كما مال إليه بطلميوس ون الما
 المرئية حركتها الوسطى ، وهو زاوية تحدث عند مركز الشمس من من
 10 يمكن في البعدين الأوسطين وينعدم عـنـيند

 قطر الخارج المركز ستين . على نقطة الانتقلاب الصيفية بأربعة وعشرين جزء الماً ونصف ، وعند 15 المتأخرين مختلف فيه كما ذكروه في زيجاتها بقيد التأريخ . وهذه

[5] One group has made the mean distance so that the two produced lines from the two centers to the sun are equal. This [mean] distance is based on distance, whereas what we have previously stated is based on motion. The above having been determined, it should be known that:
[a] the solar apogee designates the [arc] measured sequentially occurring on the parecliptic between the first of Aries and the apogee point; two motions, and this is what we intended.

CHAPTER SEVEN

On the Orbs and Motions of the Moon

[1] The moon was found to move along a circuit different from the solar circuit that intersected the latter in two places facing one another. These [points] were not fixed, however, but shifted in the counter-sequence [of the signs]. Thus the moon is north of the ecliptic equator in half its circuit and south of it in the other half, the maximum distance in both directions being the same amount. Its motion on that circuit was found to be nonuniform, having anomalous speeds [that did not recur] in the exact same parts of the ecliptic but instead shifted, each anomaly returning not to its exact same value but rather, a short time after the completion of a lunar revolution, to what was comparable to it. The distance of the [moon] from the Earth was also found to vary; during the slower motion, it was sometimes nearer and at other times farther away, and likewise during the faster motion. It was found at mean conjunction and opposition to the sun, [this being] at a farther distance, to increase and decrease [in distance], it being slower with increasing, faster with decreasing [distance];
[ه] وقوم يجعلون البعـد الاوسـط حيـث يتسـاوى الخطّان الخارجان من المركزين إليه ، وهذا بُعد بحسب المسافة وها ذكرناه أولاً هو بحسب الحركة . وإذا تقرر هذا هـا فأعلم أنّ أوج الشُمس يقال لِما يقع من الممثل بين أول الحمـل ونقطة الأوج على التوالي ؛ 5 ومركز الشمسس لِما يقع من الخارج المركز بين الأوج ومركز الشمس
 بين أول الحمـل وطـرف الخطط الخارج من مركز العالم إلى جرم الشمس ، وهو ناقص من الوسط بقدر الاختتلاف ما دامت الشمس هابطة ، زائد عليه ما دامت صاعدة .
10 [[10 [إذن انتظم أمر الشمس بفلكين وحركتين ، وذلك ما . أردناه

الفصل السابع
 هِ أكلاك القمر وحركانـه

[1] وُجد القهرُ متحركاً على مدار غير مدار الشمس متاطع
15 إياه في موضعين متقابلين غير ثابتين بل منتقلين إلى خلاف التوالي ، فيكون القهر في نصف مداره شمالياً عن منطقة البروج وني النصف الآخر جنوبياً عنها ، وغاية البعد في الجهتين بمقدار
 والسرعة في أجزاء لا بأعيانها من فلك البـا 20 كلُ اختلاف لا إلى مثله بعينه بل إلى ما يشبهه بعد تمام دور الـا

 أبطأ كلما زاد وأسرع كلما نتـص ، وتختلفـ متـادير جرمه في
/ similarly, / its body size varies during lunar and solar eclipses. At its quadrature to the sun, [this being] at a nearer distance, it increases and decreases as well. The lunar body was found to have different illuminated shapes according to its position from the sun. Its markings were found to be fixed.
[2] They therefore established four orbs and four simple motions for the [moon].
[3] The first orb is the parecliptic whose convex surface is contiguous with the concave surface of Mercury's parecliptic.
[4] The concave surface of the [moon's parecliptic] is contiguous with the convex surface of the second of its orbs, which is called the inclined orb. The concave surface of the inclined orb is contiguous with the sphere of fire from among the four elements. It is called inclined because its equator has a fixed in- clination to the parecliptic equator whose maximum value as found by observation is five degrees. Its center is the center of the World.
[5] The third orb is an eccentric in the thickness of the inclined orb. Its equator is in the plane of the inclined equator.
[6] The fourth orb is an epicycle in the thickness of the eccentric, which is its deferent. The moon is embedded in the epicycle and adheres always to its equator that occurs in the plane of the eccentric equator.
[7] The equators of the parecliptic and inclined orbs intersect at two points facing one another called the nodes and the jawzahr. One of them, the northern crossing point or the head, is such that the moon when crossing it comes to be north. The other node is the southern crossing point or the tail.
[8] Turning to the motions, the first is the motion of the parecliptic with the motion of the nodes; it is three minutes plus a fraction daily in the countersequence [of the signs] about the center of the World. All the orbs of the moon move with this motion, and hence the head and tail shift as well; the motion, for this reason, is attributed to them. The motion of the fixed stars is indistinguishable from the other lunar motions but not because of what is [sometimes] said, namely that it is imperceptible since its ratio to these very fast motions is so small. For the small over a long period multiplies,

[^69]الخسوفات والكسوفات / كذلك / ، وفي تربيعه للشمس في بعد

 [
 الممثل لعطارد
[ع] ومقعَره يماسَ محدَب الفلك الثاني من أفلاكه وهو المسمى
بالفللك الائل ، ومتعّر المائل يماسَ كرة الناّر من العناصر الأربعة .
 10 غايته على ما وُجد بالرصد خمسة أجزاء . ومركزه مركز العالم . [هـ والفلك الثالث فلك خارج المركز في ثخن المائل ، ومنطقته في سطح منطقة المائل
[7] والفلك الرابع فلك تدوير في ثخن الخارج المركز وهو حامله . والقهر مركوز في التدوير ملازم أبداً لمنطقته الكائنة في سطح 15 منطقة الخارج المركز

 أخذ في الشهال هي المجاز الشهالي والرأس ، وُوالأخرى هي المجاز الجنوبي والذنب

كل يوم ثلاث دقائق وكسر إلى خلاف التوالي حول مركز العالم المر الما وبها تتحرك جميع أفلاك القـر ، فينتقل الرأس والذنب ولـبر ولذلك
 القهر - لا لِما قيل من أنها غير محسا الحـا 25 الحركات اللــريـــة جـداً ، فـانِّ القـليل في المدد الطويلة يـتكثر

$$
\text { . } \alpha \text {, M } \mathrm{M} \text { = }=\beta \text { [.../1/ }
$$

and the models of the moon cannot tolerate much variation since the matter of the solar and lunar eclipses would thereby become disturbed. Rather, the motion [of the fixed stars] is indistinguishable from the motion of the nodes since their circumstances are the same in all respects. Hence the perceptible motion of the nodes is, in actuality, composed, being the excess of the motion of the nodes over the simple motion [of the fixed stars].
[9] The second motion is that of the inclined [orb] in the counter-sequence [of the signs], also about the center of the World, and it is $11^{\circ} 9^{\prime}$ daily. The eccentric is moved by this / motion, / which is called the motion of the apogee because it manifests itself there.
[10] The third motion is that of the eccentric in the sequence [of the signs], also about the center of the World, and it is $24^{\circ} 23^{\prime}$ daily. It is called the motion of the center because the epicycle center is moved by it this amount.
[11] Because the center of the epicycle is moved by the motions of the parecliptic and inclined [orbs] counter-sequentially, these motions being $11^{\circ} 12^{\prime}$, and sequentially by the above amount [i.e. $24^{\circ} 23^{\prime}$, its daily elongation from the apogee is this amount $\left[24^{\circ} 23^{\prime}\right]$ and from a fixed point on the ecliptic orb in the amount of the excess of the motion of the center over the sum of the first two motions, this being $13^{\circ} 11^{\prime}$. This is called the mean motion of the moon. The mean sun is always aligned with the center of the epicycle when the latter is at the apogee. Since [the mean sun] moves sequentially $0 ; 59^{\circ}$ daily, its elongation from the lunar apogee will be $12^{\circ} 11^{\prime}$, and its elongation from the epicycle center will by subtraction be the same. The sun then, after the epicycle center has departed from the apogee, will always be midway between the apogee and the center until the apogee is directly opposite the center at the [sun's] quadrature. The [center] will once more meet the [apogee] at the [sun's] opposition, will be opposite it at the other quadrature, and will then return to conjunction with the apogee. The motion of the center is therefore called the double elongation, i.e. the elongation of the epicycle center from the sun is doubled.

[^70]وأصـول القــر لا تحتهـل كثيـر تنـاوت لأنَ أمـور الكسـوفـات

 المحسوسة من الجوزهر مركبة في الحقيقة ، أعني أنها فضل حركة 5 الجوزهر على تللد الحركة البسيطة .
[9] والحركة الثانية حركة المائل إلى خلاف التوالي حول مركز

 [1.]

 [11] ولكون مركز التدوير متحركاً بحركتي المدثل المثل والمائل إلى
 وإلى التوالي هذا القدر ، يكون بعده عن الأوج كل يوم هذا القدر 15 وعن النقطة الثابتة من فلك البروج بقدر فضل حركة المركز على مجموع الأوليين ، وهو ثلاث عشرة درجة وإحدى عشرة دقي وتسمى هذه حركة وسط التقر . والشمس برس برسها تكون أبداً مع مركز التدوير عند كونه في الأوج - وهي تتحرك كل يل يوم تسعاً وخمسين دقيقة إلى التوالي - فيصير بعدها عـي عن أون الون القهر اثنتي
 التدوير مثله . فتكون الشدس ، بعد مغارقة مركز التدوير الأوجَ ، المركّ متوسطة دائداً بين الأوج والمركز إلى أن يقابل الأوجُ المركزَ عند

 25 البعدَ المضتَف ، يعني بُعد مركز التدويـر من الشمس مضعَفاً .

$$
\text { . }-\alpha,-\mathrm{M}=\beta[\ldots / 8 /
$$

In this way, the center will be at the eccentric apogee at mean conjunction and opposition, and at its perigee at the quadratures.
[12] Because all the above motions are about the center of the World, they are all uniform with respect to us.
[13] The fourth motion is that of the epicyclic orb. The moon, due to its motion, moves $13^{\circ} 4^{\prime}$ per day such that it is counter-sequential in the upper half [of the epicycle]. This is called the [moon's] proper motion.
[14] Because the ratio of this last motion to the mean motion is less than the ratio of the line joining the center of the World and the epicyclic perigee to the [epicyclic] radius, the moon does not have a station or retrogradation; rather, / its motion / will be slower in the apex half [of the epicycle], faster in the perigeal half. At conjunction, opposition and the two quadratures, the moon will have a slower speed with increasing distance and a faster one with decreasing distance. And because the motion of the epicycle is less than the mean motion, the slower and faster motions will not [recur] in the exact same parts of the ecliptic orb but instead their positions will shift; the return to the same anomaly will occur after the return to the same part of the ecliptic orb. For this reason as well, an eccentric alone cannot substitute for this epicycle. Because the radius of the epicycle varies in size with respect to the center of the World due to the varying distance of [the epicycle] from it in the two orbs, the rates of the slowest and fastest speeds are not always the same but will also vary; thus the slowest speed will sometimes return to a less slow, sometimes to a more slow speed, and the same holds for the fastest speed as well as the other anomalous speeds.
[15] These then are the motions of the moon.
$/ 10 /$ its motion $] \beta, M=-\alpha$.

فعلى هذا الوجه يكون المركز في الاجتماع والاستقبال الوَّسطيّين في

الجميع عندنا متشابية .
s
بحركته إلى غير التوالي يف النصف الأعلى كل يوم ثلاث عشرة درجة وأربع دقائق . وتسمى حركّ يكته الخاصة .

نسبة الخط الواصل بين مركز العالم وحضيض التدوير إلى نصف 10 تطره لا يكون للقمر وقوف ولا رجوع ، بل تصير / حركته /
بطيئة في نصف الذروة ، سريعة في نصف الحضيض • ويكون
للقتر في الاجتماع والاستقبال والتربيعين بطءٌ مع زيادة بعد وسرعٌّ مع نتصانه . ولكون حركة التدوير أقل من حركي الون الوسط لا يكون البطء والسرعة في أجزاء بأعيانها من فللك البروج ، بل بل تنتقل 15 مواضعها ، ويكون العود إلى اختلاف بعينه بعد العود إلى جزئ بعينه من فللك البروج . .ولا يقوم خارج مركز وحده بدر بدل هذا التدوير لهذا السبب أيضاً . ولكون نصف تطر التدوير مختلف المتادير بالتياس إلى مركز العالم لاختلاف أبعاده منه في الفلكين نكون أقدار البط؛ والسرعة غير متشابية بل مختلفة ، فيعود 20 البطء تارة إلى بطء أقل ونارة إلى بطء أكثر ، وكذلكُ السرعة

$$
\begin{aligned}
& \text { وغيرهما من الاختلافات . } \\
& \text {. } 10 \text { [10 نهذه خركات القتر }
\end{aligned}
$$

$$
.-\alpha=\beta, M[\ldots / 10 /
$$

[16] Turning now to the anomalies that inhere in the [moon] as a result of these motions, / the first is that anomaly effected by the radius of the epicycle at conjunctions and oppositions. It is an angle occurring at the center of the World from the production of two lines from it, one to the epicycle center and the other to the lunar body. / Its maximum is based upon the radius of the epicycle being at [the epicycle's] two mean distances whose size has been found by observation to be $5 \frac{1}{4}$ parts, the radius of the inclined orb being 60 parts. The [anomaly] disappears at the apparent apex and perigee; it is subtractive from the mean as long as the moon is descending on the epicycle, additive when it is ascending. This is called the independent equation.
[17] The second anomaly is that resulting from an increase in the previous one when the epicycle is at a distance other than the farthest distance. Its maximum occurs when the epicycle is at the two quadratures, i.e. at the perigee, and it is $22 / 3^{\circ}$ for this [epicycle] radius if the first anomaly is at its maximum. When the [first anomaly] decreases, the [second anomaly] will decrease accordingly. It is additive when the first anomaly is additive, subtractive when it is subtractive. It is called the anomaly of the nearest distance.
[18] The moon has another anomaly whose maximum occurs when the center of the epicycle is at the sextiles or trines with respect to the sun. It is caused by the apex of the epicycle, which is the starting point of its proper motion, and its perigee, which is opposite the apex, not being aligned with either the eccentric center or the center of the World except when the epicycle center is at the apogee or perigee. At that time they will be aligned with them since the diameter passing through [the apex and epicyclic perigee] will coincide with the diameter passing through the apogee, the [eccentric] perigee, and the centers. At other times, they will always be aligned with a point that is in the direction of the [eccentric] perigee whose distance from the center of the World
$/ 2-4 / \ldots] \beta, \mathrm{M}=$ the first is that anomaly effected by the radius of the epicycle. It is an angle occurring at the center of the World from the production of two lines from it, one to the epicycle center and the other to the lunar body at conjunctions and oppositions] α.
 / فالاختلاف الأول الذي بسبب نصف قطر التدوير في الاجتماعات
 منه ـ أحدها إلى مركز التدوير والآخر إلى جرم القهر / . . وتكون 5 غايته بحسب نصف قطر التدوير في البعدين الأوسطين منه ه ، وقد وُجد بالرصد متداره خمسة أجزاء / / وربعاً / على أنَ نصف قطر
 ناقص من الوسط ما دام القدر هابطأ في التدوير ، زائد ما ما دام صاعداً . ويسمى التعديل المُرد .
10
المذكور عند كون التدوير في بعد غير الأبعد • وتكون غايته عند كون التدوير في التربيعين - أعني في الحضيض المير - وهي لنصف

15 الاختلاف الأول ، ناقصاً مع نتصانه . ويسمى اختلاف البعد الأقرب . [1^] وللقمر اختتلاف آخر تكون غايته عند كون مركز التدوير على تسديس الشدس أو / تثليثها / . . وسببه أنَّ ذروة التدوير التي هي مبدأ حركته الخاصة وحضيضه المقابل لها لا يلا يحاذيان
 20
 فيحاذيان أبداً نتطة مها يلي الحضيض ، بُعـدها عـن مركز المـا العـالم
(

 . $\alpha, \mathrm{M}[$ [تثليثه $=\beta$ [.../17/ . α, M
is the same as the distance of the eccentric center, which is in the direction of the apogee, from the [center of the World]. This point is called the point of alignment. Each of these distances, according to what has been found by the observational [astronomers], amounts to 10 parts and 19 minutes, the radius of the inclined orb being 60 . Because of this alignment, the mean apex, from which is the beginning of the proper motion, will always differ from the apparent apex at which the first two anomalies disappear. The situation is the same for the two [epicyclic] perigees. Thus the moon will have an anomaly when it may be thought to have none, and it will not have one when it is thought to occur. The maximum of this anomaly is based upon the above-mentioned distance. It disappears when the center is at the [eccentric] apogee or perigee. It is additive when the center is descending and subtractive when it is ascending. This is called the equation of the proper [motion].
[19] In addition, the moon has another anomaly that is the difference between the distance from the nodes of its two positions on the parecliptic and inclined equators. This anomaly is taken into account if one wishes to convert from one position to the other.
[20] All the above are concerned with longitude.
[21] As for latitude, it should be clear from what has already been stated. The return of the moon in both directions is always to the maximum [latitude]. The moon is north from the head to the tail and south from the tail to the head. It is ascending from its maximum latitude in the south to its maximum in the north and descending in the other half.
[22] As regards the changes in the illuminated shapes of the lunar body according to its position from the sun, this will be forthcoming in a separate chapter.
[23] The variation in the parts of the lunar surface in receiving light, which is called the lunar markings, is due to an anomaly whose true character has yet to be ascertained. Most likely, there exist various bodies occurring with the moon in its epicycle that do not accept illumination equally, either because of a difference in type or because of a difference in position.
[24] This then is the situation of the moon.
[25] There is a difficulty that arises regarding the motion of the epicycle center on the circumference of the eccentric about the center of the World and also regarding the alignment of its diameter with a point other than the center of the deferent. To see this, [we note] that when the deferent moves the epicycle with a simple, uniform motion:

كبعد مركز الخارج مما يلي الأوج عنه ، تسمى تلكُ النتطة نتطة المحاذاة . ومقدار كل واحد من البح البعدين عشرة أجزاء وتسع عشرة دقيقة على أنّ نصف قطر المائل ستون بحسب ما وا وجده أهل الرصد الرّ وبسبب هذه المحاذاة تخالف الذئروة النـئ الوسطى التي منها مبدأ الحركة 5

 وينعدم عند كون المركز في الأوج أو الحضيض . ويكون زائدا وائداً ما دام
 10 [19] وأيضاً له اختلاف آخر وهو التفاوت بين بعد موضعيه في
 تحويل "أحدهما إلى الآخر • ونر

 الجنوب إلى غايته في الشهال وهابطاً في النصف الآلخر النا [rr] [ألما اختلاف التشكَلات النورية في جرمه بحسب وضعه من الشمس فسيجيء في باب مغرد ألجاء
20
 معه في تدويره غير قابلة للإنارة بالتساوي إما لاختلاف نوعي أو لاختلاف وضعي
[ro] وورد على حركة مركز التدلمرير في محيط الخارج المركز
 وبيـان ذلك أنّ الحـامل إذا حركّ التـدويـر حركةٌ بـسيطة متشابـهـة
[a] the distances of the epicycle center from the [deferent] center must be equal under all circumstances; [b] the angles [formed] at the [deferent center] must be equal in equal times; and [c] the diameter passing through the apex and the [epicyclic] perigee must be aligned with the [deferent center] under all circumstances. If any one of these three were not to hold, this would be due to the motion being composed. In fact, we do find these things violated in the case of the moon. For while the distances of its epicycle center are equal with respect to the center of the eccentric, the equality of angles occurs at the center of the World and the alignment of the diameter is to the point of alignment. The practitioners of the profession have not yet explained in what way this motion is composed; in fact, they have not ventured any explanation of this at all. I shall present below what I have regarding this matter, God willing.
[26] The moon has another anomaly called parallax whose description will be forthcoming.
[27] This is the illustration of the orbs of the moon:

[Fig. T6]

، وجب تساوي أبعاد مركز التدوير عن مركزه في جميع الأحوال
 بالذروة والحضيض محاذيا 'له في جميع الأحوال . فانِ اختلف بعض هذه الأمور الثلاثة فذلك يكون لتركُبِ في الحركة . ثم إنَا 5 نجد هذه الأمور مختلفة في التهر ، فابنّ تساوي أبعاد مركز تندويره إنما يكون عند مركز" الخارج المركز ، وتساوي الزوايا
 يبيتنوا الوجه في كيغية هذا التركيب ، بل لـ يتعرضوا لبيان شيء

[TV] [TV] وللقمر اختلاف آخرّ يسمى اختلاف المنظر سيجيء وصفه .
[rv] وهذه صورة أفلاك القمر :

[^71]\qquad
\square

$$
4
$$

[28] Those who limit themselves to circles make the parecliptic and the inclined equators intersect one another, the eccentric equator tangent to the inclined [equator] at the apogee point, and the equator of the epicycle such that its center is on the eccentric equator. If the motion of the sun is disregarded, the circuit of the center of the epicycle, which reaches each of the apogee and the perigee twice during its revolution, would be thus:

\longrightarrow [Fig. T7]
[29] Let us end this chapter with the meanings of those expressions related to the moon:
[a] the nodal mean is the [arc measured] counter-sequentially along the parecliptic between the first of Aries and the head;
[b] its [i.e. the node's] true position [taqwim] is the [arc measured] sequentially along it between them;
[c] the lunar apogee is the [arc measured] sequentially along the inclined [equator] between the point aligned with the first of Aries, this point being assumed fixed, and the apogee point;
[d] the center of the [moon] or its double elongation is the [arc measured] sequentially along the inclined equator between its apogee and the endpoint of the line produced from the center of the World through the epicycle center to the inclined equator;
[e] its mean is the [arc measured] sequentially along the inclined equator between the point aligned with the first of Aries, this point being assumed fixed, and the endpoint of the line cited above [in [d]];

 ومنطتةَ التدوير على أنَّ مركزها على منطقة الخارج المركز • ومدار الـلى
 5

 الجوزهر ما بين أول الحمـل ونقطة الرأس من الممثل على خلاف
 بين النقطة المحاذية لأول الحمل ، على أنها لا تتنغير ، ونتطة الأوج 10 من المائل على التوالي ؛ ومركزه أو بعده المضعّف هو ما الما بين أون الوجه وطرف الخط الخارج من مركز العالم إلى مركز التدوير ومنه إلى
 المحاذية لأول الحمل ، على أنها لا تتغيـر ، وطرف الخط المط المذكور
[f] its mean proper anomaly [khāssa] is the [arc measured] sequentially (as defined for the [epicycle]) along the equator of its epicycle between the mean apex and the center of the [lunar] body.
Among those whose motion is irregular:
[g] the [moon's] apparent proper anomaly is the [arc] along the equator of its epicycle between its apparent apex and the center of its body;
[h] its true position [taqwim] is the [arc measured] sequentially along the parecliptic equator between the first of Aries and the point at which its latitude circle intersects the parecliptic;
[i] its argument of latitude [hisṣat ${ }^{\text {c ardihini] }}$ is the [arc measured] sequentially along [the parecliptic equator] between the head and the intersection point cited above [in [h]].

CHAPTER EIGHT

The Orbs and Longitudinal Motions of Mercury

[1] Mercury was found not to move in longitude precisely along the ecliptic equator but rather in its vicinity, approaching it sometimes from the north and at other times from the south, the limits [north and south] not being exactly the same. It will increase in speed, thus moving ahead of the sun after having been in conjunction with it, and appear in the west. It then gradually slows until it becomes stationary. Thereupon it retrogrades--disappearing, coming into conjunction with the sun, and departing from it; the sun will then move ahead of it, [the planet now] appearing in the east. / It will thereafter become stationary and undergo a direct motion, / gradually increasing in speed until it disappears. It will then reach the sun and be in conjunction with it. Thus it is with [the sun] during the middle of its periods of direct and of retrograde motion. Its elongation ahead of or behind [the sun] does not exceed 27°. If one compares one retrogradation to another retrogradation, a direct motion to another direct motion, a slower motion to another slower motion, or a faster motion to another faster motion, one will not find them to be identical; instead, in some parts of the ecliptic they will be less in terms of both / extent / and time, while in other parts they will be greater. That part in which the slower motion is at its slowest and the time periods are at their shortest is not fixed but shifts with the movement of the fixed stars. The opposite of these circumstances does not occur
$/ 15 /$ It will thereafter become stationary and undergo a direct motion $] \beta, \mathrm{M}=\mathrm{It}$ will become stationary and thereafter undergo a direct motion] $\alpha . / 20 /$ extent $] \beta$, $\mathrm{M}=$ revolution] α.

من منطقة المائل على التوالي ؛ وخاصته الوسطى ما بين ذروتـ الوسطى ومركز جرمه من منطقة تدويره على التوالي المفروض فئ الميه .
ومدا تختلف حركته : خاصته المرئية وهي ما ما بين ذيرن ذروته المرئية

 التوالي ؛ وحِصة عرضه / وهي / ما ما بين نتقطة الرأس ونتطة التقاطع المذكورة منه على التوالي .

الفصل الثاعن
 بِ أڭلاك عطارد وحركاته الطولية

10 [10 10 [10 وُجد عطارد متحركاً في الطول لا على نفس منطقة البروج بل / حواليها ، يترب منها تارة في شمالها فيا وتارة في في جنا إلى حدّين بعينهـا . وهو يسرع في سيره فيسبق الشـيسَ بعد
 ثم يرجع ويختني ويقارن الشمسَ ويغارقها فتسبقه الشمسن ويظهر الشا 15 مشرَّقاً ، / ثمٌ يــفـ ويستقيـم / ويتـدرج إلى السرعة إلى أن

 إلى استنقامة أو بطء إلى بطء أو سرعة إلى سرعة لم توجد متشابهة 20 بل كانت في بعض أجزاء البروج أقل / قدراً / وزماناً وفي بعضها
 ثابتـاً بـل منتقـلاً انتتـال الثوابت . وأضـداد تلك الأحوال ليست في

$$
\begin{aligned}
& \text { 居 }
\end{aligned}
$$

directly facing that part [of the ecliptic] but at the two trines. Directly facing that, one finds a situation similar to what occurs at this part but not to that maximum extent.
[2] They therefore established for [Mercury] four orbs and four motions.
[3] The first orb is the parecliptic whose convex surface is contiguous with the concave surface of Venus's orb. Its concave surface is contiguous with the convex surface of the moon's parecliptic.
[4] The second orb is an eccentric and is called the dirigent. It is in the thickness of the parecliptic just as we have described an eccentric being in the thickness of a concentric. Its equator is not in the plane of the parecliptic equator but has an inclination to it that is not fixed; its description will be forthcoming. The apogee of the [dirigent] occurs at the place of the maximum inclination. The plane of its equator intersects the plane of the parecliptic equator at acute and obtuse angles. There thus occurs a great circle in the parecliptic orb whose center is the center of the World and which intersects the parecliptic in two places that are called the nodes-the "head" and the "tail"-of this planet. This great circle is called [Mercury's] inclined orb.
[5] The third orb is another eccentric called the deferent for the epicycle. It is in the thickness of the dirigent just as the dirigent is in the thickness of the parecliptic. The [deferent's] equator is in the plane of the [dirigent's] equator.
[6] On account of its two eccentric orbs, this planet has four complementary bodies: two for the dirigent from the parecliptic and two for the deferent from the dirigent.
[7] The fourth orb is the epicycle, and it is in the thickness of the deferent. Its equator is not fixed in the [deferent's] equator as will be explained below. Mercury is on the epicycle, being embedded in it, and moves along its equator.
[8] Turning now to the motions, the first is the motion of the parecliptic, [which moves] with the motion of the fixed stars sequentially about the center of the World. It manifests itself in the apogee and perigee of the dirigent and in the head and tail.
[9] The second is the motion of the dirigent and is the same as the motion of center of the mean sun, i.e. the excess of its mean motion over the motion of its apogee; it is counter-sequential about its own center. This motion manifests itself in the apogee and perigee of the deferent.

مقابلـ ذلك الجزء بل في تثليثيه . وفي مقابلة ذلك يوجد مثل ما يوجد في ذلك الجزء ولكن لا في تلك الغاية الـاية .

5 الزهرة ومتحّره مماسَ لمحدّب ممثل القمر

ثخن الممثل كما وصفْنا في كون الخارج المركز في ثخن الموافت المركز • ومنطقته ليست في سطح منطقة الممثل بل مائلة عنها غير
 10 وسطعح منطتتـه يتاطـع سطع منطقـة الممثـل عـلى زوايـا حـادّة ومنفرجة ، فتَحدث في الفلك الممثل دائرةٌ عظيمنة مركزها مركز العالم متاطعة للمدثل في موضعين يسسميان عقدتي الرأس والذنب لهـنـا الكوكب • وتسسى تلكـ العظيمة فلكه المائل
[ه] والفلك الثالث خارج مركز آخر يسمى الحامل للتدوير • 15 ويكون في ثخن المدير مثل كون المدير في ثخن الممثل ، ومنطقته في سطح منطقته . [7] وتكون لهذا الكوكب بحسب فلكيه الخارجي المركز أربعةُ متمتمات : اثنان للمدير من الممثل ، واثنان للحامل من المدير المر [الفلك الرابع فللك التدوير وهو في ثخن الحامل . ومنطتته ليست بثابتة في منطقته على ما سيجيء بيـانه . وعطارد على

التدوير مركوز فيه يتحرك على منطقته .
[^] وأما الحركات فالأولى حركة الممثل بحركة الثوابت المابت حول
مركز العالم على التوالي • وتظهر في أوج المدير وحضيضه وئي الرأس والذنب
 الوسطى ، أعني فضّل حركة وسطها على حركـي ألى أوجها إلى خلاف التوالي حول مركزه . وتظهر هذه الحركة في أوج الحامل وحضيضه .

On account of it, the deferent center comes to have a circuit about the dirigent center called the deferent orb for the deferent orb's center.
[10] The third is the motion of the deferent; it is equal to twice the sun's motion of center and is sequential. [It moves] not about its own center nor about the center of the World nor about the dirigent center; it is instead about a point we will discuss below. This motion manifests itself in the epicycle center.
[11] The center of the epicycle is always in conjunction with the position of the mean sun. When it is at the dirigent apogee, it will be at the deferent apogee as well. The [center] and the [deferent apogee] then separate from the [dirigent apogee]: the deferent apogee will move counter-sequentially away from the dirigent apogee at the rate of the sun's motion of center, and the epicycle center will move sequentially away from the dirigent apogee at the rate of the excess of its motion over the motion of the deferent apogee, which is likewise equal to the sun's motion of center. Therefore the dirigent apogee is always at the midpoint between the deferent apogee and the epicycle center as was the case for the moon with respect to the center of the sun being midway between the apogee and the epicycle center. When each [of the deferent apogee and the epicycle center] describes a quarter [revolution], the center will reach the perigee of the deferent, and they will each be at quadrature with respect to the dirigent apogee. After describing another quarter, they will meet opposite the dirigent apogee and thus the center will be at the dirigent perigee and at the deferent apogee. Then [the center and deferent apogee] will separate, and they will be in opposition at the quadratures. They will once again meet at the dirigent apogee. Thus the epicycle center's farthest distance is when it is at both apogees simultaneously. Its nearest distance, however, is not directly opposite this position on account of it thereupon being at the deferent apogee and the dirigent perigee, nor is [this distance] at the quadratures since the two opposite distances [from the center of the World] occurring at the apogee [of the dirigent] and at the point directly opposite it are not equal. Instead, it occurs at two positions whose distance from the dirigent apogee is greater than from the point directly opposite it. These two positions are at the trines with respect to the apogee, a result dictated by the composition of the two perigees.
[12] This latter motion and the motion of the apogee together yield Mercury's mean motion.

ويظهر بسببها لمركز الحامل مدارٌ حول مركز المدير يسمى النللُّ الحامل لمركز الفلك الحامل

الشهس إلى التوالي - لا حول مركزه ولنا حول مركز العالم ولا حول

.
وإذا كان في أوج المدير كان في أور الحامل أيضاً . ثم ينارقانـانه فيتحرك أوج الحامل إلى خالان التوالي ويبعد عن أورج المدير بقدر حركة مركز الشدس ، ويتحرك مركز التدوير إلى التوالي ويبيعد 10 عن أوج المدير بقدر فضل حركته على حركة أورج الحامل وهو أيضا مثل حركة مركز الشدس . فيكون أوج المدير ديائأ في المنتصف

الربع انتهى المركز إلى حضيض الحامل وهما في تربيعي أوج المدير ، المدير ،
15 وبعد تطع ربع آخر يتلاقيان في مقابلة أوج المدير فيكون المركز في
حضيض المدير وأوج الحامل ، ثم يتفارقان ويتقابالان في التربيعين ويعودان إلى الملاتاة عند أوج المدير . فالبعد الإبعد لمركز التدوير يكون عند كونه في أوجيه مان . ولا يكون بعده الاقرب في مـا مقابلة ذلكُ الموضع لكونه في أوج الحامل وحضيض المدير هنالك ، ولا فلا في 20 التربيعين لانّ البعدين المتقابلين اللذين في الأوج ومتابله ليساً
 أكثر من متابلته وهما تثليثا" الأوج بحسب ما يتتضيه ترگّب
 . عطارد
[13] The fourth motion is that of the epicycle orb, which is $3^{\circ} 6^{\prime}$ per day. The planet moves with this [motion] in such a way that in the far segment [of the epicycle] it is sequential. The planet will undergo retrogradation on this epicycle in the near segment since the ratio of the two motions is such so as to bring about retrogradation. The planet will not move away from the sun-either ahead or behind-except by the amount brought about by its epicycle radius. At the apex and perigee [of the epicycle], it will be in conjunction with the [sun] since its [epicycle] center is permanently in conjunction with it. The radius of the epicycle is according to observation $22 \frac{1}{2}$ parts, the deferent radius being 60 parts.
[14] The dirigent center is 6 parts removed from the center of the World, this also according to the above units. The point about which / the motion of the epicycle center and the motion of the deferent / is always uniform is at the midpoint of this distance on the diameter that passes through these two [centers]; this point is called the equant center. About it one may imagine a circle, called the equant orb, whose size is that of the deferent equator and which is in the same plane. Thus the center of the epicycle will cut off from its circumference equal arcs in equal times. It is as if there were a line extending from the center of the equant to the center of the epicycle so as to turn it with uniform motion. The mean apex and perigee of the epicycle are also aligned with this point. The distance of the deferent center from the dirigent center is likewise equal to the distance of the equant center from the latter. It therefore follows that the deferent center will encounter the equant center once every revolution, and this will occur when the center of the epicycle is in opposition to the dirigent apogee. At that time the deferent equator will coincide with the equant orb; afterwards, they will become separate. When the epicycle center is at the two apogees, the four centers will be equally spaced on the diameter passing through the centers.
[15] Turning now to Mercury's anomalies that follow from its motions, the first is its anomaly resulting from the diameter of its epicyclic orb when it is at the mean distance. It is an angle
$/ 10-11 /$ the motion of the epicycle center and the motion of the deferent] $\beta=$ the motion of the deferent] α, M.
[٪ [٪] والحركة الرابعة حركة فلك التدوير ، كل يوم ثلاثة
أجزاء وست دقائق • فيتحرك بها بالعا الكوكب على ولى وجه يكون في
القطعة البعيدة منه على التوالي . ويقع للكوكب في في هذا التدوير
 5 الرجوع . ولا يبعد الكوكب من الشدس قدامها وخلفها إلا بقدر ما ما
 / مركزه / مقارناً لها دائهاً . ونصف قطر التدوير اثنان وعشرون
 [12] [1 ومقدار خروج مركز المدير عن مركز العالم ستة أجزاء
10 بهذه الأجزاء أيضاً . وتكون النتطة التي تتشابه / المرابر حركة مركز

 15 متساوية كأنَ خطاً خرج من مركز مرك معدل ألمسير إلى مركز التدوير
 يحاذيان أيضاً هذه النتطة . ومقدار خروج مركز الحامل عن مرئ مركز

 20 عند كون مركز التدوير في مقابلة أوج المدير ، وحينئذ تنطبت
 مركز التدوير في الأوجين تكون المراكز الأربعة على القطر المار بالمراكز على أبعاد متساوية .
 25 من جهة قطر فللك تدويره عند كونه في البعد الأوسط . وهو زاورية
/ .../7] [
that occurs at the center of the World from the production of two lines from it, one to the center of the epicycle and the other to the center of the planetary body. The maximum of this anomaly will be according to the size of the epicycle radius. It will be additive with respect to the position of the epicycle center in the descending half, subtractive in the ascending half. This anomaly is called the / second / equation.
[16] The second is the apparent increase [in size] of the epicycle radius when it is at a nearer distance over what is observed at the mean distance, and its decrease when it is at a farther distance. This anomaly will combine with the first anomaly according to the amount of the latter as determined by the radius, thus either decreasing or increasing the [first anomaly]. The resulting [quantity] will then follow [the above rule for the first anomaly] in being either additive or subtractive with respect to the center. This anomaly is called the anomaly of the farthest and nearest distances.
[17] The third is the anomaly that results from the motion of the epicycle center being uniform about a point other than the center of the World and from the difference between the apparent and the mean [epicyclic] apices. These two anomalies are one and the same since the diameter of the epicycle passing through the mean apex and perigee is aligned with this very same point. This [anomaly] is an angle occurring at the center of the epicycle from the production of two lines from it, one to the center of the World and the second to the equant center. The anomaly is subtractive from the center and additive to the proper motion as long as the epicycle center is descending on the dirigent; the opposite will hold when it is ascending. This anomaly is called the equation of the center and of the proper [motion].
[18] These then are [Mercury's] anomalies.
[19] The same difficulty that was mentioned in the chapter on the moon due to the uniformity of the motion of the epicycle center being about a point different from the center of its deferent is present here as well. However, the [difficulty] that was mentioned as arising on account of the anomaly in alignment is not present because the alignment is toward the point with respect to which the uniformity of motion occurs. There [also] results from the motions of the dirigent

[^72]على مركز العالم تَحدث من خروِج خطَّين عنه : الحدهها إلى مركز التدوير ، والآخر إلى مركز جرم الكرم الكوكب . وغاية هذا الاختلاف بقدر نصف قطر التدوير . ويكون زائدأ على موضع مركز التدوير في النصف الهابط ، ناقصاً في النصف الصاعد . ويسمى هذا s الأختلاف بالتعديل / الثاني / .
[17] والثاني زيادة نصف قطر التدوير في الرؤية على ما يُرىى في البعد الأوسط إذا صار في بعد أقرب منه ، ونتصاني منا من ذلك إذا ضار في بعد أبعد / منه / . وهذا الاختلاف يلحق الاختتلاف
 10 عليه ، ويكون بعد ذلا في الزيادة على المركز أو النتصان منه نابعاً له . ويسمى هذا الاختلافلا اختلاف البعد الأبعد والألأرب .

التدوير حول نتطة غير مركز العالم وبحسب اختلاف الذروتين المرئية والوسطلى . وهذان الاختلاذان شيء واحد لكون تطر تطر التدوير . 15 المار بالذذروة والحضيض الوسطيين محاذياً لتلـلك النتطة بعينها
 أحدها إلى مركز العالم ، والثاني إلى مركز معدل المسير • ويكون
 التدوير هابطاً في المدير ، وبالعكس ما دام صاعداً • ويسسى هذا 20
[1،] فهذه اختلافاته .
[19] الإششكال المذكور في باب القصر بسبب تشابه حركة مركز
التدوير حول نتطة خارجة عن مركز حامله واردٌ بعينه ههانـا . وأما الذي ذُكر بحسب اختلاف المحاذاة فغير وارد لكون المحاذاة نحو نحو 25 النتطة: التي بحسبها تتشابه الحركة . ويلزم من كون حركتي المدير

$$
-\alpha,-\mathrm{M}=\beta[\ldots / 8 / .-\alpha,-\mathrm{M}=\beta[\ldots / 5 /
$$

and the deferent being about two different points an anomaly that was not mentioned with regard to the motion of the epicycle center, which is composed of these two.
[20] This is the illustration of the orbs of Mercury:

[Fig. T8]
النص

والحامل حول نقطتين مختلفتين اختلافٌ مُ يُذكر في حركة مركز التدوير المركبة عنهـا .
. [.

[21] Those who limit themselves to circles set forth six orbs: the parecliptic, the inclined, the deferent of the epicycle, the equant, the deferent of the deferent's center, and the epicycle. The shape of the circuit of the epicycle center in relation to the inclined orb and to the center of the World is thus:

[Fig. T9]
[22] The explication of terms is analogous to what was given for the moon. A discussion of the latitudes will be forthcoming in a separate chapter.

 الحامل ، والتدوير • وشكل مدار مركز التدوير بالتياس إلى المائل وإلى مركز العالم يكون هكذا :

. وتنسير الالقاب يكون على قياس ما هرَ في القـر
والكلام في العروض يجيء في باب مفرد .

CHAPTER NINE

On the Orbs and Longitudinal Motions of the Remaining Planets

[1] They found that the three upper planets were slower in speed than the sun. So when the sun is in conjunction with one of them, it will move ahead of it; the [planet] will then appear in the east and be at its fastest speed. It then begins to slow until it stops when the sun is near its first trine or a little beyond. Thereupon the planet will retrograde and the sun will be in opposition to it at the middle part of its retrogradation. It will then stop a second time when the sun comes near the second trine or is a little / beyond it. / The [planet] will then proceed with direct motion and go from a slower to a faster speed until the sun approaches it; the planet will then disappear in the west, and the sun will be in conjunction with it at the middle part of its direct motion. If a certain circumstance of the [planet] is compared with another that corresponds to it, it is found to differ from it. Identical circumstances occurring in exactly the same parts of the ecliptic are found to shift with the movement of the fixed stars. The circumstances resulting from the nearest distance are found to occur in parts [of the ecliptic] directly facing those in which the opposite [set of circumstances] resulting from the farthest / distance / occurs. The [planet] does not travel on the same circuit as the sun but instead is north of it in one half of the ecliptic orb, sometimes approaching and sometimes receding from it, and south of it in the other half, similarly [approaching and receding]. The nodes shift with the movement of the fixed stars. They found Venus's situation in longitude and latitude to be similar to that of Mercury except that its nearest distance was directly facing its farthest distance, just as was the case for the upper planets. Its maximum elongation ahead of or behind the sun does not exceed 47°.
[2] They therefore established three orbs and three motions for each of the four.

[^73]
الفصل التناسع

 وحركاتـها الطولية

5 فإذا قارنتها الشهس سبقتها فظهرت مشرّقة وتكون في أسرع
سيرها ، ثم تأخذ في البطء حتى إذا صارت الشدس إلى قريب من تثليثها الأول أو بَعده بتليل وقفت ، ثم رجعت وتا وتقابلها الشدس في أواسط رجوعاتها ، ثم تقف ثانياً بقرب وصول الشدس إلى تثلثيثها الثاني أو / بعده / بقليل ، ثم تستقيم وتأخذ من البطه إلى إلى 10 السرعة إلى أن تقرب الشمس منها فتخغى مغربّبة وتقارنها الشمسن في أواسط استقاماتها . وإذا قيست حال من أحوالها إلى نظير تلك التحال وُجدت مخالفة لها . والأحوال المتشابهة في أجزاء بأعيانها من فلك البروج تنتقل بانتقال الثوابت . ووُجدت الئت الأحوال التي

 شمالية عنه في نصف فللك البروج متقاربة إليه تارة والئ ومتباعدة عنـ أخرى ، وجنوبية عنه في النصف الآخر كذلك .
 وعرضاً إلا أنَّ أقرب أبعادها مقابل لأبعدها كما فيا العا 20 بعدها في الطول عن الشدس قداماً وخلفاً لا تتجاوز سبعاً وأربعين درجة [[[
[3] The first orb is the parecliptic. For Saturn, its convex surface is contiguous with the concave surface of the eighth orb, and its concave surface is contiguous with the convex surface of Jupiter's parecliptic. The concave surface of Jupiter's parecliptic is contiguous with the convex surface of Mars's parecliptic. The concave surface of Mars's parecliptic is contiguous with the convex surface of the sun's parecliptic. The convex surface of Venus's parecliptic is contiguous with the concave surface of the sun's parecliptic, while its concave sur-
face is contiguous with the convex surface of Mercury's parecliptic.
[4] The second is the eccentric deferent for the epicycle. It is located in the thickness of the parecliptic.
[5] The third is the epicycle, which is in the thickness of the deferent. The planet is embedded in the epicycle.
[6] The equator of the epicycle is not fixed in the plane of the deferent equator; rather, only its center is fixed therein. The deferent equator is inclined to the parecliptic equator, this inclination being fixed for the upper planets but not for Venus; its plane intersects the plane of the parecliptic equator, and there occurs on the parecliptic / a great circle whose center is the center of the World / called the inclined orb for the planet. It intersects the parecliptic equator in two places, which are the head and tail of that planet. The amounts of the inclinations are as we shall state in the chapter on latitudes.
[7] As for the motions, the first is the motion of the parecliptic [which moves] with the motion of the fixed stars. It manifests itself in the two [extreme] distances and / in the two nodes. /
[8] The second is the motion of the eccentric and is per day: 2 minutes for Saturn, 5 minutes for Jupiter, 31 minutes for Mars, and for Venus the same as the sun's mean motion of center. It manifests itself in the epicycle center and is therefore ascribed to it, thus being called the / epicycle's / motion of center.
[9] This motion is not uniform about the center of the World nor about the center of the eccentric but instead is uniform about a point removed from the eccentric center whose location is on the diameter passing through the two centers on the part that is toward the apogee and away from the eccentric center

[^74][r] الغلك الأول الممثل : محدبه لزُحَل يماس متعرَ الفلك

 5
[٪] والثاني خارج المركز الحامل للتدوير وهو في ثخن الممثل . [ـ] [الثالث التدوير وهو في ثخن الحامل • والكوكب مركوز
في التدوير •
[7] ومنطقة التدوير لا تثبت في سطح منطقة الحامل بل يثبت 10 مركزءّه فيه فقط . ومنطقة الحامل مائلة عن منطقة الممثل - ثابتة
 منطقة الممثل وتَحدث في المثثل / دائرةٌ عظيمة مركزهاها مركز العالم / الما
 موضعين هما الرأس والذنب لذلك الكوكب ـ ومقادير الميول على ماً 15 نوردها في باب العروض .
[أما الحركات فالأولى حركة المثل بحركة الثوابت ، وتظهر في البعدين / وفي العقدتين / .
 دقيقتان ؛ وللمشتري خدس دقائق ؛ وللمركيّيخ إحدى وثير وثلاثون 20 دقيقة ؛ وللزهرة مثل حركة مركز الشمس الوسطى • وهي تظهر
 [9] وهذه الحركة لا تتشابه حول مركز العالم ولا حول مركز المرك
 المركز ، موضعها على القطر المارَ بالمركزين عمّا يلي الأوج من مركز

at a distance equal to the eccentricity. This [eccentricity] is: $(3+1 / 4+1 / 6)$ parts for Saturn, $23 / 4$ parts for Jupiter, 6 parts for Mars, and for Venus approximately one-half the sun's eccentricity. All of these [values], which are based on the deferent radius for each planet being 60 parts, are known by observation. Twice this amount is the distance of that point from the center of the World. This point is called the equant center, and one may imagine a circle the size of the deferent equator with this point as center and it is called the equant orb.
[10] When the motion of the apogee is added to this [second] motion, there results the mean motion of the planet.
[11] The third motion is that of the epicycle orb. For the upper planets, it is equal to the excess of the mean motion of the sun over the mean motion of each one of the [planets]; for Venus it is 37 minutes per day. In the upper part of the epicycles, it is sequential. The starting point [for this motion] is the mean apex, which is aligned with the equant center as was the case for Mercury.
[12] Because the ratio of the two motions is a ratio that causes retrogradation in the epicycles, these planets will become retrograde in the segment nearest the Earth. The upper planets at the mean apices of their epicycles are always [aligned] with the mean sun. And on account of their motions on the epicycles being in the amount of the excess [of the motion] of the mean sun over their mean [motions], their distances along the epicycles from the apices are in the amount of the mean sun's distances along their orbs surrounding the Earth from the centers of their epicycles. Therefore the mean sun will be in opposition to the [planets] when they are at their mean [epicyclic] perigees during the middle of their periods of retrogradation; they will return to conjunction with [the mean sun] at the apices. As for Venus, the center of its epicycle is permanently in conjunction with the sun's center. For that reason, it will combust at the apex of its epicycle half-way through its period of direct motion and at its perigee half-way through its period of retrogradation. It will not move away from the [sun] beyond what is brought about by its epicycle radius.

 وللمرَّيخ ستة أجزاء ؛ وللزهرة قريب من نصف ما بـين مركي

 [1.1] وإذا أضيفت حركةُ الأوج إلى هذه الحركة حصلت حركةُ . 10 وسط الكوكب
[11] [1الثالثة حركة فلك التدوير ، وهي للعلوية بقدر فضل ولمل ولم حركة وسط الشمس على وسط كل واحد منها ، وللزهرة كل الع يوم سبع وثلاثون دقيقة . وهي تكون في أعالي التداوير إلى التوالي ومبادئها الذروة الوسطى وهي محاذية لمركز معدل المسير كـا فيا في . 15 عطارد

تصير هذه الكواكب راجعة في القطعة القريبة من الأرض • والكواكب

 20 تككن أبعادها في ألتداوير غن الذُرى بقدر أبعار أبعاد وسط الشمس عن
 الشمس وهي في حضيضاتها الوسطى في أواسط أيـام رجوعانـاتها ويعود إلى مقارنتها في الذرى . وأما الزهرة فمركز تدويرها الما مقارن
 25 انتصاف مدة استقامتها وفي حضيضه عند أنتصاف مدن الم ولا تبعد عنها فوق ما يقتضيه نصف قطر تدويرها .
[13] The size of the epicycle radius, by observation, is: $61 / 2$ parts for Saturn, $111 / 2$ parts for Jupiter, $391 / 2$ parts for Mars, and $431 / 6$ parts for Venus, which are based on the deferent radius being 60 .
[14] It should be noted that the epicycles for Mars and Venus are very much larger than the remaining epicycles, and for this reason the difference between the sizes of their bodies at apex and perigee is greater than is the case for the remaining planets. It will be shown that the sphere of the epicycle of Mars is much larger than the parecliptic sphere of the sun including what is inside it. For this reason, they sometimes ask: how is it that Mars when it is at opposition to the sun and six zodiacal signs away from it is nearer to the [sun] than when it is at combust and in conjunction with it at the same minute [of arc]? This is so / because Mars / at combust is at the apex of its epicycle; thus the distance between them will be the diameter of its epicycle plus whatever occurs by way of the complementary bodies of their orbs. At opposition, Mars is at the perigee of its epicycle; thus the distance between them will be the diameter of the sun's parecliptic plus whatever occurs by way of the complementary bodies. This is another instance of something that is found to be strange in this science.
[15] As for the anomalies that result from these motions, they are three in number and are exactly the same as those for Mercury. The above-mentioned difficulty, which is due to the motion being uniform about a point other than the center of its equator but without there being the [difficulty] due to the alignment [of the epicycle diameter], occurs here just as it did for [Mercury].
$/ 11 /$ because Mars] $\beta=$ because it] α, M.
[r!] ومقدار نصف قطر التدوير بالرصد : لزحل ستة أجزاء

وثلاثون جزءا ونصفت ؛ وللزهرة ثلاثة وأربعون جزءاً وسدس ،
 [18] وآعلم أنَ تدويري المرَّخ والزهرة أعظم جداً من سائر التدويرات ، ولذلك يكون الاخختلاف بين جرميهما بالصنر والصر والكبر فير في الذروة والحضيض أكثر مها يكون في سائر الكواكب . . وسيتّضح

 10 بعد ستة بروج منها أقرب إليها منه في الاحتراق مجتمال مالمعاً معها فيا في دقيقة واحدة ؟ وإنما يكون ذلك / لكون المريخ / الكـي ذروة تدويره فيكون البعد بينهما قطر تدويره مع مـا يا يتّفت من
 بينهما قطر ممثل الشـس مع ما يتَّفت من المتمَمات . وهذا أيضا مها يُستغرب في هذا العلم . 15
[10] وأما" الاختلافات اللازمة لهذه الحركات فثّلاثة وهي كما مرّ في عطارد بعينه . والإشكال المذكور بسبب كون الحركة متشا متشابهة حول نتطة غير مركز منطقتها دون الذي بسبب المحاذاة واردٌ كما مرّ فيه .
$$
\text { . } \alpha \text {, M [لكونه / }=\beta \text { [.. /11/ }
$$
[16] This is the illustration of the orbs for each of the four planets:

[Fig. T10]
[17] Those who limit themselves to circles set forth five orbs: the parecliptic, the inclined, the deferent, the equant, and the epicycle. The explication of terms is analogous to what was given previously.
[18] This then is what the practitioners of this science have said concerning the orbs of the planets. The total number of solid orbs that they have established for the seven planets is 22 ; for those who limit themselves to circles, it is 32 .
[1]] وهذه صورة أفلاك كل كوكب من الأربعة :

[IV] والمقتصرون على الدوائر يوردون خمسة من الأفلالك :
الممثل ، والمائل ، والحامل ، ومعدل المسبر ، والتدوير • وتفسير
الألقاب يكون على قياس ما مرّ •
[1^] فهذا ما ذكر أهل هذا العلم في أفلاك الكواكب . الماك وجميع
 وعند المقتصرين على الدوائر اثنان وثلاثون

CHAPTER TEN

On the Latitudes of the Five Planets

[1] The maximum inclination of the inclined [orb] from the parecliptic is: $21 / 2^{\circ}$ for Saturn, $11 / 2^{\circ}$ for Jupiter, 1° for Mars, $1 / 6^{\circ}$ for Venus, and $(1 / 2+1 / 4)^{\circ}$ for Mercury. For the upper planets, this [inclination] is fixed in both directions, while in the case of the two lower planets it is not fixed. Rather, for Venus it is always northerly, whereas it is always southerly for Mercury. This is so because of the motion of the inclined equator toward the parecliptic equator; it will approach the [parecliptic] until it coincides with it whereupon it will separate from it in the other direction until it reaches its maximum distance from it. Then the [inclined equator] will again approach the [parecliptic] until it coincides with it once more. It will then separate from it until it reaches its maximum distance in the original direction. The two halves will exchange directions after each coinciding, the northern becoming southern and vice versa. This process is completed in each solar year.
[2] The epicycle centers of Venus and Mercury will always be at their heads 15 / or tails / at the time of this coinciding. Thus if Venus's epicycle center is at its head and Mercury's epicycle center is at its tail and then they depart from them, the inclined [equator] will separate from the parecliptic / so that / Venus's center will come to be in the northern half and Mercury's center will be in the southern half. The inclination will increase little by little until the [centers] reach the midpoint between the two nodes whereupon the inclination attains its maximum. The two centers will then head toward the other node as the two inclinations begin to decrease until Venus's center reaches the tail and Mercury's center reaches the head. The inclined [equator] will thereupon coincide once again with the parecliptic. It will then separate from it after the [centers] depart from the nodes so that the half that had been northern becomes southern and vice versa; Venus comes to be in the half that had been southern but which, upon the arrival of its center there, is now northern,
$/ 14-15 /$ or tails] $\beta=$ and tails] $\alpha, \mathrm{M} . / 17 /$ so that $\beta=$ and $], \mathrm{M}$.

الفصل العاشر
 تِ2 عـروض الكواكب الخمسة

 وللمشتري جزء ونصف ، وللهريّيخ جزء واحد ، ولمئ وللزهرة سدس
 الجهتين ، وللسفليين غير ثابتة بل إنما تكون للزهرة أبداً شمالية
 المائل نحو منطتة الممثل ، فتقرب منها حتى تنى تنتبق عليها ، ثمر تفارقها في الجهة الأخرى إلى أن تبعد عنها غاية بعدها ، الما ، ثم ترجع 10 متقاربة إليها إلى أن تنطبق عليها ثانياً ، ثم تغأرقها إلى أن تبعد عنها غاية البعد في الجهة الأولى • ويتبادل النصغان النـان في الجهتين
 الأحوال في كل سنة شمسية .
[[[ومركزا تدويري الزهرة وعطارد يكونان مع رأسيهها / أو
 رأسها ومركز تدوير عطارد مـع ذنبه ثم فارقاهما
 في النصف الجنوبي • ويزداد الميلّ شيئاً بعد شيء إلى أن ينتهيا إلى منتصف ما بيّن العقدتين فيبلغ الميل غايته . 20 المركزان نحو العقدة الأخرى ويأخذ الميلان في التناقص إلى الـي أن
 المائل" ثانياً على الممثل . ثم يفارقه بعد مفارقتهما العقدة فيصير
 النصف الذي كان جنوبياً وصار عند وصول مركزها إليه شمالياً ،

$$
\text { / } \alpha \text {, M [وذ وذنبيهما }
$$

and Mercury comes to be in the half that had been northern but which, upon the arrival of its center there, is now southern. They will then proceed in these halves as the inclination increases until they reach the midpoint between the nodes whereupon the inclination reaches its maximum. They will thereupon head toward the original node as the inclination begins to decrease until the 5 [centers] reach the starting point from which they departed. The result of the above is that Venus's epicycle center will always be either to the north or else on the [parecliptic] equator at the node, and Mercury's epicycle center will always be either to the south or else on the [parecliptic] equator at the node. These two motions require two movers, which have not been referred to by [our] predecessors.
[3] Saturn's head is 140° before its apogee / while its tail is 40° past its apogee. / Jupiter's head is 70° before its apogee / while its tail is 110° past its apogee. / The heads of Mars and Venus are one-quarter revolution before their apogees. Mercury's head is one-quarter revolution past its apogee. In the case of the two lower planets, the head and the tail are indistinguishable except by assumption. Their divergent [values] for the positions of the apogees and nodes, with the stipulation of date, are given in the $z \bar{\jmath} j$ es.
[4] As for the epicyclic equators, their diameters that pass through the apices and [epicyclic] perigees are not fixed in the planes of their inclined orbs, and they will not be in them except when, for the upper planets, the epicycle centers are at the nodes and when, for the lower planets, they are at the two distances, ways incline in the direction of the ecliptic equator, while their [epicyclic] perigees will incline in the opposite direction. They will reach their maximum [inclinations] at the midpoint between the nodes. At that point, the angle of intersection of the plane of the epicyclic equator and the plane of the inclined equator is: $4 \frac{1}{2}{ }^{\circ}$ for Saturn, $2 \frac{1}{2}$ ㅇor Jupiter, and $2 \frac{1}{4^{\circ}}$ for Mars. Thus the inclination of Saturn when it is at its apex at the northern limit will be seen to be 26^{\prime}
$/ 10 /$ while its tail is 40° past its apogee] $\beta=-\alpha,-\mathrm{M} . / 11-12 /$ while its tail is 110° past its apogee] $\beta=-\alpha,-\mathrm{M}$.

وعطارد يصير إلى النصف الذي كان شمالياً وصار عند وصول
 إلى منتصف ما بين العقدتين فيبلغ الميل غايته . ثم يتوجهان إلى المي العقدة الأولى ويأخذ الميل في التناقص إلى أن يبلغا المبدأ المنا الذي
 الشدال وإما على المنطقة مع العقدة ، وكون مركز تدورير عطارد

 10 / وذنب زحل متأخر عن أوجه بأربعين درجة / / أورج

 والرأس والذنب في السغليين لا يتمايزان إلا بالغار 15 الأوجات والجوزهرات مذكورة في الزيجات مع قيد التواريخ على اختلافهم فيها
[٪] وأما مناطق التداوير فأقطارها المارّة بالذُرى والحضيضات
لا تثبت في سطوح أفلاكها المائلة ولا تكون فيها إلا علا

 منطقة البروج وحضيضاتُها إلى خلاف تلكُ الجهة ، وتنتهي إلى غاياتها في منتصف ما بين العقدتين • وزاوية تقاطُع سطح مُنطِّة
 ونصف ، وللمشتري جزءان ونصف ، وللمرّيخ جزءان الم وربع • ويُرى لـذلك ميـل زحـل في ذروتـه في غاية البعـد الشــالي ستـأ وعشرين

$$
\text { . } \alpha \text { [} \mathrm{C}=\beta, \mathrm{M}[\ldots / 19 / .-\alpha,-\mathrm{M}=\beta[\ldots / 11-12 / .-\alpha,-\mathrm{M}=\beta[\ldots / 10 /
$$

and at the southern 28^{\prime}; when it is at its [epicyclic] perigee at the northern limit, the inclination will be 33^{\prime} and at the southern 35^{\prime}. The inclination of Jupiter when it is at its apex at the northern limit will be 24^{\prime} and at the southern 25^{\prime}; when it is at its [epicyclic] perigee at the northern limit, the inclination will be 35^{\prime} and at the southern 38^{\prime}. The inclination of Mars when it is at its apex at the northern limit will be 22^{\prime} and at the southern 27^{\prime}; when it is at its [epicyclic] perigee at the northern limit, the inclination will be $3^{\circ} 22^{\prime}$ and at the southern $61 / 10^{\circ}$. As for the two lower planets: as long as Venus's center is descending on the apogee orb, its apex will incline toward the north and its [epicyclic] perigee toward the south, and in the other half the opposite will hold. As for Mercury, as long as its center is descending its apex will incline toward the south and its perigee toward the north, and in the other half the opposite will hold. The angle of intersection of the two planes upon reaching the maximum is $2 \frac{1}{2}{ }^{\circ}$ for Venus and $61 / 4^{\circ}$ for Mercury. Thus the inclination of Venus's apex at both maximum distances will be seen to be $1^{\circ} 2^{\prime}$ and the inclination of its [epicyclic] perigee will be $6^{\circ} 23^{\prime}$. The inclination of Mercury's apex at both maximum distances will be $13 / 4^{\circ}$ and the inclination of its [epicyclic] perigee will be $4^{\circ} 4^{\prime}$. This latter latitude is known as the deviation [mayl]. The upper planets have only these two latitudes.
[5] As for the lower planets, the diameter that passes through the two mean distances, which intersects the first diameter at right angles, is not fixed in the planes of the inclined orbs nor is it in the parecliptic planes except when the centers of their epicycles are at one of the nodes. After the [centers] depart from the head, the posterior endpoint of that diameter, known as the evening, slants toward the north, while the anterior endpoint, known as the morning, slants toward the south until the two centers reach the midpoint between the head and the tail. At that point is the apogee for Venus and the point opposite [the apogee] for Mercury; the slants will thereupon reach the maximum. The centers will then cross the midpoint and the slants will decrease

دقيقة وفي الجنوبي ثمانياً وعشرين دقيقة ، وفي حضيضه في غاية البعد الشهالي ثلاثاً وثلاثين دقيقت وفي الجنوبي خمساً وثلاثين
 وعشرين دقيقة وفي الجنوبي خمساً وعشرين دقيقة ، وفي حضيضه 5 في غاية البعد الشمالي خمساً وثلاثين دقيتة وفي الجنوبي ثمانياً وثلاثين دقيقة ؛ وميل المرَيخ في ذروته في غاية البعد الشمالي اثنتين وعشرين دقيقة وفي الجنوبي سبعاً وعشرين دقيقة ، وفي حضيضه في غاية البعد الشمالي ثلاثة أجزاء واثنتين وعشرين دقيقت وفي
 10 مركزها في فلك الأوج هابطاً مالت ذروتها إلى الشمال وحضيضها إلى إلى الجنوب وفي النصف الآخر بالعكس ، وعطارد ما دام مركزه هابطاً مالت ذروته إلى الجنوب وحضيضه إلى الشمال وفي النصف الآلخر بالعكس • وزاوية تقاطُع السطحين عند المنتهي إلى الغاية للزهرة

 البعديـن جزءءا وثلاثة أرباع وميل حضيضه أربعـة أجزاء وأر وأربع دقائق . وهذا العرض يُعرف بالميل . وليس للعلوية غير هذين العرضين • وهدا العرض يعرف بالميل • وليس للعلويه عير هدين 20 للتطر الأول على قوائم لا يثبت في سطوح الأفلاك المائلة ولا يكون في

 والذنب ،، وهناك يكـون الأوج لـلـزهـرة ومقابـلتـه لــطـارد فينتهي الانحـرافـان إلى الـــايـ . ثـم يجاوز المركـران المنتصف وينتـتص
until they disappear when the [centers] arrive at the tail. After leaving the tail; the reverse will occur, namely the evening endpoint will slant toward the south, while the morning endpoint slants toward the north until the [centers] complete their revolutions. The size of the angle of intersection of the plane of the epicycle with a plane passing through its center and parallel to the ecliptic equator is, at the maximum slant, $31 / 2^{\circ}$ for Venus and 7° for Mercury. Therefore, the slant of Venus, due to this [angle], will appear at the apogee and perigee to be 212° in either direction; the slant of Mercury at the apogee will be $21_{4}{ }^{\circ}$ in either direction and at the perigee 234°. This latitude is known as the slant [inhirāf], the slope [wirāb], the twist [iltiwā'], and the winding [iltifăf].
[6] Each of these motions requires the establishment of a mover, which was not referred to by the Ancients. We shall state [below] what has reached us concerning this matter from the teachings of recent [astronomers], if God / Most Exalted / so wills. The quantities given in this chapter are derived from observation and calculation based on what is stated in the Almagest.

CHAPTER ELEVEN

An Indication of the Solution-of That Which Is

 Amenable to Solution-of the Difficulties Referred to Previously That Arise from the Aforementioned Motions of the Planets[1] As for the first difficulty, which was cited [in connection] with the configuration of the moon's orbs, no statement concerning it has reached me from my predecessors. In this matter, I myself have devised what I shall now present.
[2] Let us set forth for that [purpose] a lemma, which is as follows: if two coplanar circles, the diameter of one of which is equal to half the diameter of the other, are taken to be internally tangent at a point, and if a point is taken on the smaller circle-and let it be at the point of tangency-and if the two circles move with simple motions

[^75]الانحرافان إلى أن ينعدما عند وصولهما إلى الذنب . . وبعد منارتتهما الذنب بالعكس من ذللُ ، أعني ينحرف المسائي إلى الجنوب والصباحي إلى الشمال إلى أن تتم دورتهما . الزاوية التي عليها يُقاطع سطحُ التدوير سطحا يمرِّ بمركزه ويورازي s منطتةً البروج إذا كان الانحرافان في الغاية ثلاثةُ أجراء ونصفت
للزهرة وسبعةً أجزاء لعطارد . فيُرِى بحسبها انحراف الزهرة في الجهتين عند' الأوج والحضيض جزأين ونصناً ، وانحراف عطارد في الجهتين عند الأوج جزأين وربعا وعند الحضيض جزأين وثنا وثلاثة
 [7] وكل واحد من هذه الحركات محوج إلى إثبات مُحرّكُ لها لم يذكره القدماء ، وسنذكر ما انتهى إلينا من أقوال المأتخرين فيها إن شاء الله / تعالى / . والمتادير المذكورة في هذا الفـيل مستخرجة من الرصد والحساب على ما ذكر في المجسطي .

> الفصل الحاكي عشر
> هِ الإشارة إلى حلّ ما ينحلّ من
> الاششكالات الواردةٌ علي حركات الكواكبَ المذكورة
> التي سبقت الإشارة إليهـا

15
[1] أما الإشكال الأول المذكور في هيئة أفلاك التهر فلم يصل
 20 سطح واحد قطرُ إحداهما مساور لنّصف قطر /الأخرى ، ، ونُرْتانتا
 الصغيرة ولنكن عند نتطة التماسز ، ثم تحركت الدائرنان حركتين
in opposite directions in such a way that the motion of the smaller [circle] is twice that of the larger so the smaller completes two rotations for each rotation of the larger, then that point will be seen to move on the diameter of the large circle that initially passes through the point of tangency, oscillating between its endpoints. Let us illustrate this with four drawings so that one may conceive 5 from them how this [may occur], / and they are these: /

[Fig. T11]

بسيطتين متخالفتين في الجهة على أن تكون حركة الصغيرة ضعف ، حركة الكبيرة فتتم للصغيرة دورتان مع دورة واحـن المدة للكبيرة رُئيت تلك النتطة متحركة على قطر الدائرة الكبيرة المارَ بنعطة التماسَ أولاً مترددة بين طرفيه . . ولنُصورَ لها صوراً أربعة يتوهم منها كيف ذلك ، / وهي هذه / :

$$
.-\alpha,-M=\beta[\ldots / 5 /
$$

[Fig. T12]
[3] In order to prove that the point does not deviate at all from the line (even though it was not our intention to provide geometrical proofs in this compendium), let the larger be circle $A B G$, its diameter $A B$, its center D, and the smaller be circle GED, its diameter GD, its center Z ; the given point is E . Initial- dianeta GD coincide with line AD there with the two [points]. Then let circle GED move in the direction GE and let point E be moved along due to its motion until it has described, let us say, arc GE. And let circle AGB move [concurrently] in the direction AG with half the former's motion, and let the endpoint of diameter DG be moved along until it has described arc AG, which will then be equal [lit., similar] to half of arc GE. We connect E to Z and E to D. Then angle GZE is twice angle GDA on account of the two motions, and it is also twice this [angle] because it is an exterior [angle] of triangle EZD and equal to the two interior [angles] ZED and ZDE, which are equal because the two legs ZE and ZD are equal. Thus the two angles GDE and GDA are equal, and line DE coincides with line DA. Therefore point E is on diameter BA, not deviating from it, and the same will be the case in all other positions. Hence point E will continually oscillate between the endpoints of line AB and will not deviate from it.

[٪] ولبيان أنَ النقطة لا تزول عن الخط أصلاً - وإن لم نكن
 دائرةً ابج وقطرها ابَ ومركزها وقطرها ججد 5 لتتحرك دائرة ج
 نصف تلك الحركة ولينتقل طرف قطر دج
فهي شبيهة بنصف قوس جـه . . ونصل هز 10 ضعفـ زاوية ج د ا لاجل الحركتين ، وهي أيضاً ضعنها لكونها
خارجة من مثلث 0زد
 ده منطبق على خط وكذلك في سائر الأوضاع • فإذن نقطة هَ مترددة دائـاً بين طرفي 15 خط آب غير زائلة عنه .
[4] If we wish, we may make the two circles the [inner] equators of two solid orbs. / What must be intended by the small circle is the circuit of the epicycle center and by the large circle a circle whose radius measures the same as the diameter of the small circle. / Then if we replace the point with a given sphere and we wish the diameter of the given sphere to coincide always with the diameter of the large sphere and not deviate from its position, then we assume another sphere enclosing the given one and moving with exactly the same motion and direction as the large [sphere] so as to restore the diameter to its position in the amount by which the excess of the motion of the small [sphere] over the large [sphere] causes it to deviate. / It is [also] stipulated for it that the diameter of the small circle be half the diameter of the large circle and that it always pass through its center. / Thereupon the given sphere is found to move upon a straight line that coincides with its diameter, oscillating between its two endpoints and not deviating from that coincidence.
[5] When this lemma is established, let us then place the moon's epicycle in the position of the given sphere. / Its center is the point E and its circumference has the same dimension as the moon's epicycle. / Let us assume another sphere of any appropriate thickness that encloses it and maintains its position (it should not be large lest it occupy too much space), and two [other] spheres, one of which, the deferent for these two, takes the place of the small sphere and its diameter is the same size as the eccentricity, and the other takes the place of the large [sphere] and contains all the others / and its center is that of a circle that the epicycle center touches at its farthest and nearest distances. / Its diameter is / then / twice the eccentricity. Let us then assume that the large [sphere] is within the thickness of a concentric deferent that is enclosed by the inclined [orb] in such a way that the enclosing [orb] of the epicycle, which is inside it, is tangent to the convex surface of the deferent / at the [epicyclic] apex. / Let the diameter of the deferent that passes through the point of tangency be considered fixed.
/2-4/ What must be intended...small circle] $\beta=$ What must be intended by the [inner] equator of the small one is the circuit of the epicycle center within it and by the equator of the large one a circle whose radius measures the same as the diameter of the equator of the small one] $\alpha, \mathrm{M} . / 9-10 /$ It is [also] stipulated...through its center] $\beta=\mathrm{It}$ is [also] stipulated for it that the diameter of the equator of the small one be half the diameter of the equator of the large one and that it always pass through its center] $\alpha, \mathrm{M} . / 14-15 /$ Its center is the point E...moon's epicycle] $\beta=-\alpha,-$ M. $/ 19-20 /$ and its center...nearest distances] $\beta=$ $-\alpha,-$ M. $/ 20 /$ then] $\beta=-\alpha,-$ M. $/ 22 /$ at the [epicyclic] apex] $\beta=$ near the [epicyclic] apex] α, M.
[ع] وإن أردنا جعلنا الدائرتين منطقتي فلكين مجسّمين ،
 / التدوير / ومن / الدائرة / الكبيرة دائرة نصف قطرة المرها بـرا بقدر قطر / الدائرة / الصغيرة . ثم إن جعلنا بدل النتطة كرة معروروة ،
5 وأردنا أن يكون قطر الكرة المفروضة دائماً منطبقاً على قطر الكرة
 بالمفروضة متحركة مثل حركة الكبيرة بعينها وفي جهتها لترد الترا إلى وضعه بتدر ما يزيله فضل حركـ المركة الصغيرة على الكبيرة ويشترط فيها أن يكون قطر / الدائرة / الصغيرة نصف قطر
 المفروضة متحركة على خط مستقيم منطبق على قطرها بين / طرفيه / غير زائلة عن ذلك الانطباق
[ه] وإذا تقررت هذه المقدمة فلنُتِّم تدوير القـر مكان الـنـر الكرة المفروضة / مركزه نتطة هة ومحيطه بالبعد الذي 15 القهر / . ولنفرض كرة أخرى محيطة به حافظة لوضعه بأي قدر

 بقدر ما بين المركزين والأخرى بـر بـل الكبيرة متضدنـة للجميـي
 20 والأقرب فيكون / قطرها بتدر ضعف ما ما بين "المركزين . لنفرض الكبيرة في ثخن حامل موافق المركز يحيط به المائل بحيث
 الذروة . وليتوهم قطر الحامل ماراً بنتطة التماسَ ثابتاً .

$$
\begin{aligned}
& =\beta[\ldots / 10 / . \alpha, \mathrm{M}[\text { منطقة }=\beta[\ldots / 9 / . \alpha, \mathrm{M}[\text { منطقة }=\beta[\ldots / 4 / . \alpha, \mathrm{M} \text { / }
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } \alpha, \mathrm{M}[\text { [} \mathrm{C} \text { = } \beta \text { [.../22/ . }-\alpha,-\mathrm{M}=\beta[\ldots / 19-20 /
\end{aligned}
$$

[6] We now assume their motion: the epicycle with its own proper motion, the enclosing and large [spheres] with motions [such that] their rotations are completed with / a rotation / of the deferent, and the small sphere with a motion [such that] its rotation is completed with a half rotation of the deferent. We assume the deferent to move with the motion of the moon's center sequentially 5 and the inclined [orb] with the motion of the moon's apogee countersequentially as is the case with the parecliptic.
[7] If this be the case, the diameter of the epicycle will descend as it adheres to the diameter of the large sphere. The diameter of the large [sphere] departs from its coincidence with the diameter of the deferent that passes through the tangent point cited above; its endpoint, however, will always be tangent to the circumference of the deferent, and the apex of the epicycle will be adjacent to epicycle center will then undergo a motion on a circuit resembling the circumference of a circle. Thus if the deferent moves through half a rotation, the epicycle will reach the other endpoint of the large sphere's diameter, which will once more coincide with the diameter of the deferent passing through the tangent point, and the epicycle's enclosing [sphere] touches the concave [surface] of the deferent near the epicyclic perigee. The epicycle will then be at 15 its nearest distance from the center of the World, and that diameter will pass through the farthest and nearest distances. As the orbs continue to move, the epicycle will begin to ascend on the above diameter and move away from the center of the World until it reaches the farthest distance, which is the starting point that it originally departed from. The epicycle [thus] completes its circuit, which takes the place of the eccentric insofar as the inclined [orb] touches one of its points, namely the farthest distance from the center of the World, and [another] point, namely the nearest distance from it, is directly opposite from it. The difference between the farthest and nearest distances is in the amount of twice the eccentricity. Despite this, the motion [of the epicycle center]
$/ 2 / \mathrm{a}$ rotation $] \beta, \mathrm{M}=\mathrm{a}$ completion of a rotation] α.
[ـ] ثم نفرضها متحركة : أما التدوير فبحركته الخاصة به ،
والمحيطة والكبيرة بحركتين يتم دورهما مع / دورة / دورة / للحامل ، والصغيرة بحركة يتم دورها مع نصف دور دورة للحامل الحامل متحركاً بحركة هركز القهر إلى التوالي ، والمائل بحركة أورج 5 القمر إلى خلافه كالممثل .
وإذا كان كذلك نزل قطر التدوير ملازماً لقطر الكرة [لمرة الكبيرة ، وزال قطر الكبيرة عن انطباق قطر الحامل المارن التماسَ المذكورة لكن يكون طرفه مماساً لمحيط الحامل أبدأ ، وتلي

 حتى إذا تحرك الحامل نصف دورة ورة وصل التدر التدوير إلى الطرف الآخر من قطر الكرة الكبيرة ، وانطبق قطرها ثانياً على قطر
 بقرب من حضيض التدوير ؛ فكان التدان التدوير في البحد الأقرب من من 15 مركز العالم وكان ذلك القطر ماراً بالبعدين الأبعد والأقرب . الـد
 والتباعد عن مركز العالم إلى أن ينتّهي إلى البعد الأبعد وهو المو المبدأ الذي فارقه أولاً . ويتم للتدوير مداره وهو يتقوم متام الخارج المركز
 20 وتتابلها نتطة هي البعد الأقرب منه ، ويكون الفضل بين المن البعد والتـرب بقـدر ضعف ما بين المركزيـن . وتكـون مع ذلك حـركتُ

$$
\text { /2/2 دورة[[}] \text { = تمام دورة] }
$$

about the center of the World is uniform. As was the case previously, the apogee will meet it due to the motion of the inclined [orb]. Its illustration is thus:

[Fig. T13]
[8] This then is my proposal concerning this matter. It is, however, brought about by three additional orbs over and above what has been stated before. The concentric deferent here takes the place of the eccentric orb that was used previously.

حُول مركز العالم متشابهة . ويستقبله الأوجُ بحركة المائل كبا كان أولاً . وصورته هكذا :

[^] فهذا ما عندي فيه . وإنها يتم ذلكُ بثلاثة أفلالك زائدة على ما قيل ، ويكون الحامل الموافق المركز بدل الفلـلك الخارج - 5

[Fig. T14]
[9] We have stated that the circuit of the epicycle center resembles a circle, but we did not say that it was a circle since it is not a true circle. The proof of this is [as follows]: at quadrature to the apogee, the epicycle will have descended along one-half of the line upon which it oscillates, which amount is equal to the eccentricity. At that point the distance between the center of the World and the center of the epicycle will come to half the distance between the farthest and nearest distances. But for the circuit to be a circle, it would be necessary for the [distance] from the midpoint between the farthest and nearest distances to the epicycle center to be that amount. Thus the aforementioned circuit

[9] وإنما قلنا إنَ مدار مركز التدوير شبيه بدائرة ولمُ نُّل إنه دائرة لأنه لا يكون دائرة حقيقية : بيان ذلبٌ أنَّ التدوير ينزل
 بين المركزين - ويبقى البعد بين مركز العالِّ ومركز التدوير
 الواجب أن يكون من منتصف ما بين البعد الأبعد والأثرب إلىا إلى مركز التدوير ذلكُ القدر حتى يكون المدار دائرة . فإذن المدار
is not a circle, and / the [distance] between the two mean distances on it is longer than the [distance] between the other two distances, /i.e. the farthest and the nearest. For this reason this method is not completely equivalent to the model they use; however, the difference between the calculations resulting from mum difference will occur at the midpoints between the quarter marks (i.e. conjunction, opposition, and quadratures). At those [points] this will be an imperceptible amount in the moon's true position.
[10] This same method may also be postulated for the upper planets and for Venus. We thus make the / diameter of the small circle / equal to the distance twice that [amount]. We may then assume an eccentric orb in the thickness of the parecliptic whose center is that of the equant. We also assume the large sphere, along with what is in it, to be in the thickness of this [latter] orb so that the motion about the equant center is uniform. The distances of the epicycle center from the center of the World are the same as resulted from the [Ptolemaic] fin stances of these planets. The difficulty concerning them may then be resolved by the addition of three spheres for each one of them, with the solid equant orb replacing the eccentric deferent of the previous [model].
[11] As for Mercury, it has not yet been possible for me to conceive how it should be done. For it is difficult to conceive what could cause the motion to be uniform about a point whereby the moved object in its motion toward and away from it is composed of multiple motions. If God Most High should enable me to accomplish this, I will append it / to that place, / God willing.
[12] Concerning the moon's point of alignment, one of the practitioners of this science has said: Another orb for the moon must be established with this point as its center so that
$/ 1-2 /$ the [distance]...the other two distances] $\alpha, \beta=$ the [distance] between the two mean distances on it and the midpoint of the other two distances is longer than half the [distance] between the other two distances] M. /9/ diameter of the small circle] $\beta=$ diameter of the equator of the small sphere] α, M. $/ 10 /$ diameter of the large circle] $\beta=$ diameter of the equator of the large sphere] α, M. $/ 21 /$ to that place] $\beta=$ to this place] α, M.

المذكور ليس بدائرة ، / وما بين البعدين الأوسطين فيه أطول مما بين البعدين الآخرين / ، أعني الأبعد والأقرب . ولهئا لألها السبب لا يكون هذا الوجه مطابقاً للأصل ألذي يعملون عليه مطابقة تامة لكنَ

 وغايته تكون في منتصف الأرباع ، أعني الاجتماع والاستقبال والتربيعين ، وذلكُ غير محسوس في تنويم التقمر هناك . الـاك [. [1 وهذا الوجه بعينه يمكن أن يُنرض في الكير الكواكب العلوية
والزهرة . فنجعل قطر / الدائرة / الصغيرة بقدر ما با بين مركزي 10 الحامل ومعدل المسير ، وقطر / الدائرة / الكبيرة ضعف ذلكُ الـُ .ثم نغرض في ثخن الممثل فلكاً خارج المركز مبركزها [الما
 تكون الحركة حول مركز معدل المسير متشابهة . المرا وأبعاد مركز
 15 يختل به شيء من أحوال تلك الكواكب . فينحل الإشكال فيها
 المجسّم بدل الخارج المركز الحامل المذكور

 20 المتحرك في القرب إليها والبعد عنها تركباً كثيراً متعذرِ • وإن يسرّ اله تعالى ذلك ألحقتُه / بذلك / الموضع إن شاء الله تعالى .
 العلم : ينبني أن يُّبْبَت فللُّ آخر للقمر تكون النتطة مركزه ليحاذي
/الآ2/
 . α, M $[$ [الكرة
the diameter of the epicycle passing through the mean apex and perigee will, by means of that orb's motion, stay aligned with its center. He did not, however, show how this motion might occur so as not to disturb the existing motions of the moon.
[13] My own opinion is that just as one may imagine the diameters passing through the apices and the perigees of the epicycles of the five planets to have latitudinal inclinations by which the planes of the equators of their epicycles are displaced from the planes which they were in at the time they had no latitude, one may likewise conceive that diameter of the equator of the lunar epicycle to have a longitudinal inclination. The equator would not, however, become displaced by it from the plane that it is in but instead its parts would undergo a displacement as if they were twisting upon themselves. So as to make this completely clear, let us imagine a line passing through the point of alignment and perpendicular to the diameter passing through the moon's centers and the point of alignment. This [line] will thus divide the deferent into two segments, one of which, the larger, is bisected by the apogee, and the second, the smaller, is bisected by the perigee. When the aforementioned diameter of the epicycle has departed from the diameter passing through the centers, after having coincided with it on the side of the apogee, its apex endpoint will incline in the countersequence [of the signs], while the perigee endpoint will incline in the sequence [of the signs]. This inclination will continue to increase until this diameter coincides with the perpendicular passing through the point of alignment. At that point its inclination will be at its maximum. It will thereafter begin to decrease until it disappears when this [diameter of the epicycle] coincides with the diameter passing through the centers on the side of the perigee. When it departs from this [diameter], its apex endpoint will then incline in the sequence [of the signs], whereas its perigee endpoint will incline in the counter-sequence [of the signs] until the [diameter] once more coincides with the perpendicular passing through the point of alignment. At this point its inclination will [again] be at its maximum. It will then begin to decrease until it disappears when the [diameter] reaches the starting point from which it had departed originally, viz. when it coincides with the diameter passing through the centers on the side of the apogee. The apex endpoint of the [diameter] will thus move in the countersequence [of the signs] in the larger of the two previously mentioned segments, and its maximum speed will occur at the midpoint of the segment at the apogee. In the smaller segment, [its motion will be] in

قطرُ التدوير المارّ بالذروة والحضيض الأوسطين بحركة ذلك الفلك
 بالحركات الموجودة للتمر
[rı] وأنا أقول : كها توهَمْ لأقطار تداوير الكواكب الخمسة
5 المارة بالذُرى والحضيضات ميولٌ عرضية تَخرج بها سِّا سطوحُ مناطق
تـداويـرها عن السطوح التي كانـي كانت فيها وقت انــدام العـرض
فليتوهم لذلك القطر من منطّة تدوير القمر ميلٌ طولي لا تخرج

10 ذلك خط يمرَ بنقطة المحاذاة ويكون عموداً على التطر المارّ بمراكز التمر وبنتطة المحاذاة ، فهو يفصل الحامل إلى قطعتين إحداهما

 15 خلاف التوالي وطرف الحضيض إلى التوالي . ولا يزال يزيد الما لمالك الميل إلى أن ينطبق القطر المذكور على العمود المارَ بنتطة المحاذاذ فيكون ميله حينئذ في الغاية ، ثم يأخذ في التنا لالناقص إلى أن ينعدم

 20 التوالي إلى أن ينطبق على العمود المارّ بنتطة المحاذاة ثاليانياً ويصير
 انتهائه إلى المبدأ الذي فارقه أولاً وهو كونه منطبقاً على التطر المارَ
 خلاف التوالي في القطعة العظمى من القطعتين المذكورتين وغاية 25 سرعتـه في منتصف القطعة عنـد الأوج ، وفي التطعة الصغـرى إلى
the sequence [of the signs], and its maximum speed will occur at the midpoint of this [segment] at the perigee. [The motion of] the perigee [endpoint] in the two [segments] will be the opposite of this.
[14] This diameter will therefore need a mover, and the discussion concerning it is the same as for the movers of the aforementioned diameters of the epicycles. Let us then set forth what has been said about the latter. Ptolemy states in the Almagest that the endpoints of the diameters passing through the apices and the perigees of the five [planetary] epicycles revolve along small circles whose planes are perpendicular to the planes of the equators of the epicycles. Their radii are equal to the maximum inclinations of these diameters and their motions are the same as the motions of the epicycle centers upon their deferents. And just as the motions of the epicycle centers are not uniform with respect to the centers of their deferents but rather with respect to other points, so also are these motions nonuniform with respect to the centers of the aforementioned small circles but instead are uniform about other points, the ratio of whose distances from the centers of the small circles to the radii of the small circles is the same as the ratio of the distances from the deferent centers of the points at which there occurs uniform motion of the epicycle centers to the radii of the deferents. This is in order that the arcs described by the endpoints of the diameters of the epicycles on the [small circles] be the same as those described by the centers of the epicycles on the orbs upon which they move. Thus there results a displacement of the endpoints of the epicycle diameters from the planes in which they have no inclination. This will be in each direction in the amount of the radii of the aforementioned small circles, which are equal to the maximum inclinations. He states that a similar situation must also be conceived for the endpoints of the epicycle diameters, known as the morning and evening endpoints, that pass through the mean distances in the case of the two lower planets.
[15] My own opinion is that this explanation is inadequate for our purposes on three counts: (1) it does not take into account the configuration [hay'a] of those bodies that are the principles for these motions; (2) it compounds the difficulty that we are expending all this effort to resolve [by making] the motion uniform about a point other than the center of its circuit; (3) just as the aforementioned small circles bring about latitudinal inclinations,

التوالي وغاية سرعته في منتصفها عند الحضيض • والحضيض فيهها بالضد منها
[1 1] فإذن هذا القطر يحتاج إلى مُحركُ . والقول فيه كالقول
 5 في ذلك . أما بطلميوسن, فتد ذكر في المجسطي أنّ أطراف أقطار تداوير الخمسة المارة بالذرى والحضيضات تدور على دوائر صغار سطوحها قائمة على سطوح مناطت التداوير ، وأنصاف أقطارهـا بتدر غايات ميول تلك الأقطار وحركاتها مساوية لحركات مراكز التداوير على حواملها . وكما أنّ حركات مراكز التداوير لا تتشابابه 10 عند مراكز حواملها وإنما تتشابه عند نقط غيرها ، كذلك تلك الحركات لا تتشابه عند مراكز الدوائر الصغار المذكورة وإنها تتشابه حول نتط غيرها ، نسبة أبعادها عن مراكر الدوائر الصغار إلى أنصاف أقطار الدوائر الصغار كنسبـة أبعاد النقط التي تتشـرابـ عندها حركات مراكز التداوير عن مراكز الحوامل إلى أنصأف أقطار 15 الحوامل لتكـون التسي التي تقطعها أطراف أقطار التداوير منها شبيهة بما تقطعها مراكّز التداوير من الأفلاك التي تتحـر اك عليها وحينئذ يلزم خروج أطراف أقطار التداوير عن السطوح التي تكون فيها عديمةً الميول في الجهتين بقدر أنصاف أقطار الدوارئر المار الصغار المذكورة المساوية لغايات الميول • قال : ومثل ذلك ينـبنغي أن الم يتوهم 20 في أطراف أقطار التداوبر المارّة بالأبعاد الوسطى المعروفة بالصباحية - والمسائية للسفليين
[10] أقول : وهذا البيان ليس بمفيد فيما نحن فيه من ثلاثة أوجه : الأول أنه ليس بمشتمهل على هيئة الأجسام التي هي مبيادئ تلك الحركات ؛ والثناني أنه يُضتَفـ الإشكال الذي نجهِ 25 هذا الجهد في حلّه ، وهو تشابُه الحركة عند نقطة غير غير مركز مدارها ؛ والثألـث أنَّ الدوائر الصغـار المذكورة كمـا تُحـدث الميولَ
they also cause inclinations to occur in longitude by which the positions of the apices and the perigees alter from what they should be with respect to the points with which they are aligned.
[16] Ibn al-Haytham has published a treatise in which he discusses the bodies that produce these motions. For each epicycle he adds two spheres to ac- count for the deviation and, in the case of the two lower planets, two other spheres for the slant. He decided to assume a sphere that surrounds the epicycle having poles at a distance from the endpoints of the diameter passing through the apex and the perigee in the two alternate directions equal to the maximum deviation of this diameter for the planet from the plane in which it has no latitude. He [further] assumes this [sphere] to have a motion equal to that assumed for the previously discussed small circle of that planet so that the endpoints of the above diameter will, due to this motion, move upon a circuit identical to the small circle with a motion that is uniform with respect to a point other than its center as was the case for the small circle. However, as a result of this [sphere's] motion, all parts of the epicycle will also move. This includes the mean diameter, which will be displaced because of this motion; thus its morning endpoint will become the evening one and vice versa. The situation will be the same for the other parts of the epicycle. It is therefore necessary to assume another sphere between this sphere and the epicycle sphere whose poles are at the endpoints of the above diameter, i.e. the apex and the perigee. Its motion is assumed to be exactly the same as that given for the first sphere except that it is in the opposite direction so as to return to their proper positions all parts of the epicycle that would otherwise be displaced. There will then be no remaining effect of motion from the first sphere except what had resulted from the motion of the above diameter as well as those [parts] of the plane of the epicycle equator connected with it. One may assume in exactly the same way two other spheres for each of the lower planets to account for the slant so that one will slant the epicycle's mean diameter, while the other will preserve the position of the rest of the epicycle lest the apex become the perigee and the perigee the apex. The epicycle of each of the upper planets will then come to comprise

العرضية نهي تُحدث ميولأ أيضا في الطول تتغير بها أوضاعُ الذُرى والحضيضات عند النتط التي تحاذيها عما يجب . [17] وقد أورد ابن الهيثّ مقالة ذكر فيها الأجسام التي تحرك هذه الحركات ، فزاد في كل تدوير كرتين لأجل اليّلِ وفي 5 السفليين كرتين أخريين لأجل الانحراف . وتقريره أن يفرض كرئ
تحيط بالتدوير ويكون لها قطبان بعدهما عن طـن الين التطر المار بالذروة والحضيض في جهتين متبادلتين بِدر غاية ميلّ ذلكّ التطر لذلكُ الكوكب عن السطح الذي هو فيه يكون عديم الميل • ويفرض لها حركة مثل / الذي / فرطت للدائرة الصغيرة المذكورة التي 10 لذلك الكوكب ليتحرك بحركتها طرفا القطر المذكور على مدار مثلّ
 فرضت للدائرة الصغيرة ؛ لكن تلزم من حركتيا حركة جميع أجزاء التدوير حتى التطر الأوسط ، فإنه ينول بتلكا الحركة عني وضعه فيصير طرفه الصباحي مسائياً وبالعكس ، وكذلـا ولك في سائر 15 أجزاء التدوير . فيجب لذلتُ أن يفرض كرة أخرى بين هذيرة الكرة وبين كرة التدوير قطباها طرفا التطر المذكور ، أعني نتطنتي

 التدوير التي كادت أن تزول عن وضعها إلى وضعها الواجب ، ولا 20 يبقى فيها "من الكرة الأولى أثرُ حركة سوى ما كان يلا يلزم بسبب
 وتُّرض لكل واحد من السفليين كرتان أخريان لأجل الانحراف
 وتحغظ الأخرى وضع باقي التدوير كي لا تصير الذروة حضيضا 25 والحضيض ذروة . فيصير "ندوير كل وأَحد من العلوية مشتملاً على
three spheres, while the epicycle of each of the lower planets will have five spheres. What Ptolemy has described will then be accomplished by establishing solid movers. Ibn al-Haytham states that one could reach the same result by assuming truncated orbs [manāshirr] instead of spheres, but to set forth something other than a sphere would not be appropriate for the models of this science.
[17] One should note that his intended result could also have been accomplished had he placed the poles of the first assumed sphere at a distance from the poles of the epicycle equal to the distance that he assumed between them and the endpoints of the diameter of the epicycle.
[18] Furthermore, if one adds another sphere for each of the motions and if one conceives on the surface of the sphere a situation similar to what we have described above, namely the oscillation of a point between two endpoints of a straight line, the third of the three objections I have raised against what was stated by Ptolemy would be eliminated. This was the error in longitude resulting from the longitudinal inclination that follows from [his model].

ثلاث أكر ، وتدوبر كل واحد من السفليبن خمس أكر ؛ ويتت ما ذكره بطلميـوس بحسب إثبات المحرّكات الجسمـية . وذكر ابن الهيثم أنه لو فرض بدل الأكر مناشير لتم ذلك لكنَ إثبات غير الكرة لا يصح على أصول هذا العلم
llv]
من قطبي التدوير مساور للبعد الذي فرضه بينهما وبين طرئي قطر
التدوير لتم معصوده بذلك أيضاً .
[1^] [أيضاً إن زيد في كل حركة منها كرة أخرى وتوهَم على سطح الكرة مثل ما ذكرنا من قبل في تردد نقطة بين طرفي خـط 10 مستقيم ، زال ما ذكرتٌ في الوجه الثالث من الوجوه الثر الثلاثة التي أوردتُها على ما ذكر بطلميوس ، وهو الخلل الحاد الحـو فلا في الطول بسبب الميل الطولي اللازم منه .

[Fig. T15]
[19] Let us present a lemma to explain this. Let the epicycle be a sphere with diameter AB . We take a great circle occurring on the epicycle that passes through the poles of the epicycle and through points A and B. Let two arcs AG and BD be on this [great circle]; we cut off AE and BZ from these [arcs] equal to half the maximum inclination in one direction in such a way that points E and Z are also endpoints of another diameter of the epicycle. We assume a sphere surrounding the epicycle, which we call the small [sphere], and we take it to move on two poles that are aligned with these two points. Points A and B will then move as a result of this motion; let their circuits [lit., circuit] intersect arcs AG and BD at points H and T , which will also be at the endpoints of another diameter of the epicycle. We now take another sphere, which we shall call the large [sphere], that moves

[19] ولنورد لبيان ذلك مقدمة ، فليكن التدوير كرة قطرها آب . ونفرض دائرة من العظام التي تتع على التدوير تهرّ بتطبي التدوير وبنتطتي T T ب . ولتكن قوسًا اج

 تحيط بالتدوير ونسميها الصغيرة ، ونغرضها متحركة على قطبين محاذيين لهاتين النتطتين . فتتحرك نتطتا T بَ بحركتها ، وليقطع
 قطر آخر بلتدوير . ونغرض كرة أخْرى نسميها الكبيرة تتحرك
on two poles aligned with these latter two points. The two circuits AH and BT will then move with its motion. Let the two circuits that are tangent to [AH and BT] be circuits AG and BD. We then assume the large sphere to move with a motion equal to that of the epicycle center on its orb surrounding the Earth on which it moves and the small sphere to move with a motion opposite the former in direction and equal to twice it in amount. The result of these two motions is that the endpoints of diameter AB will continually oscillate on arcs AG and BD between their two endpoints so that they will have no inclination in longitude whatsoever in either direction from these [arcs]. When the endpoint A reaches G , endpoint B will be at D . The inclinations of these [points] are in alternate directions. If one then adds to the two [spheres] the sphere enclosing the epicycle that preserves its position so that the morning endpoint of its diameter does not become the evening endpoint and vice versa, the aforementioned motion will be accomplished, and the above error in the third of the three cited objections will be eliminated. There remains only what was stated concerning the second objection, but I have been unable to conceive a manner in which this difficulty would be eliminated. By the above method, we add three spheres for each of the epicycles of the upper planets and six spheres for each of the epicycles of the lower planets.
[20] In exactly the same way, one may also conceive of how to move the equator of the inclined orb of the two lower planets in latitude until it coincides with the parecliptic equator and then inclines its maximum amount in the opposite direction. It will thereafter return and coincide once again [with the parecliptic] and then return to its original inclination. There will not occur any longitudinal inclination with it that would cause a change to result in what was assumed in the way of longitudinal motion. On this account we would add three spheres surrounding the Earth for each of the lower planets.
[21] Furthermore one may use this method to conceive of how to move the lunar epicycle so as to produce the longitudinal inclination by which its diameter passing through the mean apex and the perigee will remain permanently aligned with the point of alignment. This will occur without that diameter being dis- placed from the plane of the inclined orb. We also add here three other spheres that surround the epicycle over and above what has previously been presented. This method, however, requires that [the movement of] the inclination in the sequence and in the counter-sequence [of the signs] occur in equal times.

على قطبين محاذيين لهاتين النتطتين فيتحرك مدارارا
 لنفرض الكرة الكبيرة متحركة بحركة مساوية لحركة مركز التدا التدوير
على فلكه الذي يتحرك عليه محيطاً بالارض ، والكرة الصغيركيرة

ويلزم من الحركتين أن لا يزازل طرفا قطر آب مترددين عليا
اجَ جَد بين طرفيهما بحيث لا يميلان في الطول عنهيما إلى أحدِ

ويكونان بميلهـا في الجهتين على التبادل . ثم إذا أضيف إليهما
10 الكرة المحيطة بالندوير الحافظة لوضعه حتى لا يصير طرف قطره
الصباحي مسائياً ولا بالعكس تدت الحركة المذكورة وزال الخلل

 15 تدويرات العلوية وست أكر في كل واحد من تدويرِي السفليين .

الفلك المائل للسفليين في العرض إلى أن تنطبق على منطقت المثل
 وترجع إلى ما كان عليه من الميل أولألا من غير أن يَحدرث معه ميل 20 طولي يُحدِث تنيَرأ فيها فرض من الحركة الطولية .
. ثلاث أكر محيطة بالأرض لكل واحد من السغليين الرِين

على وجه يحدث الميل الطولي الذي به يصير قطره المارَ بالذرورة والحضيض الوسطيين دائها "محاذياً لنقطة المحاذاة من غير أن أن 25 يخرج ذلك التطر عن سطح الفلك اللائل . ونزيد هناك أيضاً ثلاث أكر أخرى تحيط بالتدوير زائدة على ما مرَ ؛ ؛ إلا انْ هِّ مذا الوجه
يتنضي أن يكون الميل إلى التوالي وإلى خلافه في زمانين متساويين ،

But the existing state of affairs is different from this, for the inclination is counter-sequential as long as the epicycle center is in the larger of the two previously mentioned segments of the eccentric, while the inclination is sequential as long as it is in the smaller segment. The [epicycle center] will not traverse the two segments in equal times since its motion is uniform, while the two segments may grant a reader of this book success in devising a more complete means to solve them all or in eliminating the remaining shortcomings in what we have presented. For He is the One who inspires truth and the Guide to the straightest path.

CHAPTER TWELVE

On Parallax

[1] There may occur for the planets near the Earth, and especially for the moon, a difference between their true positions on the ecliptic orb and their apparent positions. This is because the Earth's radius has an appreciable size in relation to / the diameters of / their orbs. Thus the line extending from the center of the World to the center of the planet and from there to the ecliptic orb will terminate at its true position on it, whereas the line extending from the position of the observer to the center of the planet and from there to the ecliptic orb will terminate at its apparent position on it. The amount occurring between them is the parallax [lit., divergence of sight] of the planet, and this is on the altitude circle since the planet's altitude circle passes through the endpoints of the two lines on the ecliptic orb. The apparent position will always be closer to the horizon. The angle occurring from the two lines at the center of the planet is called the angle of divergence.
$116 /$ the diameters of $\beta=-\alpha,-\mathrm{M}$.

والوجود بخلاف ذلك لأنَ الميل إلى خلاف التوالي يكون ما دام مركز التدوير في التطعة الكبرى من قطعتي الخارج المركز المالما المذكورتين والميل إلى التوالي يكون ما دام في إلتطعة الصنرى ، وهو لا يتطع التطعتين في زمانين متساويين لتشابه حركته واختلافهما بالصغر 5

 . وجودهما واختلافهما
 10 في هذا الكتاب أن يستنبط وجهاً تاماً لحلَ جميعها أو يُزيل الخلل الباقي فيما ذكرناه ، إنه ملهم الصواب والهادي إلى سواء الصراط .

هِ احْتلاءِ المنا

[1] قد يعرض للكواكب القريبة من الأرض وخصوصاً للقمر أن 15 تُخالِ مواضعُها الحقيقية من فلك البروج مواضعَها المرئية ، وذلك لكون نصف قطر الأرض ذا قدر منحسوس عند / أقطار / أفلاكها .
 البروج ينتهي إلى موضعه الحقيقي منه ، والخط الحـي الخارج من من موضع الناظر إلى مركز الكوكب ومنه إلى فللك البروج ينتهي إلى موني
 دائرة الارتفاع لأنَ دائرة ارتفاع الكوكب تمرَّ بطرفي الخطّين في في فلك
 الزاويـة الحادثت على مركز الكـوكِب مـن الخطيّين زاويـة الاختـلاف .

$$
.-\alpha,-M=\beta[\ldots / 16 /
$$

And this is its illustration:

[Fig. T16]
[2] The planet does not have a parallax if it is at the zenith since the two lines are one and the same. Its divergence increases the closer it is to the horizon with the maximum occurring at its rising or setting. The visible part of the planet's orb will be less than half [of the entire orb] by the amount of the difference between the apparent and the true horizon.
[3] As for the planets that are far from the Earth, one does not perceive these divergences. The lines extending from the position of the observer and from the center of the World will be [virtually] the same since the difference with respect to the / diameters of the / orbs of these planets is so small.
$18 /$ diameters of the $] \beta=[\operatorname{margin}$ of M$]=-\alpha$.

[r]
الرأس لاتَحاد الخطلّين • ويزيد اختلافه كلما صار إلى الأفق أقرب ،
 5 من نصفه بقدر التفاوت بين الأفت المرئي والأفق الحقيقي

الاختلافات . وتكّون الخطوط الخارجة من موضع الناظر ومن مركز
الارض متَحدة لقلّة التغاوت بالقياس إلى / أقطار / أفلاك تلك الكواكب .

$$
\text { . }-\alpha=M L \Delta=\beta[\ldots / 8 /
$$

[4] The above divergence requires that the true positions of the planet in longitude and latitude differ from their apparent positions. This is so since when we conceive two latitude circles passing through the endpoints of the two lines, then what is between the two points at which the latitude circles fall on the ecliptic orb will be the difference in longitude. And if the two arcs occurring on the circles between the endpoints of the lines and the ecliptic orb are not the same, the difference [in length] will be the difference in latitude. This is because the two points are the true and apparent positions of the planet, and the two arcs are its true and apparent latitudes.
[5] If the planet is on the ecliptic meridian circle, it will not have a difference in longitude since the two points on the ecliptic orb are one and the same, and its divergence on the altitude circle will be precisely the difference in latitude. / In other positions, / the [planet's] difference in longitude will be additive to the true position in the visible eastern quarter of the ecliptic orb and subtractive from it in the visible western quarter. This is because the apparent position is always nearer the horizon and the sequence of the signs is from west to east.
[6] Furthermore if the ecliptic equator passes through the zenith, then a planet that has no latitude will have no difference in latitude and its divergence on the altitude circle will be precisely the difference in longitude. / In other positions, / the [planet's] difference in latitude will be additive to the true latitude occurring in the direction of the invisible ecliptic pole and subtractive from the true latitude occurring in the opposite direction unless the planet and the ecliptic orb are in opposite directions from the zenith-thereupon the difference in latitude will also be additive to the true latitude. Now if the planet has no [true] latitude or if its true latitude is less than its difference [in latitude], then the direction
$/ 12 /$ In other positions] $\beta=$ Under other circumstances] $\alpha, \mathrm{M} . / 18 /$ In other positions] $\beta=$ Under other circumstances] α, M.
[[] والاختلاف المذكور يقتضي أن يكون موضعا الكوكب في الطول والعرض في الحقيقة مخالفين 'لموضعيهـا المرئيين • وذللك لأنًا

 5 اختلف [!] القوسان الواقعتان من الدائرتين بين طرفي الخطّين وبين فلك البروج كان التفاضل اختلاف العرض ، وذلك لأنّ النقطتين

[هـ" وإذا كان الكوكب على دائرة وسط سهاء الرؤية فلا يكون
 اختلافه في دائرة الارتفاع اختلاف العرض بعينه . / الموضع / يكون له اختلاف في الطول زائد على الموضح الحقيقي في الربع الشرقي الظاهر من فلك الْبروج ، وناقص عنه في الربع الغر المربي الظاهر منه. . وذلك لكون الموضع المرئي إلى الأفق أقرب دائماً وكون توالي البروج من المغرب إلى المشرق المون
[7] وأيضاً إذا كانت منطقة البروج مارة بسمت الرألى فلا لا لا لا
يكون للكوكب الذي لا عرض له اختلاف العرض ، و ويكون اختلافه في دائرة الارتفاع اختلاف الطول بعينه . وني غير ذلك / الموضع / اللا يكون له اختتلاف في العرض زائد على العرض الحقيقي الكائن في
 الحقيقي الكائن في خلاف تللك" الجهة ؛ اللّهم إلاَ أن يكون الكوكب
 العرض هناك يكون أيضاً زائداً على العرض الحقيقي ع عاني فإن كان الكوكب عديم العرض أو كان عرضه الحقيقي أقل من اختلافه فجهـة
of the difference [in the first case] or the direction of the excess of the difference over the true latitude [in the second case] will be toward the invisible pole, likewise for exactly the same reason as before.
[7] By observation of the moon's parallax, one may find its distances from the Earth, as will later be explained.
[8] As far as the solar parallax is concerned, it is imperceptible even though calculation / yields / a small divergence not exceeding 3 minutes. The divergence for the two lower planets has not been found because of the difficulty in obtaining their true positions in longitude and latitude.

CHAPTER THIRTEEN

 full moon. At other positions [the two circles] will intersect: at the quadratures at right angles, whereupon that quarter facing the sun of the half that is toward us is illuminated; otherwise at acute and obtuse angles, whereupon in the first and last quarters what is toward the sun will be the part on the side of the acute angle and thus is crescent-shaped, while in the other two quarters it will be the part that is on the side of the obtuse angle and thus is oval-shaped.[^76]الاختلاف أو جهة فضل الاختلاف على الحرض الحقيقي هي جهة التطب الخفي للعلّة المذكورة أيضاً بعينها . وبرَصَد اختلاف منظر القمر يُتوصتّ إلى معرفة أبعاده من الأرض كما بجريء بيانه .
[^] وأمنا أختلاف منظر الشهس فغير محسوس لكنّ الحساب
 يوقف على اختلافهها لتعذّر الوقوف على مواضعهمها الحقيقية في -الطول والعرض

الفصل الثالث عشر

[1] اختلاف تشكَلات القمر بحسب اختللاف وضعه من الشدس
 لكثافته وينعكس عنه لصقالته . فيكون أبداً المُضيء من جرمه المه الكري
 15 قريبة من العظيمة على جرمه ، وتنصل بنين المن المئئي منه عند الناظر
 والدائرتان تتطابقان في الاجتهاع ، ويكون المُبصر منه النصف المطلم
 النصف المضيء وهو البَدْر . وتُتقاطعان في سائر الأوضاع : أما فا في 20 التربيعين فعلى زوايا قائمة ، ويكون الربع الذي يلي الئي الشمسن من

 الذي يلي الزاوية المنغرجة فيكون إْْلِلِلَجِي الشكل .

$$
\text { . } \alpha, M[\text { [يخرج ل }
$$

[2] The Earth is also a thick, dark, spherical body that blocks the light of the sun and so it has a shadow. When it is aligned with the two luminaries at the time of opposition, it blocks the light of the sun from the moon and the moon will fall in its shadow. The moon will thereupon be eclipsed, which can be observed if it is night. The following is an illustration of the Iunar eclipse:

[Fig. T17]
[r] [r الأرض أيضا جسم كثيـف مظلم كري يحجب نور الشدس فيتع له ظلَ . وإذا صارت مقاطرة للنيّيرين وتت الاستقبال
 القتر ورُئيَ إن كان ذللٌ ليلاًٌ . وهذه صورة الخُسوف :

[3] The farther away the moon is from the Earth, the shorter in duration is its eclipse. It was concluded from this that the shadow narrows with increasing distance from the Earth, which [in turn] indicates that the sun is larger than the Earth. For if the sun were smaller than the Earth, then the shadow would widen with increasing distance from the Earth and thus the moon's duration during a [lunar] eclipse would increase as its distance from the Earth increased, which is contrary to what is found [to be the case]. If the [sun] were the same [size] as the Earth, the shadow would be cylindrical and the duration at all distances would be the same which is also not the case. It is thus clear that the sun is larger than the Earth, that the Earth's shadow is in the shape of a circular cone that vanishes to a point, and that the moon is smaller than the Earth since the latter's shadow, which becomes much smaller than the [Earth] upon [reaching] the moon, conceals it.
[4] The center of the shadow cone is always on the [plane of the] ecliptic equator since the sun is always on it and since the center of the Earth is the center [of this equator]. If one imagines the plane of the apparent lunar body as a circle extending until it intersects the shadow cone, it will produce a circle parallel to its base called the shadow circle whose center is on [i.e. in the plane of] the equator. Now if the latitude of the moon at the time of opposition is greater than the radius of its disk plus the radius of the shadow circle, then the moon will not undergo an eclipse; if its latitude is equal to them, the moon will touch the shadow but will not undergo an eclipse; if it is less than them and equal to the radius of the shadow, the shadow circle will pass through the center of the lunar disk and half its diameter will be eclipsed; if it is equal to the excess of the shadow radius over the radius of the moon, the entire moon will be eclipsed and its surface will touch the shadow circle but it will have no duration in the eclipse; and if it is less than [this excess], it will be eclipsed with duration depending on the extent to which it is in the shadow.
[5] The eclipse limits have been measured as 12° in terms of the distance of the moon from one of the two nodes; for when the moon crosses this limit, its
25 latitude will exceed the two radii. And just as the shadow circle varies according to distance, the circle of the lunar disk will likewise vary according to distance. The two have been compared and the shadow circle's diameter was found to be two and three-fifths times the diameter of the lunar disk
[r] وكلها كان القمر أكثر بعداً من الأرض كان خسوفه أقلَ
 الأرض • ويدل ذلك على كون الشدس أكـبر من الأرض • وذلك لأنّ الشمس لو كانت أصغر من الأرض لكان الظلّ يستغلظ بازدياد بعده من الأرض ، فكان كلّما زاد بعد القمر من الأرض زاد مكثه في الخسوف على ضد" ما يوجد ؛ ؛ ولو كانت مساوية للأرض لكان الظـلّ أسطوانياً والمكث في جميـع الأبعاد متسـاوياً وليـس أيضاً كذلك . فإذن ظهر أنّ الشمس أكبر من الأرض ، وأنَّ ظلّ الأرض على هيئة مخروط مستدير ينعدم على نتطة ، وأنّ القمر أصغر من الإن 10 الأرض لستر ظلّها الذى صار أصغر منها كثيراً عند التهر إيّاه . [[] ومركز مخروظٌ الظلّ يكون دائماً على منطقة البروج لكون
 سطع جرم القمر المرئي كدائرة خارجاً إلى أن يقطع مخروط الظرّلِّ أحدث دائرةً موازية لقاعدته تُسمى دائرة الظلّ ويكون مركّرْها على 15 المنطقة . فإن كان عرض القـر وقت الاستقبال أكثر من

 أقلّ منهها وكان مساوياً لنصف ثطر الظلّ مرتّ دائرة الظلّ بمركز صفحة القمـر وانخسـف نصف قطره ؛ وإن كان مساوياً لفضـل نصف قطر الظلَ على نصف قطر القدر انخسف التمر كِّلّه وماسَ سطحه دائرةَ الظلَ فلم يكن له مكث في الخسوف ؛ وإن كان أقلَ من ذلك انخسفـ ومَكَثَ بحسب ما يتع في الطلِّ [هـ] وإنْما قُدرَّ حـدود الخسوف باثنـي عشر جـزءاً من بعـد

 بينهها فوجد قطر دائرة الظلّ مثلي قطر صفحة القمر وثلاثة أخهاســـ
at all distances. Each of the diameters of the two luminaries and their bodies is divided into 12 equal parts called digits, those of the diameters being designated as absolute, while those of the bodies as adjusted. the nodes, then if opposition occurs after the crossing of the node with an an taking place at the edge of the [eclipse] limit, and then opposition occurs five months later at the edge of the eclipse limit before the other node is reached, it will be possible for the moon to be eclipsed once again. This is due to the counter-sequential motion of the node and to its meeting up with the position of the eclipse. If opposition for an eclipse occurs before reaching the first node at the edge of the limit and the other opposition after crossing the second node seven months later, it is not possible [for the moon] to be in the eclipse limit on account of the node, by its counter-sequential motion, having crossed beyond the range necessary for an eclipse. Thus two lunar eclipses cannot be seven months apart. It is most frequently the case that they are six months apart.
[7] Furthermore, if the moon blocks the light of the sun from the observer due to its falling on the line extending from the eye to the sun, the sun will be seen eclipsed, without light; for the obstruction is dark and the [part] of it facing us at that time is not illuminated. This will be during an apparent rather than a true conjunction occurring in the daytime. For this reason parallax is taken into account for solar but not for lunar eclipses, and it is possible for a solar eclipse to occur with respect to one group of people but not another. In order for a solar eclipse to take place, it is necessary that the apparent lunar latitude (that is, adjusted in latitude for parallax) at the time of the apparent conjunction (that is, adjusted in longitude for parallax) be less than the radii of the disks of the two luminaries. For if it is equal to them, the [disks] will touch but the sun will not
25 be eclipsed, and if it is greater than them, then all the more reason [for it not to be eclipsed]; if it is less than them, the eclipse will occur commensurate with that amount.

في كلَ بعد . ويُجزَأ كلَ واحد من قطري النيَرين وجرميهما إلى اثني عشر جزءأ متساوية تسمى الأصابع ، "وتقيّد القطرية بالمطلقة والجرمية بالمددلة
[7] ولمّا كان الخسوف على بعد أقلَ من اثنتني عشرة درجة
5 من إحدى العقدتين مدكناً ، فإن كان الاستقبال بعد التجاوز عن
العقدة ووقع خسوف على طرف الحدّ ، ثم وقع استقبال العـال بعد
خمسة أشهر قبـل الانتهاء إلى العتـدة الأخرى عـلى طـر الحـ

إلى خلاف التوالي واستقبالها لموضح الخسوف .
 والاستقبأل الآخر بعد التجاوز عن العقدة الثانية بعد سبعة.أشهر ، الشا
 خلاف التوالي عن ألمددار المتتضي للخسوف ؛ فلا يكون خسوفان
 وأيضاً إذا حجب القهرُ نور الشمس عن الناظرين لوقوعه

 ذلك الوقت . وذلك يكـون في الاجتماع الواقع نهاراً المرئي لا
 20

 المنظر في الطول ، أقلَ من نصفي قطري صفـحتي النيّرين حتين حتى يتع
 25 أكثر منهما فبالأولى ، وإن كان أقل منهما يقع الكسوف بتدر ذللك .

And this is the illustration of a solar eclipse:

[Fig. T18]
[8] The solar diameter between its two [extremal] distances was found [to vary] from 31 to 34 minutes, while the lunar diameter was found [to vary] from 29 to 36 minutes. Thus if the two centers fall on the line
وهذه صورة الكسوف :

[شكل 1^]
[^]] وقطر الشهس فيما بين بعديه وُجد من إحدى وثلاثين دقيقة إلى أربعة[! ! وثلاثين . وأمتا قطر القهر فقد وُجد مند من تسع
وعـشريـن دقيقت إلى سـت وثلاثيـن • فإن وقع المركزان على الخط
extending from the eye to the sun, and if the two diameters are equal, the sun will be completely eclipsed and there will be no duration. If the sun's diameter is greater, there remains a luminous ring called the ring of light. If it is smaller the eclipse will have a slight duration commensurate with the difference be- tween the two diameters. This is so inasmuch as the moon also has a shadow cone whose apex will be at the eye at a distance that results in the equality of the two diameters and higher than the eye at a distance that results in the ring of light; the eye will fall within a shadow circle that intersects the cone when the distance results in a duration [of totality].
[9] As regards the solar eclipse limits: since with respect to the true latitude the divergence in latitude will sometimes be added to and sometimes subtracted from it in order to arrive at the apparent [latitude], it follows that the limits on the two sides of the nodes will vary according to change in local position. In the fourth clime, / a solar eclipse is / possible at a maximum distance of 18° after the node of the head or before the node of the tail, or at a maximum distance of 7° before the node of the head or after the node of the tail. It is therefore possible for two solar eclipses to occur at the endpoints of a five-month [interval], one of which is after the head and the other before the tail, or at / the endpoints of / a seven-month [interval], one of which is before the tail and the other after the head. As for the endpoints of six months, this possibility is beyond doubt nor is [there any doubt concerning] the occurrence of a lunar and a solar eclipse during a consecutive opposition and conjunction. It is not possible for two lunar eclipses to be one month apart nor two solar eclipses unless [the latter] occur in two locations with different directions in latitude. And because the moon is / that which [can] become eclipsed as well as be the occulting [body], / what disappears first in a lunar eclipse will always be its eastern part while that which is occulted [first] in a solar eclipse is the western part of the sun. The same [will hold true] for the first parts to reappear.

[^77]الخارج من البصر إلى الشهس وكان التطران متساويين انكسفت الشمس كلَّا ولم يكن هناك مكث ؛ وإن كان قطر الشمس أكبر
 للكسوف مكث قليل بتدر الفضل بين القطرين • وذلك أنّ للقـر 5 أيضاً مخروط ظل يكون رأسه عند الأبصار في بعد يتتضي تساوي القطرين ، 'وأعلى من الأبصار في بعد يقتضي حنـي حلتة النور ؛ ؛ وتقع الأبصار في دائرة من الظلّ قاطعةّ للمخروط في بعد يقتضي المكث .
 وكان اختلاف العرض تارة يزاد عليه وتارة ينقص منه ليصير مرئياً 10 لزم أن تكون الحدود عن جانبي العقدتين مختلفة بحسب اختلاف
 عتدة الرأس أو قبل عقدة الذنب إلى ثماني عشرة در الرجة ألو على بعد غايته قبل عقدة الرأس أو بَعد عقدة الذّنب إلى سبع درجا مهكناً . ولذلك يمكن كسوفان على طرفي خمسة أشهر أحدهما بعد 15 الرأس والآخر قبل اللذنب أو على / طرُي / سبعـي أشهر أحدهما قبل الذنب والآخر بعد الرأس • وأمنا على طـى اشتباه في إمكانه ولا في وقوع خسوف وكسوف في آستتبال والجتهاع

 20 الخسوف والكاسفِ / يكون المنخسف أولاُ أبداً شرقيَهُ والمنكسفت غربي الشمس ، وكذلك المنجلي أولاً .

$$
\begin{aligned}
& \text { الكاسف والداخل في الخسوف] }
\end{aligned}
$$

CHAPTER FOURTEEN

/ On Sectors and Conjunctions and the Situation of Visibility and Invisibility /
[1] The first and third initial points of the [planetary] sectors are the apogee and apex and the two perigees. These are the farthest and nearest distances from the center of the World, and the positions at which the fastest and slowest motions occur. The initial points of the remaining two [sectors] on the two sides are either according to distance, so that for the apogee orb it is where the two lines produced to it from the center of the World and the [center] of that orb are equal, while for the epicyclic orb [the initial points] are where the circumferences of the epicycle and the deferent intersect; or else, they are according to speed, so that for the apogee orb it is where a line passing through the center of the World perpendicular to the diameter passing through the centers reaches the [orb], while for the epicyclic orb it is where a line produced from the center of the World to it is tangent to its circumference. Something moving in the two orbs is ascending in the third and fourth [sectors], descending in the first and second; elevated in the fourth and first [sectors], depressed in the others. [Sector] measurements are provided in the practical handbooks.
[2] With respect to visibility and invisibility, for the stars these vary first, according to their differing sizes; second, according to differences in [both] their measure and direction in latitude; and third, according to different horizons. Thus some stars do not become invisible at all, whereas some of them become invisible for a long period. Venus does not become invisible in the fourth clime when it is in Pisces; during its day of combust, it may be seen in the evening and following morning while retrograding. But it will be invisible for a considerable period when it combusts in Virgo / while retrograding. / Mercury is not visible in the evenings round about the autumnal point in the vicinity of its apogee; nor [is it visible] in the mornings round about the vernal point in the vicinity of [the point] opposite its apogee. When the upper planets

[^78]
الفصل الرابع عشر وأحوال الطـمور والانحتنفاء /

[1] مبادئ الاول والثالث من النطاقات هي الأوج والذروة
 والمواضع التي يكون" هنال أسرع الحركات وأبطؤها . . ومبادئ
 يتساوى الخطّان الخارجان من مركزي العالم وذلك الفلك إليه ، ، وفي
 10 السير ، ففي فلك الأوج حيث ينتهي إليه العمود المارَ بمركز العالم القائم على القطر المارَ بالمراكز ، وفي فلكُ التدوبر حيث المير يماسن
 صاعد في الثالث والرابع ، هابط في الأول والثاني ؛ مستعلٍ فـر في الرابع والأوّل ، منخفض في الباقيين • ومقاديرها تُوردَ في كتب - 15
[r] وأما الظهور والاختفاء فيختلف في الكواكب أولاّلاُ بحسب
 وثالثاً بحسب اختلاف الآفاق . ولذلك لا لا يختغي بعض الكان الكواكب

 وتختني إذا احترقت في السُنبلة / راجعة / مدّة كثيرة . وعطارد لا يظهر بالعشيات حوالى النتطة الخريفية وحدود أوجه ، ولا بالغـدوات حوالى النتطة الربـيعية وحـودد متـابلة أوجـه . والكـواكب
become visible after the sun departs from them, they may be seen rising in the mornings in the east until the sun crosses its quadratures with them. They will then be seen rising in the evenings until the sun is in opposition to them, after which they may be seen setting in the mornings until the second quadratures. They are then seen setting in the evenings in the west, and thereafter they be- come invisible. When the lower planets go ahead of the sun, they will be visible in the evenings in the west, thus setting in the evenings, until they retrograde and become invisible in the evenings. They then become visible, rising in the mornings in the east, until they become invisible in the mornings. As for the moon, one may add to the previously cited reasons for variability [the moon's] parallax and its variable distance from the sun that leads to increases and decreases in the maximum is three nights. [The matter] has been subjected to testing and the limits of visibility and invisibility of the six wandering [planets] have been found whereby the altitude at the [time of the] rising or setting of the sun is: 11° for Saturn; 10° for Jupiter; $11 \frac{1}{2}{ }^{\circ}$ for Mars; 5° for Venus; 10° for Mercury; and 8° for the moon, which, in its case only, is apparent.
[3] As for the conjunction of two planets, [it occurs when] they fall on the same latitude circle in the same direction from one of the two poles. A true latitudinal conjunction is when a single line produced from the center of the World passes through them. An apparent latitudinal conjunction is when a single line produced to the two [planets] from the position of the / observer / passes through them.

[^79] مُشر"قة إلى أن تجاوز الشمس تربيعاتها ؛ ثم تُرى تطلع بالعشيّات
 التربيعات الثانية ؛ ثـم تُرى تغرب بالعشيات مُغربّب ؛ ثم تختغفي • 5 والسفليـان إذا سبقا الشمسَ ظهرا بـالعشيـات مُمـربّيـن فيغـربـان بالعشيات إلى أن يرجعا ويختفيا بالعشيّات ؛ ثم يظهران ويطلعان بالغدوات مشرقّين إلى أن يختفيا بالغدوات . فيه إلى أسباب الاختلافات المذكورة اختلاف مَنظره واختلاف بـدلا من الشدس المقتضي لزيادة نور جرمه ونقصانه . وأقلّ ما يختنغي

 غروبها : لـزحل أحد عشر جزءاً ، وللمشتري عشرة أجزاء ، الاع
 ولعطارد عشرة أجزاء ، وللقمر ثمانية أجزاء مرئية له فقط . 15 في جهة واحدة من أحدن القطبين • والاقتران العرضي الحقيقي هو
 المرئي. أن يمرَ بهما خط واحد خارج من موضع / الناظر / إليهها .

BOOK III

On the Configuration of the Earth and the [Consequences] Accruing to It Due to the Changing Positions of the Celestial Bodies

Twelve Chapters

CHAPTER ONE

A General Summary of the Configuration and Circumstances of the Earth

[1] It was shown in the first part of the book that the Earth is as a whole spherical and that in all directions the head of someone standing upon it will be toward the circumference, which is up, while his feet will be toward the center, which is down, and that the surface of the Earth, which is its convexity, is parallel to the concavity of the orb surrounding [the surface]. The direction of the head of someone traveling upon the Earth is necessarily at each instant [toward] another part of the [celestial] orb. If it were possible to travel around the entire Earth and then three individuals were assumed to become separated at some location, one of them traveling toward the west, the second traveling toward the east, and the third staying in place until the two travelers had circled the
15 Earth-the traveler who went west returning to him from the east and the traveler who went east returning to him from the west-then the first [traveler] will have one fewer than the total [number] of days that have been generally counted because he has lengthened [the period for each of] the revolutions of the orb due to his travel so that he distributes a revolution among their total [number]. The second will have one more because he has shortened [the period for each of] the revolutions due to his motion so that a revolution accumulates for him from the decreases. This is also something that is asked about and found to be strange.
[2] The great circle / that is / on the surface of the Earth occurring in the plane of the equinoctial is called the equator. If another great circle is imagined

[^80]النص r-1/1/r

الباب الثالث
 هِ هيـئة الأرض وما يـلزهـها
 بحسب اححتلاهُ أوضاع العلويـات
 اثنا عشر تصلاً

الفصل الهٔول
هِ جهِ من هيئة الأرخ وأحوالهـا
[1] قد تبيّن في أول الكتاب أنْ الأرض بجملتها مستديرة ،
وأنْ الواقف عليها من جيميع الجوانب رأسه إلن ما يلي المحيط وهو
النوق ورجله إلى ما يلي المركز وهو التحت ، وأنَ سطح الأرض وهو

يصير سمت رأسه في كل وقت جزءأ آخر من الفللـ . ولو كان كان
 موضع ، فسار أحدهم نحو المغرب والثاني نحو المشرق وأتام الثالث حتى دار السائران دوراً من الأرض ورجع" السائر في المغرب إليه من

جميعاً للاول واحد لأنه زاد بسيره في أدوار الغلك فوزنع دورا جملتها ، وزاد للثاني واحد لانَّه نقص بسيره عن الأدوار فاجتمع
 [r] والدائرة العظيمة / التي / على سطح الأرضِ الكائنة في 20 سطح معدل النهار تسمى خط الاستواء . وإذا توهِّت عظيمة
that passes through its two poles, the Earth will be divided by them into fourths. One of the two northern [fourths] is the populated quarter, and the others are either submerged in the seas and not populated or else their circumstances are unknown. One should then conceive the division of the Earth's surface to be in longitude according to the division of the equinoctial and in latitude to the poles according to the divisions of the circles of declination. One should also conceive on the [surface] circles that are exactly aligned with the day-circles in order to allow one location to be differentiated from another. Distances and quantities are measured just as they are on the orb.
[3] The inhabited world has been determined to be a quarter because observations of celestial phenomena, such as lunar eclipses, have not been found [to occur] for those living in the farthest eastern [regions] earlier than 12 hours ahead [of their occurrence] for those in the farthest western regions. From this they discerned that the length of the populated area does not exceed one-half revolution of the orb. It was [further] determined that [this] quarter is in the north because the shadows at noon of the equinoxes are not southerly in any part of [the inhabited world] except that it has been reported that they are southerly in a few populated regions at the edge of Zanzibar [al-Zanj], Abyssinia [al-Habasha], and some other [areas]; in any case their latitudes do not exceed a
15 few degrees. In the northern region as well, it is not possible to live beyond the latitude that is the complement of the obliquity due to the intensity of the cold.
[4] The sea surrounds most sides of the aforementioned area of the Earth. This is well-established for the western side, the north, and most of the south, especially the eastern part of it. As for the southwest, it has been stated that persons traveling in the direction of the sources of Egypt's Nile have reached locations whose southern latitude is not more than 10° to 20°. They saw mountains at a distance to their south white with snow, which were named for the moon, from which [arise] the headwaters of the Nile. They did not reach a body of water. Furthermore we do not have definitive knowledge about the sea in the northeast.
[5] In the area that has been uncovered to allow for habitation, there are also numerous bodies of water some of which are connected to the encompassing [ocean] such as: that between the Maghrib and Andalusia and that between Andalusia and Syria; the southern sea, which is connected to the eastern region, from which extends four gulfs into the middle of the inhabited world: the Gulf of Barbary [Gulf of Aden], which is the nearest of them to

أخرى تمرَ بتطبيها انتستت الأرض بهما أرباعا : أحد الشماليين هو الربع المككرن ، والباقية إما غامرة في البحار غير مسكونة إلإبا غير معلومة الالحورال • فينبني أن يتوهمّ تجزئة سطح الأرض طولاً بحسب تجزئة معدل النهار وعرضا إلى التطبين بحسب تجزئت دوائر 5 5 اليول ، وتتومّم عليه مدارات محاذية للمدارات اليومية بعينها لتمكن امتياز بعض المواضع عن بعض . وتُتدرَّ المسافات والمقادير كا كا على الفلكا .
[r]
الحوادث الفلكية كالخسوفات نقتدّ ساعات الواغلين في المشرق لها 10 على ساعات الواغلين في المغرب زائداً على اثنتي عشرة ساءة ؛

 الاعتدالين في شيء منها جنبوبية إلاَ قليل من مساكن على أطران
 نيف درجات • وفي جانب الشمال أيضاً لا يمكن أن يُسكن فيها

جاوز عرضه تمام الميل الكلي لشدّة البرد . .
أتا من جانب المغرب والشهال وأكثر الجنوب لا سيّما الشرقي منه
 20 'منابع نيل مصر انتهوا إلى مواضع زاد عرضها الجنوبي على بضع عشرة درجة ، وشاهدوا الجبال البيض من الثلج المنسوبة إلى التقر التي منها منابع النيل في جنوبهم من بعيد ؛ ولم يصلوا إلى بحر الئ وأيضًاً ليس لنا على البحر الذي في شمال المشرق وقوف يقيني [0] وفي القدر المكشوف"للقمارة أيضاً بحار كثيرة بعضها 25 متّصل بالمحيط كالذي بين المنرب وأندلس والذي بين أندلس
 أربع خليجات إلى وسط "العـارة : الخليج البربري وهو أتربها إلى
the Maghrib, the Red Gulf [Red Sea], the Persian Gulf, and the Green Gulf, for each of which the longitude and latitude are well-established; and such as the Sea of Warank [Baltic Sea] in the northern region. Some [of the bodies of water] are unconnected [to the encompassing ocean] such as the Sea of Trabaristän [Caspian Sea], Lake Khwārazm [Aral Sea], and other channels and basins. In contradicts this judgment. Also some have said that the region that is beneath those southern day-circles occurring between the "falls" of the two luminaries is
not populated; it is called the combust way whence they named what on the orb those southern day-circles occurring between the "falls" of the two luminaries is
not populated; it is called the combust way whence they named what on the orb is between the two "falls" by this name as well. This is one of the fairy tales of
the astrologers. In general there is no known cause for the above-mentioned is between the two "falls" by this name as well. This is one of the fairy tales of
the astrologers. In general there is no known cause for the above-mentioned addition to the seas, there are numerous other obstacles to habitation such as deserts, mountains, hills, sands, jungles, and so on, which the learned have imparted in the geographical placebooks [al-masālik] and which travelers and others [have also made known].
[6] Some practitioners of this science have stated that the reason for the lack of habitation in the southern region is that on account of its proximity to the daycircle of the sun's perigee it is warmer since the sun will there be larger in size and more intense in its rays and its effects because it is nearer. This is unconvincing because the difference between the smallest size of the sun from its being at the apogee and its largest size from being at the perigee is imperceptible to the senses. It is thus far-fetched that its effect would reach an extent whereby one of two similarly positioned locations would be populated, while the other would not be populated. Furthermore, if this were the reason, then what is beyond [this day-circle] in the south, namely the [potential] populated regions whose latitude is greater than the maximum declination [i.e. obliquity], would be inhabited. In addition some have stated that the southern region is generally warmer than the northern region during the period that the perigee is in the southern signs; the heat draws the moisture and so the seas are drawn to the southern hemisphere and the uncovered part of the Earth is in the northern hemisphere. The inhabited world would then move as the apogee moved. This is likewise unconvincing because the existence of seas north of the inhabited world amount of uncovering of the Earth except divine providence; otherwise, why would one of the northern quarters be characterized by [habitation] and not the other despite their situation with respect to the heavens being the same?

المغرب ، والخليج الأحمر ، وخليج فارس ، والخليج الأخضر ، ورّ ولكلَ واحد منها طول وعرض صالحان ؛ وكبحر ورنلك من جانب
 وغيرهما من البطائح والمغائض . وغير البحار منر من موانع العمـارة
 يعرّفها أهل العلم بالمسالك والسيّاح وغيرهم . [7] وقد قال بعض أهل هذا العلم في علَّة عدم العمارة في الناحية الجنوبية أنّها لقربها من مدار الـنا حضيض الشمس تكون أحرّ

 الآحسَ ، فمن البعيد أن يبلغ تأثيرهاً إلى حدَ يصير أحد مون موضعين

 البروج الجنوبية . والحرارة تجذب الرطوبة فلذلك انجذن الجنت البحار

 20 لأنَ وجود البحار في شمال العمارة ينافي ذلك الحكا الحكم • وقال بعضهم أيضاً أنَ المواضع التي تكون تحت المدآرات الجنوبية التي تقع بين هبوطي النيّرين غير مسكونة ، وتُسمّى بالطريقة المحترقة ولذيلك الـئك
 خرافات الأحكاميين . وبالجملة ليس لانكشاف القدر المذكور من
 الربعين الشماليين بها دون الآخر مع تساوي أوضاعَهما بالثَياس إلى السمَاويَّات ؟
[7] Most of the inhabited world on the northern side falls between the [area] beyond 10 degrees in latitude up to 50 [degrees]. The practitioners of the science have divided it into seven climes [stretching] lengthwise so that each clime is beneath a day-circle, the conditions of the places in it then being similar. Thus each clime extends from east to west in longitude, while its [extent in] latitude is a small amount, which results in a difference of half an hour in lengths of longest daylight. The majority have made the initial point for the longitudes on the western side so that the longitude increases in magnitude in the direction of the sequence of the signs; the starting point for the latitudes is the equator since it, rather than something else, is determined by nature. They have stated that the
10 beginning of the inhabited world in the west is in the islands named the Eternals (which at the present time are uninhabited) so some have made them the initial point for longitude. Another group made the coast of the western ocean the initial point. Between them is 10 degrees of revolution of the equinoctial. Among their learned the end of the inhabited world on the eastern side is Kangdezh, which is the initial point for those who make it be from the eastern side. What is on the equator between the two ends they named the cupola of the Earth, and it is at a distance of one-quarter revolution from the initial western point. There will thus be a divergence attendant upon [its location] because of the difference concerning [the initial point].
[8] Turning to the initial and midpoints of the climes according to latitudes and the longest periods of daylight, they are as follows: the initial point of the first is where the longest day is $(12+1 / 2+1 / 4)$ hours and its latitude is $122 / 3$ degrees. Its midpoint is where the day is 13 hours and its latitude is ($16+1 / 2+1 / 8$) degrees. The initial point of the second is where the day is $131 / 4$ and the latitude is ($20+1 / 4+1 / 5$); its midpoint is where the day is $131 / 2$ and the latitude is $(24+(1 / 2$ of $1 / 6))[s i c]$. The initial point of the third is where the day is 25 ($13+1 / 2+1 / 4$) and the latitude is $271 / 2$; its midpoint is where the day is 14 and the latitude is $302 / 3$. The initial point of the fourth is where the day is $141 / 4$ and the latitude is ($33+1 / 2+1 / 8$); its midpoint is

ومعظم العمارة في طرف الشمال يقع بين ما يجاوز عشر [V] درجات في العرض إلى حدود الخمسين . فقسمها أهل الصنا الصناعة بالأقاليم التسبعة طولاً ليكون كل إقليم تحت مدار ، فتين إلتشابه أحوال

 متادير النهار الأطول . والجمهور جعلوا مبدأ الأطوال من جانب المغرب ليكون ازدياد عدد الطول في جهة تواد الي البروج اليور ، ومبدأ
 ذكروا أنّ بداية العمارة في المغرب كانت 10 الخالدات - وهي الآن غير معمورة - فجعلها بعضهر مبدأ الحبدأ الطول . وقوم آخر جعلوّا ساحل البحر الغربي مبدأه ، وبينهـا عشر الـور

 المشرق • وستّوا ما بين النهايتين على خط الاستواء قتّة الأرض ، 15 وهي على بعد ربع الدور من المبدأ الغربي ، فيلزمها الاختتلاف بسبب الاختلاف فيه .
[^] أأتا مبادئ الأقاليم وأوساطها بحسب العروض وساعات
النهار الأطـل فهي هذه : أمتا الأول فمبدؤه حيث النهار النار الأطول
 20 درجة ؛ ووسطه حيث النهار ثلاث عشرة ساعة ، وعرضه ستّ عشرة درجة ونصف وثُمن • وأتا الثاني فمبدؤه حيث النهار ثلاث
 النهار ثلاث عشرة ونصف ، والعـرض أربع وعشـرون ونصف سُدس • وأتّا الثالث فمبدؤه حيث النهار ثلاث عشرة ورن ونصـ 25 ورُبع ، والعرض سبع وعشرون ونصغ ؛ ووسطه حيث النهار أربع عشرة ، والعرض ثلاثون وثُثلثان . وأمتا الرابع فمبدؤه حيث النهار أربع عشرة وربع ، والعرض ثلاث وثلاثون ونصف وثُمن ؛ ووسطه
where the day is $141 / 2$ and the latitude is $(36+1 / 5+1 / 6)$. The initial point of the fifth is where the day is $(14+1 / 2+1 / 4)$ and the latitude is 39 less $1 / 10$; its midpoint
5 is where the day is 15 and the latitude is $41 \frac{1}{4}$. The initial point of the sixth is where the day is $151 / 4$ and the latitude is $(43+1 / 4+1 / 8)$; the midpoint is where the day is $15 \frac{1}{2}$ and the latitude is $(45+1 / 4+1 / 10)$. The initial point of the seventh is where the day is $(15+1 / 2+1 / 4)$ and the latitude is $471 / 5$; its midpoint is where
10 the day is 16 and the latitude is $(48+1 / 2+1 / 4+1 / 8)$; its endpoint is where the day is $161 / 4$ and the latitude is $501 / 3$. The end of each clime other than the [last] is the beginning of the following one. One group has made the initial point of the first clime the equator. The end of the seventh is the termination of the inhabited world.
[9] The longest [period] of daylight reaches 17 hours where the latitude is 54 degrees plus a fraction; it reaches 18 where the latitude is 58 ; it reaches 19 where the latitude is 61 ; it reaches 20 where the latitude is 63 ; it reaches 21 where the latitude is $64 \frac{1}{2}$; it reaches 22 where the latitude is 65 plus a fraction;
20 it reaches 23 where the latitude is 66 ; and it reaches 24 where the latitude is equal to the colatitude of the obliquity. It reaches 1 month where the latitude is $671 / 4,2$ months where the latitude is 70 less $1 / 4,3$ months where the latitude is $731 / 2,4$ months where the latitude is $781 / 2,5$ months where the latitude is 84 , and half a year where the latitude is a quarter revolution.
[10] Let us now go into the characteristics of the day-circles.

حيث النهار أربع عشرة ونصف ، والعرض ستَ وثلثاثون وخُمس وسُدس . وأتا الخامس فهبدؤه حيث النهار أربع عشرة ونصف
 خهدس عشرة ، والعرض إحدى وأربعون وربع . وأتا السادس 5 فمبدؤه حيث النهار خـس عشرة وربع ، والعرض ثلاث وأربعون وربع وثُمن ؛ ووسطه حيث النهار خمس عشرة ونصف ، والعرض خدس وأربعون وربع وعُشر . وأتا السابع فمبدؤه حيث النهار
 ووسطه حيث النهار ستّ عشرة ، والعرض ثـثان وأربعون ونصف 10 وربع وثُمن ؛ وآخره حيث النهار ستَ عشرة وربع ، والعرض خدسون وثُث • وآخر كل إقليم ما عداه أول الذي يليه . وتور جعلوا مبدأ الإقليم الأول خط الاستواء . وآخر السابع منتهى العهارة
[9] والنهار الاطول يبلغ سبع عشرة ساءة حيث العرض أربع 15 وخمسون درجة وكسر ؛ ويبلغ ثماني عشرة حيث العرض ثمان وخمسون ؛ ويبلغ تسع عشرة حيث التُرض إحدى وستّون ؛ ويبلغ عشرين حيث العرض ثلاث وستّون ؛ ويبلغ إحدى وعشرين حيث العرض أربع وستَّن ونصف ؛ ويبلغ اثنتين وعشرين حيث ويث العرض خمس وستّون وكسر ؛ ويبلن ثلاثاً وعشرين حيث العرض ست 20 وستَون ؛ ويبلغ أربعا وعشرين حيث العرض مثل تمام الميل كلّه . ويبلغ شهرأ حيث العرض سبع وستّون وربع ، وشهرين حيث العرض سبعون إلآ ربع ، وثلاثة أشهر حيث العرض ثلاث وسنبعون ونصف ، وأربعة أشهر حيث العرض ثمان وسبعون ونصف ، وخسسة أشهر حيث العرض أربع وثمانون ، ونصف السنة حيث 25 [.[1] ولنشرع الآن في خواصَ المدارات .

CHAPTER TWO

On the Characteristics of the Equator

[1] Horizon circles of localities that are on the equator bisect all the day5 circles since they pass through the poles of the equinoctial. Therefore / night and day / during the entire year are equal. Also the period of visibility of each point on the orb is equal to the period of its invisibility. If there is a difference, it is because of variability in speed in the two halves due to the second[ary] motion; this will not be perceptible. The sun will in a year pass twice over their zenith,
10 this being when it is at the / point / of the two equinoxes. It moves away from their zeniths only to the extent of the ecliptic orb's maximum declination from the equinoctial; thus [the sun's] maximum altitude is never less than the complement of the obliquity. The sun is in each direction for half the year, the noon shadow being in the opposite direction. The poles of the ecliptic are at the horizon when one of the two equinox points are at the zenith; thereupon the intersection of the ecliptic equator and the horizon is at right angles. During the passage of the northern half of the [ecliptic] equator across the meridian, the southern of the two ecliptic poles is visible; during the passage of the southern half, the northern is visible. The altitude [of each pole] does not exceed the magnitude of the obliquity. Since [by definition] the beginning of summer is the time in which the sun is nearest the zenith and the beginning of winter is the time in which it is farthest from it, the time at which it is at the two points / of the two equinoxes / is the beginning of their summer and the time at which it is at the solstitial points is the beginning of their winter. The beginnings of the other two seasons are [at] the midpoints of the quarter [divisions of the ecliptic]. It follows from this that they have eight seasons in a year. The turning of the orb there is wheel-like because the planes
/5/ night and day] $\beta=$ day and night] α, M. /9/ point $] \beta=$ two points] α, M. $/ 20 /$ of the two equinoxes] $\beta=$ of the equinox] α, M.

الفصل الثانيو
 هِّ خواص خط الاستواء

[1] دوائر آفاق البقاع التي تكون على خط الاستواء تنصّف
جميع المدارات اليومية لكونها مارّة بتطبي معدل النهار ؛ فلذلك 5 يكون / الليل والنهار / في جبيع السنة متساوبين . وأيضأ يكون زمان ظهور كل نتطة على الفلك مساوياً لزمان خفائه ؛ فإن كان تناوت كان بسبب اختلاف السير بالحركة الثانية في النصفين ، وذلكُ لا يكون محسوساً . وتمرَ الشسس في السنة مرّنتين بسمت رؤوسهم ، وذللٌ عند كونها في / نتطة / آلاعتدالين م ولا تلا تبعد
 فلا تنتص غاية ارتغاءها عن تمام الميل كلّه . وتكون الشدس نصف السنة في كل جهة وظل نصف النهار إلى خلاف تلكا الجهة وقطبا البروج يُكونان على الأفق عند كون إحدى نتطتي الاعتدالين على سدت الرأس ، وهناك يكا يكون قطع منطتة البروج للأفق على 15 قوائم • وفي مدةّ مرور النصف الشمالي من المنطةت على نصف النهار يكون الظاهر من قطبي البروج جنوبيّهـا ، وفي مدّة مرور النصف
 اليل الكّي . ولكون مبدأ الصيف الوقت الذي تكون الشهس فيه إلى سمت الرأس أقرب ومبدأ الشتاء الوقت النذي تكون فيه منه 20 أبعد ، يكون وقت كونها في نتطتي / الاعتدالين" / مبدأ صيفهم ووقت كونها في نتطتي الانقلاب مبدأ شُتائهم م . ونكون مبادئ النصلين الآخرين أوساظً الأرباع • فيلزم على ذللا أن يكون لهم في سنة ثمانية فصول • ويكون دور الفللٌ هناك دولاك الابياً لانّ سطوح

$$
\begin{aligned}
& =\beta[\text { [../20/ . } \alpha \text {, M [النهار والليل }=\beta \text { = }=\beta \text { [.... } / 9 / 5 / \\
& \text { الاعتدال [}
\end{aligned}
$$

of all the day-circles intersect the horizon at right angles. Their horizons are therefore called the horizons of the right orb. And since the horizon circle [at the equator] is one of the circles of declination, the ortive amplitude of each point, which is the arc along the horizon between its rising place and the rising place of the equinoctial, is in the amount of its declination; the same [holds] for 5 the occasive [setting] amplitude.
[2] The Grand Master Abū ${ }^{\text {c} A l i ̄ ~ i b n ~ S i ̄ n a ̄ ~ j u d g e d ~ t h e ~[e q u a t o r] ~ t o ~ b e ~ t h e ~ m o s t ~}$ temperate locality. He stated: Because the sun does not linger there long at the zenith, but rather it passes by it at the times of its crossing from one of the direc10 tions to the other and its motion in declination will there be at its fastest, then the heat of their summer will therefore not be intense. This is because even though being directly overhead leads to heating, nevertheless duration of this [state] is more effective for that than the [state] itself. It is because of this that summer is warmer than spring and the afternoon is warmer than before [noon] despite the equality of alignments in each case. Furthermore since the periods of their day and their night are equal, the severity of each of the weather conditions arising
15 from them will be quickly broken by the other; thus [each] period will be temperate. He also argued that the hottest localities in summer are those whose latitudes are equal to the obliquity. For the sun will be directly overhead and will linger near this alignment for nearly two months. Their days at that time will be long and their nights short.
[3] The eminent Imām Fakhr al-Dīn al-Rāzī rejected the first argument, saying: Even though the sun lingers on the equator only briefly, it nonetheless is never too far from being directly overhead; it is thus virtually overhead for the length of the year. We see localities whose maximum solar altitudes do not greatly exceed the minimum [solar] altitude at the equator, and the heat of their summers is extremely intense. / One learns / from this that the heat of the winter at the equator is many times the heat of the summer of those localities. He judged the most temperate clime to be the fourth.

[^81]جميع المدارات تقطع سطح الأفق على قوائم ، وتسدمى لذلك آفاقها بآفاق الفلك المستقيـ . ولكـون دائرة الأفق إحدى دوائر الميول تكون سعة مشرق كل نتطة ، وهي القوس التي تككون من الأفق
 5
[٪] [الشيخ الرئيـس أبـو علي بن سينـا حكـم بأنّها أعـدل
 بـل إنمّا تمرَّ به وقتي اجتيـازها عـن إحدى الجهتين إلى الأخرى وتكون هنالك حركتها في الميل أسرع ما تكون ، فلا تكون لـا لـا لـلك 10 للتسخين - لككنَ المكث عليها أبلغ في ذلك من نفسها ؛ الـن ولـنـلك يكون. الصيف أحرَّ من الربيع وبعدن الزوال أحرّ من قبله مع تساوي المسامتة فيهما . وأيضاً لتساوي زماني نهارهم وليلهم تنكسر سَورتا كل واحـدة من الكيفيتيـن الحـادثتيـن منهما بالآخر[! [ا سـريعاً ، 15 فيعتدل الزمان . وحكم أيضاً بأنّ أحرّ البقاع صيفاً هي التي تكون عروضها مساوية للميل الكلي : فإنّ الشمس تسامنا الـئها وتلّبث فيّي قرب مسامتتها قريباً من شهرين ، ونهارها حينئذ يطول وليلها يقصر الـيا [٪] وردر الإمام الفاضل فخر الـدين الرازي عليه الحكم الأول
 لا تبعد كثيراً عن المسامتة ، فهي طول السن السنة في حكم المسامتة . ونحن نرى بتاعاً أكثر ارتفاعات الشمس / / بها / لا لا يزيد كثيراً على أقلَ ارتناعانتها بخط الاستواء وحرارة صيغها في غاية الشدّة / فيُعلم / من ذلك أن حـرارة شتاء خط الاستواء تككون أضعاف حرارة صيف تلك البقاع • وحكم بأنَ أعدل البقاع الإقليم الرابع •

$$
\text { . } \alpha \text {, M [}
$$

[4] The truth of the matter is that if one means by temperate a uniformity in the conditions, then there is no doubt that it is most so at the equator as stated by the Master. But if one means by it a balancing of the two [extreme] weather conditions, then there is no doubt that the equator is not this way; this is indicated by the extreme blackness in color of its inhabitants among the peoples of Zanzibar and Abyssinia, the extreme frizziness of their hair, and other things that are brought about by the heat of the air. The opposite of this among the people of the fourth clime indicates that the state of its air is more temperate; indeed, the general reason for the profusion of habitations and the magnitude of propagation and reproduction in the seven climes, but not in the rest of the uncovered parts of the Earth, indicates that they are more temperate than other [places]. And what is nearer to the middle [of the climes] is most certainly nearer [to being mature, which result from the two [extreme] weather conditions, are clearly evident at the two fringes.

CHAPTER THREE

On the Characteristics of Locations Having Latitude Which Are Called the Oblique Horizons

[1] For every location that is beneath one of the day-circles between the equator and one of the poles of the / first / motion, the turning of the orb there is slanted. The altitude of the pole that is in the direction to which the location is inclined is in the amount of the local latitude. The distance from the equinoctial of the day-circles that are permanently visible or permanently invisible is greater than the local colatitude; the distance of the largest of them, which touches the horizon, is equal to it. The remaining day-circles are divided by the horizon into two unequal parts-the largest visible ones being closest to the visible pole, the [largest] invisible ones being farthest away. The two parts are conversely equal for any two day-circles equidistant from and on opposite sides of the equinoctial. There is an increase in daylight up to the apex of the solstice that is adjacent to the visible pole, and a decrease in it until
$/ 15 /$ first $] \beta=-\alpha,-M$.
[[] والحق في ذلك أنَّه إن عُني بالاعتدال تشابه الأحوال فلا

 5 شعورهم وغير ذلك مما تتتضيه حرارة الهواء . وأضداد ذلك الك فـلـ في
أهل الإقليم الرابع تدل علي كون هوائه أعدل ؛ بل السبـ السب الكلّي فيّ توفّر العمارات وكثرة التوالُّد والتناسُل في الأقاليم السبعة دون سِّ سائر

10 -فانِّ الاحتراق والفَجاجة اللازمين من الكيفيتين ظاهران في الطرفين .

الفصل الثالث

هِ خواصّ المواضع التي يـكون لـما عرن وتُسمّى بالآخأت المانـــلة
[1] كل موضع يكون تحت أحد المدارات اليومية بين خط 15 الاستواء وأحد قطبي الحركة / الأولى / يكون دور الفللك هناك
 الموضع إليها بقدر عرض البلد . وكان البُ بُعد المدارّات الأبدية ألظهور

 20 إلى مختلفين : أعظمهما الظاهر فيما هو إلى القطب الظاهر أقرب ، ألفر ، والخفي فيدا هو أبعد . . ويتساوى القسمان على التـيا التبادل في كل مدارين متساوبي البعد عن معدل النهار على جنبتيـيه . وتنزايد النهار يكون إلى رأس المنقلب الذي يلي القطب الظاهر وتناقصه إلى

$$
.-\alpha,-\mathrm{M}=\beta[\ldots / 1.5 /
$$

the apex of the other solstice. Daylight will only be equal to night when the sun is at the equinox points.
[2] If two circles of declination are assumed to pass through the two points at which the day-circle of the sun or of some star and the horizon intersect, there will occur two triangles between / those two circles, / the horizon, and the equinoctial; one is easterly and the other westerly. One of the sides of each [triangle] is the declination of the sun or the distance of the star from the equinoctial, which is along the declination circle; the second of them is the ortive amplitude of the sun or of the star, which is along the horizon circle; and the third [of the sides] is the equation of daylight of the sun or of the star, which is along the equinoctial, and it is half the difference between the daylight of the sun or of the star and the daylight of the equator. [When] this triangle is in the direction of the visible pole, it is below the Earth [i.e. horizon], while in the direction of the invisible pole it is above it.

[Fig. T19*]

15/ those two circles] $\beta=$ that circle] α, M. [${ }^{*}$ Figure T19 occurs only in MS L.]

رأس المنقلب الآخر . ولا يكون النهار مساويا للّيل إلآ عند كون الشسس في نتطتي الاعتدالين
 يتقاطع مدار الشدس أو كوكب من الكواكب والأفق حدث مثلثّان 5 بين / تينكُ الدائرتين / والأفق ومعدل النهار ، أحدهما شرقي والآخر غربي : أحد أضلاع كل واحد منهما ميل ميل الشدس أو بُعدي الكوكب عن معدل النهار وهو الذي يكون من دائرة الميل ، وثانيها سعت مشرق الشهس أو الكوكب وهو الذي يكون من دائرة الأفق ، وثالثها تعديل نهار الشسس أو الكوكب وهو الذي يكن من من معدل 10 النهار وهو نصف الفضل بين نهار الشهس أو ألكوكب وبين نهار خط الاستواء . ويكون ذلكُ المثلثّث في جانب التطب الظاهر تحت

الأرض وفي جانب القطب الخفي فوقها

[3] For every day-circle / whose elongation / from the equinoctial is on the side of the invisible pole, what revolves on [the part of the circle] above the Earth will not reach the prime vertical circle. Every day-circle whose elongation from the equinoctial in the direction of the visible pole is equal to the local latitude will pass through the zenith and be tangent to the prime vertical circle above the Earth; every [day-circle] whose elongation is greater than that will pass beyond the zenith in the direction of the visible pole, and it will not meet the prime vertical circle; and every one whose elongation is less than that will intersect the prime vertical at two points, one of which is east and the other west. The star, as long as it is between the two points, is beyond the prime vertical circle in the direction of the invisible pole.

CHAPTER FOUR

On the Characteristics of Locations Whose Latitude Does Not Exceed the Complement of the Obliquity

[1] They are divided into four divisions:
[2] The first is that whose latitude is less than the obliquity. In those locations the sun will pass over the zenith at two points whose declination is equal to the local latitude in the direction of the visible pole. At that time the ecliptic equator will be perpendicular to the horizon, its poles will be on the horizon, and objects will not have shadows at noon. As long as the [sun] is on the arc between the two points in the direction of the visible [equinoctial] pole, the [noon] shadow will fall toward the invisible pole; [in this case] the visible one of the ecliptic orb's poles will be that which is adjacent to the invisible pole of the equinoctial, and the invisible will be that which is adjacent to the visible pole. As long as the sun is on the other arc, i.e. the one between the two points in

[^82][r] وكل مدار يكون / بُعده / من معدل النهار في جانب التطب الخفي فلا يصل ما يدور عليه فون الأرض إلى دأْرَ ألؤل السهوت • وكل مدار يكون بعده عن معدل النهار في جيهة القطب
 s السموت فون الأرض ؛ وكل ما يكون بُعده أكثر من ذللك فهو يمرَ عن سمت الرأس في جهة القطب الظاهر ولا يلاقي ديائرة أول
 السموت على نتطتين ، إحدامها شرقية والأخرى غربية ، ويكون الكوكب ما دام بين النتطتين عن دائرة أول السموت في جهة

10 التطب الخڭئي

الفصل الرابع

 لا يجاوز تمار الميلِ الكـلّي

المواضع تهرّ الشسس بسدت الرأس في نتطتين ميلهما يُساوي عرض البلد في جهة التطب الظاهر ؛ وحينئذ تقوم منطقة البروج على الالفق على قوائم ، ويكون قطباها على الأق ، ولا يكون للأشخاص في انتصاف النهار ظل . وما دامت في التوس التي بين النتطتين 20 في جهة التطب الظاهر يتع الظل إلى جهة التطب الخغي ؛ ؛ ويكون التّطب الظاهر من قطبي فلك البروج هو الذي يلي التطب الخفي من
 الشهس في التوس الأخِّرى ، أعني "التي تكـيون بين النتطتين في

$$
-\alpha,-\mathbf{M}=\beta[\ldots / 1 /
$$

the direction of the invisible [equinoctial] pole, the [noon] shadow will fall toward the visible pole; [in this case] the visible one of the ecliptic orb's poles will be that which is adjacent to the visible pole of the equinoctial, and the invisible will be that which is adjacent to the invisible. The seasons of the year in those regions [lit., horizons] are not equal; even if [their number] were increased 5 beyond the four, they would still not be uniform.
[3] The second division is that whose latitude is equal to the obliquity. In those locations the sun will pass once a year over the zenith. One of the ecliptic orb's poles will be permanently visible, while the second will be permanently invisible; in their revolution, they will not touch the horizon except once, this pole reaches the zenith. At that time only, the ecliptic equator will be perpendicular to the horizon. Throughout the year, shadows will be toward the visible pole. The altitude of the sun increases from one of the solstices to the other; it then returns, [the altitude] decreasing until [the sun] comes back to [the original solstice]. The seasons of the year will be four-no more, no less.
[4] The third division is that whose latitude is,greater than the obliquity and less than its complement. There the sun will not reach the zenith; it will have a highest altitude, which is equal to the sum of the obliquity and the local colatitude, and a lowest, which is equal to the excess of the local colatitude over the obliquity. The remaining conditions are as we have [already] explained. Where the local latitude does not exceed the obliquity by [more than] the amount of the latitudes of the other wandering [planets], those whose latitude is greater than the excess of the local latitude over the obliquity will pass over the zenith twice, while those whose latitude is equal to the excess [will pass over] once. In these latitudes, the equation of daylight and the ortive and occasive amplitudes increase with increasing latitude.

جهة التطب الخفي ، يقع الظل إلى جهة القطب الظاهر ؛ ويكون التطب الظاهر من قطبي فلك البروج هو الذي يلي القطب الظالـاهر من معدل النهار ، والخْفي هو الذي يلي الخفني • ولا تكا تكون فصول السنة في تلك الآفاق متسناوية ؛ وُإن زادت . 5
[٪] القسم الثاني ما يكون عرضها مساوياً للميل الكلي • وفي
 ويصير أحد قطبي فلك البروج أبدي الظهور والثاني أبدي الخغاء ، الخدي
 10 المنقلب الذي يكون في جهة القطب الظاهر إلى سـت الرأس ؛ وحينئذ تتطع منطتة البروج الأفق غلى قوائم فقط . وتصير الأطالِل

 إليه . وتصير فصول السنة أربعة لا غير • الانير 15 [8] القسم الثالث ما يكون عرضها زائداً على الميل الكلي وناقصا من تمامه . وهناك لا تا تنتهي الشدس إلى سمت الرأس الم ويكون / لها / ارتناعان : أعلى وهو يكون بقدر مجموع الميل

 العروض يـزداد تعـديـل النهار وسعـ المشـرق والمنـرب بـازّديـاد . العرض
[5] The fourth division is that whose latitude is equal to the complement of the obliquity. The day-circle of the solstice that is in the direction of the visible pole becomes permanently visible there, while the day-circle of the other solstice is permanently invisible. The day-circle of the visible pole of the ecliptic [lit., that opposite it]. Then when the visible solstice comes to touch the horizon, it will do so at the point of the pole of the prime vertical that is in the direction of the visible pole, while the invisible solstice will touch it at the other pole; the two poles [of the ecliptic] will thereupon be at the zenith and the nadir [lit., that opposite it], and the ecliptic equator will coincide with the horizon. Then when the pole departs from the zenith, and the visible solstice rises from [the horizon], the eastern half of the [ecliptic] equator rises in one stroke from the horizon. The point subsequent to the invisible solstice will then be upon the pole of the prime vertical, being about to set, and the point subsequent to the visible solstice will be at its other pole, being about to rise. The visible half is what is between them, i.e. the half that the vernal equinox is in the middle of if the visible pole is northerly, or the autumnal if it is southerly; the invisible half is the other half. Then the invisible half will rise point by point in all parts of the eastern half of the horizon, and the visible half will similarly set point by point, during the period of a nychthemeron [lit., the day with its night] until the position of the orb returns to its original condition. [The maximum for] each of the ortive amplitude and the equation of daylight will there be a quarter revolution. Daylight will increase until the measure of the nychthemeron becomes entirely daylight; night will thereafter occur, increasing until the measure of the nychthemeron becomes entirely night. The altitude of the sun increases until it reaches twice the obliquity; it will then begin to decrease, decreasing until it becomes zero [whereupon] the sun will touch the horizon. The rising of a half revolution of the ecliptic equator occurs with a revolution of the equinoctial; the rising of the other half of the ecliptic equator does not [require] time.
[0] القسم الرابع ما يكون / عرضها / مساوياً لتمام الميل

 قطب أول السموت التي في جهة التطب الظاهر ، و ومانـي الخفي على القطب الآخر ، ووصار القطبان على سمت الرأس ومقابله ، وانطبقت منطقة البروج على الأفق . ثم إذا زال التُ القطب عن سمت الرأس وارتغع المنقلب الظاهر عنه ، الارتفع النصف الشرقي الشني 10 المنطقة دفعة عن الأفق ؛ فيكون الجزء التالي للمنقلب الخغي علي الئى قطب أول السموت يريد الغروب ، والجزء التالتالي للمنقلب الظظاهر

 الظاهر شمالياً أو الخريفي إن كان جنوبياً ؛ وألنصف الخفي الخا

 جزء كذلك ، في مدة اليوم بليلنه إلى أن يعود وضع الفلك إلى الى حاله الأولى • ويكون هناك كل واك واحد من سعة المشرق وتعديل النهار ربعاً من الدور • وزيادة النهار إلى أن يصير مقدار يوم بلي بليلتـه 20 نهاراً كله ؛ ثم يحدث ليل ويزيد إلى أن يصير مقدار يوم بليلته
 ثم يأخذ في التناقص ويتناقص إلى أن يفنتى ، وتماسن الشمس الأفق • ويكون طلوع نصف دور من منطقة البروج مع دور من من معدل النهار ؛ وطلوع النصف الآخر من منطقة البروج لا في زمان .

$$
\text { . } \alpha \text {, M [عرض = }=\beta \text { [.../1/ }
$$

CHAPTER FIVE

On the Characteristics of Locations Whose Latitude Exceeds the Complement of the Obliquity But Does Not Reach One-Quarter Revolution

[1] In these locations, the largest permanently visible day-circle will intersect the ecliptic equator at two points whose declinations in the direction of the visible pole are equal. The largest permanently invisible day-circle will intersect it at two points opposite these two in the direction of the invisible pole. The ecliptic equator is divided into four arcs: one of them is permanently visible at the middle of which is the solstice that is in the direction of the visible pole; the second is permanently invisible at the middle of which is the other solstice. The endpoints of the first arc touch the horizon but do not disappear, and the endpoints of the second arc touch it but do not rise. As for the two remaining arcs, the one at the middle of which is the first of Aries rises in reverse order and sets in regular order if the visible pole is northerly, and it rises in regular order and sets in reverse order if the visible pole is southerly; and the one at the middle of which is the first of Libra is the opposite of this. The visible solstice has a highest altitude, which is equal to the sum of the obliquity and the local colatitude along the meridian circle in the direction of the invisible pole, and a lowest [altitude], which is equal to the excess of the local latitude over the complement of the obliquity along the meridian circle in the direction of the visible pole. The visible pole of the ecliptic orb also has a highest altitude, which is equal to the sum of the local colatitude and the complement of the obliquity, and a lowest, which is equal to the excess of the local latitude over the obliquity; the pole will be simultaneously with the solstice on the meridian, but [they are] in opposite directions from the zenith and their altitudes are at opposite [extremes]. One may draw analogous conclusions from this for the situation of the invisible solstice and the invisible pole.
[2] In order to conceive positions in these latitudes, we shall take an example. Let the latitude in the north be 70: the arc that is permanently visible will be Gemini

الفصل الحامس
 تْمـام الميل الكلي وغ بـبلغ ربع الكور

[1] في هذه المواضع يكون أعظم المدارات الأبدية الظهور قاطعاً

وأعظم المدارات الأبدية الخفاء قاطعاً لها على نتطتين متقابلتين لهما
في جهة التطب الخفي • وتنقسم منطقة البروج إلى أربع قسي : إحداها أبدية الظهور ، وهي التي يتوسطها المنقلب الذي يكون في جهة القطب الظاهر ؛ والثانية أبدية الخفاء ، وهي التيا التي يتوسطها 10 المنقلب الآخر . وطرفا القوس الأولى يماستان الأفق ولا يغيبان ، وطرفا القوس الثانية يماستانه ولا يطلعان . وألما القوسان الباقيتان
 القطب الظاهر شمالياً ، وتطلع مستوية وتغرب معكوسة إن كان المان القطب الظاهر جنوبياً ؛ والتي يتوسطها أول الميزان تكون بالضد

بقدر مجموع الميل الكلي وتمام عرض البلد على دائرة نصف النهار في جهة القطب الخفي ؛؛ وأسفل ، وهو يكون بقدر فضل فلـيل عرض البُلد على تمام الميل "الكلي على دائرة نصف النهار في جهة القطب
 20 وهو يكون بتدر مجهوع تمام عرض البلد وتمام الميل الكلي ؛ وأسفل ، وهو يكون بتدر فضل عرض البلد على الميل الكيلي
 المتتابلتين عن سمت الرأس والارتناعين المتبادلين . وقِس عليه حال المنقلب الخفي والتطب الخفي 25 [r] 25 ولكي نتصور الأوضاع في هذه العروض نمثّل له مثالاًا . وليكن العرض في الشمـال سبعين : والقوس الأبدية الظهور الجوزاء
and Cancer, and the arc that is permanently invisible will be Sagittarius and Capricornus; the arc that rises in reverse order and sets in regular order is from the first of Aquarius to the last of Taurus, and that which rises in regular order and sets in reverse order is from the first of Leo to the last of Scorpius. Then when the first of Cancer is at the meridian on the southern side, its altitude being at its maximum [value], namely $(43+1 / 3+1 / 4)^{\circ}$, the visible pole of the ecliptic orb is on the northern side on the meridian as well and its altitude is at its minimum [value], which is $(46+1 / 4+1 / 6)^{\circ}$. At the rising place of the equinox is the first of Libra, which is on the verge of rising, and at its setting place is the first of Aries, which is on the verge of setting. The visible half of the ecliptic orb [extends] from west to east in the south as in this illustration:

[Fig. T20]

والسرطان ، والقوس الأبدية الخفاء القوس والجدي ؛ والقوس التي تطلع معكوسة وتغرب مستوية من أول الدلو إلى "آخر الثور ، والتي تطلع مستوية وتغرب معكوسة من أول الأسد إلى آلـر العقرب . فإذا كان أول السرطان على نصف النهار من جانب
 وربع ، كان قطب فلك البروج الظاهر من جانب الشان الشمال أيضاً على نصف النهار وارتفاعه في غاية النقصان وهو ست والـو وأربعون درجة وربع وسدس • ويكون على مطلع الاعتدال أول الميزان يريد
 10 البروج الظاهر من المغرب إلى المشرق في الجنوب على هذه الصورة :

[3] Then let the orb move with the first motion so that Libra and Scorpius will rise in regular order, and their ortive amplitude will span the southeastern quarter [of the horizon]. Aries and Taurus will set likewise in regular order, and their occasive amplitude will span the northwestern quarter [of the horizon]. The orb its ascent toward the east until the first of Sagittarius comes to touch the horizon at the south point and the first of Gemini [comes] to touch the horizon at the north point. The visible half of the ecliptic equator comes to be on the western side [extending] from south to north as in this illustration:

[Fig. T21]
[4] Then let the orb move so that the first of Gemini begins its rise toward the east, and the last of Taurus, which is contiguous with it, rises little by little until Taurus has risen.
[٪] ثم ليتحرك الفلك بالحركة الأولى : فيطلع الميزان والعقرب

 مغربهما . وليأخذ أول السرطان في / الانحطاط / الحـو الحو المغرب 5 وقطب فلك البروج في / الارتفاع / نحو المشرق إلى الن أن ينتهي أول القوس إلى مداستّة الأفق على نتطة الجنوب وألول الجوزاء إلى مدماسَّة
 في الجانب الغربي من الجنوب إلى الشمال على هذه الصورة :

[〔] ثم ليتحرك الفلك : فيأخذ أول الجوزاء في الارتفاع نحو 10 المشرق ويطلع آخر الثور المتّصل به شيئاً بعد شيء إلى أن يطلع

Then Aries rises from its last to its first. The ortive amplitude of these two signs spans the northeastern quarter [of the horizon], and the first of Aries reaches its rising place. Directly opposite this, the first of Sagittarius begins its descent below the horizon, and the last of Scorpius, which is contiguous with it, sets little
5 by little until Scorpius has disappeared; then Libra sets from its last to its first. Their occasive amplitude spans the southwestern quarter [of the horizon], and the first of Libra reaches its setting place. The first of Cancer reaches the meridian circle on the northern side; it is at its lowest altitude, which is $(3+1 / 3+1 / 4)^{\circ}$. The pole of the ecliptic orb [reaches] its highest altitude [which is] on the southern side, and this is $(86+1 / 4+1 / 6)^{\circ}$. The visible half of the ecliptic orb is on the northern side between the rising and setting places of the equinox, the directional sequence [of the signs here being] opposite the conventional one, as in this illustration:

[Fig. T22]

الثور ، ثم يطلع آخر الحمل إلى أوله ؛ ويستغرق الربع الشهالي الشرقي سعة مشرق هذين البرجين ، وينتهي أول الحمـل إلى مطلعه". ويأخذ بإزاء ذلكُ أول القوس في الانحطاط تحت الأفق ويغرب آخر العقرب المتصصل به شيئأ بعد شيء إلى أن يغي

 السرطّان إلى دائرة نصغ النأها في جانب الشمال ويكون في آرتناءه الالسفل وهو ثلاث درجات وثُث وربع ، وقطب فلكُ البروج إلن ارتناءه الاعلى في جانب الجنوب وهو ست وثمانون درجة وربع وسدس 10 ويكون ألنصف من فللك البروج الظاهر في جانب الشمال بين مطلع الاعتدال ومغيبه على توالي مخالف للمعهود على مذه الصورة :

[5] Then let the orb move so that Pisces rises from its last to its first, then Aquarius from its last to its first. Their ortive amplitude spans the southeastern quarter [of the horizon]. Directly opposite them, Virgo disappears from its last to its first, then Leo from its last to its first. Their occasive amplitude spans the
5 northwestern quarter [of the horizon]. The first of Aquarius comes to touch the horizon at the south point, and the first of Leo comes to touch the horizon at the north point; the visible half of the ecliptic circle is in between them in the eastern direction. The first of Cancer has risen higher on the eastern side, and the pole has begun its descent on the western side as in this illustration:

[Fig. T23]
[0] ثم ليتحرك الفلك : فيطلع آخر الحوت إلى أوله ، ثم آخر

ويستغرق الربع الغربي الشمالي سعة مغربهما . ويصير أول الدلو الولو 5 على نقطة الجنوب مدأستاً للأفق ، وأول الأسد على نتطة الشمال مداساً للأفق ، ونصف دائرة البروج الظاهر فيما بينهما من جهة المشرق • وأول السرطان قد ارتغع في جانب المشرق ، والتطب قد أخذ في الانحطاط في جانب المغرب على هذه الصورة :

[Hr شكل [
[6] Then let the orb move so that the first of Leo rises from the horizon moving toward the eastern half; the points of Leo will then rise sequentially until its last, then the points of Virgo. Their ortive amplitude spans the northeastern quarter [of the horizon]. Directly opposite this, the first of Aquarius will drop Pisces sequentially. Their occasive amplitude spans the southwestern quarter [of the horizon]. The [action of] rising will then have reached the first of Libra and that of setting the first of Aries. At that time the first of Cancer will have come to be at the meridian circle at its highest altitude, and the visible pole of the ecliptic orb will be at its lowest altitude on the meridian. The visible half of the ecliptic orb comes to be on the southern side, and the situation returns to what we assumed originally. So the revolution is completed and what we have [earlier] described should become clear. We have been excessively verbose in this chapter only because of the difficulty of imagining these positions.
[7] In these regions [lit., horizons] when the local latitude approaches the extreme and the altitude of the equinoctial from the horizon is small, then a planet may move, due to the extreme proximity of its day-circle from the horizon, to another day-circle by [means of] its secondary motion; thus it might disappear while in the eastern half after having been visible, or it might become visible while in the western half after having been invisible. So it would then have set in the east or risen in the west. And this too is one of the things asked about that is found to be strange.

CHAPTER SIX

On the Characteristics of Locations Whose Latitude Is Exactly One-Quarter Revolution
[1] This does not occur on the Earth except at two points at which one of the poles of the equinoctial is there at the zenith. The equinoctial circle becomes
[7] ثم ليتحرك النلك : وارتغع أول الأسد عن الأفق آخذأ
نحو النصف الشرقي ، فتطلح أجزاء الأسد على التوالي إلى آخره ،
ثم أجزاء السنبلة ؛ ويستغرق الربع الشهالي الشرقي سعة مشرقهـا .
وبإزاء ذلكُ ينخفض أول الدلو عن الأفق إلى تحت الألرض ، فيغر
s الدلو ثم الحوت على التوالي ؛ ويستغرق الربع الجنوبي الغربي سعنة
مغربهما . ثم ينتهي الطلوع إلى أول الميزان والغنروب إلى أول الحمـل . ويصير حينئذ أول السرطان إلى دائرة نصـن النـانـار وارتناءه الأعلى ، والتطب الظاهر من فللُ البروج إلى ارتغاءه الأسغل من نصف النهار • ويصير النصف الظامراهر من فلث البا البروج في 10 جانب الجنوب ، ويعود الوضع إلى ما فرضناه مبداً ؛ فيتم الدور ويتَضح ما وصنناه . وإنما أطنبنا التول في مذا الفصل لعسر

تصور هذه الأوضاع •

مداره من الأقق جدأ إلى مدار آخر بحركته الثانية ؛ فيغيب بعد
ما كان ظاهرأ وهو في النصف الشرقي أو يظهر بعد ما كا كان خفياً وهو في النصف النربي • فيكون قد غرب في في المشرق أو طلع من المغرب. وهذا أيضا من الأسئلة المستغربة

> الفصل الساصس
> هِّ نواصّ المواضع التي يـونون عرضها ربعاً من الكور سواءً
[1] وذلك لا يكون على الأرض إلا عند نتطتين يكون أحد
قطبي محدل النهار على سمت الرأس هنالك . . وتصير دائرة معـل

$$
\text { . } \alpha \text { [}
$$

coincident with the horizon, and the orb turns with the first motion in a spinning manner; there is no longer on the horizon an east or a west. Thus the half of the orb that is in the direction of the visible pole from the equinoctial is permanently visible, and the other half is permanently invisible.
[2] As long as the sun is in the visible half of the ecliptic orb, it will be daytime; and as long as it is in the invisible half of it, it will be night. Thus its [the sun's?] entire year will be a nychthemeron [lit., a day with its night], with one [i.e. daytime or night] exceeding the other due to the variability in speed [lit., the slowness and fastness] of the [sun's] motion. Beneath the northern pole at the present time, their daytime is greater than their night by seven of our nychthemerons. This is because the apogee of the sun is at the end part of Gemini and its perigee is at the end part of Sagittarius. The period for the setting of dusk or the rising of dawn occurs for them in 50 of our days as we shall explain when describing these two [terms] later on. The maximum altitude of the sun and its maximum depression is in the amount of the maximum declination [i.e. the obliquity]. Neither the rising nor the setting of the sun and planets that is due to the secondary motion will occur at the same place on the horizon.
[3] Stars whose latitude is less than the obliquity will have a rising and a setting; the periods of visibility and invisibility will vary depending on how far or how near their day-circle is from the ecliptic orb [sic]. Stars whose latitude is equal to the obliquity will touch the horizon once during one revolution of the second motion; neither they nor those [stars] whose latitude exceeds the obliquity will have a rising or a setting, but instead they will be either permanently visible or invisible. Let it be recalled what we said regarding the positions of the orb due to the first two motions, and let [the situation] be determined here on that basis.
[4] This is the last of the descriptions of the localities that are beneath the day-circles and what is comparable to them.

النهار منطبقة على الأفق ، ويدور الفلك بالحركة الأولى رَحَوية ولا يبقى في الأفق مشرق ولا مغرب . فيكون النصف من الفلك الذي يكون مـن معـدل النهار في جهـة التطب الظا الظاهر أبدي الظهور والنصف الآخر أبدي الخفاء .
5
يكون نهاراً ، وما دامت في النصف الخفي منه يكون ليلاً ؛ فتكون
 حركتها وسرعتها . فيكون تحت التطب الشمالي الئلي في هذا التألأريخ
 10 أوج الشمـس في أواخر الجوزاء وخضيضها الي في في أواخر القوس • وتكون مدة غروب الشفق أو طلوع الصبح لهم في خدسين يوماً من أيامنا على ما نتبين عند وصغهما فيها الما بعد . وتكا وتكون غاية ارتغاع الشمس وغاية انحطاطها بقدر غاية الميل . ويكون طلون الشا
 15 [٪] ويكون للكواكب التي عرضها ينتص من الميل كله طلوع
 فلك البروج وقربها إليه . والكواكب التي عرضها التا مساور اللميل كله تماس الأفق في دور واحد من الحركة الثانية مرة مرة واحدة ؛

 [^] وهذا آخر أوصاف البقاع التي تحت المدارات اليومية وما . يجري مجراها

CHAPTER SEVEN

On the Co-ascensions of the Ecliptic

[1] The arc on the equinoctial that rises with a given arc on the ecliptic orb [sic] is called the co-ascension of that arc; the arc on the ecliptic orb is referred to as the equal degrees.
[2] The co-ascension varies according to the changing horizons. At the [Earth's] equator, each quarter that is bounded by two of the four [cardinal] points will rise with a quarter because when the equinox point, which is simultaneously one of the two boundaries for two quarters for [each of] the two equators, reaches the zenith, the solstitial colure will coincide with the horizon; thus the solstice point will be on the horizon and the two other boundaries [i.e. other than the equinox] of the two quarters will both be on the horizon. One should draw analogous conclusions from this for the remaining quarters. But 30 time units, i.e. ($1 / 2$ of $1 / 6$) of the equinoctial, will not rise with a zodiacal sign, for example one that adjoins one of the four [cardinal] points, which is $/(1 / 6$ of $1 / 2) /$ of the ecliptic equator. This is so because if the zodiacal sign is one that adjoins both [the sign and its co-ascension]. When the zodiacal sign's other boundary reaches the horizon, there occurs a triangle [formed] from the sign, the arc that rises with it along the equinoctial, i.e. the co-ascension, and what is between them along the horizon; its angle that is bounded by the equinoctial and the horizon is right, and the remaining two are acute. Since the sign is the subtense of a right [angle], and its co-ascension is the subtense of an acute angle, the sign is larger than its co-ascension; the same will hold for two signs that adjoin the equinox point and their co-ascension. Now if the zodiacal sign is one that adjoins the solstitial point, its co-ascension will be larger than it. This is because what remains [after taking] the co-ascension of the [above] two signs, which is less than $1 / 6$ of a revolution, from a full quarter will be greater than ($1 / 2$ of $1 / 6$) of a revolution, and [this remainder] will rise with the remaining sign.

[^83]
الفصل السابع
 عِّ مَطالِع البروهج

[1] القوس من معدل النهار التي تطلع مع قوس مفروضة من فلكُ البروج يقال لها مَطالِّع تلك القوس ، ويقال للقوس من فلك . 5

الاستواء فكل ربع يتحدّد بنتطتين من النتط الأربع يطلع مع مع ربع لأنَ نتطة الاعتدال التي هي أحد حدّي الربعين من المنطتتين معاً إذا انتهت إلى سمت ألرأس انطبقت الدائرة المارئ المارة بالأقطاب الأربعة 10 على الأفق ؛ فتكون على الأفق نتطة الانقلاب ويكون الحدألن الآنخران
 برج مثلاُ يلي إحدى نتط الأرباع ، وهو / سدس نصف / منطقة

 15 وهو تلك النقطة . وإذا "انتهى الحدَ الآخر للبرج إلى الأفق حدث الـن
 ومما يتع بينهما من الأفق مثلث زاويته التي يحيط بها مالئ معدل النهار

 نتطة الانقلاب فيكون مطالعه أعظم منه ، وذلك لأنَ البان الباقية من
 تكون أعظم من نصف سذّس الدور ، وهي تطلع مع البرج الباقي •

It is apparent from the above that for any two equal arcs that are equidistant from one of the four [cardinal] points, i.e. the two equinoxes and the two solstices, their co-ascensions at the equator will be equal. The ecliptic equator may be divided into four segments whose initial [points] are at the midparts of the 5 quarters [of the ecliptic]. Each segment at the midpart of which falls one of the equinoxes will be greater than its co-ascension; each segment at the midpart of which falls one of the solstices is smaller than its co-ascension.
[3] The passage of the equinoctial and the ecliptic equator across the meridian circles in all localities is as their rising for the equator since each one of [these meridian circles] is one of the horizons for the equator; the same con-
10 clusion holds for all the declination circles. The co-descensions are as the coascensions for these horizons [i.e. those of the equator].
[4] As for the oblique horizons, a quarter will not rise with a quarter since the plane of the equinoctial is not perpendicular to the plane of the horizon. A half will rise with a half when they are bounded by the two equinox points. When an arc adjoining the equinox point that is away from the equinoctial in the 15 direction of the visible pole rises, it will be larger than its co-ascension because in the above-mentioned triangle it will be the subtense of an obtuse [angle] and its co-ascension will be the subtense of an acute [angle]. And if it is away from the equinoctial in the direction of the invisible pole, then its co-ascension is greater than [the arc] because the disposition becomes the opposite of what it was [before]. It is apparent from the above that for equal arcs that are equidistant from one of the equinox points their co-ascensions are equal. The orb [i.e. the ecliptic equator] may be divided into two segments: one of them is bisected by that equinox which is such that a star, when crossing it, comes to be in the direction of the visible pole; the other is that bisected by the other equinox. The first is larger than its co-ascension, while the other is smaller. The co-ascensions of northern arcs for northern horizons are like [i.e. equal to] the co-ascensions of the corresponding [equivalent arcs] opposite to them in the south for the [equivalent] southern horizons; the same holds for the southern [arcs]. The codescension of any arc for any horizon is like [i.e. equal to] the co-ascension of the arc directly opposite.
[5] As for those regions [lit., horizons] in which the day-circles of the two solstice points are the largest of the permanently visible and invisible daycircles, we have shown that a half of the ecliptic orb

وقد ظهر من ذلك أنٌ كل قوسين متبساويتين متساويتي البعد عن إحدى النقط الأربع - أعني الاعتدالين والانقلابين - فُمطالعهما في خط الاستواء متساوية . ومنطقة البروج تنفصل إلى أربـع قطع تكون مبادئها أواسط الأرباع • ويكون كل قطعة يتع في وسطها 5 أحد الاعتداليـن أعظم من مطالعها ، وكل قطعة يقع في وسطها . أحد الانقلابين أصغر من مطالعها
[] [
النهار في جميع البتاع يكون كطلوعها في خط الاستواء لأن كل
 10 [ع] وأما في الآفاق المائلة فلا يطلمع ربع مع ربع لكون سطح
معدل النهار غير قائم على سطح الأفق ؛ ويطلع نصف مع نصف إذا كانا متحددّدين بنتطتي الاعتدالين • وإذا طلعت قوس تلي نتطة الاعتدال وكانت من معدل النهار في جهة القطب الظاهر 15 فهي أعظم من مطالعها لأنها في المثلث المذكِور تكون وترَ منفرجة ومطّالعها وترَ حادةٍ . إِّ وإن كانت من معدل النهار في جهة القطب
 من ذُلكُ أنَ التسي المتساوبـة التي تتنساوى أبعادها عـن إحـى
 20 قطعتيـن : إحـداهما التي يتـوسطها الاعتـدال الـذي إذا جـاوزه الكوكب صار في جهة القطب الظا الطاهر ، والأخرى التي يتوسطها الاعتدال الآخر •• والأولى تكون أعظم من مطالعها والأخرى تنكون أصغر • ومطالع القسي الشدالية في الآفاق الشدالية كمطالع نظائرها من الجنوبية في الآفاق الجنوبية ، وكذلك ولك في الجنوبية . و ومغارب 25 كل قوس في كزل أفقِ تكون كمطالع نظير تللكُ القوس • [ه] وأْما في الآفاق التي يكون فيها مدارا نقطتي الانتقلابين

rises with the entire equinoctial and the other half rises without [requiring] time; in setting, the two halves exchange [properties].
[6] As for the regions [lit., horizons] in which there are arcs of the ecliptic orb that are permanently visible and invisible: let the example be the one in the northern region we have [previously] used, namely the region whose latitude is 70 where Gemini and Cancer are permanently visible and Sagittarius and Capricornus are permanently invisible. When the vernal equinox point rises, Pisces will rise after it in reverse order from last to first, then Aquarius in reverse order from last to first; then will begin the rising of Leo from its first in regular order, then Virgo, then Libra, then Scorpius, likewise [in regular order]. Now when the first of Sagittarius is reached, the last of Taurus will begin to rise reversed, and Taurus and Aries will rise in reverse order. Thereupon the vernal equinox point will return to the horizon. One should draw analogous conclusions from this for the remaining regions [lit., horizons], and from rising for setting.

CHAPTER EIGHT

On the Lengths of the Nychthemerons

[1] The nychthemeron [lit., a day with its night] is the time that falls from either the sun's occurrence on the horizon-whether rising or setting-or else [from its occurrence] on the meridian until its return there after one complete revolution by the first motion. Its length is one revolution of the equinoctial increased by the amount of it that rises with the arc traversed by the sun during that nychthemeron.
[2] Since what is traversed by the sun is variable, the lengths of the nychthemerons will [also] be variable; for [the sun] will traverse in the far half from the Earth smaller arcs, while in the near half larger arcs, and furthermore [those arcs] that rise along the equinoctial with the arcs from the ecliptic orb are variable, [the former] being sometimes smaller, sometimes larger than [the latter]. However, the variation [in the nychthemerons] is imperceptible in one or two days due to the smallness of the difference; one does perceive it over many days.

البروج يطلع مع جميع معدل النهار والنصف الآخر يطلع لا في زمان ؛ وفي الغروب يتبادل النصفان •
[7] وأُما في الآفاق التي تكون فيها قسي من فلك البـا
الظهور والخفاء" - وليكن الأفئ ما تمثّلنا بـه من الآفاق الشما
5 وهو أفت عرضه سبعون ، والجوزاء والسرطان فيه أبديا الظهور ،
والقوس والجدي أبديا الخفاء - فإذا طلعت نتطة الاعتدال الربيـي
 من الآخر إلى الأول ؛ ثم يبتدئ طلوع الأسد من أوله مستوياً ، ثم السنبلة ، ثم الميزان ، ثم العقرب كذلك • فإذا انتهى إلى أول 10 القوس ابتدأ آخر الثور بالطلوع المعكوس ويطلـ الثور والحهـل معكوسين ، فتعود نقطة الاعتدال الربيـي إلى الأفقت • وقــس عليه في سائر الآفاق ، والغروب على الطلوع الاعد

الفصل الثاعن بِّ مقاكيـر الأيّام بليـاليـما

15 [15 اليوم بليلته هو الزمان الذي يقع بين كون الشمس إمّا
 هناك بعد دورة واحددة تامة بالحركة الأولى • ومقداره دور دورة من أدوار معـل النهار مع زيادة تطلع منه مـع التوس التي تنطعها الشمس في ذلك اليوم بليلته .
20 النصف البعيد من الأرض قسياً أصغر وفي النصف التريب قسياً أكبر ، وأيضا ما يطلح من معدل النهار معِ التسي من فلك البروج مختلف فإنّه تارة يكون أصغر منها وتارة يكونٍ أكبر - نكون مقادير الأيتام بلياليها مختلنة ؛ لكن اختلانها غير محسوس في ائ يور 25 أو يـوميـن لـصغر التفـاوت ، ويحـن بـه في أيــام كثيــرة . وأهـل

The calculators, being obliged to use nychthemerons of equal size in order to find the mean and other motions, have taken the above increase to be in the amount of the mean motion of the sun during a nychthemeron. They named those days that were taken to be equal the mean days, each day of which is the measure of a revolution of the equinoctial plus the amount traveled by the mean sun in a day. As for the true state of affairs, one needs to find out all about each of the two differences.
[3] As for the difference that is due to the sun's variable speed: in the period that the sun moves from the apogee to the mean distance that follows it, it will be the increase of the sun's mean over its true position, [which is] in the amount of the maximum anomaly; in the period that it moves from the other mean distance to the apogee, it will be the same as this. Thus the increase of the mean over the true position in the far segment from the Earth of the sun's orb is in the amount of twice the anomaly; in the near segment, the increase of the true position over the mean is the same as this as well. The difference between the two segments is four times the anomaly.
[4] As for the difference due to the co-ascension: if the beginning of the day is made to be when the sun reaches the horizon, this difference will vary according to the changing horizons, and it will not be the exact same thing for all localities. This will be the case whether the beginning is [upon] its reaching the eastern horizon, at that place being according to the difference between the equal degrees and their co-ascension, or whether [the beginning] is upon its reaching the western horizon, at that place being according to the difference between the equal degrees and the co-ascension of the [arc] directly opposite them. But if the beginning of the day is made to be upon its reaching the meridian, the difference agrees for all horizons, and that is according to the co-ascension for the equator. They thus chose this rather than the first alternative.
[5] It has been mentioned above that the ecliptic orb may be divided into four segments. The two that are bisected by the equinoxes are greater than their co-ascensions, and they are from the middle part of Aquarius to the middle part of Taurus, and from the middle part of Leo to the middle part of Scorpius. The amount of excess of each one of them over its co-ascension is five degrees for the [Earth's] equator.

الحساب ، لمّا اضطروّا إلى استعمال أيَّام بلياليها متساوية الأقدار لمعرفة حركات الأوساط وغيرها ، أخذوا تللك الزيادة مقدار حركة الشهس الوسطى في يـوم بليلته . . وسْمَوا تلكـك الأئَام المأخـوذة بالتساوي الايتام الوسطى ، كل يوم منها يكون متدار دور من s معدل النْهار مع سير وسط الشمس ليوم • وأما التحنا
إلى معرفة جملة كل واحد من التغاوتين

10 وفي ألمدة التي تسير من البعد الأوسط الآخر إلى الأوج مثل تلك الكا فتككون زيادة الوسط على التقويم في التطعة البعيدة من الأرض من فلك الشمس بتدر ضعف الاختلاف ؛ وتكون في التطعة القريبة زيادة التقويم على الوسط أيضاً بمثل ذلك • ويكون الفضل بين التطعتين بأربعة أمثال الاختلاف .

 اختلاف الآفاق ، ولم يكن في جميع البقاع شيئاً واحداً بعينه ؛ ويكون ذلك إن كان المبدأ انتهاءها إلى الأفق الشرقي بحسا التغاوت بين درج السواء وهطالعها 20 نظيرها في ذلك الموضع • وإن جعل مبادئ الأيَام انتهاءها إلىا إلى نصف النهار اتنّق التغاوت في جميع الآفاق ، ويكون ذلك بـلـو
 [0] وقد مرَ أنَّ فلك البروج ينتسم إلى أربع قطع : الثان الثنتان 25 منها اللتان يتوستطهما الاعتدالان تزيدان على مطالعيهما ، وهما من أواسط الـدلو إلى أواسط الثور ومن أواسط الألـي الـقـرب ؛ ومتـدار زيـادة كـل واحـدة منـهـهـا على مطالعها بخط

The other two segments, which are bisected by the solstices, are less than their co-ascensions, and they are from the middle part of Taurus to the middle part of Leo and from the middle part of Scorpius to the middle part of Aquarius. The degrees for the [Earth's] equator.
[6] When one additively combines the two differences when they are both additive or both subtractive, or takes the difference when they differ, there results the total amount of difference between the mean days and the true days during the year.
[7] One day must necessarily be taken as the initial one from which the other days are measured. Noon of that day is then the initial [time] for both mean and true days. For any day of the year that is taken to be the initial one, the difference between elapsed mean and elapsed true days [measured] from that day is sometimes additive and sometimes subtractive, except for [initial days at] the end part of Aquarius and the beginning part of Scorpius; for if the initial [point] is made the end part of Aquarius, the true days will always be shorter than the mean ones, and if it is made the beginning part of Scorpius, the true days will always be longer than the mean ones. / The practitioners / of the profession have agreed on making [the initial point] the end part of Aquarius.
/16/ The practitioners] $\beta=$ Therefore the practitioners] α, M.

الاستـواء خهس درجات . والقطعتـان الأخـريـان وهمـا اللتـان يتوستطهها الانتلابان تنتصان عن مطالعيهما ، وهما من أوان أواسط الثور إلى أواسط الأسد ومن أواسط العقرب إلى أواسط الدلو ؛ ومقدار نتصان كل واحدة منهها من مطالعها بخط الاستواء أيضاً 5 خمس درجات [7] وإذا تركّب التفاوتان بالجمع إذا كانا زائدين معاً أو ناقصين معاً أو بالتفريق إذا اختلفا ، ، حصل متدار التناوت بين الونا الايَّام الوسطى والايتام الحقيقية جملة في السنا

 جميعاً . وكل يوم من السنة يفرض مبدأ" يكون التفاوت بين الائايَم
 ناقصاً إلاَ أواخر الدلو وأوائل العقرب ؛ فإنَ المبدأ إذا جعل ألوا أواخر الدلو كانت الايتّام الحقيقية دائماً ناقصة من الوسطى ، وإذا جعل
 الوسطى • / واتـنق / أهـل الصـناعة على جـعلة أواخر الدلو .

This is an illustration of the segments, the apogee being / in the end part / of Gemini.

[Fig. T24]

The difference of the anomaly changes due to the motion of the apogee, but over a long period.
[8] This then is the explanation of the difference in the lengths of the days. Finding the [actual] amounts for all times pertains to the practical handbooks.
5 This difference is called the equation of the nychthemeron. When there is a complete revolution [of the sun through the ecliptic], the true and mean days become equal, and this ceases to be a consideration.
$/ 1 /$ in the end part $\beta=$ at the end α, M.

وهذه صورة القطع على أنّ الأوج في / أواخر / الجوزاء :

 [^] فهذا بيان التناوت في متادير الأيتام • ووجود المقادير في كل وقت يتعلّق بكتب العـل ، ويُسْتى هذا التناوت تعديل الائيام 5 بلياليها . وإذا تَّ الدور تساوت الائيام الحتيقية والوسطى وستط
. هذا الاعتبار

$$
\text { . } \alpha, M[\text { T }=\beta[\ldots / 1 /
$$

CHAPTER NINE

On Dawn and Dusk

[1] When the sun approaches the eastern horizon, the Earth's shadow cone inclines toward the west. Then of the rays surrounding it, what is visible first is 5 that which is nearest the eye, and the nearest of the sides of the cone to the eye is the side that is toward the sun. Let a plane pass through the centers of the sun and Earth and through the axis of the cone, and let there occur in it a triangle whose angles are acute, whose base is on the horizon, and whose two sides are on the surface of the cone. There is no doubt that the [point] that is nearest the observer on the side [of the triangle] toward the sun is the spot on which the per10 pendicular extending from the eye falls on that side, not the place of intersection of the side with the horizon. Therefore the first observed light of the sun is seen above the / Earth / as a straight line that falls on the above side, but what is near the horizon is still dark. For this reason that light is called first dawn and false dawn. Its designation as first is obvious. As for the designation false, this is due
15 to the horizon being dark; in other words, for it to be believed that it is truly the light of the sun, then [one would expect that] what is illuminated should be toward the sun rather than farther away from it. This is an illustration of the horizon, the triangle, the perpendicular, the sun, and the Earth:

[^84]
الغصل التناسع
 عِّ الصبح والشفت

[1] إذا قربت الشمس من الأفق الشرقي مال مخروط ظلَّ
الأرض نحو المغرب ؛ فيكون المرئي من الشعاع المحيط بـ المَ أولاً ما
5 هو أقرب إلى البصر ، والأقرب من جوانب المخروط إلى البصر هو
الجانب الذي يلي الشمس • وليمرَ سطح بمركزي الشمر الشمس والألأرض

 يلي الشهس إلى الناظر يكون موقع العمود الخارج من النظر الواقع 10 على ذلك الضلع ، لا موضع اتُصال الضلع بالأفق • فإلذن أول ما ما

 يستى ذلك النور بالصبح الاول والـول والصبح الكاذب . أتما تسميته بالأل فظاهر ؛ وأمتا تسميته بالكاذب فلكون الأفق مظلماً ، أي لو

يبعد منه . وهذه صورة الأفق والمثلَّث والعمود والشُمس والأرض :

[Fig. T25]
[2] Then when the sun comes quite near, the light will spread; the horizon will then become lighted and the dawn will be true. Dusk will be the reverse of dawn. It has become known by trial and error that the depression of the sun below the horizon at the first rising of dawn and the final setting of dusk is 18°.
5 Thus in the lands whose latitude is $481 / 2 /$ degrees, / dusk will be continuous

[^85]
[10 شكل
[r] ثم إذا قربت الشمس جداً انبسط النور ، فصار الأفق منيراً ويصير الصبح صادقاً . والشفق يكون بعكس الصبح . عُرف بالتجربة أنَّ انحطاط الشمس من الأفق عند أولَ طلوع الصبح
 5 تكون عروضها ثمانية وأربعين / درجة / ونصفا يتُصـل الشفقي
$$
\text { . }-\alpha,-\mathrm{M}=\beta[\ldots / 5 /
$$
with dawn when the sun is at the summer solstice. In the [regions] whose latitudes exceed that amount, this [continuity of dawn and dusk] will occur for a longer period in accordance with the decrease in the above value for the sun's depression below the horizon. From what we have described, the reason for the stated delimitation [of the extent] of dawn and dusk in the earlier discussion of the spinning horizon should be clear.

CHAPTER TEN

On Understanding the Units of the Day, Namely Hours, and What Is Composed of Days, Namely Months and Years

[1] It is commonly held that the arc of daylight is the sum of half a revolution plus twice the equation of daylight or the excess of half a revolution over twice the equation of daylight (when there is an equation of daylight). The true state of affairs requires that the arc of daylight be that which turns along the equinoctial from the time half the solar body rises on the horizon until half of it sets on the horizon. It will be greater / or less / than the first by the amount of the co-ascension of [the arc] upon which the sun has moved during that day for a [given] locality. The arc of night is in accordance with the above. Now if each of the two arcs is divided by 15 , one obtains the [number of] equal hours for the day and for the night. If each is divided by 12 , one obtains the [number of] degrees in the seasonal [lit., temporal] or unequal [iit., distorted] hours [for the day and for the night]. The difference between them is that the length [lit., length and shortness] of the days and of the nights is [measured] by the number of equal hours [or else] by the degrees in the unequal [hours] since it is the degrees in an equal [hour] and the number of unequal [hours] that are invariable.
[2] The month is derived from the illuminated shapes of the moon, which have been shown really to be according to its position from the sun. Its cycle is completed when

بالصبح إذا كانت الشمس في المنقلب الصيفي • وفيـا جاوز
 انحطاط الشمس عن الأفق القدر التّذكور • ويتبيَن مها وصفنا السبب في تحديد الصبح والشفق المذكور فيما مرَ للاّفق الرحوي

الفصل العاشر هِ معركة أجزاء الأيـاء وهي الساعات وما يـنركب عن الأيام وهي الشهور والسنون
[1] المشهور أنّ قوس النهار هي مجموع نصف الدور وضعف
10 تعديل النهار أو فضل نصف الدور على ضع الم كان تعديل نهار . والحقيقة تقتضي أن تكون قوس النهار هو [! ما يدور من معدل النهار من وقت طلمع نصف جرم الشمس من الأفق إلى وقت غروب نصفه في الأفق ؛ وهو أزيد من الأول / أو
 15 وقوس الليل بحسب ذلك . فإذا قُسم كلَ واحد من القوسين على خمسة عشر حصلت ساعات النهار والليل المستوية ؛ وإذا قُسم على اثني عشر حصلت أجزاء ساعاتهما الزمانية والمعوّجة . . والفـرق بينهما أنَّ طول الائام والليالي وقصرهما يكونان بعدد المان المستوية وأجزاء المعوّجة لأنَ أجزاء المستوية وعدد المعوّجة لا 20
[[[تبيَن أنها إنها نكون بحسب أوضاعه من الشمس • ويتم دورُه إذا
/13-13/ أو أنتص [- - , - = =
the excess of the moon's true motion over the sun's true motion becomes one revolution. Finding this is difficult. Compounding the difficulty is that it varies due to the irregularity of their motions. Those employing the [month] who [rely] on appearances take it to be from one day of conjunction to another, or from one night of [first] visibility of the crescent to another, or from some other shape to its like, depending on what they have conventionally adopted. Those employing the [month] who [rely] on calculation derive a cycle from the difference between the two mean motions; they find it to be in $291 / 2$ days plus a fraction. They then take one month to be 30 , one month to be 29 . / They add the accumulated fractions that exceed a half day [which is] 11 days in every 30 years; / thus in a period of 30 years, 11 months that should be 29 become 30 each. These are called intercalary days. Or else they add the intercalary days to the months in some other way. These months are lunar, of which there are true and of which there are mean.
[3] As for the year, it is derived from the return of the sun to its location on the ecliptic orb that results in a return of the [same] yearly condition determined
15 by the seasons. This occurs in $365 \frac{1}{4}$ days minus a fraction. During [a year], there are 12 complete mean lunar months plus an excess of 11 days minus a fractional part. Of those employing [the year] who do not take into account the lunar months, some take it to be from a day on which the sun reaches a certain point, such as the vernal equinox, to the same [point]. They take its months to be from the days on which [the sun] reaches points along the ecliptic analogous to the [initial point]. Or they reckon the months to be 30 each and add at the end [of the year] 5 or 6 [days]. The 5 are called the stolen or / the supplementary / [i.e. the epagomenal days] and the 6th intercalary. For these [people], their years are true solar, while their months are either true solar or conventional.
/8/ They add...in every 30 years $\beta=$ For the accumulated fractions that exceed a half day, they add 11 days in every 30 years] α, M. /22/ the supplementary] $\beta=$ supplementary $] \alpha, M$.

صار فضـل حركة القهر على حركة الشمس الحقيقيتين دوراً ؛
 من أهل الظاهر يأخذونه من يوم الاجتماع إلى يومه أو من ليلة رؤية

 ونصف وكسر ؛ فيأخذون لشهر ثلاثين ولشهر تسعة وعشرين •
 ثلاثين سنة أحد عشر يوماً فيصير 'أحد عشر شهراً مها يجب أن أن 10 يكون تسعة وعشرين في مدة ثلاثين سنة ثلاثين ثلاثين ، وتسمى تلك الأيام كبائس ؛ أو يزيدون الكبائس في الشهور على وجه آخر وهذه الشهور قمرية ، فمنها حقيقية ومنها وسطية . [[[ألمأما السنة فمأخوذة من عود الشدس إلى موضعها في فلك البروج المتتضي لعود حال السنة بحسب الفصول ؛ ويحصل ذلك ولك 15 في ثلاثمائة وخمسة وستين يوماً وربع يوم إلا كسراً . ويتم الـئم فيها من الشهور القمرية الوسطى اثنا عشر ، ويزيد عليها اليا أحد عشر يومأ غير شيء من الكسور • ومستعملوها ، إن لم يعتبروا الشهور القهرية ، فربما يأخذونها من يوم تحلَ الشمس فيه نقطة بعينها كالاعتدال الربيعي - إلى مثله . ويأخذون شألـون شهورها من الأيام التي 20 تحل فيها أمثال تلكي النقطة من البروج ؛ أو يعدّون الشهور ثلاثين
 المسترَقة / واللواحق / /والسادس كبيسة . وهؤلاء سنوهم شمسية حـقيقية وشهورهـم إمـا شـسيـة حـيقيـة وإمـا اصطلاحية . وربما

Some others take [the year to begin] from a day agreed upon without regard to the position of the sun, and they have conventionally adopted months that are around 30 since the lunar months are approximately that. The fraction in excess of 365 is taken by some to be a quarter exactly, and they intercalate 1 day in every 4 years, while others drop it completely. These years are conventional solar. For those who do wish to take into account lunar months, they make the year solar and the months lunar. In every 3 years or in every 2 years, they add a month to the year to reconcile the previously mentioned 11 days minus a fraction in accordance with what they have conventionally adopted. One people has made every 12 lunar months a year, which they call a lunar year. Every people has an epoch to which they refer the years of their history; understanding the details of that does not pertain to this science.

CHAPTER ELEVEN

On the Degrees of Transit of the Stars on the Meridian and on Their [Degrees of] Rising and Setting

[1] When the poles of the ecliptic orb are on the meridian circle, this being when the two solstice points are also on it and the two equinox points are on the horizon, then the transit of the stars at that time is at their degrees in longitude since the meridian circle is their latitude circle. When the visible pole of the ecliptic orb is to the east of the meridian (this occurring, if the visible pole is northerly, during the transiting of the half of the ecliptic orb bisected by the autumnal equinox and the rising of the southern half [of the ecliptic], or, if it is southerly, [during] the transiting of the [corresponding] other half and the rising of the [corresponding] other half), then the star whose latitude is in the direction of the visible pole will transit the meridian circle after its degree [in longitude has done so] since its latitude circle extending from the pole meets the star before its [longitudinal] degree; thus when its [longitudinal] degree reaches the meridian, the star will be

يـأخنذونها مـن يـوم يتَغْق مـن غير ملاحظة موضع الشمس ، ويصطلحون على شهور تدور حول الثلاثين لكون الشهور القمرية

 5 يحذفونه مطلقاً ؛ وهذه السنون شمسية اصطلاحية . وإن أرادوا اعتبار الشهور القهرية جعلوا السنة شمسية والشهور قمـرية ،

 يصطلحون عليه . وقوم يجعلون كل اثني عشر من الشهور القهرية 10 سنة ويسمونها سنين قمرية . ولكل قوم تأريخهم إليه ، ومعرفة تفاصيل ذلك غير متعلتة بهذا العلم .

الفصل الحاصي عشر

هِي درجات مهرّ الكواكب بنصف النحار وطلوعهـا وغروبهما

[15] [1إذا كان قطبا فلك البروج على دائرة نصف النهار -ـ وذلك
يكون عند كون نتطتي الانقلابين أيضاً عليها ونتطتي الاعتدالين
 دائرة نصف النهار تكون دائرة عرضها . وإذا كان القطب الظاهر من فلك البروج شرقياً عن نصف النهار - وذلك يكون عنـي عند 20 النصف من فلك البروج الذي يتوسطه الاعتدال الخريني وطلوع النصف الجنوبي منه إن كان التطب الظاهر شمالياً ، أُو مرور النصف الآخر وطلوع النصف الآخر إن كان جنوبيا ـ ـالكوك الذي يكون عرضه في جهة التطب الظاهر يمرَ على دائرة نصف
 25 الكوكب قبل درجته ؛ فإذا وافى درجته نصف النهار كان الكوكب
away from [its degree] in the direction of the pole, i.e. it will still be to the east. The star whose latitude is in the direction opposite the visible pole transits [the meridian circle] before its [longitudinal] degree since the latitude circle mentioned above first meets the star's [longitudinal] degree that is on the meridian; 5 it then meets the star, which has already transited and become westerly. When the visible pole is to the west (this occurring, if the pole is northerly, during the transiting of the half of the ecliptic orb bisected by the vernal equinox and the rising of the northern half [of the ecliptic], or, if it is southerly, [during] the transiting of the [corresponding] other half and the rising of the [corresponding] other half), then the star whose latitude is in the direction of the visible pole will transit before its degree [in longitude has done so] and that whose latitude is in stated.
[2] The rising and setting of the stars on the horizons of the [Earth's] equator are similar to their transit across the meridian for the rest of the horizons. Thus a star that reaches the horizon along with the pole and the solstice rises or sets with its [longitudinal] degree; one that is in the direction of the visible pole rises direction of the invisible pole rises after its [longitudinal] degree and sets in advance of it. The northern pole will be visible there during the period of the rising of the half bisected by the vernal equinox and the transit of the southern half across the meridian from above [the horizon]; the southern pole will be visible during the period of the rising of the [corresponding] other half and the transit of the [corresponding] other half.
[3] As for the rising and setting of the stars in the remaining horizons, it is as we have described for the equator except for the transit and the rising of the halves of the ecliptic orb. For that will vary: it may be that one of the poles is visible and what transits or rises will be an arc that is smaller or larger than a half. In those horizons whose latitude exceeds the obliquity, one of the ecliptic poles will be permanently visible and the [above] rule concerning the stars may be uniformly applied without any variation [due to which ecliptic pole is visible].

منها في جهة القطب ، أعني يكون شرقياً بعدُ . والكوكب الذي
 لانَّ دائرة العرض المذكورة تلاقي درجة الكوكب الكائنة على نصف النهار أولاً ، ثم تلاقي الكوكب" وقد مرّ وصار غربياً قبل ذلك د 5 • وإذا كان القطب الظاهر غربياً ــ وذلك يكون عند مرور النصف من فلك البروج الذي يتوسطه الاعتدال الربيعي وطلوع النصف الشمالي منه إن كان التقطب شمالياً ، أو مرور النصف الآلئر الآخر وطلوع النصف الآخر إن كان جنوبياً - فالكوكب الذي يكون عرضه في جهة القطب الظاهر يمر ق قبل درجته والذي يكون عرضه فـن في خلاف 10 تللك الجهة يمرّ بعدها لـِما ذكرنا بعينه .
[r]
 الأفق مـع القطب والانقلاب يطلع أو يغرب مـ درجتـه ، والنـي
 15 والذي يكون في جهة القطب الخفي يطلع بعد درجته ويغيب قبلها .
 يتوسطه الاعتدال الربيعي ومرور النصف الجنوبي على نصف النهار من فوت ، والقطب الجنوبي ظاهراً مدة طلوع النصصف الآخر ومرور النصف الآخر
20 في خط الاستواء إلا في مرور الأنصاف وطر وطلمع الأنصاف من فـر فلك
 والمارةّ أو الطالعة قوس أصغر من النصف أو أكبر • وفي الآفاق التي يـيـد عـرضها على الميـل الكلي بكـون أحـد قطبي الْبروج أبـدي 25 الظهور ؛ ويطَرد الحكم في الكواكب من غير اختتلاف .

CHAPTER TWELVE

On Finding the Meridian Line and the qibla Bearing

[1] Two equal altitudes of the sun are observed on the same day from the 5 two sides of its maximum altitude, and the directions of their shadows from the same gnomon are marked on level land. Then the angle occurring between them is bisected with a line. This line will then be in the plane of the meridian circle and is called the meridian line. The perpendicular to it is in line with the prime vertical circle.
[2] By another method, a gnomon is erected vertically to a plane of level 10 land. A circle whose radius is equal to twice the gnomon is drawn, and the entry of the shadow into the circle and its emergence from it is observed before and after noon. The two places are marked and the arc that falls between them is bisected. The midpoint and the center are joined with a straight line; this then is the meridian line. The perpendicular to it that passes through the center of the circle is the east-west line. The two [lines] divide the circle into fourths. Each fourth is then divided into 90 equal parts in order to find the measures of the azimuths from the shadow lines falling on the circumference since [the number of] these parts between the east and west points and the shadow line is an azimuth. This circle is known as the Indian.
[3] As for the qibla bearing, let it be noted that the longitude of Mecca-may God Most High protect it-is $771_{6}{ }^{\circ}$ from the Eternal Islands and 671° from the coast of the western sea. Its latitude is $21^{2} 3^{\circ}$. / For / every locality
/22/ For] $\beta=$ Thus for] α, M.

الفصل الثاني عشر

هٍِ معرشة خحط نصف النحار

وسمعت القبلة

[1] يُرصد ارتغاعان متساويان للشهس في يورم واحد عن
5 جنبتي غاية ارتفاعها ؛ ويُخط على أرض مستوية سمتا ظليهما عن
 ذلك الخط في سطح دائرة نصف النهار ويسمى خط نصف النهار .

 الظل / في / الدائرة وخروجها عنها قبل نصف النهار وبعده ؛

 ليعرف مقادير السموت من خطوط الظل الواقعة على المحيط لأنّ ما
 وهذه الدائرة يُعرف بالهندية
 20 تعالى - عن جزائر الخالدات سبع وسبعون جزءأ ألما وسدس جزء ،
 وعرضها أحد وعشرون جزءءاً وثُلثا جزء . / وكل / بلدة يكون
whose longitude is less than the longitude of Mecca, Mecca is to the east of it; for every locality whose longitude is greater than the longitude of Mecca, Mecca is to the west of it. If their longitudes are equal, then Mecca is on its meridian line-to the south if the latitude of Mecca is less than its latitude, to the north if 5 it is greater. Every locality / whose latitude equals that of Mecca / is beneath the same day-circle as Mecca; then if its longitude is less than the longitude of Mecca, Mecca is to the left of the rising place of the equinox for that locality, and if its longitude is greater, Mecca is to the right of the setting place of the equinox.
[4] There are many ways to determine the qibla bearing, but it would not be appropriate to present them here. Let us instead limit ourselves to one simple method, which is [as follows]. The sun transits the zenith of Mecca when it is in degree 8 of Gemini and in [degree] 23 of Cancer at noontime there. The difference between its noon and the noon of other localities is measured by the difference between the two longitudes. Let this [latter] difference be taken and let an hour be assumed for each 15 degrees and 4 minutes for each degree. The
15 resulting total is the interval in hours from noon [for that locality]. Let an observation be made on that day at that time-before noon if Mecca is to the east or after if it is to the west; the direction of the shadow at that time is the qibla bearing.
/4-5/ whose latitude equals that of Mecca] $\beta=$ whose latitude and that of Mecca are equal] α, M.

طولها أقل من طول مكّة فمكّة شرقية عنها ؛ وكل بلدة يكون

 عرضها ، وشماليـة إن كان أكثر • وكل بلـا بلدة / يساوي عرضا عرضها 5 عرض مكتة / كانت مع مكّة تصت مدار واحد يومي ؛ "فإن كان
 البلدة ، وإن كان طولها أكثر فمكّة عن بيمن مغرن عـر الاعتدال [¿] ولمعرفة سمت القبلة طرق كثيرة لا يليت إيرادها هاهنا .
 10 عند كونها في الدرجـة الثامنة من الجوزاء والثالثة والعشريـن من السرطان وقت انتصاف النهار هناك . والفضل بيـن نصف نهارها - وبين نصف نهار سائر البُلدان يكون بتدر التناوت بين الطولين فليؤخذ التفاوت وتؤخذ لكل خمسة عشر جزءاً ساعة ولكل جزء أربع دقائق ؛ فيكون ما اجتهـع ساعات البعد عن نصف النـو النهار •• 15 وليُرصد في ذلك اليوم ذلك الوقت قبـل نصف النهار إن كانت مكتة
 سمت التبلة

BOOK IV

On Finding the Measurements of the Distances and the Bodies
 Seven Chapters

CHAPTER ONE

On the Measure [misāha] of the Earth
[1] In this book one has need of preliminary propositions other than those that have been stated. Among these is what was proven by Archimedes regarding the measure of a circle and a sphere, namely: that the circumference of every circle is approximately equal to $31 / 7$ times its diameter; that the surface enclosed 10 by the radius times half the circumference is equal to the area [taksir] of the circle; that the surface enclosed by the diameter of the sphere times the circumference of the largest circle occurring in it is equal to the surface enclosing the sphere; and that each portion on the surface of the sphere bounded by two great circles [i.e. a lune] is equal to the surface enclosed by the diameter times the maximum inclination between them.
[2] Having presented these lemmas, we say: if a person travels along the meridian line on level land in an amount whereby the local latitude increases, or decreases, by one degree, the amount that he has traveled is a one-degree unit of a great circle that occurs upon the Earth. The great circle is 360 times that amount; the diameter of the Earth is 1 part in $31 / 7$ parts, this being the total circumference of that great circle. Many people have undertaken to determine this among whom is a group of scientists during the reign of al-Ma'mūn, may God be pleased with him. By his decree, they came to the Plain of Sinjār and obtained the measure of 1° of the 360° along the meridian line; they found it to be 22 $2 / 9$ parasangs, each
النص ع/ [[[ا

الباب. الرابع
 غيخ معرشة مقاكيـر الأبعاك والألجرام
 سبعة הْصول

الفصل الهٔول
هٌِ مساحة الأرض
[1] يُحتاج في هذا الباب إلى مصادرات غير ما ذُكر • من
ذلك ما بيتنه أرشميدس في مساحة الدوائر والأكر وهو : أنَ محيط كل دائرة مثل ثلاثة أمشال قطرها ومثل سُبع قطرها بالتقريب ؛ وأنَّ السطح الذي يحيط به نصف القطر في نصف المحيط مسار 10 لتكسير الدائرة ؛ وأنَّ السطح الذي يحيط به قطر الكرة في محيط أعظم دائرة تقع فيها مساو, للسطحِ المحيط بالكرة ؛ وأنّ كِّ كِّ قطعة من سطح الكرة تحيط بها دائرتان عظيمتان فهي مساوية لسطح - يحيط به القطر في غاية الميل بينهما

15 نصف النهار في أرض مستوية بقدر ما يزيد جزء واحد البلد أو ينقص فالقدر الذي ساره يكون حصّة درجة واحدة من الدائرة العظيـة التي تقع على الأرض • والدا وائرة العظيمة تكـون ثلاثمائة وستين مرة مثل ذلك القدر ، وقطر الأرض يكون جزءا من ثلاثة أجزاء وسُبع جزء وهي مجم
 المأمون - رضي الله عنه - حضرورا بأمره بريّية سِنجار وحصلونوا
 النهار ؛ فوجدوه اثنين وعشرين فرسخاً وتُسعي فرسخ على أنّ كل
parasang being 3 miles, each mile being 4000 cubits, each cubit being 24 digits, and each digit being the measure of six average barleycorns laid side by side. When the parasangs plus the fractional [part] are multiplied by 360, one obtains
5 the size of the circumference of the great circle on the Earth, which is 8000 parasangs. If this amount is divided by $31 / 7$, one obtains for the size of the diameter 2545 / and a half / parasangs, approximately. Its radius is then 1273 parasangs, approximately. This is the standard with which the distances are measured; similarly the sphere of the Earth is the body with which the [other] bodies are measured.
[3] If the diameter is multiplied by the circumference of the great circle, one obtains the surface area of the Earth, which is twenty thousand thousands three hundred sixty thousand $[20,360,000]$ parasangs. A fourth of this is the area of the populated quarter; the length of the / populated / quarter is half the circumference, while its width is a fourth of it. As for the amount that is [actually] inhabited, which is between the equator and the location whose latitude is equal to
15 the complement of the obliquity, its length is likewise 4000 parasangs and its width, obtained by multiplying the parasangs in 1° by $(66+1 / 4+1 / 6)^{\circ}$, is 1476 parasangs, / approximately. / Its area, obtained by multiplying this by the parasangs in the diameter, is / three thousand thousands seven hundred fifty-six thousand four hundred twenty $[3,756,420]$ parasangs, / which is nearly $(1 / 6+(1 / 6$ of $1 / 10))$ of the entire surface of the Earth. If one wishes to know this in miles, he should multiply the linear parasangs by 3 and the square ones by 9 . Likewise if he wishes the amount in cubits, digits or barleycorns, he should multiply [the parasangs] by the number of them in a linear or a square parasang. This then is how to find the measure of the Earth.
$/ 7 /$ and a half $] \beta=-\alpha,-\mathrm{M} . / 12 /$ populated $] \beta=-\alpha,-\mathrm{M} . / 17 /$ approximately $] \beta=$ $-\alpha,-$ M. $/ 18-19 /$ three thousand thousands seven hundred fifty-six thousand four hundred twenty $[3,756,420]$ parasangs] $\beta=$ three thousand thousands seven hundred sixty-five thousand four hundred twenty $[3,765,420]$ parasangs] α, M.

فرسخ ثلاثة أميال ، وكل ميل أربعة آلاف ذراع ، وكل ذراع أربعة وعشرون أصبعاً ، وكل أصبع متدار ست شعيرات مضمومة بُطون بعضها إلى بعض من الشعيرات المعتدلة . فإذا ضُرب الفراسخ مع الكسر في ثلاثمائة وستين حصل مقدار مسحيط الدائرة العظمى من 5 الأرض وهو ثمانية آلاف فرسخ • وإذا قُسِمَ هذا المبلغ على ثلاثة وسُبع حصل مقدار قطرها ألفين وخمسمائة وخدسة وأربعين فرسخاً / ونصف فرسخ / بالتقريب . فيكون نصف قطرها وا ألفاً ومائتين وثلاثة وسبعين فرسخاً تقريباً ، وهو المقدار الذي تقدرَ به الأبعادُ كما أنَ كرة الأرض هي الجرم الذي تقدَرَ به الأجرام م [[[
 وربع ذلك تكسير الربع المسكون ، ويكون طول الربع / المسكون / المون
 خط الاستواء والموضح الذي عرضه بقدر تمام الميل ، فيكون طوله 15 أيضأ أربعة آلاف فرسخ وعرضه الحاصل من ضرب فرالـور فراسخ الجزء
 وستة وسبعون فرسخاً / تقريباً / . وتكسيره الحاصل من ضرب ذلك في فراسخ التطر / ثلاثة آلاف ألف وسبعمائة وستة وخدسون ألفاً وأربعمائة وعشرون فرسخا / / ، وهو قريب من سن سدس جميع 20 سطح الأرض وسدس عُشره . وإن أراد مريدر أن أن يعرف ذلك بالأميال ضرب الفراسخ الطولية في ثلاثة والتكسپرية في تسعة ؛
 أعدادها لفـرسخ طولي أو تكسيري • فهذه معرفة مساحة الأرض ."
. $-\alpha,-\mathrm{M}=\beta[\ldots / 17 / .-\alpha,-\mathrm{M}=\beta[\ldots / 12 / .-\alpha,-\mathrm{M}=\overline{\mathrm{C}}[\ldots / 7 /$

وعشرين فرسخا [a , M .
[4] Abū al-Rayḥān has another method for determining the measure of the Earth that is found by observing the depression of the horizon from the peak of a high mountain whose height is possible to ascertain. We shall not present it here, however, inasmuch as it contains geometrical proofs.
[5] As for what we promised to show in the first part of this book, namely 5 how to find the ratio of a mountain whose height is half a parasang to the diameter of the Earth, the way we do this is to double the parasangs in the diameter, which comes to 5090 parasangs. The ratio of half a parasang to the diameter is the same as the ratio of one to this amount. Then we take the barleycorns in a cubit, which is 144 , and we divide the above amount by it; the result is then 35 . The ratio of one part of this, which is $1 / 5$ of $1 / 7$ of the width of a barleycorn, to a cubit is the same as the ratio of half a parasang to the diameter.

CHAPTER TWO

On Finding the Distances of the Moon from the Center of the World

[1] The distances of the moon and the other wandering stars from the center of the World are known for any time based upon the radii of their orbs being 60 parts as is stated in calculating their true positions by the method of geometry. The ratio of one to the other, [however], is not known; thus finding that is required. One needs to assume a standard with which all of them may be measured, and so the radius of the Earth has been made that [standard].
[2] In order to find the lunar distances with this standard, Ptolemy observed the moon at the time of its minimum / altitude / on the meridian circle, and he found its apparent altitude to be exactly $(39+(1 / 2 \text { of } 1 / 6))^{\circ}$. Its true altitude by calculation for that time and place was $40^{1} 5^{\circ}$. Thus he found the difference between them to be 1 degree and 7 minutes, which is the lunar parallax.
/20/altitude] $\beta=$ altitudes $],$ M.
[〔] ولأبي الريحان طريق آخر في معرفة مساحة الأرض تعرف

5 نسبة جبل يكون ارتغاعه نصف فرسخ إلى قطر الأرض ، فالوجه
فيه أن نضعَف فراسخ التطر فيصير خمسة آلاف وتسعين فرسخاً ؛
 ثم نأخذ شعيرات الذراع وهي مائة وأربع وأربعون ونقسم ذلك المبلغ
 10 خُمس سُبع عرض شعيرة إلى ذراع كنسبة نصف فرسخ إلى التطر .

> الفصل الثاني
> هِيْ معر كخة أبعاك الّالقهر
> من مركـز العالم
[1] كان أبعاد القمر وغيره من الكواكب السيّارة من مركز 15 العالم معلومة في كل وقت بحسب كون أنصا أنصاف أقطار أفلاكها ستين
 نسبة البعض إلى البعض معلومة ، فطلب معرفة ذلك • واحتيج إلى

فرض مقدار يقدّر به الجميع ، فجُعل ذلك نصف قطر الأرض .

 وكان ارتفاعه الحقيقي بالحساب لذلك الوتي الوتت في تلك البقعة أربعين
 وهو اختلاف منظر القهر
[3] It may be shown in the science of geometry that if the sizes of two angles and a side of a triangle with straight sides are known, the sizes of its remaining sides and angles are known. If one pictures the figure for parallax, which is below, then in the triangle in which one of the angles is the parallax

[Fig. T26]

5 at which is the position of the moon, the second the complement of the true altitude at which is the center of the Earth, and the third that at which is the position of the observer, there are two known angles, i.e. the parallax and the complement of the altitude. If the side that is the radius of the Earth is assumed to be 1, two angles and a side become known, and it is possible to find the remaining angle and the two remaining sides of the [triangle]. There results / by calculation / for the size of the side that is the distance of the moon from the center of the Earth $(39+1 / 2+1 / 4)$ parts, the radius of the Earth assumed to be 1 part.
/9/ by calculation] $\beta=$ from calculation] α, M.
[T] وقد تبيَّن في علم الهندسة أنه إذا كانت مقادير زاويتين وضلع من مثلث مستقيم الأضلاع معلومة كانت مقادير الباقية من أضلاعه وزواياه معلومة . وإذا صُورَ شكل اخت اختلاف المنظر -ـ وهو هـذا ـ كان ، في المثلث الذي إحـدى زوايـاه اختلاف المنظر وهـي

5 التي عندها موضح القـر والثانية تهام الارتفاع الحقيقي وهي التي
 معلومتان أعني التتلاف المنظر وتمام الارتناع •وإنا هو نصف قطرّ الأرض واحداً صارت زاويتان وضلع معلومة وألما وأمكن معرقة الزاوية الباقية والضلعين الباقيين منه . وقد خرج / الارين الحساب / 10 مقدار الضلع الذي هو بعد القهر عن مركز الأرض تسعة وثلاثين جزءاً ونصف وربع جزء على أنَ نصف قطر الأرض جزء والأرضد .
[4] By calculating the true positions with the scale whereby the inclined radius is 60 , the epicyclic radius is $51 / 4$, and the eccentricity is 10 parts and 19 minutes, the distance of the moon from the center of the World for the above time is $(40+1 / 4+1 / 6)$ parts. When the same quantity is known in two units of measure, it is possible to convert anything that is measured in one of these two units to the other unit since they will all be according to the ratio [of the units]. Thus Ptolemy converted the above quantities into a unit of measure by which the radius of the Earth is 1 : for the inclined radius the result is then 59, for the epicyclic radius $51 / 6$ parts, and for the eccentricity 10 parts and 9 minutes. The farthest distance of the moon, this being when it is at the apex and the epicycle is at the apogee, is $641 / 6$ parts; its nearest distance, this being when it is at the epicyclic perigee and the epicycle is at the perigee, is 33 parts and 33 minutes.

CHAPTER THREE

On the Sizes of the Diameters of the Moon, the Sun and the Shadow, and the Distances of the Sun and the Shadow from the Earth

[1] Ptolemy observed two lunar eclipses during which the moon was at the epicyclic apex. During one of them, one-quarter of its diameter was eclipsed and, during the other, half of it. By calculation, its latitude during the first eclipse was $48 \frac{1}{2}$ minutes and, during the second, $40^{2} / 3$ minutes. / He took / the difference between them, namely ($7+1 / 2+1 / 3$) minutes, which is obviously a quarter of the diameter. He thus knew that the diameter of the moon at its farthest distance was four times this [amount], namely $31 \frac{1}{3}$ minutes, and that the latitude for the second eclipse was in the amount of the radius of the shadow since the shadow circle was passing through the center of the lunar disk. This [radius] was approximately 2 times the radius of the moon plus / $3 / 5$ times its radius. / During numerous lunar eclipses at various distances, he found this same ratio between them.

[^86][[] وكان بحساب التقاويم بالقدر الذي يكون نصف قطر
المائل ستين ونصف قطر :التدوير خمسنة وربعاً وما بين المركزين
 الوقت أربعين جزءأ وربع وسدس جرّ جزء . 5 • بتقديرين أمكن أن يحول كل ما يقدرّ بواحد من ذينك التقديريرين
 المذكورة إلى التقدير الذي به نصف قطر الأرض واحد ؛ ؛ فخرج نصف نصر
 وما بين المركزين عشرة أجزاء وتسع دقائق • ويكون أبعد بعد التمر ، ألمراء ، 10 وذلك عند كونه في الذروة والتدوير في الأوج ، أربعة وستين جزئركا
 والتدوير في الحضيض ، ثلاثة وثلاثين جزءاً وثلاثاً وثلاثين دقيقة .

الفصل الثالث
هِّ مقاكيـر أَقطار القهمر والشمس والظل وأبعاك الشمس والظل عن الأرض
[1] رصد بطلميوس خسوفين للقدر كان القهر فيهمها في ذروة
التدوير ؛ وقد انخسف من قطره في أحدهما ربعه وفي الآخر نُصفه . وكان بالحساب عرضه في الخسوف الاؤل ثمانية [!] وأربعين دقيقة

 التطر ؛ فعرف أنَّ قطر القهر في أبعد بعده أربعة أمثال ذلكُ ، وهو أحد [بـ بـ

 مِثْلاَ نصف قطر القهر ومثل ثلاثة أخماس / نصف / / قطره ه ـ وقد 25 وجد في خسوفات كثيرة في أبعاد مختلفة النسبة بينهما هذه النسبة .

$$
\text { . }-\alpha,-M=\beta[\ldots / 24 / . \alpha, M[\text { فأخذ }=\beta[\ldots / 19 /
$$

[2] Furthermore, he found the diameter of the sun under most circumstances to be equal in appearance to the diameter of the moon at its farthest distance. He thus determined that the diameter of the sun at its mean distance is equal to the diameter of the moon at its farthest distance.
[3] He then set forth in the plane passing through them the figures of the two 5 luminaries, the Earth, the two shadow cones, and the moon according to this illustration:

[Fig. T27]
[٪] وأيضاً وَجَد قطر الشدس في أكثر الأحـوال مساوياً في
 -بعدها الأوسط مساوٍ لقطر القمر في بعده الأبعد
 5 والقمر أشكالها على هذه الصورة :

He assumed the moon to be at its farthest distance and a diameter of the shadow on the other side to be at the moon's [other] farthest distance; the distance between the centers of the shadow and the Earth and [the distance] between the centers of the moon and the Earth would then be equal, each one of them being $641 / 6$. In the triangle that occurs in the moon's cone between the centers of the moon and the Earth and the endpoint of the moon's radius, the angle that is at the center of the Earth, which is in the amount of the moon's radius, and the angle that is at the center of the moon, which is right, are known. And since the angles of every triangle are equal to two right [angles], the third angle, which is at the endpoint of the moon's diameter, is known. And because the ratio of any of the shadow cone's radius at the moon over the radius of the shadow is twice
the excess of the Earth's radius over the radius of the shadow. For that reason of the shadow cone's radius at the moon over the radius of the shadow is twice
the excess of the Earth's radius over the radius of the shadow. For that reason the sum of the radius of the shadow and the radius of the shadow cone at the moon is equal to twice the radius of the Earth, i.e. to the diameter of the Earth. When the radius of the shadow and the radius of the moon are added together, side to another is as the ratio of the sine of the angle subtended by the first side to the sine of the angle subtended by the other side, as is shown in geometry, the ratio of the moon's radius to the distance of its center from the center of the Earth is as the ratio of $162 / 5$ minutes to 60 parts less a small, imperceptible amount. Now the distance of the center of the moon from the center of the Earth, with the Earth's radius being 1, is $641 / 6$ parts. The moon's radius using this measure is then known, namely 17 minutes and 33 seconds. The radius of the shadow using this measure is 45 minutes and 38 seconds.
[4] Because the distance between the centers of the moon and the shadow is which is 1 part, 3 minutes and 11 seconds, and this sum is subtracted from the diameter of the Earth, there remain 56 minutes and 49 seconds, which is the amount of the excess of the radius of the cone at the moon

وفَرَ القمر في بعده الابعد وقطرَ الظل عن الجانب الآخر في بعد
 مركزي القهر والأرض متساويين ، كل واحد منري منهـا أربعة وستون
 5 مركزي القمر والأرضن وطرف نصفُ قطر القّهر الزاويةُ التي على مركز ألأرض ، وهي بقدر نصف قطر القهر ، والزير والزاويةُ التي على
 مساوية لقائمتين تصير الزاوية الثالثة ، وهي التي علي التي طلم
 10 الزاوية التي يوترها الضلع الأول إلى جيب الزاوية التي يوترها

 15 أربعة وستين جزء أ وسدس جرك جزء ؛ فنارض يكون معلوماً ،وهو سبع عشرة دقيقت وثلاث وثلاثلثون ثانـيـة ، ويكون نصف قطر الظل بذلك المقدار خمساً وأربعين دقيقة وثمانياً وثلاثين ثانية .

 عند الْقمر على نصف قطر الطل ضعف زيادة نصـ نصف قطر الأرض على نصف قطر الظل ؛ ويكون لذلك مجموع نصفي قطر الظل وقطر مخروط الظل عند التمر مساوياً لضعف نصف قُطر الأرض ، أعني لتطر الأرض . وإذا جمع نصف قطر الظل ولـا ونصف قطر 25 القهر ، وهما جزء وثلاث دقائق وإحدى عشرة ثانير الانية ، ونقص
 وأربعون ثانية ، وهي مقدار فضل نصف قطر المخروط عند القمر
over the radius of the moon. The ratio of the Earth's radius to this is as the ratio of the distance between the centers of the Earth and the sun to the distance between the centers of the two luminaries, which is as the ratio of 1 to 56 minutes and 49 seconds. Thus when the distance of the sun from the center of the Earth , the distance between the two luminaries is 56 minutes and 49 seconds, and there / remain / 3 minutes and 11 seconds for the distance of the moon from the Earth; with the radius of the Earth being 1, this distance is $641 / 6$ parts. Then by this [measure], the distance of the sun from the center of the Earth at its mean distance is 1210 times the Earth's radius.
[5] Furthermore the ratio of the Earth's radius to the radius of the shadow, which is 45 minutes and 38 seconds, is as the ratio of the distance of the cone's apex from the center of the Earth to its distance from the center of the shadow. Therefore when the distance of the cone's apex from the center of the Earth is 1 , its distance from the center of the shadow is 45 minutes and 38 seconds, and there remain ($14+1 / 5+1 / 6$) minutes for the distance of the shadow's center from the center of the Earth, which is, with the radius of the Earth being $1,641 / 6$. Then by this [measure], the distance of the cone's apex from the center of the / Earth /
/6/remain] $\beta=$ are] α, M. /19/Earth] $\alpha, \beta=$ shadow] M (see commentary).

على نصف قطر القهر . وتكون نسبة نصف قطر الأرض إليه كنسبة البعد بين مركزي الأرض والشمس إلى البعد بين مركزي النيّرين ، وهي كنسبة الواحـد إلى ست وخديسين دقيقة وتسع وأربعين ثانية . فإذن إذا كان بعد الشهس عـن مركن الأرض 5 واحداً كان البعد بين النيرين ستاً وخمسين دقيقة وتسعاً وأربعين ثانية ؛ / ويبقى / بعد البـد القـر عن الأرض ثلاث دنا عشرة ثانية ، وكان هذا البعد ـ على أنَ نصف قطر الأرض
 بعد الشمس عن مركز الأرض في / بعده / الأوسط ألفاً ومائتين 10 وعشرة أمثال نصف قطر الأرض .

وهو خمس وأربعون دقيقة وثمان وثلاثون ثانية ، كنسبة بعد رأس المخروط عن مركز الأرض إلى بعده عن مركز الظل المل . فلذلكـ إذ
 15 مركز الظل خدساً وأربعين دقيقة وثمانياً وثلاثين ثانية ؛ ويبقىى بُعد مركز الظل عن مركز الأزض أربع عشرة دقيقة وخُمس

 مركز / الأرض / مائتين وثلاثة أمثال ونصف وثلث مثل لنصف 20
الظل M [(انظر شرحنا) .

CHAPTER FOUR

On the Volume of the Two Luminaries

[1] It has been established in the science of optics that for any two bodies that are equal in appearance but are at different distances, the ratio of the nearer of the two to the one farther away with respect to the size of the diameter of the body is as the ratio of the distance of the nearer to the distance of the farther. For that reason, the ratio of the moon's radius, which is 17 minutes and 33 seconds, to the sun's radius is as the ratio of the distance of the moon from the Earth, which is $641 / 6$, to the distance of the sun from the Earth, which is 1210 . Thus the radius of the sun is also known, namely $5 \frac{1}{2}$, with the Earth's radius being 1 . If the diameter of the moon is assumed to be 1, the diameter of the Earth becomes $32 / 5$ and the diameter of the sun $184 / 5$.
[2] Euclid has proven that the ratio of one sphere to [another] sphere is as the ratio of the cube of the [first] diameter to the cube of the [other] diameter. Then when the above quantities are multiplied by themselves twice so they become cubed, one finds that the sun is $(166+1 / 4+1 / 8)$ times the Earth and 6644 times / and $2 / 3$ times / the moon, and that the Earth is $391 / 4$ / and $(1 / 2$ of $1 / 10$) / times the moon.
$/ 17 /$ and $2 / 3$ times $] \beta=-\alpha,-$ M. $/ 18 /$ and $1 / 2$ of $1 / 10] \beta=-\alpha,-$ M.

الفصل الرابع
 هِ مقتکار جرم النيّريـن

[1] ثبت في علم المناظر أنْ كل جرمين متساويين في الرؤية ومختلفين في البعد تكون نسبة أقربهما إلى أبعدهما في مئد مقدار قطر 5 الجرم كنسبة بعد الأقرب إلى بعد الأبعد . ولذلك أكـ تكون نسبة نصف قطر التمر ، الذي هو سبع عشرة دقيقة وثلاث وثلاثون ثانية ، إلى نصف قطر الششمس كنسبة بعد القمر عن الأرض ر الـن
 الذي هو ألف ومائتان وعشرة . . فيكون نصف قطر الشمس أيضاً
 وإن فرض قطر القهر واحداً صار قطر الأرض ثلاثة وخُمسَين وقطر الشمس ثمانية عشر وأربعة أخهاس أ [r]
 15 أنفسها مرتين لتصير مكتَبة علم أنَ الشمس مائة وستة وستون مثلاٌ وربع وثمن مثل / الأرض / وستة آلاف وستمائة وأربعة وأربعون مثلاً / وثلثي مثل / القمر ، وأنَ الأرض تسعة وثلاثون مثلاً وربع / ونصف عشر / مثل / القمر / .

CHAPTER FIVE
 On the Rest of the Distances of the Sun and the Distances and Body [Sizes] of the Two Lower Planets

[1] The known distance for the sun that was given above was only made on or 1 . two other distances is according to the amount between the centers of the two [orbs of the sun], which is, based on Ptolemy's observations, $21 / 2$ of those parts by which the radius of its eccentric orb is 60 ; therefore, it is 1 part in 24 of its mean distance. When we divide the known distance of the sun, which is 1210 , by 24 , the result is 50 and a fraction, which is the size of the eccentricity. The farthest distance of the sun is then approximately 1260 times the radius of the Earth, and its nearest distance is 1160 times it.
[2] Since there is no void between the orbs of the planets, and there is no known body other than their orbs, the farthest distance of each planet has been made the nearest distance of the planet above it so that the adopted distances are the minimum possible. Thus the nearest distance of the sun is the farthest distance of Venus.
[3] As for Venus, one finds in calculating true positions that its eccentricity is $1 \frac{1}{4}$ parts, and the radius of its epicycle is $431 / 6$ of those parts by which the radius of / its deferent / is 60 . Thus its farthest distance is $(104+1 / 4+1 / 6)$ parts, and its nearest distance is $(15+1 / 3+1 / 4)$ of those parts, which is approximately $(1 / 10+(1 / 2$ of $1 / 10))$ of the farthest distance.
$/ 19 /$ its deferent] $\beta, M=$ the deferent $]$.

الفصل الخامس
 غِّ سائـر أبعاط الشمس وأبعاك السفلييين وجرميـمها

[1] البعد المعلوم للشهس المذكور إنما فرض عند كوند
5 بعدها الأوسط . ويكون تباعدها عنه في البعدين الآخرين بقدر مآن

 ستون • فإذن هو جزء من أربعة وعشرين من بعدها الألما الأوسط
 10 أربعة وعشرين خرج خمسون وكسر ، وهو مقدار خروج المركز . فيكون بعد الشدس الأبعد ألفاً ومائتين وستين مثلاً لنصف قطر الأرض بالتقريب ، وبُعدها الأقرب ألفاً ومائة وستين مثلاً له . [r] أفلاكها ، جُعل البعد الأبعد لكل كوكب البالئ البعد الأقرب للكوكب

 عشر جزءاً وثلث وربع بتلكُ الأجزاء وهو عُشر البعد الأبعد ونصف عُشره بالتتريب
/
[4] Moreover Mercury's eccentricity is 3 parts, which is equal to the distance between each of the centers of its orbs and the one adjacent to it. The radius of its epicycle is $221 / 2$ of those parts by which the radius of its deferent is 60 . Its farthest distance is $91 \frac{1}{2}$ parts, and its nearest distance is 33 parts 4 minutes. This is known only by successive approximation [istiqrā'] because its nearest distance is not directly opposite its farthest distance. Its nearest distance is therefore ($1 / 5+1 / 6$) of its farthest distance or, [with respect] to the farthest distance of Venus, $11: 200$ parts, which is nearly $1: 18$ parts of it.
[5] The farthest distance of the moon to the nearest distance of the sun was found above also to be nearly $1: 18$ parts. So it seemed likely to them that their two orbs were between the orbs of the two luminaries since there was no way to leave this distance between the orbs unoccupied. This is the basis for our statement earlier [in the book] that the distance of the sun from the Earth is consistent with Venus and Mercury being below [the sun].
[6] To return to what we were doing: when we take $(1 / 10+(1 / 2$ of $1 / 10))$ of Venus's farthest distance, one obtains 174 times the radius of the Earth, which is then Venus's nearest distance and Mercury's farthest distance. It was previously stated that the height of the shadow cone is 203 plus a fraction times the radius of the Earth. It is then known that the Earth's shadow will disappear in the orb of Venus between its near and mean distances. Furthermore it is clear from the [above] that the thickness of Venus's orb is 1000 less 14 times the Earth's radius, and that the thickness of Mercury's orb plus what is contained inside it is 348 times, which is approximately $1 / 3$ of [Venus's orb]. We then take $(1 / 5+1 / 6)$ of Mercury's farthest distance with the result being 64 times the Earth's radius, which is the nearest of Mercury's distances and the farthest of the moon's distances, in accord with the result of the earlier calculation.
[[[أيضاً ما بين مركزي عطارد ثلاثة أجزاء ويساويه البعد

 5 أقربه ثلاث[!] وثلاثون جزءاً وأربع دقائق . إلأنـا وإنـا عُرف ذلك

 مائتي جزء هي أجزاء بعد الزهرة الأبعد ، وهي قريبة من جزء من ثمانية عشر منه .

 كون فلكيهما بين فلكي النيترين إذ لا وجه لتعطيل هذا الونا البعد بين
 . الأرض يناسب كون الزهرة وعطارد تحتها

من بعد الزهرة الأبعد حصل مائة وأربعة وسبعون مثلاً لنصف قطر الأرض ، فهو البعد الأقرب للزهرة والبعد الأبعد لعطارد . لأبر وقد مرّ أنَّ ارتناع مخروط الظلَ مائتان وثلاثة أمثال نصف قطر الألارض

 ثم أخْذنا الخُمس والسدس من بعد عطارد الأبعد فحصل ألأرئ أربعة وستون مثلاٌ لنصف قطر الأرض ، وهو أقرب أبعاد عطارد وأبعد 25 أبعاد التمر موافقاً لبا خرج من الحساب الأول .
/ أقرب الشسس] ه .
[7] Turning now to the body [size] of Venus and of Mercury: they have stated that the diameter of Venus at its mean distance is approximately equal to $1 / 10$ the diameter of the sun, and that the diameter of Mercury to the diameter of the sun is as $1: 15$. Then the [mid-distance] between Venus's two [extreme] distances is taken, and one obtains 667, which is its mean distance. Its ratio to the sun's mean distance is as the ratio of Venus's diameter to $1 / 10$ the sun's diameter. Venus's mean distance to the sun's mean distance is as $1: 1 ; 49$ [lit., one to one and forty-nine minutes], which is the size of Venus's diameter to $1 / 10$ the sun's diameter. When one multiplies $1 ; 49$ by 10 , the result is $181 / 6$. Thus the diameter of Venus to the diameter of the sun is as $1: 181 / 6$ parts. When 2 parts in 11 is taken of this, one obtains $33 / 10$ parts; thus the diameter of Venus to the diameter of the Earth is as $1: 33 / 10$ parts. / If / the two quantities are cubed, it becomes approximately $1: 35 ; 56$ [lit., one to thirty-five and fifty-six minutes]; therefore, the body of the Earth is approximately 36 times the body of Venus.
[8] Furthermore Mercury's mean distance occurring between its two [extreme] distances is 119 times the radius of the Earth. To the sun's mean distance this is approximately as $1: 101 / 6$ parts, which is the size of Mercury's diameter to $(1 / 3$ of $1 / 5$) the diameter of the sun. Multiplied by 15 , the result is 153 . Thus the size of Mercury's diameter to the sun's diameter is $1: 153$. When 2 parts in 11 is taken of this, [the result] is approximately 28 ; thus the size of Mercury's diameter to the Earth's diameter is as $1: 28$ parts. The cube of 28 is 21,952 . Thus the Earth's body is approximately equal to 22,000 times Mercury's body.

[^87]وأما جرم الزهرة وعطارد فذكروا أنَ قطر الزهرة في بعدها
الأوسط يكون مثل عُشر قطر الشهس تقريباً وأنَ قطر عطًارد من قطر الشدس يكون كواحد من خمسة عشر • فأخذ ما بين بعدي
 5 وتكون نسبتها إلى بعد الشهس الأوسط كنسبـة قطر الزهر الزهرة إلى عُشر قطر الشدس . وبُعد الزهرة الأونسط من بعد الشدس الأوسط

 في عشرة بلغ ثمانية عَشر وسدساً ، فيكون قطر الزهرة من قطر 10 الثشمس كواحذ من ثمانية عشر جزءأ أِ وسدس جزء منها جزءان من أحد عشر حصل ثلاثة أجزاء وثلاثة أعشار جزء ؛ نقطر الزهرة من قطر الأرض كواحد من ثلاثة أجزاء وثلاثة أعشار .
 وخمسين دقيقة بالتقريب ؛ فإذن جرم الأرض ستة ونـ وثلاثون مثلاً 15 / لجرم الزهرة بالتتريب / .
[^] [أيضاً بُعد عطارد الأوسط الكائن بين بعديه مائة وتسعة
عشر مثلاً لنصف قطر الأرض • وهو من بعد الشمـر الأرس الأوسط كواحد من عشرة أجزاء وسدس بالتقريب ، وهو قدر قطر عطارد
 20 وثلاثة وخمسين . نقدر قطر عطارد من قطر الشمس واحد من مائة وثلاثة وخمسين . وإذا أخذ منه جزء ونان من أحد عشر كار ثمانية وعشرين بالتقريب ؛ فقدر قطر عطارد من قطر الأرض كجزء من ثمانية وعشرين • ومكعبّب ثمانية وعشرين أحد وع وعشرون ألفاً وتسعمائة واثنان وخمسون ؛ فجرم الأرض مثل جرم عطارد 25 اثنان وعشرون ألف مرة بالتقريب .

CHAPTER SIX

On the Distances of the Upper Planets and Their Body [Sizes]

[1] Ptolemy found the eccentricity of Mars to be 6 parts and the radius of its 5 epicycle $391 / 2$ parts, based on the deferent radius being 60. Its farthest distance is then $1051 / 2$ parts, and its nearest distance is $141 / 2$ parts, which is to the farthest distance as $1: 7$, approximately. Then multiplying the farthest distance of the sun, which is 1260 , by 7 results in 8820 times the radius of the Earth, which is then the farthest distance of Mars.
[2] They have stated that the diameter of Mars at its mean distance is [with respect] to the diameter of the sun as $1: 20$ parts. They then took its mean distance, i.e. the mid-distance between its two [extreme] distances; this is equal to 5040 times the radius of the Earth, which is $4 \frac{1}{6}$ times the sun's mean distance. When one takes ($1 / 2$ of $1 / 10$) the diameter of the sun, one obtains $161 / 2$ minutes; multiplying by $41 / 6$ results in $1 ; 9$ [lit., one and nine minutes], which is the diameter of Mars when the diameter of the Earth is 1 . By taking its cube, which is then $1 ; 31$ [lit., one and thirty-one minutes], one finds that the volume of Mars is approximately equal to $11 / 2$ times the volume of the Earth.
[3] It is evident that the thickness of Mars's orb is 7560 times the Earth's radius and that the diameter of the sun's sphere is 2520 times it. Therefore the thickness of Mars's orb is 3 times the breadth of [the combination of] the sun's orb and the orbs and the elements [contained] inside it. This is an elucidation of what we stated in the chapter on the configurations [hay'āt] of the orbs of the upper planets.

الفصل الساحس
 هي أبعاص الكواكب العلويـة وأجرامـها

[1] وجد بطلميوس ما بين مركزي المرّيخ ستة أجزاء ونصف

5 الحامل ستون . فيكون بعده الأبعد مائة وخمسة أجزاء ونصف
وبعده الأقرب أربعة عشر جزءاً الحـر ونصف ، وهو من بعده الأبعد
كواحد من سبعة تقريباً . فضَرْب أبعد بعد الشدس ، ونر وهو وهو ألف
ومائتان وستون ، في سبعة بلغ ثمانية آلاف وثمانمائة وعشرين مثلاً
لنصف قطر الأرض ، فهو بعد المرَيخ الأبعد .

الشهس كجزء مـن عشرين . .
 قطر الأرض ، وهو أربع مرات وسدس مرة مثل بعد الخد الشمس
 15 دقيقة ونصف ؛ ضرب في أربعة وسدس بلغ واحداً وتسع دقائق ، وهو قطر المرَيخ إذا كان قطر الأرض واحداً . أخذ مكتبه فكان واحداً وأحدأ [!] وثلاثين دقيقة ، فعلم أنَ جرم المرَيخ مثل جرم الالرض مرة ونصف بالتعريب

20 وستون مثلاً لنصف قطر الأرض ، وقطر كرة الشمس يكر يكون ألفين وخمسهائة وعشرين مثلاً له . فثخن فلك المرّيخ ثلاثة أمثال غلط
 ذكرناه يي باب هيئات أفلاك الكواكب العلوية .
[4] Turning to Jupiter: by calculation Ptolemy found its eccentricity to be $(2+1 / 2+1 / 4)$ parts and the radius of its epicycle $111 / 2$ parts, based on the radius of its deferent being 60 . Thus its farthest distance is $74 \frac{1}{4}$ parts, and its nearest 5 distance is $(45+1 / 2+1 / 4)$ parts. So the first is $(1+1 / 4+1 / 5+1 / 6)$ times the second. When one takes the farthest distance of Mars times $(1+1 / 4+1 / 5+1 / 6)$, the result is 14,259 times the Earth's radius, which is then Jupiter's farthest distance.
[5] They have stated that [Jupiter's] diameter is equal to ($1 / 2$ of $1 / 6$) the diameter of the sun when both are at their mean distances. When one then takes the mid-distance of its two [extreme] distances, it is 11,540 times / the Earth's radius, / which is equal to $(9+1 / 3+1 / 5)$ times the sun's mean distance. When one takes $(1 / 2$ of $1 / 6)$ the diameter of the sun, it is $271 / 2$ minutes. If [this] is then multiplied by $(9+1 / 3+1 / 5)$, the result is $(4+1 / 5+1 / 6)$ units. The diameter of the Earth to the diameter of Jupiter is therefore as $1:(4+1 / 5+1 / 6)$ units. When these two [quantities] are cubed, [one finds] the volume of Jupiter to be equal to $/ 831 / 4$ / times the volume of the Earth.
[6] As for Saturn: by calculation Ptolemy found its eccentricity to be $(3+1 / 4+1 / 6)$ parts and the radius of its epicycle $61 / 2$ parts, with the parts such that the radius of its deferent is 60 parts. Thus its farthest distance is $(69+2 / 3+1 / 4)$ parts, and its nearest distance is $(50+(1 / 2$ of $1 / 6)$) parts; the farthest [distance] is equal to $12 / 5$ the nearest. Then multiplying Jupiter's farthest distance by $12 / 5$ results in 19,963 times the Earth's radius, which is Saturn's farthest distance.
/11/ the Earth's radius] $\beta, \mathrm{M}(?)=$ the Earth] $\left.\alpha . / 17 / 831 / 4] \beta=82 \frac{1}{4}\right] \alpha, \mathrm{M}$.
[8] وأما المشتري فقد وجد بطلميوس بالحساب ما بين مركزيه جزأين ونصف وربع جزء ونـ ونصف قطر تدويره أحد عشر
 الأبعد أربعة وسبعين جزءاً وربع جزء وبعده الأقرب خمسة وأربّ وبنعين 5 جزءاً ونصف وربع جزء ؛ ويكون الأول من الثاني مثله ومثل ربعه وخُمسه وسدسه . وإذا أخذ مثل بعد المرَّيخ الألبعد ومثل ربع ربعه وخُمسه وسدسه بلغ أربعة عشر ألفاً ومائتين وتسعة وخديخ المسين مثلاً لنصف قطر الأرض ، فهو البعد الأبعد للمشتري . [0] وذكروا أنَّ قطره مثل نصف سدس قطر الشمس إذا كانا
 أُلفاً وخمسمائة وأربعين مثلاُ / لنصف قطر الأرض / ، ، وهو تسع مرات مثل بعد الشمس الأوسط وثلث وخُمس مرة . الشُ وإذا أخذ نصف سدس قطر الشمس كان سبعا وعشرين دقيقة / ونصفاً / .
 15 واحدٍ ، فقطر الأرض منٍ قطر المشتري كواحـِ من أربعة وخُّس وسدس واحدٍ . وإذا كُعْبا كان جرمّ المشتري مثل جرم الأرض / ثلاثة[!] / وثمانين مرة وربع مرة . وانـ
 ثلاثة أجزاء وربع وسدس جزء ونا ونصف قطر تدويره ستة أجراء 20 ونصف بالأجزاء التي بها نصف قطر حامله سته ستون جزءاء .

 عشر ألفاً وتسعمائة وثلاثة وستين مثلاً للنصف قطر الأرض ، وهو 25

[7] They have stated that [Saturn's] diameter is to the sun's diameter as 1: 18 when both are at their mean distances. When one takes the mid-distance of its two [extreme] distances, it is 17,111 times the Earth's radius, this then being Saturn's mean distance, and it is approximately equal to 14 times the sun's mean distance. When one takes 1 part in 18 of the sun's diameter, it is $18 \frac{1}{3}$ minutes. When multiplied by 14 , the result is approximately $4 \frac{1}{4}$ parts. The Earth's diameter is then to Saturn's diameter as $1: 4 \frac{1}{4}$ parts, approximately. When these two [quantities] are cubed, [one finds] the volume of Saturn to be approximately equal to 77 times the volume of the Earth.

CHAPTER SEVEN

On the Distance of the Fixed Stars and Their Body [Sizes] and a Concluding Discussion Regarding This Section

[1] The farthest distance of Saturn was made the distance of the fixed stars from the Earth-inasmuch as [the amount] by which it exceeds it is not known-in order that the [assigned] boundary not be beyond what exists.
[2] They have stated that the diameter of average-size stars of first magnitude in relation to the diameter of the sun is about ($1 / 2$ of $1 / 10$) of it. Their distance is approximately $161 / 2$ times the mean distance of the sun. $1: 20$ parts of the sun's diameter is $161 / 2$ minutes; when this is multiplied by $161 / 2$, the result is $(4+1 / 3+1 / 5)$ units. Thus the diameter of average stars of first magnitude is equal to $(4+1 / 3+1 / 5)$ times the diameter of the Earth. When the two [quantities] are cubed, [one finds] their volume to be approximately equal to 93 times the Earth's volume.
(وذكروا أنْ قطره من قطر الشمس كواحد من ثمانية عشر
 سبعة عشر الفًا ومائة وأحد عشر مثلاً لنصف قطر الأرض ، الْا فهر بعد زحل الأوسط ، وهو أربع عشرة مرة مثل بعد الشمـس

 جرم زحل مثل جرم الأرض سبعاً وسبعين مرة بالتقريب .

$$
\begin{aligned}
& \text { الفصل السابع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { وتمام القول وِّ هذا الباب }
\end{aligned}
$$

[1] جُعل أبعد بعد زحل بعد الثوابت من الأرض إذ لم تكن
الزيادة عليه معلومة لئلاّ يكون المحدود أكير أكثر من الموجود الون
[r] من قطر الشمس بالقياس قريباً من نصف عُشره . ستة عشر مثلاُ ونصفاً لبعد الشمس الأوسط بالتقريب . والجزء من عشرين من قطر الشـس ست عشرة دقير دقيتة ونصف . . وإذا
 20 أوسط كُواكب القدر الأول أربع مرات مثل قطر الأرض ومْثل ثُلثه وخُمسه . وإذا كُعبا كان جرمه ثلاثاً وتسعين مرة بالتقريب مثل
[3] One should divide this amount by 6, and this sixth is made the difference between the mean of any magnitude and the mean of the magnitude that follows it. The sixth is divided by 3, and this third of the sixth is made the difference between the largest and the mean [values] for any magnitude or between the mean 5 and the smallest [values]. Thus the largest of the fixed stars is $981 / 6$ times the Earth, and the smallest is $101 / 3$ times it.
[4] It has become clear from this study that the largest of these bodies is the sun; then there are the fixed stars of first magnitude, then Jupiter, then Saturn, 10 then the remaining fixed stars, then Mars, then the Earth, then Venus, then the moon, and then Mercury, which is the smallest star.
[5] Whoever wishes to convert the distances to parasangs, miles, and other [units] may do so. We have converted two of these distances to parasangs. The first is the nearest, which is the nearest distance of the moon from the center of the Earth, i.e. the radius of the world of generation and corruption; it is 42,709 parasangs. As for [the distance] from the surface of the Earth to the part of the moon's orb closest to us, it is 41,436 parasangs. The second is the most distant, which is the distance of the fixed stars from the center of the Earth; it is twentyfive thousand thousands four hundred twelve thousand eight hundred ninetynine $[25,412,899]$ parasangs.
[6] Let us end the book here, praising God Most High and praying for His prophet, the chosen one. God is for us sufficient, how wonderful is the Entrusted One!
[r] وينبني أن يقسم هذا القدر على ستة ويجعل السدس التناضل بين أؤسط كل قدر وأوسط القدر الذي يليه . ويقس
 قدر وبين أوسطه أو بين أوسطه وأصغره . فيكرن أكبر الثوابت 5 5 ثمانية وتسعين مثلاً وسدس مثل اللأرض ، وأصغرها عشرة أمثالها وثُثل مثلها .
[ع] وقد بان من هذا البحث انَ أعظم هذه الأجرام الشسس ؛ ثم كواكب القدر الأول من الثوابت ، ثم المشتري ، ثم زحل ، ثم باقي الكواكب الثابتة ، ثم المريّيخ ، ثم الأرض ، ثم الزهرة ، ثم

[0] ومَن أراد أن يحول الأبعاد إلى الفراسخ والأميال وغيرهـا
فله ذلك . ونحن حولنا بُعدين منها إلى الفراسخ . الأول أقربها ، وهو بعد القهر الاثقرب من مركز الأرض ، أعني نصف تطر عائم
الكون والفساد ؛ فكان اثنين وأربين ألفاً وسبععائة وتسع [!]
15 فراسخ . وأما من سطح الأرض إلى ما هو أقرب إلينا من فلك القـر فأحد وأربعون ألناً وأربعمائة وستة وثالثاثون فرسظا . والثان الثاني أبعدها ، وهو بعد الثوابت عن مركز الأرض ؛ فكان خـن ريسة وعشرين ألف ألف وأربعائة واثني عشر ألناً وثمانمائة وتسعة وتسعين فرسخاً .
20 المططنى • واله حسبنا ونعم الوكيل •

Part III

Commentary Figures
3432

Fig. C1

Fig. C2

Fig. C5

Fig. C6

Fig. C8

Fig. C9

Fig. C11

Fig. C12

Fig. C14

Fig. C15

Fig. C16

Fig. C17

Fig. C18

Fig. C19

Fig. C20

Fig. C21

Fig. C22

Fig. C23

Fig. C24

Fig. C25

Fig. C26

Fig. C27

Fig. C30

Fig. C33

Fig. C34a

Fig. C34b

Fig. C36

Volume Two

Part IV
 Commentary Part V

Critical Apparatus

Part VI

Appendices and Indices
$x \cup$

Part IV
 Commentary

373 e

BOOK I

Preface

I.Pref. [2]5. jumal ${ }^{\text {an }} \min { }^{c}$ ilm al-hay'a (a summary of astronomy): As Ṭūsī repeats many times throughout the text, this work is to be considered a summary rather than a complete exposition as is the case with the Almagest. The development of this type of astronomical summary in the Islamic tradition is of more than passing significance as we have discussed in the introduction, §2.C-D. Compare Ptolemy's remarks at the beginning of the Planetary Hypotheses, where he states that his aim is to set forth the results of the Almagest in "a summary fashion" ($\kappa \varepsilon \phi \alpha \lambda \alpha 1 \omega \delta \tilde{\omega} \varsigma)$ (p. 70, line 12); this was translated into Arabic as jumal (p. 13, line 10).
I.Pref. [2]5. tadhkira li-bac $\underset{\text { d al-ahb }}{\text { a }} \bar{b}$ (a memento for one of our dear friends): There is a play here on the word tadhkira, which has approximately the meaning of "memoir" as used in the title but here has the import of "memento." The friend referred to is, according to Ibn al-Fuwaṭi, ${ }^{\text {cIIzz al-Dīn al-Zinjānī, whose }}$ tadhkira on grammar was written for Naṣir al-Dīn. (See p. 71 of Volume One.)

Book I, Introduction

I.Intr. [2]13-14. wa-mawd̄̄̄̄ al-hay'a...wa-harakātihā al-lāzima lahā (The subject of astronomy....and intrinsic motions): In his general remarks on astronomy, Tahänawi, the 18th-century Indian compiler of a dictionary of technical terms, notes that the restriction to the quantities, qualities, positions, and intrinsic motions of the simple bodies is made so as to distinguish astronomy (hay'a) from the tradition of Aristotle's De caelo (al-samä' wa-'l- ${ }^{c}$ ālam), which also studies the simple bodies but from the point of view of their natures (taba ${ }^{\prime} i^{c}$). ${ }^{1}$ The latter science, for example, does not study the simple bodies in terms of the actual quantity of their motions as does hay'a. (See the introduction, pp. 35, 38-41 and the commentary to II.1 [8].)

[^88]I.Intr. [2]16. $b i-a^{c} y \bar{a} n i h \bar{a}$ (in and of themselves): Khafrī explains this phrase as referring to the question of the number of simple bodies, the size of each individual body, and similar questions relating to the bodies qua bodies (bi-dhawātihā).
I.Intr. [3]2,4. ${ }^{c} a l \bar{a}$ sabil al-hikāya (in narrative form); hikāya mā ${ }^{c} a m m \bar{a}$ thabata fihi (a report of what is established therein): Țūsì wishes to indicate by the use of hikāya that his work is for the most part an account of the astronomical system of the Almagest. As such, he cautions against taking it as a substitute for the Almagest or a similar exposition in which a full development with proofs is given. This is a fundamental aspect of the type of astronomical literature known as al-hay'a al-basitta (simplified hay'a). (See the introduction, pp. 24-25, 35-38.)

Book I, Chapter One

I. 1 [1]. Compare Euclid, Elements, Bk. I, Defs. 1-3, 5-6, 13 and Bk. XI, Defs. 1-2.
I. 1 [2]18-19. wa-'l-mustaqim...tufrad ${ }^{\text {calayhi (A straight line...one another): }}$ This definition is one of the many that were advanced as alternatives to that of Euclid. It somewhat resembles one found in Hero of Alexandria, Def. 4 (4: 18), which was known to Nayrīzì (fl. ca. 897 in Baghdad). (Compare Heath, Euclid's Elements, 1: 168, no. 3 and Proclus, Commentary, p. 89.)
I. 1 [2]19-20. wa-'l-mustawī...al-jihāt mumkin ${ }^{\text {an }}$ (A plane surface...is possible): This definition is significant not only because it is non-Euclidian (cf. Euclid, Elements, Bk. I, Def. 7), but also because it is the first of several passages that allows us to establish that the Tadhkira underwent multiple revisions. (See the introduction, §2.J, pp. 71-75.) There are three versions of the definition in the textual tradition (see the apparatus), and Jurjānī gives a lucid account of the relation between them:

The plane surface is the one whereby the lines assumed on it in all directions are straight. This has been nullified because the plane in which arcs were assumed on it in all directions would be excluded from [this definition]. Therefore this phrase has been changed in some of the copies that were read under [the supervision] of the author to his statement: it is the one in which it is possible to produce straight lines in all directions. In some of the copies it is thus: it is the one on which the assumption of straight lines in all directions is possible. Each of the two modifications has the same meaning.

It is interesting to note that Tuusī was still modifying his definition of a plane some 10 to 15 years after writing his recension of the Elements (in 1248 A.D.). The older and incorrect definition is found in MSS DGT, and is the only one mentioned by Nīsābūrī; this represents the "Marägha" version. The first modification is found in M, which was prepared by Shīrāzī under Țūsī's supervision. The second modification is found in MSS FL and in the margin of T; this represents the final, or "Baghdad," version of the text. As is often the case, Khafrī copies Jurjānī's remarks without attribution; Bīrjandī is aware of them but in contrast does credit his sources. The implications of this passage for establishing the text of the Tadhkira are discussed more fully in the introduction ($\$ 2 . \mathrm{J}$, pp. 71-75 and $\S 2 . \mathrm{M}, \mathrm{pp} .85-88$). It may be significant that Ṭūsi’s definitions do not resemble any of those in Proclus, but there may be a connection to the one mentioned by Nayrizzi in his remark that "others defined the plane surface as that in which it is possible to draw a straight line from any point to any other"' (cf. Heath, Elements, 1: 171-172).
I. 1 [3]. Compare Euclid, Elements, Bk. I, Def. 8 and Bk. XI, Def. 11; note that Euclid speaks of an angle as an "inclination" ($\kappa \lambda / \sigma \varsigma)$, whereas Țūsī defines it as a "surface" or a "solid"; Heath discusses other alternatives to Euclid's definition that were proposed (1: 176-181 and 3: 267-268).
I.1 [5]. Compare Euclid, Elements, Bk. I, Defs. 10-12.

I.1 [6]. Compare Euclid, Elements, Bk. XI, Defs. 3-4.

I. 1 [7]. Compare Euclid, Elements, Bk. I, Def. 23 and Bk. XI, Def. 8.
I.1 [8]. Compare Euclid, Elements, Bk. I, Defs. 15-17.
I. 1 [9]. The sine function was imported from India at an early stage in the history of Islamic astronomy; it effectively displaced the rather cumbersome chord function that had been used by Ptolemy and other Hellenistic astronomers.
I. 1 [9]2. wa-nisf al-watar li-nisf al-qaws jayb (Half a chord is the sine of half the arc): Jurjānī, who not surprisingly found the Arabic inelegant, supplies the following, rather clearer, formulation: "The sine of every arc is half the chord of twice that arc."
I. 1 [10]. Țūsi's formulation is essentially that occurring in Theodosius's Sphaerics, Bk. I, Defs. 1-3 (Ṭūsi's recension, p. 2) as well as in Hero, Defs. 76-77 (4: 52); it differs markedly from that of Euclid, Bk. XI, Def. 14, who gives the means for generation rather than a definition. See Heath, Elements, 3: 269-270.
I. 1 [11]. Compare Theodosius, Sphaerics, Bk. I, Props. 1, 6 (Ṭūsī's recension, pp. 3-5).
I. 1 [12-13]. Compare Autolycus, On a Moving Sphere, Prop. 1 (Ṭ̄si’s recension, pp. 2-3).
I. 1 [13]. Compare Theodosius, Sphaerics, Bk. I, Props. 1, 6 (Țūsìs recension, pp. 3-5) and Bk. П, Props. 1-2 (Ṭūsi’'s recension, p. 13).
I. 1 [14]. Compare Theodosius, Sphaerics, Bk. I, Props. 11-12 (Țūsī’s recension, Props. 12-13(?), p. 8).
I. 1 [15]. falak (orb): Hartner has detailed the history and etymology of falak in $E I^{2}, 2: 761-763$; however, there are several points that should be emphasized in order to avoid potential misunderstandings. The definition of falak contained in this paragraph is completely explicit and unequivocal. It is a spherical body but not necessarily a sphere except in the limiting case where the concave surface degenerates to a point. It is defined strictly geometrically, there being no reference to motion at all. We should add here that this meaning of falak is the one usually encountered in hay'a texts, especially in the later centuries (i.e. post11th century A.D.).

A problem arises because falak has various other significations (presumably inherited from the early period of translations from Greek sources) that were not easy to eradicate by later writers on account of their widespread usage. Thus despite the unambiguous meaning of falak in this paragraph, Ṭūsĩ must admit in II. 3 [2] that the celestial equator may be called either the equinoctial circle (dä'ira) or the equinoctial orb (falak). The practice of designating this equator by the word orb is, he tells us, "permissible" (tajawwuzan), but it is clear that he wishes to imply that such a usage is secondary and not entirely satisfactory.

On the other hand, Bīrūnī does not seem as concerned as Ṭūsì to limit the meaning of falak:

Circle (dā'ira) and orb (falak) are two names that may be used in turn for the same thing and are thus interchangeable. "Orb" may sometimes refer to the entire sphere (kura), especially when it is moving since "orb" is not applicable to something at rest. The name orb (falak) is used simply by way of comparison to the whorl (falaka) of a rotating spindle. ${ }^{2}$

Ibn al-Haytham, a contemporary of Bīrūnī, also retains this dual usage for falak. ${ }^{3}$ I believe that it is safe to conclude that the primary meaning of falak became delimited between the time of Bīrūnì and Ṭūsī.

[^89]We should make one final point. That "orb" should not be used for a nonrotating spherical body would seem confirmed by Țūsī himself despite his lack of any explicit mention of such a restriction in this paragraph. Thus in II. 2 [5], Tuusī states that "the orbs terminate with the orb of the moon." Below the moon, one finds the elements, which are divided not into orbs, even though they occur as bodies with the shapes of orbs, but into levels (tabaqāt). Presumably this is because the elements do not move with a circular motion. Our interpretation is made explicit by Nīsābürī in his commentary on II. 3 [2] and is echoed by the other commentators:
...This is called the equinoctial circle and it is also called its orb (falak) because they have applied the name "orb" to some of the [great] circles, namely those that occur in terms of ($b i$ - ${ }^{\circ} c_{t i b a \bar{a} r)}$ motion. Thus they do not say "the horizon orb" or "the altitude orb." This is also something that indicates that "orb" takes into account motion in its meaning (u^{c} tubira fi mafhūmihi al-haraka) as we have indicated previously. [added by Jurjānī: ...by likening it to the whorl of a moving spindle. It is therefore necessary to add the restriction of motion to its well-known description so that it does not encompass spheres (al-kurāt) that do not move, such as the elements (al-canäsir) and the planets (al-kawäkib).] This application [of orb] is permissible (${ }^{c}$ alā sabil al-tajawwuz), something in the way of using a location (mahall) to designate some state ($h \bar{a} l)$, such as their saying "the river bed (al-wādī) flowed."

I have tried to adhere to translating falak by "orb" whether a circle or a solid body is meant in order to retain the ambiguity of the Arabic. (See the commentary to $\Pi .3$ [2]). When falak refers to the heavens as a whole, however, I have translated it as "celestial sphere." (See, for example, II. 1 [6] and II. 3 [12] and [13].)
I. 1 [16-17]. Compare Euclid, Bk. XI, Defs. 18-23. As in the case of the sphere, Țūsī gives definitions for the cylinder and cone, while Euclid describes how they are generated. See Heath, Elements, 3: 270.
1.1 [16]8-9. wa-yakūnu al-khatt al-wāsil...kānat al-usṭuwāna qā'ima (The line that joins...the cylinder is a right one); I.1 [17]11-13. wa-'l-khatt al-wāsil...kāna al-makhrüt $q \bar{a} \bar{a}^{\prime} m^{\text {an }}$ (The line that joins...the cone is a right one): Jurjānī, Khafrī, and Bīrjandī tell us that these two sentences were revisions of two passages that originally read: "the line that joins the two centers is perpendicular to the planes of the two circles, and it is the axis of the cylinder" and "the line that joins the point and the center of the base is perpendicular to the base and it is its axis." These original passages occur in the Marägha version. Khafrī attributes both revisions to the author himself and a marginal note in MS D states that the new text in par. 16 is due to the author. This is important
evidence that the Baghdad version, which has the revisions, is due to Ṭūsī rather than, say, a student. (See the introduction, §2.J, pp. 71-75.)

Clearly the new versions were intended to allow for the possibility of an oblique circular cylinder and an oblique circular cone. On the whole the changes produce a more correct formulation (as one finds stated by the copyist of MS T in a marginal note), but I am baffled by the change from definiteness to indefiniteness of "axis" in par. 16 ("is the axis of the cylinder" vs. "is an axis of the cylinder"). Note that the revision in par. 17 retains the definiteness of "axis."

Book I, Chapter Two

For a general discussion of the physical principles, see the introduction, §2.E, pp. 41-46.
I. 2 [1]21; I. 2 [2]7. ${ }^{c}$ alā nahj wāhid (monoformly): This phrase should not be translated as "uniform" since it includes the accelerating motion of falling bodies (see above, pp. 44-46). The uniform motion of the celestial bodies is referred to as mutashäbiha, a term introduced later in this chapter (I. 2 [4]26).
I. 2 [2]. The use of $t a b^{c}$ (a nature) in this paragraph seems at first sight confusing and even contradictory since it is the principle of motion for both the "natural" ($t a b \bar{i} c i y y a$) motion of the four elements as well as the "voluntary" (irädiyya) motion of the orbs. On the other hand, "soul" (nafs) as a principle of motion is reserved for vegetative and animal movement. The crucial distinction, as we have noted in our section on principles (p. 45), is that the motion of the orbs, even though they may move through the medium of soul, is regular, whereas that which is vegetative and animal is not. In his commentary on Al-Ishārāt, TTūsī makes an explicit contrast between $\mathfrak{t i b} \bar{a}^{c}$ (a variant or perhaps plural of $t a b^{c}$) and $t a b i^{c} a$:
$a l-t i b \bar{a}^{c} \ldots$ is an innate [or essential] quality (al-sifa al-dhātiyya) of anything [whereas] al-țabic a may designate (qad takhussu) that from which motion and rest issue forth (yasduru) involuntarily in whatever it occurs innately [essentially] (awwal an $\left.b i-{ }^{\prime} l-d h a \bar{t}\right) .{ }^{1}$

Thus both the motions of the orbs and the elements may be said to be due to a $t a b^{c}$ since this merely implies that they are endowed with a certain innate characteristic that results in their motion in a single manner (i.e. monoformly). On the other hand, only the motion of the elements may be called $\operatorname{tabi}^{{ }^{c}} \overline{\bar{i}}$ since in their case the resulting motion is involuntary.

[^90]I. 2 [2]10-11. wa-'l-mutaharrik bi-ghayrih..fa-'l-haraka cardiyya (When a mobile is moved by something other than itself...for it naturally to be): The standard examples of accidental motion in which the mobile is part of the mover are a planet embedded within an epicycle and a ring on the finger; as for the case where the mover is the natural place for the mobile, one finds the examples of an orb that contains another (such as the "enclosing orb" of II. 11 [4]) or of the ship with respect to its passengers.
I. 2 [3]14. wa-humā ayniyyatān mustaqïmatān (These two [motions] are displacing and rectilinear): The use of a derived form of ayna (where) to designate a motion that is from one place to another (and thus "displacing") rather than "in place" (wadciyya) is comprehensible but nevertheless curious. Among other alternatives one encounters are haraka intiqāliyya (translocation) (Ibn Sīnā,
 through space) (Ghazālī, Maqāṣid, Bk. III, Ch. 1, p. 308).
I.2. [4]. These characteristics of the celestial bodies are not simply a priori assumptions; each is a consequence of Physical Principle 5, namely that "a simple body has a single nature and what issues forth from that nature does so monoformly" (see I. 2 [1]20-21 and pp. 44-46). Since this means that they are restricted to circular motion and cannot undergo rectilinear motion, they cannot experience those aspects of the sublunar world dependent on rectilinear motion. This is made explicit by al-Nīsābürī in his commentary on this passage:

The orbs, which have a principle of circular motion, do not tear or mend because this would demand a straight-line motion of the parts. They also do not grow or diminish because each of these does not occur except after a straight-line motion of the parts...They do not expand or contract ${ }^{2} \ldots$ as these require the separation of the body from its place or the evacuation of part of it by means of a straight-line motion. And because their motion occurs in a single way, this motion neither intensifies, weakens...nor undergoes retrogradation, turning or stopping...

Compare Aristotle, De caelo, Bk. I, Ch. 3, where he emphasizes the lack of contraries to explain the unchanging nature of the heavens but without explicitly relating this to the absence of rectilinear motion.

[^91]
BOOK II

Book II, Chapter One

This chapter, in the main, corresponds to the Almagest, Bk. I, Chs. 3-7. However, in contrast to Ptolemy, Țūsì relies, as he tells us in the last paragraph, on innī proofs, i.e. ones that use observational evidence to establish certain facts, rather than limmi proofs that seek to show why something must occur in a certain way and not another. Thus Tū̄ī, for example, does not resort to the physical arguments of the Almagest for the sphericity of the heavens, namely that since the aether has the finest and most homogeneous parts it follows that its surface must be spherical, since the sphere is the only solid whose surface is composed of homogeneous parts (Bk. I, Ch. 3). (There is an interesting exception to this avoidance of physical arguments that occurs with regard to the proof of the Earth's state of rest; see the commentary to II.1 [6].) For a discussion of this important topic and its implications for the Arabic hay'a tradition, see the introduction, §2.D, pp. 38-41.
II. 1 [title]5\&6. al-samā' (the Sky): The translation here is dictated by the analogy with circumference; under other circumstances "heavens" is equally if not more appropriate.
II. 1 [1]21-1. fa-inna tarākum...wa-bi-'l-didd ([which can be explained by] the accumulation... and the opposite holds): The problem here referred to, which has come to be known as the "moon illusion," has a remarkable history in the Middle Ages, which has recently been dealt with by Sabra [1987b]. What is significant is that Tūsĩ has simply paraphrased Ptolemy's erroneous view, which is based on a misapplication of the latter's theory of refraction inasmuch as the eye is here in the denser medium, whereas the viewing of an object in water presents one with the opposite case-this despite the fact that a much more sophisticated treatment, based on a psychological explanation, had been presented by Ibn al-Haytham in his Optics some two centuries before. Țūsi's uneven knowledge of the works of his predecessors will be noted again, in particular in our commentary on the next paragraph and on II.11. Part of any history of Islamic science must take into account the irregularity of the transmission of texts and scientific knowledge over time and between the various regions of Islam. In the case of Ibn al-Haytham's Optics, the work was not well known in the Islamic world from the time it was written until it was revived at the beginning of the

14th century by Kamāl al-Dīn al-Fārisī, who wrote a critical commentary on the Optics, the Tanqīh al-Manāzir, at the suggestion of his teacher Quṭb al-Dīn al-Shïrāzì, who seems not to have been familiar with the work. Shïräzī, of course, was one of Țūsī's students, and this, along with the persuasive evidence of Țūsì's own writing on optics, make it abundantly clear that Tuusī had not studied the Optics. ${ }^{1}$
II. 1 [2]9-13. wa-tadārīsuhā...calā misāhat al-ard (The [Earth's] undulations...the area of the Earth): See the commentary to IV. 1 [5].
II.1 [4]21-22. $a w{ }^{c} c_{\text {ind }}$ kawnihā...bi-sayrihā al-khäṣs bihā (or when it is at opposite parts...proper motion): By proper motion (sayrihā al-khāss), Ṭūsī means the sun's motion around the ecliptic. This "evidence" is in addition to what one finds in the Almagest, p. 42 (H19).
II. 1 [5]4. wa-sa-nubayyinu dhālik $f \bar{i}$ mawdicih (we shall make this clear in the appropriate place): Parallax is treated in II. 12.
II. 1 [6]. Țūsī here rejects those proofs against a daily rotational motion for the Earth that one may find, among other places, in the Almagest, Bk. I, Ch. 7. These arguments, based as they were on the alleged dire consequences that would occur if the Earth were in motion, were empirical inasmuch as they depended upon counterexperience. Although Țūsī is not completely explicit on the point, Shīrāzī as well as all the commentators interpret Țūsī's stance as indicating a claim that there are no observational tests to determine whether or not the Earth is in motion, or at least that the proposed ones are inadequate. As Nīsābürī states, Țūsī has used observation and testing (al-raṣd wa-'l-ictibār) as the basis for the inn $\bar{\imath}$ proofs that confirm the circularity of the Earth and the heavens, the Earth's centrality, and so on; here, however he has had to resort to a limmi proof from natural philosophy, namely that the Earth cannot move naturally with a circular motion due to its rectilinear inclination, to establish this fundamental aspect of Ptolemaic cosmology. (See the commentary for par. [8], pp. 386 ff for a discussion of $\overline{i n n i ̄}$ and limmī proofs.) Note, however, that Țūsī does not say anything about whether a circular motion could be accomplished by compulsion.

To bolster his position, Țūsī suggests the possibility that if the Earth did indeed rotate, then all of Ptolemy's alleged horrors would not occur if the air were able to rotate with the Earth; anything in the air could then be carried along in a way such that an observer on the Earth would not be able to determine from them whether or not he were in motion. This argument leaves a great many questions unanswered (for example, would objects be carried by the air accidentally or by constraint?), and Țüsī attempts to strengthen it by appealing to what

[^92]he considers to be the analogous situation of comets. According to Aristotle, the comets are a phenomenon of the sublunar region and not of the unchanging celestial realm. But in order to explain their apparent participation in the daily rotation of the heavens, one must assume that the level of fire, the level of the sublunar region closest to the orbs, moves with the diurnal east-west motion (Meteorology, 344a5-20). If one believes this widely accepted view, Tūsī is saying, then one should not find disturbing the possibility of the air's conforming motion with the Earth's rotation.

Many objections were raised against this passage by later Muslim astronomers. Indeed Țūsī's own student Quṭb al-Dīn al-Shīrāzī claimed that if the air were in motion with the Earth, then a large and a small rock thrown straight up in the air would return to Earth at different locations since each would be moved differently by the air (Nihāya, maqāla II, bäb 1, faṣl 4; Tuhfa, bāb II, faṣl 4). In general he seems to agree with Ptolemy that observation can determine the question of the Earth's motion. Shirrāzī also denied the relevance of the use of comets. In the Tuhfa he disputed the Aristotelian claim that the comets moved with the daily motion of the orbs. Later commentators were stimulated by this dispute between teacher and student to analyze the question of the Earth's motion with a certain amount of care. Both Nīsäbūrì and Jurjānī, as well as most of the other commentators, criticized Shïrāzī on the matter of the two rocks; they held that they would in fact have the same quantity of motion as that of the rotating Earth. If there were a difference, it would be such that an experimenter would not be able to detect it. On the other hand, many of the commentators agreed with Shïräzĩ that the comets did not follow the daily motion of the orbs.

This late medieval tradition of discussing the question of the Earth's motion is, of course, interesting in its own right and deserves a much more extensive treatment than is possible here. It also, for better or for worse, cannot but bring to mind Copernicus. What makes this more than a case of free association is the remarkable similarity between this passage in the Tadhkira and one in De revolutionibus (Bk. I, Ch. 8, f. 6r). Like Țūsi before him, Copernicus evokes the possibility that the air and what is in it could move with the Earth's rotation. But, after all, this idea is already in the Almagest where it is promptly rejected (H25). What is much more decisive is Copernicus's appeal to the analogous motion of comets to legitimize the possibility. One could hypothesize that both Tūsī and Copernicus are relying on a common source, but what seems to me much more likely is that Copernicus has been influenced, either directly or indirectly, by the late medieval hay'a tradition. (We should note here that two commentators, Khafrī and Bīrjandī, are contemporaries of Copernicus.) The significance of this case of influence, if that is indeed what this is, is that we are not dealing with models that could be transmitted simply by diagrams, but instead we are faced with a rather subtle argument that would seem to require either a textual or scholastic mode of transmission.

It is important to keep in mind what is at stake here. Neither Țüsĩ nor any of his commentators, as far as I have been able to determine, defended a rotating

Earth. What was at question was whether or not a stationary Earth could be established by strictly observational data as would befit a mathematical science such as astronomy. Tiusī seems to conclude that it is not possible and must then resort to an argument from natural philosophy about the nature of the element earth. Since it can only move in a straight line, it cannot rotate. But this left open the possibility that a different natural philosophy, for example one that asserted that the whole of an element might have a different motion than its parts, would lead to a different conclusion. With Copernicus, this is precisely what has occurred (see De rev., f. 6r-6v).
II.1 [6]11. bimä yattasilu bihā (along with whatever is joined to it): MSS BCDFGLMST, CUbaydi's commentary, and the Nihāya (Ahmet III MS 3333, f. 47a) have bihä̆, while MSS HN and the commentaries of Nīsābūrī, Jurjānī, Shīrwānī, Khafrī, and Bīrjandī have bih. The latter explain the phrase as meaning that whatever is joined to the air, such as a rock or a bird, will participate in the air's conforming motion to the Earth's rotation. The former choice, biha, would indicate that the referent is the Earth, which does not make much sense in context and, even if it did, would be redundant. Though I agree with the consensus of the commentators, I have followed my standard editorial procedures and retained bihä (cf. p. 87).
II. 1 [6]11. kamā yushāyi ${ }^{c} u$ al-athīr al-falak (just as the aether conforms to the orb): All the commentators are in agreement that al-athïr (aether) here designates the level of fire in the upper atmosphere; this is a somewhat unusual usage and, as noted by Shïrwānī, al-athïr is much more commonly used with reference to the orbs. ${ }^{2}$ According to Birjandi, the orb referred to is that of the moon. Presumably what is meant is that the concave surface of the moon's inclined orb is able to impart its motion to the level of fire in the upper atmosphere. This would be consistent with the view that the daily motion is transmitted downward from the highest orb. The diurnal motion of the level of fire, however, would be difficult to reconcile with the alternative view that the heavens as a whole rotate as a single unit, a view held by Ptolemy in the Planetary Hypotheses and by Ibn Rushd in his Talkhiṣ mā $b a^{c} d a l-t a b i ̄ c o ~(s e e ~ o u r ~ c o m m e n t a r y ~ t o ~ I I . ~ 4 ~[6]) . ~$.
U. 1 [7]19-22. wa-'l-inā'...hādhihi al-masā'il (The amount of water...these matters find strange): Livingston has called these remarks about a filled vessel containing more water when it is closer to the center of the Earth a "proof for the roundness of the Earth and the Heavens." ${ }^{3}$ As should be clear from the context, this argument is simply one of several consequences, rather than proofs, arising from the sphericity of the Earth that Tū̀sì wishes to note. Compare Aristotle, De caelo, Bk. II, Ch. 4, 287b4-14.

[^93]II. 1 [8]. Inniyya derives from the word inna (that), while limmiyya comes from lima (why); ${ }^{4}$ thus, literally, we can translate these as the "proof of the that" and "proof of the why." Ultimately they can be traced to the distinction that Aristotle makes in the Posterior Analytics, Bk. I, Ch. 13 between what he calls the fact (tò ö τ) and the reasoned fact (δ ió τ). ${ }^{5}$ T Tūsī, however, is using this dichotomy in a way different from that of Aristotle, and it will be worthwhile to pursue this difference.

Aristotle first considers a single science in which there are those proofs that provide the fact and those that provide the reasoned fact. An example of a proof of the fact is the following syllogism:
(1) The planets do not twinkle.
(2) That which does not twinkle is near.
\therefore (3) The planets are near.
We have thus deduced that the planets are near based on an observation for (1) and "through induction or through perception" for (2). ${ }^{6}$ The conclusion, however, does not follow from a premise that is its cause since it is not the case that the planets are near because they do not twinkle. But inasmuch as one may reverse this syllogism, one may provide a proof of the reasoned fact as follows:
(1) The planets are near.
(2) That which is near does not twinkle.
\therefore (3) The planets do not twinkle.

Here the conclusion is a reasoned fact since the cause of the planets not twinkling is the premise that they are near.

In this example, the proofs of the fact and the reasoned fact occur in the same science. But Aristotle also takes up the case that is of immediate concern to our own inquiry, namely where the fact and the reasoned fact are investigated by different sciences. Observational astronomers, for example, gather the facts, whereas the mathematical astronomers seek to know the reasoned facts since they "have the demonstrations of the explanations." ${ }^{\text {It }}$ is interesting that Aristotle accepts as a matter of course that the mathematicians "often...do not

[^94]know the fact"; ${ }^{8}$ this does not bother him since "mathematics is about forms, for its objects are not said of any underlying subject." ${ }^{9}$ The example from astronomy is fairly typical of the others given by Aristotle in this context. The science in which the fact occurs is empirical and subordinate, whereas that in which the reasoned fact is demonstrated is mathematical and superior.

The situation of the fact/reasoned fact distinction in the Islamic philosophical tradition as well as in Islamic astronomy is rather different. In general, the emphasis is on the proof itself rather than on its individual elements (e.g. an observational fact). Thus a limmi proof provides the reason for the occurrence of the
 for asserting that occurrence (${ }^{c}$ illat al-tasdīq bi-'l-wujüd). ${ }^{10}$ An innī proof will then give the fact, while the limmī proof will give the reasoned fact. But as we have seen, Aristotle uses a distinction based on proof only in the case where the fact and the reasoned fact occur in the same science. When they are found in different sciences, the fact is an observational fact, not the conclusion of a proof; these observational facts from one science are provided with causes by the reasoned facts of another, usually mathematical, science.

In contrast with Aristotle, Arabic mathematical astronomers do not see themselves as giving proofs of the reasoned fact but rather of the fact. These "facts," however, are not observations but rather the configuration (hay'a) of the simple bodies; this is arrived at by inni proofs that are based on observations. On the other hand, this sort of proof does not indicate the cause for such a configuration in the sense that it does not furnish the answer to the question of why such a configuration occurs and not some other. This question is answered by a limmi proof which is given in the al-sama' wa-'l-cālam (De caelo) literature.

Țūsì here, for example, gives what he calls innī proofs for the circularity of the heavens, the Earth and water, for the centrality of the Earth, and for the imperceptible size of the Earth with respect to the orb of Mars and those orbs beyond. All of these proofs (for which Tūsī uses the term dalīl instead of the stronger burhān, demonstration) are based upon observations. ${ }^{11}$ For example, the earlier rising and setting of celestial objects as one travels East and the increasing altitude of the pole as one goes North are indications of the circularity of the Earth. But this proof does not, as Tūsī states, "demonstrate the necessity" (tufid wujüb) for its so being; for this he refers the reader to De caelo. Al-Khafrī in his commentary on this passage further elucidates the situation:

[^95]These proofs (adilla), i.e. those which he adhered to (tamassaka bihā) in the determinations ($a h k \bar{a} m$) of this chapter, are inniyya demonstrations (barähïn), which convey existence, i.e. necessitate the judgment (tasdiq) that those bodies occur according to the well-known configuration (hay'a) and the previously mentioned circumstances, without including concurrently the cause (${ }^{c}$ illa) for their so being. The proofs that convey the necessity of that existence are limiyyāt and include the causes (${ }^{c}$ ilal) for those determinations according to both the mind (dhihn) and the external world (al-khärij). The latter [proofs] are given in Natural Philosophy in the book De caelo. For example: the orbs are simple (basitta), but then the simple requires (yaqtadī) a circular form; hence, it is the cause for the judgment (tasdiqq) as well as for the establishment ($t h u b \bar{u} t$) of the necessity of that determination as long as the subject itself exists. To make this discussion clear: it is the case that the problems of this chapter are common to both Natural Philosophy and this science. The difference is rather due to the [type of] proof as has been shown.

There are several points that should be emphasized. First, in contrast to what we found to be the case with Aristotle, the fact and the reasoned fact are here the same; they are only distinguished by the proof that is used to establish them. Thus it is possible for two different sciences to deal with the same subject matter and to prove the same things. One science would establish the fact that something occurs in a certain way whereas the other would seek to give an ultimate reason for that occurrence. Second, it should be clear that hay'a is here being portrayed as a science based on observations. On the other hand, al-sama' wa-' l - ${ }^{c}$ älam has taken on the character of a discipline whose premises are rational and a priori. As such, an important demarcation has occurred whose result-if not intention-is to make astronomy an undertaking that could be seen as autonomous and generally independent of the philosophical literature concerned with the heavenly bodies.

Compare pp. 38-41 and 45-46 of Volume One.
II. 1 [8]24. kitāb al-samä' wa-'l-cālam (the book De caelo): It is not clear whether Țūsī is here referring specifically to Aristotle's De caelo or generally to the entire tradition of these types of works. For example, he may have also had in mind the appropriate part of Ibn Sinnā's Shifă'.

Book II, Chapter Two

In this chapter we encounter for the first time a procedure that Țūsī will use again and again in subsequent chapters for establishing the configuration (hay'a) of the World. First he lists the observations that are to be explained. He then describes the orbs that are meant to account for the observations. In later chapters he will also give the individual motions of each of the orbs as well as the so-called anomalies that result from these motions for each planet.
II. 2 [3]19-21. wa-lammä lam takun li-bāqī al-kawākib..ja ${ }^{\prime} i z^{\text {an }}$ (Since the rest of the stars...conceivable): The idea that there is no necessary reason to place all the fixed stars on a single orb can be found in the Shifá' of Ibn Sīnā, ${ }^{1}$ who had Geminus and Proclus as classical antecedents. ${ }^{2}$ Fakhr al-Dĩn al-Rāzī quotes Ibn Sīnā approvingly and adds his own comments in his exegesis on the Qur'ān. ${ }^{3}$ Maimonides as well is open to the possibility that the number of orbs may equal the number of stars. ${ }^{4}$
II. 2 [3]21-23. wa-ayd ${ }^{\text {an }}$ isnād...ii-wujūdihā (In addition, the attribution...its existence): In his inimitable way, Shīrāzī informs us in Fa^{C} alta that the additions to this sentence (occurring between slashes in our text and translation) are completely meaningless ($l \bar{a} m a^{c} n \bar{a}$ lahā as $l^{\text {an }}$); he is quick to add that these were made after he had left the service (khidma) of the author (f. 27a; repeated by Nīsābūrī). A marginal note in MS M that gives the variant concurs in this judgment: "There is no need for the qualification-the correct [version] is what occurs in the [original] text." The reason for the opposition to the revision is rather abstruse; a bit of the historical context may serve to clear up, at least partially, the confusion.

Among the guidelines underlying hay'a-axioms being rather too strong a word for the complexities of the situation-are two that are of relevance here: (1) that there should be nothing superfluous in the heavens and (2) that each independent motion in the heavens should be effected by a separate orb. Earlier in this paragraph, for example, one can see the results of these underlying guidelines-all the fixed stars, which share the same motions, are placed on a single orb in the interests of simplicity, and the nine primary motions are assigned to nine separate orbs. The question arises, though, whether one may dispense with the ninth orb, which brings about the daily motion, for the sake of simplicity, thus promoting one guideline at the expense of another. What Shīrāzī and other commentators object to is that Tü̈si's revision would seem to imply

[^96]that one cannot do this because of the existence of another primary motion, namely precession. But why could not one place all the fixed stars on the eighth orb and then have all the eight orbs move as a whole with the daily motion? (See the commentary to $I .4$ [6].) Indeed this proposal had already been made, Shïrāzī tells us, by Muḥammad b. Mūsā, one of the Banū Mūsā, in a treatise reproduced in Facalta (ff. 27b-31b). ${ }^{5}$ Shiräzī claims for himself the proposal to do away with the eighth orb as well, thereby placing the fixed stars on the convex surface of Saturn's parecliptic (f. 32a). He goes on to state that he mentioned this to Țūsĩ who "found it pleasing and commended me" (istahsanahu wa-athnā calayya). (This may be why Shïräzi is so miffed by the revision, which seems to disallow this possibility.)

Birjandì, with several centuries of mulling time behind him and without Shïrāzi's predilection for making tempests in teapots, offers some plausible suggestions that help to disentangle some of these disparate strands. First of all, he holds that one cannot eliminate both the eighth and ninth orbs since this would involve having two different souls with conflicting motions attached to the same entity, i.e. the orbs taken as a whole. He has no objection to dispensing with the ninth orb alone; however he feels that this would lead to the problem of deciding which of the two primary motions, both of which encompass all the orbs and both of which are about the center of the World, is to be that of the eighth orb and which is to be that of the eight orbs taken as a whole. Since there is no reason to prefer one over the other, Bīrjandī assumes that Ṭūsī did not mean to imply that the existence of the two primary motions made dispensing with the ninth orb impossible as such but rather that he wished to point out that this would be inappropriate on aesthetic grounds (yakūnu al-murād bi-ll-imtina ${ }^{c}$ huwa ${ }^{c}$ adam al-istihssān $l \bar{a}{ }^{\text {c }}$ adam al-imkān). This would certainly make sense if Ṭūsi's intention was to make an addition with as little change to his basic text as possible, as seems to be the case; in doing so, however, he failed to realize that the retention of "precluded" (mumtanic) would lead to misinterpretations. Another consideration for Țūsī may have been that a ninth orb provided a starless orb that could be used as a reference system upon which to place the fixed zodiacal signs (not to be confused with the constellations of the same name; cf. П. 3 [5]).
II. 2 [4]2. al-falak al-atlas (the atlas orb): That the name of this orb has something to do with the mythic figure of Atlas holding up the World is certainly a possibility, but I have no explicit evidence to substantiate this. The com-

[^97]mentators claim the name atlas, which is the elative of an Arabic root whose base meaning is efface or obliterate, was given to this orb because it is devoid of stars. Giving Arabic etymologies to Greek words was not uncommon; see, for example, the entries for athïr (aether) and asturläb (astrolabe) in Lane's Lexicon.
П. 2 [4]7-10. wa-jacalū al-shams...ghayrihimā (They placed the sun...in yet another): This notion of the sun's centrality is, of course, not new with Tūsī; in fact, it can already be found in the Almagest, Bk. IX, Ch. 1 (H207), and it is treated in a separate chapter in the epistle on hay'a by the Ikhwān al-Safā'. For a discussion of this issue in the Latin West, see Grant [1978], p. 279. Grant draws an interesting contrast between those who held that the sun occupied the crucial "middle" position in the universe and Averroes who equated nobility with dis-" tance from the Earth.
II. 2 [4]10-11. wa-kāna ayd ${ }^{\text {an }} b u^{c} d u h \bar{a} . . . a l-w a d^{c}$ (In addition the known distance...positioning): In other words, the ancient value of the Earth-sun distance was compatible with placing the orbs of Mercury, Venus, and the moon between the Earth and the sun. See IV. 5 [5]; Pedersen [1974], pp. 393-394; and Goldstein [1967], pp. 7-11.
11.2 [4]11-13. wa-qad qīla inna al-zuhara...fi safhatihā (There are also reports that Venus... on its surface): There were a number of "reports" of Venus transits in the medieval literature; see Goldstein [1969] and [1972]. To these we may add the claimed observation by Ibn Bājja (12th c. Spain) of a simultaneous transit of Mercury and Venus, which is cited by Shiräzī (Nihäya, II.2, f. 49b; cf. Sayili [1960], pp. 184-185). Shïräzì also notes two transit observations made twenty-some years apart during the first of which Venus was at the apex of its epicycle, while during the second it was at the perigee; he remarks that a single transit would not be decisive for determining whether Venus's orb was below or above the sun since it would not contradict the proposal that "Venus and Mercury, along with the sun, were in a single sphere, the center of their epicycles being the center of the [sun]," whereas these two observations, if correct, would.
II. 2 [5]17-18. wa-bi-falak al-qamar...tabaqät (The orbs terminate...levels): Note that a work on hay'a would not be complete without a listing of all the parts of the universe, both celestial and sublunar. Though the divisions of the sublunar region have the shape of the orbs, each is called a tabaqa (level) rather than a falak (orb) since the latter is usually considered to have a circular motion (see commentary to I. 1 [15]).
II. 2 [5]20-21. wa-rubbamā tüjadu mutaharrika...lahu (they are sometimes found to move...orb): For a discussion of the participation of the comets and meteors in the diurnal motion of the celestial sphere, see the commentary to II.1-[6]. Note that Țüsī here says this conforming motion occurs "sometimes," a position somewhat closer to that of Shīrāzī.
I. 2 [5]20\&22. al-nayāzik (meteors); al-shuhub (shooting stars): I am at a loss as to how to distinguish between these two phenomena. Compounding the difficulty is that here both are apparently substantial, whereas Ibn Sīnã only uses shuhub, which he also states is constituted of the rising smoke (dukhān), as such. (Comets and lightning bolts are for him likewise made from smoke.) On the other hand, he employs nayzak to designate an image occurring in the atmosphere upon the vapors ($b u k h \bar{a} r$), thus putting it in the same class as a rainbow (al-Ma ${ }^{c} a \overline{d i n}$, p. 39). Bīrjandi notes that some unnamed persons hold that shuhub are formed in the same place as comets, which is at odds with the description given by TTūsī. It may be that nayzak, which is from a Persian word meaning short spear, has a shorter streak than a shihäb, but this is far from clear.
II. 2 [5]24-1. wa-bac ${ }^{c}$ d hādhihi al-ṭabaqa munkashifa ${ }^{c} a n$ al-ard (part of which has been drawn aside, uncovering the earth): This uncovering of the Earth was generally considered to be providential, allowing for a habitat for terrestrial plants and animals, not the least of which is humankind. (This interpretation is confirmed in Khafri's commentary.)

Book II, Chapter Three

II. 3 [2]13. wa-qad yutliqūna ism al-falak...tajawwuz ${ }^{\text {an }}$ (their use of the name "orb"...being permissible): Although T Tūsī seems to indicate some hesitation over the use of falak (orb) to designate an equator, he does employ it quite frequently in this way. I have opted to translate falak as "orb" even when it really means an equator. This has seemed to me the only way to preserve the ambiguous Arabic usage and thus allow the English reader to judge whether or not the context is sufficient for distinguishing the strictly physical from the more mathematical usage. For an extended discussion of falak, see the commentary to I. 1 [15].
1.3 [3]3. al-mayl al-kulli (the total obliquity): Mayl may in general mean any type of inclination, and thus its use for the obliquity of the ecliptic may seem straightforward enough. However, I think that Tūusī has in mind here the technical use of mayl to mean declination as defined in II. 3 [6], pp. 114-115. The obliquity of the ecliptic is thus the "total" declination to distinguish it from a "particular (or partial) declination" (mayl juz' $\hat{\imath}$).
II. 3 [5]13. burj (zodiacal sign): It is important to note that the burūj (zodiacal signs) do not refer to the constellations that bear the same names but rather to the 12 equal divisions of the ecliptic equator that begin with the vernal equinox. Clearly any alignment of the two will over time be disrupted due to precession. Whether Tūsī is serious about renaming the zodiacal signs, or is simply indulging his humor, is not clear.
․ 3 [5]14. min al-thawābit (from among those fixed): This phrase modifies kawākib (stars).
I. 3 [8]10. taqwim: This word, which literally means setting upright or rectification, may appropriately be translated as "true position" when it is used to mean the longitude of a star or planet.
II. 3 [16]20. dä'ira wasat samä' al-ru'ya (ecliptic meridian circle): This circle is analogous to the meridian in that it divides the visible and the invisible halves of the ecliptic orb just as the meridian does for the equinoctial. Similarly one can define local ecliptic latitude with reference to the ecliptic pole on the model of the more standard local latitude, which is with reference to the equinoctial pole. Clearly, however, the local ecliptic latitude is of rather less utility since it is constantly changing due to the motion of the ecliptic pole. Nīsābūrī notes that the importance of this circle is that the ascendent is one of its poles. ${ }^{6}$

The Arabic terms used to designate this circle are somewhat unusual and need explanation. Samā' al-ru'ya literally means "the sky of appearances." This, according to both Nīsābūrī and Khafrī, is another name for the ecliptic orb. Khafri further explains that it has this name because of the great number of stars (hence, "appearances") on it. Since this circle goes through the apparent middle (wasat) of the ecliptic, the translation "ecliptic meridian" seems to me to bring out its appropriate parallel with the celestial meridian. As can be seen from the phrase ${ }^{\text {card }}$ iqlïm al-ru'ya (local ecliptic latitude), ru'ya without samä' may alone refer to the ecliptic. ${ }^{7}$

[^98]
Book II, Chapter Four

L. 4 [1]. Ptolemy's value for the obliquity of the ecliptic is $23 ; 51,20^{\circ}$, which is probably the value referred to here as being less than $24^{\circ} .{ }^{1}$ An obliquity of $23 ; 33^{\circ}$ is found in the "purported" Al-Zij al-mumtahan; it is also given by Habash as the value used by Thābit. ${ }^{2}$ Tūsī is certainly correct when he notes that most astronomers (al-jamhūr) have adopted $23 ; 35^{\circ}$; it is found in the $z \bar{\imath} j e s$ of Habash, Battānī, Kūshyār, Bīrūnī, and Khāzinī. ${ }^{3}$ Ibn Sīnā, in the appendix to his summary of the Almagest, gives the value found at the time of Ma'mūn as $23 ; 35^{\circ}$. After the time of Ma'mün, he continues, the value was found to have decreased one minute (to $23 ; 34^{\circ}$), whereas he personally has subsequently observed a further decrease of approximately one-half degree (to a value, we may presume, of $\left.23 ; 33,30^{\circ}\right) .4$

Khafri states that after writing the Tadhkira (presumably the original version in 1261 A.D.), Tūsī himself found the obliquity of the ecliptic to be $23 ; 30^{\circ}$, a value less than the minimum that he reports in this paragraph. This is the value adopted in the $\bar{I} l k h a \bar{a} i \bar{Z} \bar{j}$, a work written at least four years after the Tadhkira; it also appears in Al-Zīj al-jadid of Ibn al-Shäṭir (who also uses $23 ; 31^{\circ}$) and in the $Z \bar{l} j-i$ Khāq $\bar{a} n \bar{n}$ of al-Kāshī ${ }^{5}$ Finally Khafrī notes that in the most recent observations, which were undertaken under the auspices of Ulugh-beg at Samarqand, the obliquity of the ecliptic was found to be $23 ; 30,17^{\circ}$.
L. 4 [2]21. $z a^{c} a m a b a^{c} d u h u m$ (some have maintained): $b a^{c} d$ may have the meaning of "some" or "one." Since the commentators imply that this is a view held by a number of persons, I have opted for the more indefinite "some."

Khafrī identifies Ibn Sinā as someone who was inclined toward (māla ilā $h \bar{a} d h \bar{a})$ such a motion for the ecliptic in the Shifă'. The most likely passage being referred to, part of which is quoted directly by Shïrwānī, merely states that "it is conceivable that what some [or someone] has maintained is true" (fa-yushabbihu ${ }^{6}$ an yakūna mā qāla bac ${ }^{c}$ uhum haqqan). ${ }^{7}$ What Ibn Sīnā describes turns out not to be a model for bringing about the change in obliquity alone but rather the trepidation model of Ibrāhïm ibn Sinān (who is not explicitly named), whose purpose is to explain a supposedly variable rate of precession as well as a changing value for the obliquity of the ecliptic (see the commentary to $\Pi .4$ [5]). Whether Tūsī himself has anyone specifically in mind here other than Ibrāhīm ibn Sinān is not clear.

[^99] equator...in a given locality): This version of the passage, which presents eight possibilities, comes from what is referred to as the new text (al-nuskha al-jadīda), which was completed in Baghdad probably in 672/1274. The old text (al-nuskha al-qadïma), which was completed in 659/1261 in Marāgha, has four possibilities, but there are several significant variations between them. Below, I give a translation of the variants, which are edited in the apparatus, followed by a few notes and some speculation on the relation between them. (I have also discussed this passage and its variants, which are of crucial importance for determining the dating and relationship of the various versions of the Tadhkira, in the introduction, §2.J3 and §2.M2.)
I. Passage from the "old version" as found in MSS DMT and Nisāabūri's commentary, and as the alternative given by Bīrjandì:

Now the equator, if it moves, may complete a revolution or it may not complete it but instead move to a certain limit then return. This limit may be after it has coincided with the equinoctial and departed from it; it may be at its coincidence; or, it may be before its coincidence. On the first assumption, the halves of the ecliptic orb, i.e. the northern and the southern, could completely interchange. On the second assumption, this could partially occur. On the third assumption, this could not occur; however, day and night would become equal during the coincidence under all circumstances and the seasons of the year would cease to occur. On the fourth assumption, this would not be the case; however, altitudes [of stars] and the extent of days and nights would increase and decrease in a given locality.
II. Passage in MS G:

Now the equator, if it moves, may complete a revolution or it may not complete it but instead move to a certain limit then return. This limit may be at its first coincidence and it may be before its first coincidence. On the first assumption and the second, if it coincides twice, the halves of the ecliptic orb, i.e. the northern and the southern, could completely interchange in terms of its surface and its equator. On the remaining assumptions, that would be possible in part [reading $b i-{ }^{-} l-b a^{c} d$ for $\left.b i-{ }^{\prime} l-{ }^{-} a r d\right]$ for the surface. As for the case on assumption two whereby it does not coincide with it except a single time, the interchange would be for the equator only. On the third assumption, this could not occur; however, day and night would become equal during the coincidence under all circumstances and the seasons of the year would cease to occur. On the fourth assumption, this would not be the case; however, altitudes [of stars] and the extent of days and nights would increase and decrease in a given locality.

III. Fragment identified by Khafri as the older text:

Now the equator, if it moves, will either complete [reading tutammimu for tatimmu] a revolution or will not but instead move to a certain limit then return. This limit is either after it has coincided with the equinoctial and departed from it once or twice, or else at one of the two coincidences, or else before it.

In MSS DMT, the context makes it clear that it is the first coincidence of the ecliptic and the equinoctial that is being referred to. In MS G, this is made explicit and there is some attempt to differentiate between the cases of the first and second coincidences of the ecliptic with the equinoctial. It would seem reasonable to assume that this represents an intermediate version between the old text of four assumptions and the new text with eight. (Note: In MS G, assumption two, in which the limit is after the first coincidence, has been left out, no doubt due to scribal error.) Khafri's version is very close to that of MSS DMT; for the most part, the variations seem to be his own attempt to clarify the text by adding some words and phrases, but in the process he has extended the number of assumptions beyond the four of MSS DMT.

With the exception of Nisäbūrī, who adopts it, the commentators either ignore completely the older version or else quote it with disapproval. There is no question that the newer version is much clearer from a didactic standpoint.
II. 4 [4]17-1. wa-ayd ${ }^{\text {an }}$ waqa c a al-ikhtiläf...sab ${ }^{c}$ in sana (Furthermore there was a divergence... 70 years): One degree per 100 years is the value for precession adopted by Ptolemy and the lower limit set by Hipparchus. ${ }^{8}$ The early Muslim astronomers, whom Khafrì identifies as those who worked during the reign of the Caliph al-Ma'mūn, found precession to be at the somewhat faster rate of one degree per 66 years. ${ }^{9}$ This rate is also adopted by al-Battān̄̄ in his Al -Z $\bar{i} \bar{j}$ al-Şābic , apparently on the basis of independent observations. ${ }^{10}$ Khafrī attributes the value of $1^{\circ} / 70$ years (cf. modern value of approx. $1^{\circ} / 71.6$ years) to Ibn al-AClam (ca: 960 A.D.) and "others" (possibly Ibn Yūnus [d. 399/1009]). This rate was confirmed by Țūsī himself at Marāgha and appears in the Īlkhänī $Z \bar{i}$; it is also found in the $z \bar{j}$ es of Ibn al-Shạtir and al-Kāshī. ${ }^{11}$ Finally Khafri notes that $1^{\circ} / 70$ years was also the rate found by the observers at the Samarqand observatory, and thus it had become the accepted value by his time (10th/16th century).

[^100]II. 4 [4]1. ahl al-talismät (the practitioners of [the art of] talismans) (Note: I have followed the voweling given by Birjandī, who also gives tillismāt as a possible alternative.): A talisman in its usual meaning is a magical charm inscribed with some combination of mysterious words or symbols. Nīsābürī in his commentary would seem to indicate that the group referred to here are indeed magicians of a sort since they "transfuse (yumāzijūna) the faculties (quwā) of the celestial bodies to terrestrial recipients (qawābil) so that extraordinary effects (āthār) might come to pass. ${ }^{12}$ It is somewhat odd that the concocters of such stratagems would come to be linked with trepidation. But we also find this association explicitly made by Battānī in his $Z \bar{i} \bar{j}$ and by Bīrūnĩ in his Al-Tafhīm li-awā̀il șinā̄ ${ }^{c}$ at al-tanjīm. ${ }^{13}$ But Bīrūnī, unlike later Muslim astronomers, explains aṣhāb al-talismāt as simply astrologers (aṣhāb al-ahkām). The source for connecting the ahl al-talismāt with trepidation would seem to be Theon of Alexandria (4th c. A.D.) whom Birūni and $S_{\bar{a}}{ }^{-} c_{i d}$ al-Andalusi refer to in this connection. ${ }^{14}$ And indeed Theon in his Small Commentary to the Handy Tables of Ptolemy attributes trepidation in its simple linear oscillatory version to oi $\pi \alpha \lambda \alpha \iota o i \tau \tilde{\omega} \nu \dot{\alpha} \pi 0 \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa \tilde{\omega} \nu .{ }^{15}$ This phrase, however, has usually been rendered, just as we have noted in Biriuni's Tafhim, simply as "ancient astrologers" without any reference to "talismans." ${ }^{16}$ Accepting this, one could then view accounts such as we find in Nīsäbūri simply as later embellishments with no historical basis. ${ }^{17}$

Such a neat explanation has its problems, however. Both Battānì and Bīrūnī, this time in his earlier Al-Āthār al-bāqiya can al-qurün al-khāliya (The Chronology of Ancient Nations), cite Ptolemy, not Theon, for their information concerning trepidation. ${ }^{18}$ One might, as Neugebauer does, simply see this as a

[^101]misconstruction; ${ }^{19}$ for example, Battānī as well as Bīrūnī in his earlier writing may have mistakenly attributed the commentary on the Handy Tables to Ptolemy rather than Theon. But against this is the fact that Biriūnī cites a specific work, purportedly by Ptolemy, called Al-Madkhal ilāal-sinā̄a al-kuriyya (Introduction to Spherical Construction) that is clearly not the Handy Tables. ${ }^{20}$ Furthermore Biriuni makes the additional connection between the ahl al-talismãt and the "Chaldeans" (in the $\bar{A} t h \bar{a} r$) or "Babylonians" (according to the Tafhīm). We should make the point that contrary to the statement of Neugebauer, ${ }^{21}$ the linking here of trepidation with the "Chaldeans" or "Babylonians" is not an inference but rather a direct report. As this identification does not occur in Theon, one might suspect an additional source though any evidence at this point is indirect and rather insubstantial.

Whoever were the originators of trepidation, the basic idea as described here is quite simple. ${ }^{22}$ The ecliptic orb accedes (aqbala) in the sequence of the signs at a rate of $1^{\circ} 80$ years for 640 years thus traversing 8° and then reverses direction and recedes (adbara) at the same rate and for the same length of time. Note that in this account of the ancient theory of trepidation, the vernal point is the fixed reference point, just as it is with a straightforward precession, and the socalled fixed stars perform the actual motion. ${ }^{23}$ This reverses the relationship that seems to be indicated by Theon, whereby it is the stars that are fixed, while the solstitial points are claimed to move. ${ }^{24}$ What Ṭūsì has evidently done is modify the theory as reported by Theon in order that it be compatible with his general cosmological perspective in which it is the vernal equinox that defines the reference system.
II. 4 [4]3-6. fa-samic a dhālika ba ${ }^{c}$ d....ilā al-tawāl̄̄ (Some of the practitioners of this discipline...sequentially from its position): Since the period between Hipparchus and the early period of Islamic science did not witness a reversal in direction of the fixed stars, ${ }^{25}$ one would have thought that the theory of trepida-

[^102]tion would have been allowed to die an unmourned death. This was not to be, however. The theory was revived in several new guises whose purpose was to account for the differences found in the rates of precession, in particular between that of Ptolemy and those of the early Islamic observations. Here we find described one of these attempts whose basic approach is to superimpose a trepidation function upon a constant term of precession thus resulting in a variable rate of motion for the fixed stars but maintaining a constant direction for that motion. An example should help clarify the situation. If we take the classical rates for accession and recession, namely $1^{\circ} / 80$ years, clearly we must add a precessional rate that is greater than $1 \% / 80$ years in order to guarantee that during recession the stars will have a motion that is in the direction of the signs. In particular, if we wish to have the stars move at a rate of $1 \% 100$ years during the recessional period, one must postulate a precessional rate of $9 \% / 400$ years. Unfortunately this will give the stars a motion during the accessional period of about $1 \% 28.5$ years, a rate considerably faster than any observed value. One could, of course, arrive at more acceptable values by simply changing the rate of accession and recession. For example, one could take the average rate of $1 \% 70$ years and $1 \% 100$ years as one's precessional value and then add or subtract an appropriate trepidation value. One could even retain the 640-year period from the classical theory since Ptolemy's value could fall between, let us say, 0 A.D. and 640 A.D. while the early Islamic value would be valid until 1280 A.D. Whether anyone followed such a procedure I do not know. Nīsābūrī, who expounds upon the brief remarks made by Țüsĩ, seems to think that the follower(s) of this theory retained the ancient value of trepidation. Finally we should note that Țūsi's statement that the vernal equinox "moves from its position" is rather confusing since the vernal equinox is a stationary reference point. What he probably wants to say is that the point on the ecliptic previously aligned with the vernal point has now moved from that position. This type of misstatement by Țūsī concerning reference points is quite widespread and is often remarked upon by the commentators. ${ }^{26}$

Who introduced this synthesis of precession and trepidation? Battānī (ca. 244-317/858-929) seems to refer to just such an idea in his $Z \bar{l} j$ (3: 190-191), so I am led to believe that we are dealing with a theory dating from the 9th century. Hāshimī (ca. 890 A.D.) in his Kitāb fí cilal al-zījät (Book of Explanations of the $z i \bar{j} e s)$ mentions several persons who did work on what he calls irtifă ${ }^{c}$ al-falak wa-inkhifäduhu (the elevation and depression of the orb), which Kennedy and Pingree take to be trepidation. ${ }^{27}$ Indeed one of these is Theon, lending credence to this interpretation. The others are al-Fazārī (ca. 770 A.D.), Yahyā ibn Abī Mansūr (d. ca. 830 A.D.), Abū Macshar (787-886 A.D.), and Ḥabash al-Ḥāsib (ca. 850 A.D.). ${ }^{28}$ Now Hāshimĩ states explicitly that $\mathrm{Abū} \mathrm{Ma}^{C}$ shar does not

[^103]agree with Theon and the others, so we are left with Yahyāa, al-Fazārī, and Habash as viable alternatives. I have been unable to find any other reference to Yaḥyā and al-Fazārī in connection with trepidation, ${ }^{29}$ but we learn from $\widehat{S a}^{-}$cid al-Andalusī that Habash used "the motion of accession and recession of the ecliptic orb" in his first $z i \bar{j}$ (i.e. the one that followed the Sindhind) "according to the theory of Theon in order to correct the position of the stars in longitude."30 He thus becomes the most likely originator of the theory mentioned by Ṭūsī.
II. 4 [4]6-7. wa-dhālika ayd ${ }^{\text {an }} .$. mā marra (This would...those already mentioned): Here again we can see Tūsi's concern with providing physical models (cf. II. 11 [21]).
II. 4 [5]. This innocent looking paragraph concerns one of the most complex and, for the modern historian, most vexing problems in the history of Arabic astronomy. A full treatment of the theory referred to here and its development is beyond the scope of our commentary. What I propose to do instead is give a summary account of some of the results of my research thus far; at a later date, I hope to return to the very interesting problems posed by this paragraph and fill in the many gaps and details missing below.

In the modern period, it has generally been accepted since Delambre that the originator of the theory proposed here (or some approximation thereof) is Thābit ibn Qurra (d. 901 A.D.). ${ }^{31}$ But the reasons for such an attribution are far from compelling. The treatise On the Motion of the Eighth Sphere, a work that does not seem to be extant in Arabic, exists in Latin translation ${ }^{32}$ where, among other variations, the attribution of authorship is made as Tractatus patris Ascen Thebit filii Chorat de motu octave spere. ${ }^{33}$ Though this may appear conclusive, it should be remembered that the Latin tradition is not free from errors as concerns the identification of authors of Arabic works. ${ }^{34}$ What seems to me to carry more weight is the lack of any association of this theory with Thäbit in the Arabic tradition despite a rather extensive literature dealing with similar models and tech-

[^104]niques. ${ }^{35}$ In addition, there is some rather strong internal evidence for doubting Thäbit's composition of this treatise. The author of On the Motion of the Eighth Sphere quotes al-Battānī's remarks concerning trepidation as follows (Neugebauer's translation):

I do not see this variation proceed in a (fixed) proportion of velocity and slowness; if there existed any motion which we do not know and which we do not understand, those who come after us will observe it and verify it, as we did (with our predecessors). ${ }^{36}$

This is a fair translation of two excerpts from Chapter 52 of Battān̄'s $Z i \bar{j}$ (3: 191, lines 12 and 17-19). (The correspondence is surprisingly good considering. that we are comparing the English translation of a Latin version of an Arabic paraphrase with the original Arabic.) Now Battāni completed his $Z_{i j}$, at least in the form that we now have it, sometime after August 901 A.D., the date of one of his fundamental observations. ${ }^{37}$ Since Thābit died in February 901 A.D., it would seem reasonable to conclude that he could not have written On the Motion of the Eighth Sphere. Nallino, however, accepting his authorship, assumes that Thābit must be referring to an earlier version of Battāni’s Zīj, presumably written before $901 .{ }^{38}$ But this leads to a number of untoward consequences. First we would need to conclude that Battānī, in revising his first version, did not deal with, or even mention, the treatise of his celebrated fellow Herrānian despite being cited in it. He would have continued to treat trepidation in the rather unsophisticated version that we have discussed above and completely ignored the vastly more refined model of Thābit. When we combine this with the fact that no medieval Arabic author has yet been found who associates this model with Thābit, not even Thäbit's grandson Ibrähüm ibn Sinān who, as we shall see, treats of similar matters, ${ }^{39}$ the claim that Thäbit wrote On the Motion becomes

[^105]tenuous if not untenable. ${ }^{40}$
Who then wrote On the Motion of the Eighth Sphere? Before we can answer this rather difficult question, we must first deal with the related but nevertheless distinct problem of identifying the originator of the theory described by Ṭusī in this paragraph. We should note that the proposed model consists of a single additional mover that will bring about both divergences mentioned previously, namely the variations in the obliquity and the precessional rate that seemingly had occurred between the time of Ptolemy and the Islamic period. Thus far, Țüsi's account is consistent with the model in On the Motion of the Eighth Sphere inasmuch as one does indeed find there a "moving ecliptic" that is in addition to a "fixed ecliptic" and the equator. The rest of the paragraph, however, can only be described as misleading at best, utter nonsense at worst. It is clearly impossible to move a sphere in such a way that every point on it describes a small circle; and even if such a feat of contortion were possible, it would be totally irreconcilable with the cosmological doctrines of medieval Islamic astronomy. It thus becomes a hopeless task to try to understand this paragraph as it stands.

Fortunately the commentators once again come to our rescue. Although all of them explain this very perplexing passage to some degree of adequacy, Khafri, who has at his disposal the explanations of the earlier commentators as well as that of Shirā̄zi, gives the most extensive and, in my opinion, the most intelligent account. We may summarize his exposition with the aid of Figure C1, which is adapted from his commentary. ${ }^{41}$ Consider an orb with pole Y and equator AKGL at a fixed inclination to the equinoctial equator $A B G D$ whose pole is E. Inside this orb we place the ecliptic (i.e. the orb containing the fixed stars) concentrically and such that its pole M is at a given distance from Y. Now when orb AKGL rotates, it will cause the ecliptic to move so that pole M will trace a small circle about Y. At the same time, every other point on the ecliptic, with the exception, of course, of the two points opposite the poles of orb AKGL, will also describe circular paths. This will be the motion of precession. We should note, however, that the reference points by which one may measure precession are no longer fixed as they are when the obliquity of the ecliptic is a constant value. This is most easily seen in the figure by examining the changing position of the solstice point Q . As the ecliptic pole moves along the circular path MNTS, the summer solstice will describe an oval path FQZR. Thus a given

[^106]star, though moving at a constant rate, will appear to go faster or slower with respect to the solstices (and also, of course, with respect to the equinoxes). If the motion of the ecliptic pole is in the direction SMN, then accession will occur during the period the pole travels on arc SN, while recession will take place on $\operatorname{arc} \mathrm{NS}$, where N and S are the points of tangency between the solstitial colure and the circular path of the ecliptic pole. The obliquity will also vary since the distance of the ecliptic pole from the equinoctial pole increases during the motion of the ecliptic pole from M to T and decreases from T to M .

We can now return to Țūsì's description to determine how closely it is in accord with this account. Taking MNTS to be the "small circle," we can see that he is approximately correct in stating that accession will occur from the motion in one half of the circle, while recession will result from motion in the other half. But it should be clear that SN is not exactly equal to NS, a fact that the commentators, at least, are aware of. Furthermore the obliquity will increase from M, the midpoint of arc SMN, to T, the midpoint of arc NTS, while it will decrease from T to M. Ignoring the fact that SMN and NTS are not half circles, we again find that Tūusi's statements conform to this model. What remains puzzling is Tuusi's assertion that every point on the ecliptic moves about a small circle. According to the explanation of Khafrï, every point will move on a circle parallel to the path of the ecliptic pole (with the exception, of course, of the two points opposite the poles of the orb that moves the ecliptic). But it is unlikely that Țūsì would refer to these complete revolutions as "small circles." Khafrī seems to believe that Tūsī is referring not to actual points on the ecliptic but to the reference points such as the solstices. But these will describe, as Khafri proves, ovals rather than circular paths. (The equinoxes are exceptions to this; they will oscillate between two extreme points with a straight-line motion along the equinoctial equator.)

Because of this ambiguity, it will be worthwhile to examine briefly the question of whether Țūsí could be referring to a model other than the one presented by the commentators. One possibility would be the one proposed in On the Motion of the Eighth Sphere. Here we find that the sidereally fixed "first of Aries" r and "first of Libra" (not shown) do indeed undergo a circular motion (see Figure C2). ${ }^{42}$ And furthermore the vernal equinox, indicated in the figure by the intersection of the "movable ecliptic" $\boldsymbol{P} \mathrm{P}$ and the equinoctial equator AB , will accede or recede according to the motion of "the first of Aries" in one half or the other of its circular path..43 But Țūsī's statement concerning the continual increase or decrease of the obliquity according to the motion in a certain half of the circle or the other is not applicable to this model. For as we can see from Figure C3, the ecliptic pole M will describe a hippopede; hence, each of the maximum and minimum obliquities will be reached twice during the

[^107]revolution of "the first of Aries." Thus we must conclude, as do the commentators, that the previous model is the one that Ṭūsī is attempting to describe.

Let us now return to the problem of origination. Khafrì specifically identifies a certain Ibrāhīm b. Naşr b. Sinān as the original proponent of the model illustrated by Figure C1. ${ }^{44}$ It is reasonable to assume that the person in question is Ibrāhīm b. Sinān (908-946 A.D.), the grandson of Thäbit b. Qurra. Further corroboration for this hypothesis comes from Bīrūnī, who in his Al-Āthār al-bäqiya mentions Ibrāhïm b. Sinān as one of two people (the other being al-Khāzin) who offered an explanation (bayän) for trepidation. He further states that this occurs in his Kitäb Harakāt al-shams. ${ }^{45}$ One of Ibrähīm's main concerns in this treatise, which was completed sometime before 933 A.D. ${ }^{46}$ is to understand the reason for the different lengths of the year given by Ptolemy and by the astronomers of the Islamic period. He is reluctant to dismiss the ancient observations out of hand even though he does criticize Ptolemy's observational method at one point. ${ }^{47} \mathrm{He}$ must therefore accept the reality of a variable tropical year. If we recall that Arabic astronomers, unlike Ptolemy, considered the solar apogee to move with the motion of the ecliptic orb for cosmological reasons (this motion being in addition to any other proper motion of its own), ${ }^{48}$ we can then see that a variable motion of the ecliptic could have the necessary effect upon the tropical year. Ibrähīm remarks that the slowness of the motion of the solar apogee during Ptolemy's time may have been why he did not discover it; only later, with its increased speed due to the faster motion of the ecliptic (and thus also the rate of precession), did it become more apparent. ${ }^{49}$

The model he proposes is conceptually the same as that described by Ṭūsī and the commentators. It is not fully worked out, however, and no parameters are presented. This is not surprising in view of the circumstances under which Ibn Sinān tells us he has been forced to write this treatise. In his introduction, he laments the lack of access to his books (because of unspecified political reasons) and is thus reduced to approximating the observational results of Ma'mün's astronomers as well as those of even his own father Sinān. ${ }^{50}$ But here we face a puzzle. How are the commentators able to quote specific parameters for this model, in particular the 4° radius for the path of the ecliptic pole? It is not inconceivable that what we have in the extant text is a preliminary work that was

[^108]later revised and refined. Indeed Ibrāhīm states that he wishes here to present only the basic ideas; later, he tells us, he may be able to add further calculations and corroborative observations to the text. ${ }^{51}$

Is On the Motion of the Eighth Sphere this promised revision? Before presenting the strictly historical evidence, we should examine the relationship of Ibn Sinān's model with that of pseudo-Thābit's. One fundamental difference between the two models concerns their hay'a, or physical configuration. The model presented in Harakät al-shams, at least in the interpretation of later commentators (which is not inconsistent with the text itself), adheres to the physical requirements laid down by the Islamic hay'a tradition. Thus the additional mover AKGL with pole Y moves the ecliptic in a physically unobjectionable way so that each point on the ecliptic must travel in a complete revolution that parallels the motion of the ecliptic pole (see Figure C1). But this places a great restriction, in particular, on the ability of the model to deal with the discrepancy between the value for the obliquity given by Ptolemy and that found by the early Islamic observers. In order to attain a range for precession between $1 \% 100$ years and 1% years, one would need to postulate a mean motion of the ecliptic pole of $1 \% 80$ years and about a 4° radius for its path about point Y . But this would mean that the obliquity could have an 8° range of variation (from, say, 16° to 24°), an amount far in excess of what could reasonably be expected based on the modest change from the time of Ptolemy to the 9th century A.D. (from $23 ; 51,20^{\circ}$ to $23 ; 33^{\circ}$). This basic flaw in the model would become obvious to any competent mathematician as soon as he attempted to use it with actual parameters; indeed, virtually all the commentators on the Tadhkira, as well as Shīrāzī, recognize this defect and dismiss the model for this reason, among others. ${ }^{52}$

Let us assume for the moment that the author of On the Motion of the Eighth Sphere knew Ibn Sinān's model. In experimenting with it, he would presumably have realized rather quickly that the problem was to find a means of achieving a relatively large variation in the precessional rate that would occur simultaneously with a relatively small change in the obliquity. The small circle would therefore need to be transferred from the vicinity of the pole of the fixed ecliptic to the fixed ecliptic itself. But the requirement of hay'a that the complete revolution of a point on the small circle be paralleled by complete revolutions of all the other points on the ecliptic would need to be abandoned; otherwise, the complete revolution of the ecliptic pole on a great circle would cause an even more drastic variation in the obliquity than that of the previous model. To someone well-versed in the Almagest, an alternative that would have presented itself would have been Ptolemy's latitude theory for the epicycles of the planets. ${ }^{53}$ The epicyclic poles likewise describe circular paths with minimal disturbance to the rest of the epicycle. ${ }^{54}$ Thus in the model adopted by the author of On the

[^109]Motion of the Eighth Sphere, there is no "mover" in the sense used by Tūsī; rather, the two points, "the first of Aries" and "the first of Libra," move along circular paths without the other points on the ecliptic participating in a parallel motion. This approach to astronomical modeling is, to say the least, contrary to the thrust of eastern Islamic astronomy from at least the late 10 th or early 11 th century A.D. (Ibn al-Haytham [d. ca. 1040 A.D.] criticizes just this type of model in his Maqāla fi harakat al-iltifāf; ${ }^{55}$ Tūsī, as we shall see, continues the work of his predecessor and uses his couple to help give a physical structure [hay'a] to Ptolemy's models. ${ }^{56}$) The point I wish to make here is that the author of this treatise has been willing to sacrifice at least some of the principles of hay' a in order that his model be able to explain the observations available to an Arabic astronomer of the 9 th or 10 th century A.D., namely the values of precession and obliquity reported by Hipparchus, Ptolemy, and the astronomers of 9 th-century Iraq. Considering the complexities of the model, in particular the changing obliquity based on the figure 8 motion of the ecliptic pole and the difficulty of coordinating this with instantaneous rates of precession resulting from a sine function, this represents no mean feat. ${ }^{57}$

Having briefly set forth our analysis of the mathematical relationship between the two models, we should now turn to the historical evidence to determine the actual connection between them. First it is important to note that the model of On the Motion of the Eighth Sphere is virtually unknown in the Islamic East. Except for a brief and vague mention by Birjandī (who, of course, is quite late) of Zarqāllu's model for trepidation, which is similar in crucial

[^110]respects to that of pseudo-Thābit, ${ }^{58}$ there does not seem to be any knowledge of this trepidation theory outside of Spain and the Maghrib. The impression that this model is a western Islamic, and in particular a Spanish, phenomenon is further strengthened by the fact that On the Motion of the Eighth Sphere was available to Gerard of Cremona for translation in Spain. Even stronger evidence is provided by the Toledan Tables, which contain a section on trepidation whose tables are identical in all details with those of On the Motion of the Eighth Sphere. ${ }^{59}$ But an important passage by $S \bar{a}^{c} \mathrm{id}$ al-Andalusī (1029-70 A.D.) casts doubt on a Spanish origin:

Among [the Arab astronomers] is al-Husayn b. Hamid, known as Ibn al-Ādamī, the author of the great $z \bar{j}$ (handbook) that was completed after his death by his student al-Qāsim b. Muḥammad b. Hishām al-Madā'ini known as al-'Alawī. He called it Kitāb Nazm al-ciqd and published it in the year 338 [H. $=949$ or 950 A.D.]. It is a book comprehending the making of [planetary] equations and including the principles of the cosmography of the orbs and the calculation of the motions of the stars according to the doctrine of the Sindhind. Concerning the motion of accession of the orb and its recession, he mentions [in the $z i j$] what no one had mentioned previously. Before this book had reached us, what we had heard about this motion was incomprehensible and did not incorporate an established principle ($q \bar{a} n \bar{u} n$). Then this book came to us and we understood the manner (sūra) of this motion. This was the reason [following the variant, p. 110, and Qifṭi, p. 282] for working with [or investigating] it [the motion] for some time until it became clear to us what we do not believe was clear to anyone else. We pursued various things about it that I have explained in my compilation (kitābi al-mu'allaf) "On correcting the motions of the stars" (fì iṣlāh harakāt al-nujūm). ${ }^{60}$

Because of S $\bar{a}^{\mathrm{c}} \mathrm{id}$'s very close association with the Toledan Tables, ${ }^{61}$ I think that it is reasonable to assume that the trepidation theory that is found there is

[^111]very similar, if not identical, to the one being discussed in this passage. ${ }^{62}$ But since the trepidation theory of the Toledan Tables is identical to that of On the Motion of the Eighth Sphere, we are led to the inevitable conclusion that the model of the latter treatise, if not the work itself, was contained in Ibn al- $\bar{A} d a m i ' s ~ z i \bar{j}$. Does this mean that Ibn al- $\bar{A} d a m i ̄$, or less likely his student al- ${ }^{\mathrm{C}}$ Alawī, is pseudo-Thābit? I very much doubt that this is the case; my own inclination is to believe that Ibn al-Ādami incorporated the work of his contemporary and fellow Baghdā̀dī Ibrāhïm ibn Sinān, who, after gaining access to his books and the reports of observations, modified his original theory in the manner we have outlined above. But for some reason, this revised version, unlike Harakāt al-shams, was unknown in eastern Islam, perhaps because it was only to be found in Ibn al-Ādami's $z \ddot{\imath} \dot{j}$, a presently nonextant work that does not seem to have had a wide circulation in the east. ${ }^{63}$ On the other hand, it seems, on S $\bar{a}^{-} \mathrm{id}$'s testimony, to have been well-known and appreciated in the west. If On the Motion of the Eighth Sphere were indeed by Ibrāhīm ibn Sinān ibn Thäbit ibn Qurra, this would offer us an explanation of how it came to be ascribed to Ibrähïm's much more well-known grandfather by the Latin translator, who either dropped or misread part of the name. ${ }^{64}$ What remains puzzling is why Ṣă ${ }^{c}$ id did not know the author of the trepidation theory that he adopted, whereas the Latin translator did, though imperfectly; 65 one possible explanation is that the attribution only occurred in some copies of Ibn al-Ādami's zij . Admittedly my proposal as to the authorship of On the Motion of the Eighth Sphere remains speculative, but it does have the virtue of accounting for most of the known facts.
II. 4 [6-7]. The question of the dynamics of celestial motion was an issue that was raised, as one might expect, along with the other physical questions associated with hay'a. For the eccentric orbs and epicycles, there was no problem since they were simply carried inside other orbs with different centers. One might perhaps worry about the interface of the encompassing and the contained orbs in such a situation; there had to be complete freedom of movement for the contained orb to rotate with its own proper motion. But since

[^112]the aether was by nature a perfect substance and not subject to friction, I doubt if this really constituted much of a problem.

On the other hand, there was a problem in understanding how one orb could move another orb concentric to it. Part of the reason for the difficulty arose because of a somewhat different conception of the orbs in the Arabic hay'a literature from what one might find, say, in Ptolemy's Planetary Hypotheses and in the less-specialized Arabic literature such as Ibn Rushd's Talkhīs mā $b a^{c} d$ $a l-t a b i^{c} a$ or the Rasā'il of the Ikhwān al-Ṣafā'. There the heavens are stated to be a single, living being. Thus the daily motion is simply the motion of the whole, and the other orbs are then seen as parts of this whole. ${ }^{66}$ But in the hay'a literature, the daily motion is caused by the ninth orb, which is a discrete orb as defined in I. 1 [15], namely a solid body contained between two spherical surfaces. As such, there must be some way for it to move the orbs below it. This interpretation is confirmed by the first sentence of paragraph [7] in which Tūsī states that the eighth orb must be moved by the ninth. One way for this to occur would be by means of the classical solution, such as that proposed by Eudoxus, whereby the poles of the eighth are attached to the ninth orb. But the commentators reject this solution on the grounds that this implies that the aether would somehow be different at the point of attachment. There are even greater difficulties involved in the case of one orb moving another concentric to it when the axes of the two orbs are collinear. One instance of this involves the movement of the apogees of the planets and the luminaries. The ecliptic orb must move all the parecliptic orbs, which are concentric and share the same poles, so that the apogees will share in the motion of precession. But in addition, the parecliptics of the sun and moon must also have a proper motion as dictated by the motions of the solar apogee and the lunar nodes. ${ }^{67}$ Another example is brought about by Tūsi's lunar model. He surrounds the lunar epicycle with another orb, called the muhita, that is concentric and coaxial with it. But nevertheless it is expected to move the epicycle with a circular motion. ${ }^{68}$ It is clear that in such a case mere attachment would be useless for moving the enclosed orb; nor can we resort to dragging, friction or some similar means since all are precluded in the heavens.

The manner chosen by the commentators to explain the moving of one orb by another in such cases is an interesting one. Basically they reject the approach represented by physical attachment and instead resort to what one may call action at a distance. What this amounts to is that the soul of the encompassing orb may have a sufficient moving faculty to cause the enclosed orb to move as well. The succinct statement of Jurjānī is fairly typical of what we find in the other commentators:

[^113]From antiquity, it has been well-known that in the celestial region an enclosing [orb] (al-h $\bar{a} w \vec{\imath}$) will move [another] contained within it (al-mahwis) by necessity (bi-'l-darūra) if their two centers are different and if the axis of the enclosing [orb] does not pass through the center of the contained [orb]. Otherwise, if the enclosing [orb] moves but the contained [orb], whether it be an epicycle or an eccentric, does not, consequences will follow that will violate the principles, specifically tearing and mending or expansion and contraction. [The moving of one orb by another] might also occur by attachment (bi-'l-tashabbuth) when the poles are different [but the centers are the same]. The poles of the contained [orb] are attached to two points on the concave surface of the enclosing [orb]... The poles do not depart from the two points; they revolve with them thus causing the contained [orb] to move with the revolution of its poles. This has been rejected since the postulated points on the concave surface of the enclosing [orb] are of the same essence (mähiyya) on account of its being simple; thus the attachment of the two poles of the contained [orb] to two designated points on the enclosing [orb] to the exclusion of any other points is implausible.

It is clear from the statement in the text, as illustrated by the motion of the occupant of a ship, that the motion of the contained [orb] results from the motion of its place since that which is in place (al-mutamakkin) has the same status as a part of that place. So just as a part moves with the motion of the whole, that which is in a place will also move with the motion of the place. This always holds true for motion of displacement (al-haraka al-ayniyya). As for motion in place (al-haraka al-wadciyya), it will necessarily hold for the first case that we have described and will possibly hold for the other cases, namely when the orbs are concentric (whether or not the axes are the same) and when the orbs have different centers but the axis of the enclosing [orb] passes through the center of the contained [orb]. [In these latter cases], the moving soul (al-nafs al-muharrika) of the enclosing [orb] may have a sufficient faculty (al-quwwa) to move the contained [orb], and hence will move it, inasmuch as every action is not contingent upon a corporeal instrument (āla jusmāniyya), or it may not have [a sufficient faculty] whereupon it will not move [the enclosed orb].

The contained [orb] may then, in addition to its motion due to the enclosing [orb], have a proper motion since it is not impossible for a single body to have two motions-one accidental, the other essential. These two motions may or may not be in the same direction... ${ }^{69}$

[^114]П. 4 [7]5-7. wa-kull kawkab yusāwĩ...wähida (Every star whose latitude is equal...latitude): This sentence is badly worded. The solstice point is, of course, not on the equinoctial equator; the point of tangency in question will be at the intersection point of the solstitial colure and the equinoctial. I am unable to offer any suggestion as to how to rectify the text.
II. 4 [9]. My voweling and pointing of constellation names follows a rough consensus of the manuscripts; variants may be found in the apparatus. Note that "corrupt" forms may result (e.g. qayqāwus for Cepheus). Whether what we have in the manuscripts indicates standard late medieval pronunciation is difficult to judge based on such a small sample. Compare Kunitzsch [1974], pp. 172-203.
II. 4 [10]. Aristotle held that the Milky Way was a sublunar phenomenon (Meteorology, Bk. I, Ch. 8), but this was not universally accepted in antiquity. By the Islamic period, such writers as Ibn al-Haytham and Bīrūnī had made convincing arguments for its occurrence in the celestial sphere, a position that Țūsī here follows without hesitation. See Kunitzsch for an elaboration and bibliographic details (EI $\left.{ }^{2}, 5: 1024-1025\right)$.
M. 4 [11]. For a listing of the lunar mansions and an extensive bibliography, see Kunitzsch, $E I^{2}, 6: 374-376$.
II. 4 [12]. Tūsi's remarks here tend to confirm some of the arguments we have made in Volume One (pp. 37-38) that the Tadhkira should be considered a summary and that each branch of astronomy had its own specialized treatises.

Book II, Chapter Five

Țüsì here introduces and explains the Ptolemaic "models" ($u s ̣ \bar{u} l$, the Arabic translation of the Greek hypotheses) that he will use in developing his cosmography, namely concentrics, eccentrics, and epicycles. We should note that he gives both plane and solid versions. The latter is necessary for those who wish "to understand the principles of motion" (II. 5 [10]11). It is interesting that part of this introduction consists of giving the proportions by which one may achieve retrogradation, stations, and variations in direct motion. This seems somewhat out of place in an "elementary" text; indeed, Ptolemy deals with this difficult problem in a separate chapter. ${ }^{1}$
II. 5 [3]21. al-buc dayn al-awsatayn (the two mean distances): See Fig. T1; for the epicycle's mean distance, see the next paragraph. Note that this "mean

[^115]distance" is the position at which mean motion occurs; cf. II.5 [9]1-2 . For an alternative "mean distance" that is actually based on distance, see $\Pi .6$ [5]1-3.
U. 5 [5]. For this equivalence of the eccentric and epicyclic hypotheses, see Alm., pp. 148-150 (H225-227).
I. 5 [6]8-9. fa-li-dhālik hakama Baṭlamyūs...min al-tadwīr (Therefore Ptolemy considered...than the epicycle): See Alm., III.4, p. 153 (H232).
II. 5 [8]6-8. nisbat al-khaṭ al-wāṣil...nisf quṭr al-tadwīr (the ratio of the line connecting...radius of the epicycle): This version of the proportion is given in MSS FL and in the margins of MSS DT. (MS L substitutes "nearest distance" for both occurrences of "perigee".) A note in MS D states that this is from "the new, emended version" (al-iṣlāh al-jadīd), which confirms the evidence from the manuscripts that this variant comes from the "Baghdad version." In the original "Marāgha" version of the text we find the following:

Let us make the ratio of the eccentric radius to the [distance] between the two centers the same as the ratio of the [epicycle's] deferent radius to the radius of the epicycle.

What makes the Baghdad emendation interesting is that it gives a proportion that is clearly useless since it does not preserve the relation of the extremal distances in the two models. ${ }^{2}$ For this to occur, one would need to change the text so that "eccentric radius" reads "eccentricity" or else change "radius of the epicycle" to "radius of the deferent of the epicycle"; the latter change is the most easily made to the Arabic text since it only involves the addition (or perhaps substitution) of one word. I do not believe, however, that we are dealing with a copyist error. Most of the commentators, with the exception of cUbaydi, simply ignore the "improvement" and use the older passage. Kamāl al-Dīn al-Fārisī in his gloss on this paragraph and the next refers to this variant as "off the mark" ($b a^{c}{ }_{i d} d$). ${ }^{3}$ Birjandì shows the two versions are equivalent by substituting "radius of the deferent" for "radius of the epicycle," but my suspicion is that this is his own emendation since it is attested nowhere else.

Why would Tūsī have made this change, one that would have been inconsequential even if he had gotten it right? There seem to be two related possibilities. He may have wished to give this proportion in the same terms (i.e. of nearest distances) as those of the proportion stated later in this paragraph (lines 11-15) that establishes the limiting conditions for the occurrence of stations and retrogradation. Or perhaps he may have been attempting to correct the mistake

[^116]in this paragraph in which he states that the motions of the two concentrics (those of the eccentric and the epicycle) should be equal so that the two models be equivalent. In order to delve into this question a bit more deeply, we will need to refer to Figure C4, adapted from the Almagest, ${ }^{4}$ in which circle ABGD with center E represents both the epicycle and the eccentric, Z is the ecliptic center in the epicyclic model, and K is the ecliptic center in the eccentric model. ${ }^{5}$

As shown in the Almagest (pp. 561-562 [H463-464]) retrogradation will occur when

$$
\begin{equation*}
E G: G Z>\text { speed of epicycle : speed of planet. } \tag{1}
\end{equation*}
$$

Remembering that for Țūsì the motion of the epicycle center is brought about by a concentric deferent and that for him the "motion of the epicycle" is what Ptolemy calls "the motion of the planet," we obtain Tūsi's proportion corresponding to (1):
motion of epicycle : motion of its concentric deferent $>\mathrm{GZ}: \mathrm{EG}$.
In order that the two models be equivalent, the motion of the deferent in the eccentric model must be equal to the sum of the deferent in the epicyclic model plus the motion of the planet on the epicycle; furthermore, the motion of the planet on the epicycle must be equal to its motion on the eccentric. ${ }^{6}$ Thus one may obtain the following from (2):

$$
\begin{equation*}
\text { motion of eccentric : motion of its concentric deferent }>\mathrm{GZ}: \mathrm{EZ} \text {. } \tag{3}
\end{equation*}
$$

Using $G Z: E Z=K G: E G$ (following Bīrjandi’'s emendation of the Baghdad (β) version), Tūsi's proportion for retrogradation in the eccentric model follows immediately from (3), namely
motion of eccentric : motion of its concentric deferent $>\mathrm{KG}: \mathrm{EG}$.
The problem is, however, that Țūsì states that the motion of the two concentric deferents are equal (mutashābihatayn), ${ }^{7}$ which would preclude (3) following from (2). But if one were to take the incorrect proportion of the Baghdad (β) version, then $G Z: E G=K G: E G$. Applying this otherwise worthless proportion would allow one to use the incorrect relation of the motions of the

[^117]concentric deferents so as to obtain (4) directly from (2) showing that sometimes two wrongs do make a right.

All the commentators ${ }^{8}$ recognize Tuusi's mistake concerning the ratio of the concentric motions and correct it. What makes it even more puzzling is that Tūsī himself, as Bīrjandī points out, got it right in his recension of the Almagest written many years before the Tadhkira. ${ }^{9}$ It is reasonable to assume that Tūsi, or someone else who pointed it out to him, recognized that something was amiss in the Marāgha (α) version. But instead of correcting the relationship of the concentrics, he instead changed the underlying geometrical relationship between the two models in order that the motions of the deferents, just as those of the eccentric and the epicycle, could be equal. Whether this was an absent-minded mistake or a misguided attempt at elegance is not clear.
II. 5 [8]24. wuqüfayn (two stations): The technical term for station is maqām.
II. 5 [9]. Referring to Figure C4, we obtain the following proportions: ${ }^{10}$
motion of eccentric : motion of its concentric deferent $=\mathrm{KH}: 1 / 2 \mathrm{DH}$
motion of epicycle : motion of its concentric deferent $=\mathrm{HZ}: 1 / 2 \mathrm{BH}$
(As we noted above, the motions of the eccentric and the epicycle are what Ptolemy calls the "speed of the planet," while the motions of the concentrics correspond to his "speeds of the eccentric and the epicycle.")
II. 5 [9]3 3_{2}. fi al-tadwir (in the case of the epicycle): This phrase, which occurs in MSS GL and in the margins of MSS DF, would thus appear to be a late insertion. It was added to indicate that the mean speed was the motion of the concentric in the case of the epicycle but not the eccentric model.
II. 5 [10]21-24. wa-mintaqatuhu madār markaz al-tadwir...li-l-bucd al-ab ${ }^{c} a d$ (Its [inner] equator is the circuit of the epicycle's center...the farthest distance): For a discussion of the curious use of mintaqa (equator) to mean the circuit of the epicycle center, see the commentary to II.11 [4]. In order to distinguish this meaning of minṭaqa from its standard usage, I add "inner" in brackets in my translation since this circuit occurs inside an orb. Figure C5 indicates the two possibilities for the concentric inner equator referred to in the text. Note that muhādhiya (facing) in the phrase "a point facing the farthest distance" has the import here of "adjacent" rather than "opposite" (cf. I.1 [2]).

[^118]
Book II, Chapter Six

II.6 [1]11-12. qarīban min intiqālāt al-thawābit (that is approximately the movement of the fixed stars): Taken in isolation, this phrase seems to imply that TTūsĩ recognizes that the solar apogee may have a proper motion of its own that is distinct from precession. I do not know if he is aware of the work of Zarqallu though one may assume that he knows Birūni's discussion. ${ }^{1}$ The setting of the solar apogee motion equal to precession had been made in the early period of Islamic science by (pseudo-) Thābit, Battānī, and others. On the solar apogee problem in Islam, see Toomer [1969], Hartner and Schramm [1963], Hartner, "al-Battāni," DSB, 1: 510-511, Neugebauer [1962a], p. 267, and Morelon [1987], pp. LШI-LVII, LXIV-LXXV and 189-215.
II.6 [2]15-16. idhä naqaṣa...yaqülu bihă (the motion of the apogee being subtracted from the mean motion among those who propound $i t$): The motion of the sun resulting from the eccentric orb moving it in the sequence of the signs combined with the motion of the apogee, which moves the eccentric orb itself sequentially, yields the mean motion. Thus the motion of the eccentric alone is obtained by subtracting the motion of the apogee from the mean motion.
II. 6 [2]22-23. wa-Batlamyūs...absaț (Ptolemy...simpler): See Alm., III.4, p. 153 (H232) and compare II.5 [6].
II. 6 [3]2-3. wa-ammā ${ }^{〔}$ alā asl al-tadwīr...huwa al-mumaththil (For the epicyclic model...the parecliptic): If I understand this phrase, Țüsĩ seems to be saying that the eighth orb suffices for moving the orbs in the epicyclic but not in the eccentric model, a position I find puzzling. For if the eighth orb moves everything below it, should it not move the eccentric parecliptic as easily as the epicyclic deferent? ${ }^{2}$ There seem to be several requirements at work, not all of which are entirely compatible with one another. On the one hand, one must have a concentric parecliptic in the eccentric model in order to fill what would otherwise be a void between the sun's eccentric and the orbs of Mars above and Venus below. But an orb usually moves with its own motion, ${ }^{3}$ and this may be why Tūsī has it move with its own motion rather than be moved by the eighth orb. On the face of it, however, this would seem to contradict the statement in this paragraph that "[the eighth orb] moves everything below it." The epicyclic deferent, on the other hand, already has a motion of its own. For consistency, one could surround this deferent with a parecliptic that would then move the apogee, but this may have appeared to Tuusĩ to be a gratuitous multiplication of

[^119]
Book II, Chapter Six

II. 6 [1]11-12. qarīb ${ }^{\text {an }} \min$ intiqālāt al-thawābit (that is approximately the movement of the fixed stars): Taken in isolation, this phrase seems to imply that Tūsī recognizes that the solar apogee may have a proper motion of its own that is distinct from precession. I do not know if he is aware of the work of Zarqällu though one may assume that he knows Birrüni's discussion. ${ }^{1}$ The setting of the solar apogee motion equal to precession had been made in the early period of Islamic science by (pseudo-) Thābit, Battānī, and others. On the solar apogee problem in Islam, see Toomer [1969], Hartner and Schramm [1963], Hartner, "al-Battānī," DSB, 1: 510-511, Neugebauer [1962a], p. 267, and Morelon [1987], pp. LII-LVI, LXIV-LXXV and 189-215.
II. 6 [2]15-16. idhā naqaṣa...yaqūlu bihā (the motion of the apogee being subtracted from the mean motion among those who propound it): The motion of the sun resulting from the eccentric orb moving it in the sequence of the signs combined with the motion of the apogee, which moves the eccentric orb itself sequentially, yields the mean motion. Thus the motion of the eccentric alone is obtained by subtracting the motion of the apogee from the mean motion.
II. 6 [2]22-23. wa-Baṭlamyūs...absat (Ptolemy...simpler): See Alm., III.4, p. 153 (H232) and compare II. 5 [6].
II. 6 [3]2-3. wa-ammā ${ }^{c}$ alā aṣl al-tadwīr..huwa al-mumaththil (For the epicyclic model...the parecliptic): If I understand this phrase, Tūsī seems to be saying that the eighth orb suffices for moving the orbs in the epicyclic but not in the eccentric model, a position I find puzzling. For if the eighth orb moves everything below it, should it not move the eccentric parecliptic as easily as the epicyclic deferent? ${ }^{2}$ There seem to be several requirements at work, not all of which are entirely compatible with one another. On the one hand, one must have a concentric parecliptic in the eccentric model in order to fill what would otherwise be a void between the sun's eccentric and the orbs of Mars above and Venus below. But an orb usually moves with its own motion, ${ }^{3}$ and this may be why Tūsī has it move with its own motion rather than be moved by the eighth orb. On the face of it, however, this would seem to contradict the statement in this paragraph that "[the eighth orb] moves everything below it." The epicyclic deferent, on the other hand, already has a motion of its own. For consistency, one could surround this deferent with a parecliptic that would then move the apogee, but this may have appeared to Ṭüsi to be a gratuitous multiplication of

[^120]orbs. ${ }^{4}$ Khafri, following Jurjānī, wishes to have the parecliptics in all cases have their own motion rather than depending on the eighth orb; he even suggests that the motion of the deferent in the solar epicyclic model should be a combination of its own motion and the motion of the apogee to avoid having it be moved by the eighth orb, which is one way of getting around TTüsi's difficulty here. ${ }^{5}$ In conclusion, I think that it is safe to say that there is considerable confusion and ambiguity concerning some aspects of the dynamical problem despite a brave front in $\Pi .4$ [6-7].
II. 6 [4]11-13. wa-yakūnu bi-qadr...sittin (it depends...eccentric being 60): Battānī's value for the eccentricity was $2 ; 04,45,{ }^{6}$ which was also given by Abū $\mathrm{Ja}^{\text {cfar }}$ Muhammad ibn al-Tabarī (second half of the 11 th century). ${ }^{7}$ Bīrūnì used ${ }^{8}$ 2;05 as did, according to Kennedy, Ḥabash, Abū al-Wafā' al-Būzjānī, and the Banū Mūsā: ${ }^{9}$
II. 6 [4]12. așhāb al-arṣād (observational [astronomers]): This phrase conveys the sense that those who conduct observations form a distinct, specialized subgroup within the astronomical profession. But since Țūsī himself was both an observer and a theoretician, it would be unwise to interpret this dichotomy too strictly. Compare ahl al-rasad in $\Pi .7$ [18]3.

Book II, Chapter Seven

II. 7 [1]. Tūsì here follows his normal procedure of listing the fundamental observations that provide the basis for the orbs, motions, and anomalies that will be listed later in this chapter. In paragraph [14], he explains how most of these observations can be explained by the Ptolemaic orbs and motions.

[^121]II. 7 [1]18-21. wa-harakatuhu calā dhālik al-madār...bi-zamān qalil (Its motion on that circuit...to what was comparable to it): The manifold significations of ikhtiläf (lit., difference) and its derivatives make a consistent translation virtually impossible. ${ }^{1}$ Here I have translated ikhtiläf as anomaly, but this should not be understood in the technical sense explained in detail in II. 7 [16-18], pp. $156-159$. Nor should it be understood as the proper anomaly (khässa) defined in paragraph [29] even though the return to the same proper anomaly, which is the return of the planet to the same location on the epicycle, is the explanation for the return to a comparable speed. ${ }^{2}$ In the present context, Teusisi is reporting observations to be explained, not the models that are meant to explain them. Thus an ikhtilāf is simply an irregular, or anomalous, speed, i.e. one that differs from the mean. One should be careful not to think of a return of an anomalous speed in terms of a fixed rate. As he mentions here, the return is to "what is comparable," meaning that it is relative. Thus a return to a slowest or fastest value would be to the relatively slowest or fastest speed during a revolution. Clearly, though, one could not easily observe the return of intermediate rates of speed without some model to depend on.
II. 7 [1]21-22. fì al-but'...fi al-sur ${ }^{c} a$ (during the slower motion...during the faster motion): The slower motion of a planet occurs when its direction on the epicycle is opposite that of the deferent, while its faster motion is when the two directions are the same. The dividing points between the slower and faster motions are the two mean distances as defined in I. 5 [3-4]. (Compare II.5 [5] and [7]).
II. 7 [7]17. al-jawzahr: Hartner ("Djawzahar," $E I^{2}$, 2: 501-502) details the history and etymology of the word; he states unequivocally that it derives from the Avestan gao-čithra, an epithet of the moon. The commentators, however, propose other etymologies. Bījandi gives us two choices. The first is jawz-chihr, which means the "image of the jawz [nut?]." He claims this is on the analogy of jawz-girih, which is a Persian word for one kind of knot. (Steingass gives "coat-button" as the meaning for the latter.) The other possibility, which is also reported by Khafri, is $k \bar{u}$-zahr, which means the "location of the poison." This would, of course, refer to the head and tail of the snake or dragon that were imagined to be at the nodes of the moon.

Since jawzahr is an Arabized word, the voweling could vary (e.g. jawzahar, etc.). It occasionally is found in the dual form (jawzahrän), but the Persian encompasses both nodes in its meaning. Țūsī would seem to have preferred the singular form as evidenced by the manuscripts.

[^122]II. 7 [14]15. al- ${ }^{-{ }^{c} \text { awd }}$ ila ikhtiläf bi- ${ }^{-}$aynihi (the return to the same anomaly): Here again there is a problem in interpreting what exactly is meant by ikhtiläf. As noted elsewhere in this chapter (II. 7 [1]18-21; II. 7 [14]17-21), the moon does not return sometime after a complete revolution to the exact same speed but rather to what is "comparable to it" since the epicycle center will be either closer or farther away from the center of the World when the moon has returned to the exact same position on the epicycle. In the comment on II. 7 [1]18-21, I interpreted a similar use of ikhtiläf as "anomalous speed," but this seems inappropriate here since a certain relative speed (e.g. the fastest speed) will not be the same but vary from one revolution to the next. Unless Tūsī has simply made a misstatement, which would not be that extraordinary, he may mean by the return to the exact same $i k h t i l a \bar{f}$ the return of the moon to the same position on the epicycle.
II. 7 [14]17-21. wa-li-kawn nisf qutr al-tadwir...wa-ghayruhumä min al-ikhtiläfăt (Because the radius of the epicycle...as well as the other anomalous speeds): There are several ways of reading various parts of this passage that lead to fairly divergent interpretations by the commentators. Birijandì understands $f i$ al-falakayn (in the two orbs) as referring to the eccentric and the epicycle. In this reading, Tūsī is not thinking simply about the varying distance of the epicycle from the Earth due to the motion of the eccentric; he also has in mind the different positions of the epicycle radius, which will result in the radius appearing to vary in size from the Earth. Thus the different rates of speed that are being referred to are due not only to the varying distance of the epicycle center from the Earth but also to the planet's motion on the epicycle. In this broad interpretation of Țūsi's intention, the phrase aqdār al-buṭ' wa-l-sur ${ }^{c} a$, which I have translated "the rates of the slowest and fastest speeds," could refer not only to particular rates of speed but also to the varying lengths of the arcs on the epicycle that determine the slower and faster motions. In keeping with this view, Birjandī takes ikhtiläfat in line 21 to refer not to other particular anomalous speeds but to other anomalies (such as the equation of the proper anomaly, the anomaly of the nearest distance and so on).

My own understanding of this passage as reflected in the translation is that TTūsi is trying to explain why a particular speed, say the fastest or slowest, varies from one revolution to another. We should recall that this was one of the observations that he reported at the beginning of the chapter (see II. 7 [1]18-21). The only variation in distance needed to explain this would then be that of the epicycle center from the Earth. There would be no need to bring in the motion on the epicycle since we are comparing one particular speed from one revolution to the next. There are some problems with this interpretation, however. What does Țūsì mean by the "varying distance...in the two orbs" if only the eccentric is needed to resolve the observation in question? Jurjānī and Khafrī, who basically confirm my interpretation, suggest deleting fil al-falakayn and indicate that in some copies of the Tadhkira this was done (see, for example, Leipzig, Uni-
versity Library MS 261 (K.203), f. 11b). Another possible way to resolve this is to take "the two orbs" to mean the eccentric and the inclined since both acting together bring the epicycle toward and away from the Earth. Yet another problem with our interpretation is that one would need to take but' and $\operatorname{sur}^{c} a$ not in their usual senses as the faster and slower motions that occur on the two segments of the epicycle (see the comment to II. 7 [1]21-22) but in the sense of particular speeds, namely the fastest and the slowest. But this seems to me the only interpretation that would allow one to understand ikhtiläfăt as "anomalous speeds," which is the most natural reading and one that conforms to its use in II. 7 [1]20. This permits us to avoid Biirjandi's strained resort to "anomaly," which distorts the flow of the sentence.

Let me conclude with a more general point. Ṭusī̀ here and elsewhere (see, for example, II. 11 [13]) discusses instantaneous and maximum speeds. One of the reasons for belaboring the problems of understanding this passage, problems that apply to the medieval commentators no less than ourselves, is in order to see the difficulties involved in dealing with a concept such as speed without a well-developed vocabulary. I would suggest that an understanding of these linguistic difficulties and the attempts to resolve them should form an integral part of the story of the development of the calculus.
II. 7 [18]17. ${ }^{c}$ alā tasdīs al-shams aw tathlīthihā (at the sextiles or trines with respect to the sun): The maximum of this anomaly is sometimes stated to be at the octants, perhaps based on a less than precise statement by Ptolemy (Alm., pp. $226-227$ [H367]). The actual maximum occurs at 57° and 123°, as one can easily ascertain from the appropriate table in the Almagest (p. 238, col. 3; cf. Pedersen [1974], p. 192). This is no doubt the basis for Tūsi's statement here.
II. 7 [18]1-2. nuqtat al-muhāadhāt (point of alignment): For this aspect of his lunar theory, Ptolemy uses the word prosneusis, which, according to Toomer, is not being employed by him in this context as a technical term (Alm., p. 227, n. 19). It is used more generally simply to mean direction. At least in some instances, it is rendered in Arabic by mayl, which I have usually translated as "inclination." For example, in Almagest I.7, p. 43, Toomer translates prosneusis as direction (sc. of the motion of a heavy body), whereas Ṭūsi uses mayl for this concept (II. 1 [7]). On the other hand, muhāadhät has more the sense of facing or being aligned with rather than inclining toward (cf. I. 1 [2]).
II. 7 [18]3. ahl al-rasad (observational [astronomers]): See commentary to II. 6 [4] 12 .
II. 7 [22]. The shapes of the moon are discussed in II. 13 [1].
II. 7 [23]. The theory enunciated here concerning the existence of other bodies in the lunar epicycle also occurs in Ibn Sīnā's Shifá' (Al-Samā ${ }^{\prime}$ wa-' l - $\bar{c} \bar{a} l a m, \mathrm{pp}$.

37 ff). This explanation is rather different from the one offered by Ibn al-Haytham. ${ }^{3}$
II. 7 [25]. Here, as well as in II. 8 [19], I. 9 [15], and II. 10 [2] and [6], one finds an enumeration of TTūsi's criticisms of the Ptolemaic models. His counterproposals are found in II.11. See also the introduction, §2.F2, pp. 48-51.
II. 7 [26]. Parallax is discussed in II. 12.
II. 7 [28]4. law lā harakat al-shams (If the motion of the sun is disregarded): In other words, if the sun were stationary, the epicycle center would perform the oval circuit indicated in Figure T7. But since the sun moves an appreciable distance in a month, the actual circuit will be rather more complex.
II. 7 [29]1. khāṣsa (proper anomaly): This is usually rendered simply as anoma$1 \mathrm{y} ;{ }^{4}$ however, I feel that anomaly should be reserved as the general term to translate $i k h t i l a ̈ f$. Since khässa has to do with the proper motion, i.e. that of the planet itself on the epicycle, I have added the qualifier as a way to distinguish the general meaning of anomaly from this specific one.
II. 7 [29]2. ${ }^{\text {Cala }}$ al-tawāl \bar{l} al-mafrūd fihi (sequentially as defined for the [epicycle]): As defined in $I .7$ [13], the epicycle moves in the counter-sequence of the signs in its upper half; thus this is the direction that is sequential when measuring arcs on the epicycle.

Book II, Chapter Eight

II. 8 [1]18-21. wa-idh $\bar{a} q \overline{i s} a \ldots w a-f i \quad b a^{c} d i h \bar{a}$ akthar (If one compares....while in other parts they will be greater): Slower and faster motions (but'; sur ${ }^{c} a$) refer to the motions on the two segments of the epicycle discussed in II. 5 [7].

Bīrjandī states that this passage is true only for retrograde motion and for the faster motion. In both cases, as the epicycle distance from the Earth increases, the arcs will decrease in size for two reasons: first the actual arcs on the epicycle will decrease, which thus will decrease the time period of these motions, and second the arcs themselves will appear smaller. For the direct motion and for the slower motion, however, he notes that the time and size are not necessarily coordinated since with an increase in the distance between the epicycle center and the Earth, the actual arcs will increase in size, which will increase the time peri-

[^123]od involved; this contradicts Tūusi's general statement that it will decrease. The apparent size, however, will indeed decrease with increasing distance. Admitting that it is difficult to resolve how the two effects will interact in a general way, Birjandï says that he has consulted a $z \bar{l}$ and found that the decrease in apparent size outweighs the increase of the arc on the epicycle.
II. 8 [1]21-22. wa-'l-juz'...al-thawābit (That part...fixed stars): The part being referred to here is the apogee, where apparent motion will be at its slowest. I am not quite sure what is meant by zamān (time period) being at its shortest there since this is true of some categories of motion but not others as we saw in the previous comment. At first reading, Țūsì seems to be saying in this sentence that the slower motion will take place in the least time when it is in the vicinity of the apogee, but this is not the case. What he is probably thinking of is the retrograde motion, which in fact will take place in the shortest time near the apogee since the retrograde arc on the epicycle will there have its smallest size.
Щ. 8 [1]1-2. wa-fí muqābila dhälika...tilk al-ghāya (Directly facing that...maximum extent): As happens all too frequently, Ṭūsī has made things more complicated than need be by an excessive use of pronouns. The first in "directly facing that" I take to refer to the apogee, which would indicate that Tūsī wishes to describe the situation 180° from the apogee. What he finds is similar to "this part," which I have concluded is the trine; in other words, the situation at 180° is similar to that at 120° though the maximum effect is at the latter. Though this interpretation is not obvious given the structure of the sentence, it does correspond reasonably well with the analysis of Mercury's epicycle center distance from the Earth and its effect on the anomaly made by Pedersen ([1974], pp. 326-328, especially p. 328) and it is furthermore confirmed by Nīsābūrī. Bīrjandī, however, has a different reading. He takes the first "that" as referring to the trine from which it follows that "this part" would be the sextile, which is directly opposite the trine. Though neither my interpretation nor Birjandi's is without its problems, mine does correspond somewhat better with a close analysis of the situation; whether this corresponds with Țūsi's own understanding is another matter.
П. 8 [4]9. wa-sa-tajī'u sifatuhā (its description will be forthcoming): See II. 10 [1-2].
II. 8 [7]20. 'calā mā sa-yajī'u bayānuh (as will be explained below): See II. 10 [4-5].
П. 8 [10]5. hawl nuqta sa-nadhkuruhā (about a point we will discuss below): See II. 8 [14].
I. 8 [11]19-21. wa-lā fî al-tarbīcayn...laysā bi-mutasäwiyayn (nor is [this distance] at the quadratures... are not equal): Ṭūsī seems to be thinking here of the
situation of the moon where the nearest distance does occur at the quadratures as a result of the "two opposite distances," i.e. those at conjunction and opposition, being equidistant from the Earth. This is, of course, a consequence of the motion of apogee being about the center of the World. In the case of Mercury, however, the corresponding distances will not be the same since the motion of the apogee is with respect to the dirigent center and not the center of the World.
I. 8 [15]5. al-tacdil al-thānī (the second equation): It is a bit confusing, to say the least, to call the first anomaly the second equation. Bïrjandī notes in his commentary to II. 7 [16] that this terminology is that of the practical astronomers (ahl al- $c_{\text {amal }}$, who call it second because it is computed after the equation of center, which is called by them the first equation. On the other hand, the theoretical astronomers (ahl al-hay'a) call this the first equation and the independent equation as we saw in II. 7 [16]. We should note that al-thānī (second) occurs only in MS L and in the margin of MS F, which indicates that it is a late addition of the Baghdad (β) version. (Compare Kennedy, Survey, p. 142).

Book II, Chapter Nine

11.9 [1]9. aw ba ${ }^{c}$ dahu bi-qalīl (or is a little beyond it): Since this reading occurs in MSS F and M, which usually witness a later version, it seems reasonable to assume that it is meant to replace the redundant qablahu (before it), which is found in MSS DGLT. $b a^{c} d a h u$ (beyond it) allows for the possibility that a station could occur after the sun has reached the second trine. Indeed Birjandī, who admittedly simplifies the situation by calculating only the mean positions, finds that the stations will be before the first trine and after the second for Saturn. (For Jupiter and Mars they are after and before.) Interestingly enough, the newer version also occurs in both the Nihāya (II.8, f. 79a) and the Tuhfa (II.11, f. 105b). This may indicate that this change is due to Shirrāzī, a view suggested by both Jurjānī and Birjandĩ. This is consistent with what we know about the status of MS M. ${ }^{1}$
II. 9 [6]12. wa-tahduthu fi al-mumaththil (and there occurs on the parecliptic): In MS G and in the margins of MSS MT, one finds immediately afterward the phrase bi-haraka markaz al-tadwir (due to the motion of the epicycle center). It is absent in MSS DL and is marked for deletion in MS F. At some point in the text tradition, TTūsī, or perhaps an associate, wished to indicate that the plane of the inclined orb is determined by the motion of the epicycle center. However, the epicycle center obviously does not produce a great circle on the parecliptic, and the phrase was subsequently excised to avoid any ambiguity.

[^124]II. 9 [8]21. haraka markaz al-tadwir (the epicycle's motion of center): A variant reading is haraka markaz al-kawkab (the planet's motion of center) found in MSS DGM. Bīrjandi prefers this variant since he claims it is the correct technical terminology. He does admit that "the epicycle's motion of center" does seem appropriate in context here.
II. 9 [14]. See the text and commentary to IV. 6 [3].
II. 9 [15]18. dūn alladhĭ bi-sabab al-muhādhāt (but without there being the [difficulty] due to the alignment): The difficulty alluded to here is the one mentioned in connection with the moon, where the epicycle diameter is aligned with a point other than its center of motion (see II. 7 [18]). For Mercury and for these four planets, however, this difficulty does not arise inasmuch as the epicycle diameter passing through the mean apex and perigee is always aligned with the center of motion, i.e. the equant center (cf. II. 8 [19]).

Book II, Chapter Ten

I. 10 [2]7-8. wa tahtāj...al-mutaqaddimūn (These two motions...[our] predecessors): TTūsi's solution is in II. 11 [19].
․ 10 [4]25. fi ghāyat al-bu ${ }^{c} d$ al-shamālī (at the northern limit [lit., at the maximum northern distance]): For the upper planets, the northern (or southern) limit refers to the point on the inclined deferent at which the epicycle center is at its maximum northern (or southern) inclination from the ecliptic. Since the apogee is in the northern part of the deferent for all the upper planets, the apparent deviation of the epicyclic apices and perigees will be less at the northern limit than at the southern limit (see Table 3).
II. 10 [4]15. $f i$ ghāyatay $a l-b u^{c} d a y n$ (at both maximum distances): In contrast with II. 10 [4]25, here the maximum distance refers to the maximum deviation in either direction of the apex (or epicyclic perigee) from the inclined deferent. Since for both lower planets this will occur at nodes that are equidistant from the Earth, there is no need to take into account the northern or southern limit of the deferent as was the case for the upper planets; consequently there is only one maximum deviation for each of the apex and epicyclic perigee.
II. 10 [4]18 2 $^{\text {. al-mayl (deviation): Mayl is used in various contexts to indicate an }}$ inclination of one sort or another; thus translating it here as "deviation" may seem to be assigning it a technical meaning it does not have. Mayl, for example, is also used in $\Pi .10$ [1]3 to mean the inclination between the inclined and parecliptic equators. On the other hand, Tūsī does seem to intend this aspect of the latitude theory to have a specific designation; this is confirmed by Bīrjandi who calls the inclination of the inclined equator "the latitude of the epicycle center" (${ }^{c}$ ard markaz al-tadwir) in order to distinguish it from this mayl. The third component of the latitude theory, the slant, goes under a number of different names, happily none of which is mayl (cf. II. 10 [5]9).
II. 10 [4] 18-19. $\mathbf{2}_{2}$ ghayr hādhayn al- ${ }^{c}$ ardayn (only these two latitudes): These two are the inclination of the inclined equator and the deviation.
II. 10 [4]\&[5]. The following tables list the values given in these paragraphs for the deviation and the slant. See also Figure C6 and compare Pedersen [1974], Fig. 12.5, p. 362 and Toomer, Alm., Fig. U, p. 624 and footnote 42, p. 623. Figure C6a is a cross-sectional view; it is not applicable to the lower planets since their maximum deviation occurs at the nodes. Figure C6b is somewhat "artificial" (quoting Toomer) since when the epicycle center is in the ecliptic, the slant is zero; however, the slant is measured with respect to a plane parallel to the ecliptic and so we can take the figure conveniently to represent, in Ptolemy's phraseology, the "separation of effects." Finally note that Țūsī calls the line connecting the morning and evening endpoints a "diameter"; strictly
speaking, however, the line connecting the mean distances, as shown in Figure T 1 , is not a diameter.

Table 3. Deviation.

Upper Planets					
Planet	j_{m}	a_{mn}	$\mathrm{a}_{\text {ms }}$	p_{mn}	p_{ms}
Saturn Jupiter Mars	$\begin{aligned} & \dagger 412^{\circ} \\ & \dagger 21 / 2^{\circ} \\ & +214^{\circ} \end{aligned}$	$\begin{gathered} \dagger_{26^{\prime}} \\ \dagger_{24^{\prime}} \\ 22^{\prime}\left({ }^{\prime} 52^{\prime}\right) \end{gathered}$	$\begin{gathered} { }^{*} 28^{\prime} \\ { }^{*} 25^{\prime} \\ 27^{\prime}\left({ }^{\prime} 56^{\prime}\right) \end{gathered}$	$\begin{gathered} 33^{\prime}\left(\dagger 34^{\prime}\right) \\ 35^{\prime}\left(\dagger 36^{\prime}\right) \\ 3 ; 22^{\circ}\left(\dagger 3^{1 / 3}\right) \end{gathered}$	$\begin{gathered} { }^{*} 35^{\prime} \\ { }^{*} 38^{\prime} \\ 61 / 10^{\circ}\left({ }^{+} 6^{\circ}\right) \end{gathered}$
Lower Planets					
Planet	j_{m}	a_{m}		p_{m}	
Venus Mercury	$\begin{aligned} & +212^{\circ} \\ & +611_{4}^{\circ} \end{aligned}$	$\begin{gathered} \dagger 1 ; 2^{\circ} \\ 134_{4}^{\circ}\left({ }^{\dagger} 1 ; 46^{\circ}\right) \end{gathered}$		$\begin{gathered} 6 ; 23^{\circ}\left({ }^{\dagger} 6 ; 22^{\circ}\right) \\ 4 ; 4^{\circ}\left({ }^{+} 4 ; 5^{\circ}\right) \end{gathered}$	

Table 4. Slant.

Planet	k_{m}	m_{ma}	m_{mp}
Venus	$\dagger 311^{\circ}$	$21 / 2^{\circ}\left({ }^{\dagger} 2 ; 27^{\circ}\right)$	$21 /^{\circ}{ }^{\circ}\left(2 ; 34^{\circ}\right)$
Mercury	$\dagger 7^{\circ}$	$21_{4}{ }^{\circ}\left({ }^{\dagger} 2 ; 17^{\circ}\right)$	$2^{3 / 4^{\circ}\left({ }^{\dagger} 2 ; 46^{\circ}\right)}$

Key: $\mathrm{j}_{\mathrm{m}}=$ maximum deviation measured from epicycle center; $\mathrm{a}_{\mathrm{m}}=$ apparent maximum deviation of epicyclic apex; $\mathrm{p}_{\mathrm{m}}=$ apparent maximum deviation of epicyclic perigee; $a_{m n}\left(a_{m s}\right)=$ apparent maximum deviation of epicyclic apex at northern (southern) limit on inclined deferent; $\mathrm{p}_{\mathrm{mn}}\left(\mathrm{p}_{\mathrm{ms}}\right)=$ apparent maximum deviation of epicyclic perigee at northern (southern) limit on inclined deferent; $\mathrm{k}_{\mathrm{m}}=$ maximum slant measured from epicycle center; $\mathrm{m}=$ morning endpoint; $\mathrm{m}_{\mathrm{ma}}=$ apparent maximum slant at deferent apogee; $\mathrm{m}_{\mathrm{mp}}=$ apparent maximum slant at deferent "perigee"; $\dagger=$ value stated explicitly in text of Almagest; ${ }^{*}=$ value derivable from latitude tables in Almagest XIII.5; divergent values from Almagest are in parentheses. ${ }^{1}$

[^125]Ido not know the reasons for the small discrepancies between Țūsi's values and those of Ptolemy. In some cases (e.g. $\mathrm{p}_{\mathrm{ms}}=61 / 10^{\circ}$ for Mars), Tūsī has probably obtained the value from Ptolemy's latitude table (Alm., p. 633) by subtracting the inclination i from the tabulated value (in this case, $7 ; 7^{\circ}-1^{\circ}=6 ; 7^{\circ} \approx$ $61 / 10^{\circ}$). In general, Țūsi’s values are correct to within a few minutes irrespective of how one calculates them; in the case of Mars, however, the amounts given for a_{mn} and a_{ms} are incorrect. The values should be (using Alm., XI.11, cols. 5-7, p. 551)

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{mn}} \approx\left(2 ; 24^{\circ}-0 ; 8^{\circ}\right) 2 ; 15 / 6 \approx 51^{\prime} \\
& \mathrm{a}_{\mathrm{ms}} \approx\left(2 ; 24^{\circ}+0 ; 9^{\circ}\right) 2 ; 15 / 6 \approx 57^{\prime}
\end{aligned}
$$

It is a mystery to me how Țūsī could be so far off; if one were inadvertently to drop $2 ; 15$ from the above calculation (or, what amounts to the same thing, if one were to confuse the declination with the inclination of the inclined equator, which is 1° for Mars), one could conceivably arrive at Țūsi's figures with some fudging. This is only conjecture, however, and not a particularly strong one at that.
II.10 [5]9. wa-hädhā al-card...wa-'l-iltifāf (This latitude...[iltifăf]): On the Arabic terminology for this aspect of the Ptolemaic latitude theory, see Sabra [1979], pp. 389-390, especially note 5 .
II.10 [6]10-11. wa-kull...al-qudamä (Each...Ancients): This problem is dealt with in I. 11 [13-15] and [18].
II. 10 [6]11. al-muta'akhkhirīn (recent [astronomers]): The person (singular, not plural) referred to is Ibn al-Haytham; see II. 11 [16].
II. 10 [6]13. ${ }^{c} a l \bar{a} ~ m a \bar{a} d h u k i r a ~ f i ~ a l-m a j i s t ̦ i ̄ ~(b a s e d ~ o n ~ w h a t ~ i s ~ s t a t e d ~ i n ~ t h e ~ A l-~$ magest): Here again we see that the basic purpose of the Tadhkira is to summarize the Almagest; as Bīrjandī points out, Țūsì gives the Ptolemaic values despite having access to more recent Islamic values including those that came out of the Marāgha observations.

[^126]
Book II, Chapter Eleven

For an overview of this chapter, see Ragep [1987].
II.11 [title]15. al-ishāra (An indication): Both in its presentation and in its historical role, this chapter should be seen as a program for research. By using al-ishāra in the title, Țūsī is clearly making this explicit. He is, in effect, telling his medieval audience that he does not claim a definitive solution to the problems of astronomy but only an approach. In various places throughout the chapter, Tūsī reiterates this point and challenges his contemporaries and successors to continue in this endeavor. This attempt to institutionalize a certain program was obviously quite successful. One is reminded here of Plato's proposal to the astronomers to "save the phenomena" with uniform circular motions. ${ }^{1}$ But in contrast to our somewhat limited knowledge of the immediate response to the Platonic challenge, we have with Tū̄ī and his successors a well-documented record of an on-going-even systematic-response to the unresolved problems (dare we say anomalies?) of astronomy. As such, one has a very important case study with which to test the conflicting claims that have been proposed in recent years of how scientific change occurs.
II. 11 [title]17. allatī sabaqat al-ishära ilayhā (Referred to Previously): The referent here is al-ishkālāt (the difficulties), which Khafri finds to be six-teen-two for the moon (the irregular motion of its deferent and the oscillation of its epicycle as a result of the alignment of its diameter with the prosneusis point), four each for the two lower planets (the irregular motions of their deferents, of their epicyclic apices and of the endpoints of their mean epicyclic diameters, and the oscillations of the equators of their deferent orbs), and two each for the three upper planets (the irregular motions of their deferents and of their epicyclic apices). ${ }^{2}$ These have been cited in II. 7 [25], II. 8 [19], II. 9 [15], and II. 10 [2] and [6]. Note that the related problems associated with trepidation and the motion in latitude of the ecliptic do not figure in this list since they were usually not considered, at least in late eastern Islamic hay'a, to have been observationally established (see II. 4 [2-5] and II.11 [21]).
II. 11 [1]. Because of the intriguing historical questions raised by this paragraph, it is important to examine it closely. The first difficulty (ishkāl) referred to concerns the irregular motion of the center of the moon's epicycle about its deferent center. TTūsī's statement that nothing concerning this problem has reached him from his predecessors reaffirms his statement in 11.7 [25] that no one in the profession has shown how this motion is composed nor has anyone even

[^127]ventured ($\left.t a^{c} a r r a d \bar{u}\right)$ to deal with this difficulty nor the other difficulties associated with the moon. Both Ibn al-Haytham and Jüzjānī, however, should at least be credited with discussing some of the difficulties even though they may not have reached a solution acceptable to Ṭūsi. ${ }^{3}$ But we should emphasize again that he is explicit: "No statement (kaläm) has reached me concerning [this difficulty] (fihi)... ." ${ }^{4}$

How should we interpret this sentence? At first glance Țūsi would seem to claim originality not only for the solution but also for the statement of the problem. One would then be forced to conclude that he was unaware of $A l$-Shuk $\bar{u} k$ ${ }^{c}$ alā Batlamyūs (Doubts Concerning Ptolemy) by Ibn al-Haytham, especially in view of his willingness to acknowledge him in connection with iltifaf motion later in this chapter. ${ }^{5}$ But we should not be too hasty in drawing sweeping conclusions based on a lack of evidence. It strains one's credulity to assume that Tūsī rediscovered single-handedly the entire body of ishkālāt (difficulties) associated with the Almagest. My own sense is that the difficulties themselves were fairly common knowledge and were possibly discussed even before Ibn al-Haytham. ${ }^{6}$ Thus the fact that Tuūsī did not have the Shukuk does not in itself preclude his knowledge of the arguments contained therein. Tentatively then I would be inclined to say that we should regard Țūsi’s statements here and in Chapter Seven as referring to the lack of an acceptable solution rather than to the statement of the problem.

Jūzjānī's work confronts us with an even more difficult situation to resolve. There is conclusive evidence that Quṭb al-Dīn al-Shīrāzī knew of Jūzjānī's work. In the former's $\mathrm{Fa}^{\text {calta }}$ fa-lā talum, a strongly worded attack on a commentator of the Tadhkira, there is extensive reference to Jūzjānī, especially in the part of the work corresponding to the chapter on the moon (Book II, Chapter 7). We are here faced with a dilemma. If we assume that Țūsī did not know of Jūzjānī's work at the time he wrote the Tadhkira, we have the problem of explaining how it became widely known-and even championed by Himādhī, the abovementioned commentator-shortly after Tūsi's death. If we assume that he did know it, then why did he state that he knew of no previous work in this area? One is tempted to say that Ṭūsī, as Shīrāzī after him, did not take Jūzjānī seriously ${ }^{7}$ he therefore simply ignored him. I do not think that this is the case, however. TTūsī evidently did not think much of Ibn al-Haytham's efforts to

[^128]resolve the problem of iltifaf motion with techniques very similar to those of Jūzjānī; nevertheless, he at least mentioned and criticized Ibn al-Haytham's models.

Finally, we should turn to Mu'ayyad al-Dīn al-cUrḍī, a contemporary of Ṭūsī who did indeed work on the ishkälāt. Unless one wishes to claim that Țūsī was being deceptive, an unlikely possibility in view of the close association of the principals at Marägha, the only reasonable conclusion is that he here in the Tadhkira is simply repeating his claim of priority and the lack of knowledge of any previous work on the ishkālät that he had made some 25 years earlier in the Risälah-i Muciniyyya. Even if he had become aware of 'Urḍi's Kitäb fi al-Hay'a, or of Jūzjān̄i's work, in the intervening period, he no doubt saw little reason to modify this claim of priority whose point of reference would be 1235 and not $1261 .{ }^{8}$
II.11 [1]18. al-ishkāl al-awwal al-madhkūr fi hay'at afläk al-qamar (the first difficulty, which was cited [in connection] with the configuration of the moon's orbs): The "first difficulty" here referred to concerns the motion of the center of the epicycle about a point other than its deferent center. See II. 7 [25].
II. 11 [1]19. istanbattu (I have devised): On the use of this term to indicate innovation, see Sabra [1984], p. 133.
II.11 [2]. Tūsì here states the famous lemma that has recently come to be associated with his name. Since a question of priority has been raised concenning this lemma, it would be wise to analyze this conflicting claim.

First we should ask whether Tūsī himself claims priority in this matter. Virtually all modern commentators have agreed that he has ${ }^{9}$ but the situation is not as clear-cut as may at first appear. Țūsī claims priority, as we have stated above, for his lunar model. He at no place explicitly states that he has invented this lemma. What he literally says is as follows: "Let us set forth for that [purpose] a lemma, which is thus... ." The "that" clearly refers to the previous statement in which he has declared that he will now present what he has invented, i.e. his model. It remains moot, however, whether the lemma itself is his own discovery since he apparently, if one takes this passage completely literally, only claims priority for his model, i.e. the use to which he puts the lemma. On the other hand, one must admit that the "Tūsì couple" cannot merely be called a preliminary theorem. It is, as we shall see, at the heart of every model he presents in this chapter. In fact, after his lemma is presented and proved, the

[^129]actual modeling becomes more or less trivial. In conclusion, we should acknowledge that Tūsī is claiming the lemma as his own, at least in the form presented.

But does this passage mark the first appearance of the lemma? I. N. Veselovsky, for one, wishes us to see Proclus (or someone Proclus follows) as the originator of this theorem. ${ }^{10}$ The relevant remarks occur in Proclus's Commentary on the First Book of Euclid's Elements, a work apparently unknown in the Arabic tradition. ${ }^{11}$ In a passage devoted to the classification of lines, Proclus examines the question of whether there are only two simple lines (straight and circular) or more. ${ }^{12}$ In particular, Proclus is worried that a simple line produced by a combination of simple motions may not be so simple, a situation that might undermine the cherished Platonic distinction. He then sets forth several examples, presumably from Geminus, of what he means. One of these involves the resulting circular motion described by the midpoint of a line whose endpoints move along the two sides of a right angle (see Figure C7, which has been adapted from Neugebauer, HAMA, 3: 1431). This is the converse of the Tūsī couple, whose purpose is to produce straight-line from circular motion. Furthermore, one must considerably expand and modify what amounts to a passing comment in Proclus to reach Ṭūsi’s couple. Nevertheless Veselovsky states: "...it is much more plausible to suppose that Copernicus took the argument he needed from Proclus (5th century A.D.) and not from Naṣịr al-Din; at all events, the priority of the latter is undermined. ${ }^{13}$ And the normally precise Neugebauer remarks that "In its astronomical applications, Proclus's theorem appears in a slightly [sic] modified form., ${ }^{14}$ Perhaps to a modern mathematician this transformation from Proclus to Ṭūsì represents a "slight modification." However as an historian, I must admit of a great deal of unease in accepting such a characterization. I dare say that no one-including Neugebauer-would have made the connection between Proclus and Țūsī had not Copernicus explicitly mentioned Proclus when he used the couple for his Mercury model:

This [motion along a straight line] can be the result also of uniform circular motions, as was shown above in connection with the precession of the equinoxes [III,4]. There is nothing surprising in this, since Proclus too in his Commentary on Euclid's Elements declares that a straight line can also be produced by multiple motions. ${ }^{15}$

[^130]Far from being the source for Copernicus, this passage has all the earmarks of an afterthought-a kind of classical padding that is hardly unknown in the work of Copernicus or other Renaissance scholars. This is further borne out by the observation originally made by Prowe and later repeated by both Swerdlow and Rosen that Copernicus's knowledge of this commentary could not have occurred before he was given the work as a gift by Rheticus in $1539 .{ }^{16}$ It should be noted here that Copernicus already makes use of the couple in the Commentariolus, which was written before May $1514 .{ }^{17}$ Furthermore, Copernicus himself implicitly indicates in the famous deleted passage in Book III, Chapter 4 of On the Revolutions that other persons before him knew and had used this theorem. ${ }^{18}$ But, as Rosen notes, he does not identify the "some people" who "call this the 'motion along the width of a circle.' "19 It should be clear, though, that he does not mean Proclus since the latter neither uses the term "motion along the width of a circle" nor does he state the theorem in a way in which such a terminology would make sense.

Veselovsky also brings up the point that the figure used by Copernicus has an extra circle cef that, he alleges, corresponds to the motion of the midpoint of the given line in Proclus's formulation. Neugebauer as well draws our attention to this correspondence in his Fig. 137b (HAMA, 3: 1431). Copernicus uses this additional circle to facilitate his proof, which is rather shorter than Țüsi's. By indicating that arc FC is twice arc GH, he eliminates the need to deal with the exterior angle step in TTūsi's proof. Whether Copernicus saw his proof as simpler than the other(s) he knew or whether he was only acquainted with a diagram and had to supply a proof is, of course, unknown. At any rate, it does not seem plausible to assume that he was motivated into adding this circle by Proclus since he admits knowing the Țūsī version as we have seen.

Another point should be made regarding the Proclus connection. In the deleted passage of III.4, Copernicus mentions that if one varies the sizes of the circles, one will obtain not a straight-line motion but an ellipse. This is somewhat reminiscent of Proclus who notes that points other than the midpoint will describe ellipses. But Copernicus makes no explicit mention here of Proclus as he does later in his chapter on Mercury. And this oblique reference to ellipses hardly constitutes conclusive evidence.

It is ironic that the mathematical aspect of the passage in Proclus has received most of the attention, whereas the physical content of his remarks have been generally ignored. The close relation of physics to geometry was an

[^131]important theme for some Hellenistic and Islamic mathematicians and philosophers. It should therefore not surprise us to find Proclus interspersing his discussion concerning the classification of simple lines with comments about simple motions. For, as he tells us, "Aristotle's opinion is the same as Plato's; for every line, he says, is either straight, or circular, or a mixture of the two. For this reason there are three species of motion-motion in a straight line, motion in a circle, and mixed motions." ${ }^{20}$ And further along he continues: " \ldots and Geminus has rightly declared that, although a simple line can be produced by a plurality of motions, not every such line is mixed, but only one that arises from dissimilar motions." ${ }^{21}$ Proclus then sets forth several examples to show that even though one may produce what appears to be a simple line (or motion) by a mixture, that line will not actually be simple but presumably mixed. ${ }^{22}$ Thus the circular path resulting from the midpoint of the moving line EK in Figure C7 is not a simple circle but a mixed line. Why does Proclus insist on what is a not very significant mathematical distinction? ${ }^{23}$ Clearly the need to preserve such a classification of lines has its origin in physics, not mathematics. If one could somehow produce circular from straight-line motion or vice versa, would this not undermine the distinction between sub-lunar and supra-lunar motion? Proclus himself states that "a circular line is generated as a result of nonuniform motion of the middle point, under the condition given that the line is moving not naturally, but with its extremities on the sides of a right angle." ${ }^{24}$ The fact that the line is not moving naturally would seem then to be the operative principle that allows a circular line to be generated but not to occur simply and naturally.

Hartner has called attention to this very point when he remarks that "by proving...that combined circular motion may produce rectilinear motion, the Aristotelian distinction between terrestrial and celestial natural motion becomes seriously weakened though of course not invalidated completely because the lemma concerns only cases of alternating and limited rectilinear motion in space." ${ }^{25}$ Whatever one may think of Hartner's argument, such considerations do seem to be at the root of Proclus's attempt to save his overstretched categories. It is not without interest in this connection that Shīrāzī in his Al-Tuhfa al-shähiyya applies Ṭūsi's lemma to a problem of terrestrial physics. "It is possible to use this [lemma] to show the impossibility (imtina ${ }^{c}$) of rest between a rising and falling motion on the line (samt) of a terrestrial diameter. ${ }^{י 26}$ Khafri, a

[^132]16th-century commentator on the Tadhkira, disputes Shïrāzī on this point in a way that is vaguely reminiscent of Proclus:

There is nothing in this because there results from this lemma only rising and falling by means of motions that are in themselves circular (bi-'l-harakāt al-mustadĩra fi nafs al-amr); straight motion will occur visually (bi-hasab al-ru'ya) but will not be the straight motion brought about by a straight-line inclination (al-mayl bi-'l-istiqāma). ${ }^{27}$

We must conclude that the problem posed by the Tūsì couple in confounding straight-line and circular motions was an issue-though probably not a significant one-raised in the Islamic Middle Ages.

Turning our attention to the lemma itself, we find that the conditions are all straightforward except for those involving the motions of the two circles. These conditions are as follows: (1) the two motions must be simple; (2) they are in opposite directions; (3) the motion of the small circle is twice that of the larger one. In point of fact, Tūsī does not need two motions to achieve the oscillation of his given point along the diameter of the larger circle; he merely needs to allow the smaller circle to "roll" inside the larger one, which would remain stationary. To see this we will refer to Figure C8. Circle Z rolls inside circle D. At the starting point, A and E coincide; after the smaller circle has rolled along arc $A G$, point E will be at a distance $G E$ from the point of tangency G. It is clear that $\mathrm{GE}=\mathrm{AG}$; therefore, $\angle \mathrm{GZE}=2 \angle \mathrm{GDA}$ since the radius of the smaller circle is half that of the larger. Thus mathematically, this rolling is equivalent to having the smaller circle rotate twice as fast as the larger one in the opposite direction. We may also, being anachronistic, find the locus of the point E by noting that the parametric equations of $\overrightarrow{D Z}+\overrightarrow{Z E}$ are

$$
\begin{aligned}
& \mathrm{x}=r \cos \alpha+r \cos (-\alpha)=2 r \cos \alpha \\
& \mathrm{y}=r \sin \alpha+r \sin (-\alpha)=0
\end{aligned}
$$

which indicate that point E will oscillate on a straight line. (Note that it is unnecessary to make any assumptions about the whereabouts of point E or that $\angle \mathrm{GDE}=\angle \mathrm{GDA}$.)

I have belabored this rather obvious point in order to underscore the fact that Tūsī does not proceed in this manner. The reason is that this lemma is not simply a mathematical theorem; it is meant to have a physical application and

[^133]therefore the added stipulations are necessary. For there can be no rolling in the heavens; only rotation in place is allowed since there is no void. It is unfortunate that Kennedy-and others-have persisted in calling the Țūsì couple a "rolling device," which it emphatically is not. ${ }^{28}$ This is only one of many cases where modern commentators have taken Ṭūsī's strict adherence to physical principles less than seriously.
II. 11 [3]. Țūsī here presents his proof for the lemma. He remarks that he had not intended to present any proofs in this compendium whose purpose is, as stated in the introduction, to provide a summary of astronomy. This again reinforces our view that the primary purpose of the Tadhkira was not to make new departures in astronomy but to give a useful and easily comprehensible summary of the $A l$ magest. The prototype for this was Tūsi's earlier Persian work Risālah-i $M u^{c}{ }^{\text {in }}$ iyya, which contained none of the material found in this chapter. But ironically it was precisely this sort of cosmographical summary that provided the occasion for new models.

The proof itself is imprecise in several places. Usually the ambiguity is trivial but in at least one case the problem is major. The reason for this is Tūsī's unwillingness to distinguish between a fixed point on one of the circles and a point defined by a relation between the two circles. Some examples will, I hope, clarify this (see Figure C9).

First, we should note that point G is a fixed point on the larger circle and it also designates the point of tangency of the two circles. It is not, however, a fixed point on the smaller circle but rather a reference point by which to measure the rotation of the smaller circle. Likewise, point A is not fixed on the circumference of the larger circle but is the reference point for measuring its rotation. Point E, the given point, is fixed on the smaller circle. Therefore, when the larger circle rotates, point G will move with respect to line $A B$, which is fixed in space, so to speak, but is not a fixed diameter of the larger circle. At the same time, the smaller circle will be carried along due to this rotation, and it is also free to have its own proper motion, which is twice that of the larger circle. Thus point E will move along an arc measured from G that is twice arc AG. This is implicit in what Tuusi has stated but may not be completely clear on first reading. Any imprecision that may arise from Țūsi's language is, thus far, not serious. Anyone who reads the text carefully can easily see that the smaller circle does not roll but is carried by the larger circle; the smaller circle is thus always tangent to the larger circle at the same point G, which is fixed on the circumference of the larger circle.

A serious problem does arise, however, when we reach the part of the proof that begins: "Then angle GZE is twice angle GDA on account of the two motions." This, at least, is clear. However TTūsì then states: "It [i.e. angle GZE] is also twice [angle GDA] because it is an exterior [angle] of triangle EZD and

[^134]equal to the two interior [angles] ZED and ZDE... ." The pronoun $h \bar{a}$ in the word $d^{c} f u h \bar{a}$ (twice it) can only refer to angle GDA but this will make the proof invalid since Tuüsĩ would then have assumed what he is trying to prove, namely that E is on line ADB. Clearly what he means to say is that angle GZE is also twice angle GDE and then his result will follow. What seems to have happened is that Țūsī has absentmindedly confused the given point E with the intersection of the smaller circle with diameter $A B$. The diagrams in all copies of the Tadhkira indicate them to be the same but, of course, this is what is to be proved (see Figure C10). This error would seem to be from Țūsĩ himself since only in MS B (Paris 2509, f. 38b) do we find "angle ZDE" but the copyist (or perhaps annotator) of this MS has a penchant for correcting mistakes, both perceived and real. In his commentary, Khafri, who is usually reluctant to tamper with the received text, has changed "angle GDA" to "angle GDE" so that $d i c f u h \bar{a}$ would also refer to "GDE." But this expedient not only fails to resolve the difficulty, it compounds the problem since one now has no way of equating $\angle \mathrm{GDA}$ to \angle GDE.
II. 11 [4]. Țūsī, who has just completed the explanation and proof of his couple in a plane, now wishes to show how to apply his results in the case of solid bodies. To do this, he will make the two circles from 11.11 [2-3] mintaqatay (two equators) of two solid orbs. In general, mintaqa is equivalent to "equator" as we can see from Tūusi's definition in I.1 [13]: "The great circle that is equidistant from the two poles is the sphere's equator." Here, however, the mintaqa of the small sphere is the circuit (madār) of the epicycle center within the sphere. Since the epicycle must have a certain thickness, it is clear that the circuit of the epicycle must be inside the orb, not on the surface. Thus the mintaqa is concentric and coplanar with the equator of the orb but does not have the same radius. In the case of the larger sphere, its mintaqa is stated to be a circle whose radius is equal to the diameter of the mintaqa of the smaller sphere. If we refer to Figure C11, we can see that the two equators form a Tūsī couple, that is, they are tangent at a point and the radius of the smaller is half that of the larger. However, the ratio of the radii of the two spheres is not $1 / 2$ but rather $(R+r) /(2 R+r)$, where R is the radius of the smaller equator and r is the radius of the epicycle. This interpretation, which is crucial for understanding the arrangement of the orbs in the lunar and planetary models, is confirmed by the commentators. In particular, Nīsābūrī in his Tawdīh al-Tadhkira elaborates this passage as follows:

If we take an epicycle in the interior ($f i j a w f$) of another small sphere such that the convex [surface of the former] is tangent to the convex [surface of the latter] at a common point between them and their centers are not the same, then if the small sphere moves through one rotation, the epicycle center will no doubt traverse a circuit (madār) about its center, i.e. the small sphere, which will be its equator (mintaqatuhā). And if we take another sphere, a larger one, that encloses ($y u h \bar{t} t$) the small sphere just as the small sphere enclosed the epicycle so as to be tangent [to it] and without having the same centers, then if the large sphere moves through one rotation, the center of the small sphere will no doubt traverse a circuit about the center of the large sphere which will be, strictly speaking (bi-'l-haqiqa), its equator; however, the equator of the large sphere is instead used to designate (yuqāl li-) an imaginary circle whose center is that of the large sphere and whose diameter is twice the diameter of the equator of the small sphere so that the distance of the center of the large sphere from the epicycle center at the initial position is twice the distance of the center of the small sphere from the epicycle center. But then it is called the equator of the large sphere because if not for the small sphere then it would be the circuit of the epicycle center. ${ }^{29}$

Rather surprisingly, the source of much of the misunderstanding concerning this chapter has occurred, I believe, because of a confusion about this quite simple but nevertheless fundamental meaning of minṭaqa. Țūsī himself is partially to blame since he begins this paragraph by saying that he will now simply make the two circles equators of solid bodies; however, in his next sentence he has gratuitously added an epicycle into his scheme, which, of course, changes the commonly understood meaning of equator. Only further on do we find that this "epicycle" is in fact a "given sphere" that has replaced the "given point" of the planar case. This "given sphere," of course, will eventually become the epicycle of the planetary and lunar models.

But Tūsī is here faced with a problem. As can be seen in Figure C12, the "given sphere" TH will move up and down a straight line as was the case with the "given point." But as an epicycle, the "given sphere" must have a reference point from which to measure the uniform circular motion of the planet on the epicycle. Thus in addition to having the sphere oscillate on a given line, the apex (dhirwa) of the epicycle must also remain on that line. But herein lies the difficulty: the apex, point T, will clearly not be on line $A B$ except when G is at A or B . And to compound the difficulties, when G is at B, T will no longer be the apex but instead the epicyclic perigee (hadied). To solve this unfortunate state of affairs, Ṭūsï proposes another sphere, which he calls "enclosing" (muhiṭa), to

[^135]keep the diameter containing the apex and perigee of the given sphere coincident with the "diameter" AB . (We should remember that AB is a reference line and not a fixed diameter of the equator AGB.) To do this, it must return the given sphere back in the direction of the motion of AGB in the amount of angle TEA which is precisely the motion of the large sphere (see Figure C13). Furthermore, it is obvious that the enclosing sphere must be concentric with the given sphere; otherwise, the center E of the given sphere will deviate from line AB. ${ }^{30}$

The "enclosing sphere" is itself problematical because it must move another sphere with the same poles and center. Unfortunately, Țūsī does not seek to justify this departure from the traditional view of celestial "dynamics." But as I have discussed in the commentary to II. 4 [6], the problem of how one sphere moves another was discussed extensively by the commentators who concluded that an enclosing sphere may move an enclosed sphere with the same poles and center.
II. 11 [4]. mintaqa (equator): This has been replaced consistently, after the first usage, by al-dä'ira (the circle) in MSS FHL (the Baghdad (β) version) and inconsistently in MSS BN. As we have seen there is some confusion involved in using mintaqa to mean a circle inside a sphere. However, the use of mintaqatay in the first sentence of this paragraph, which makes the circles of the Tuusi couple into two equators of spheres, is attested to by all MSS, and the commentators have adequately explained this extended usage of mintaqa.

There are grammatical considerations that must also be dealt with. In the phrase al-muräd min mintaqat al-saghirra (what is intended by the [inner] equator of the small [sphere]) of version α, it is not immediately clear what al-saghira (the small) refers to. The only apparent possibility is falak (orb); however, falak is masculine, while saghirra is feminine, and we find no variants in any MS. Replacing mintaqa with al-dáira (circle) solves the grammatical difficulty; however, after mintaqat al-saghīra comes the phrase madär markaz al-tadwir fihā (the circuit of the epicycle center in it). One would not expect the pronoun of fih \bar{a} (in it) to refer to a circle but rather to a solid body. This has obviously been felt by those copyists (or redactors?) who have used al-dā'ira instead of mintaqa; for we find that two have written fihā above the line (MSS H and N), one has crossed out the word (MS F), and two have left it out entirely (MSS B and L). Tentatively, I would conclude that version β was meant to correct the problem of al-saghīra by changing mintaqa to al-dāira; this, however, left fiha as a rather awkward additional word that was subsequently dealt with accordingly.

Khafrī in his detailed commentary has followed the α version but added al-kura (the sphere) between mintaqa and al-saghira to indicate why the latter is

[^136]feminine. Al-saghira and al-kabīra are then the actual spheres that we have drawn in Figure C11. This would resolve the difficulties of version α and is in accordance with Tūsī's own usage of al-kura al-kabīra later in this paragraph; it was not, however, an expedient of which Ṭūsī availed himself.
I. 11 [4]6. ghayr za'il ${ }^{c}$ an wad ${ }^{c} i h \bar{a}$ (not deviate from its position): Although a majority of manuscripts have wad ${ }^{c} i h \bar{a}$, which apparently refers to al-kura al-mafrüda (the given sphere) (see the indication to this effect in MS F), it is more precise to speak of the given sphere's diameter not deviating from the diameter (qutr) of the large sphere, in which case one would have liked to find $w a d^{c} i h i$. This latter reading is preferred by Khafrī, who, however, takes wad ${ }^{c} i h i$ abstractly to mean the state of the given sphere's diameter being coincident with the diameter of the large sphere rather than simply referring to the diameter of the large sphere.
II. 11 [4]9. wa-yushtarat fihā (It is [also] stipulated for it [them?]): This one has even the commentators stymied. Fīh \bar{a} could conceivably refer to al-kura al-mafrūda (the given sphere) or perhaps generally to al-ukar (the spheres). If we take it to be fihi, with MSS S and M, then, as Khafrī tells us, it could refer to al-fard (the premise), i.e. the premise concerning the given sphere.

We should note here the somewhat odd repetition of the dimensions of the two equators, which have already been given a few lines earlier.
II. 11 [4]10-12. wa-hïna'idh ${ }_{\mathrm{in}}$...dhālik al-intibāq (Thereupon...that coincidence): MSS H and L have a slightly different version of this passage. The additional qutruhäa (its diameter) after muntabiq would refer to the given sphere, while the second qutruh \bar{a} would refer to the large sphere. I fail to see, however, how the masculine mutaradd ${ }^{\text {an }}$ (oscillating) of MSS HL could replace the feminine mutaraddat ${ }^{\text {an }}$ since it can only refer to al-kura al-mafrüda. On the other hand, zā'ila (deviating), which modifies al-kura al-mafrüda, could conceivably be replaced by $z \vec{a}$ 'il of MSS HL in which case the modified word would be the added qutrihā (its diameter).
II. 11 [5]. Țūsī now presents his lunar model. Basically it is the physical adaptation of his couple, which was described in the previous paragraph, nested within a concentric deferent. The place of the "given sphere" is now taken over by the moon's epicycle; in turn, it is placed within the enclosing sphere. These two spheres are then nested within the "small sphere" which is itself nested within the "large sphere." The "large sphere" is embedded within a concentric deferent that is enclosed by the inclined orb. Although Ṭūsì does not so indicate here, the inclined orb is itself within the moon's parecliptic orb (see Figure C14).
II.11 [5]14-15. markazuhu...al-qamar (Its center is the point E and its circumference has the same dimension as the moon's epicycle): This phrase occurs in MSS FHL, which indicates that it belongs to the Baghdad (β) version of the Tadhkira. (See the introduction, §2.J3 and §2.M2.)
II. 11 [5]15. kura ukhrā muhīta bihi (another sphere...that encloses it): We have already discussed the role of the enclosing sphere; now that we have reached the specific case of the moon, we must confront the question of why it is necessary at all. This, of course, is different from asking whether one sphere may move a sphere within it that is also concentric and coaxial to it; this problem has been dealt with in the commentary to II. 4 [6-7]. But even if we allow its possibility, why would one need such an additional sphere? ${ }^{31}$ For the epicycle itself would be sufficient if its motion were made the sum of the motion of the Ptolemaic epicycle and the enclosing sphere. The epicyclic apex would then remain on the fixed diameter and the planet would move with its characteristic motion on the epicycle. The answer, of course, is that strictly speaking it is not necessary, and Khafri, for one, proposes doing away with it by letting the epicycle take on both motions. We are then faced with explaining why Țūsī retains the enclosing sphere when he could dispense with it in his final model. One likely reason is that he wishes to remain as close as possible to the Ptolemaic model; as such, he preserves the individual elements from the Almagest in his version. By supplementing without displacing the lunar epicycle, Ṭūsì has reaffirmed his aim to correct but not overthrow the Ptolemaic system.
II.11 [5]16-17. wa-yanbaghī...kathīr ${ }^{\text {an }}$ (it should not be large lest it occupy too much space): The exact size of the enclosing sphere is not as big an issue as Hartner has claimed. ${ }^{32}$ Since the size of the two equators does not depend on the size of the small and large spheres, the effect of the couple is not dependent on the radius of the enclosing sphere. In theory, one is restricted by the nearest distance of the moon predicted by the Ptolemaic model ($33 ; 33$ earth radii). ${ }^{33}$ The orb of fire should begin at that point. However, this boundary between the upper and lower bodies could not, of course, be verified independently; as such, the fact that the space occupied by the lunar shell might be larger than predicted by Ptolemy would not have any earth-shattering effects. In the other direction, it was well-known that some empty space existed between the orbs of the sun and Venus as predicted by Ptolemy. The enclosing sphere could, if nothing else, help fill in this gap. ${ }^{34}$
II.11 [5]17-18. ihdāahumā...mā bayn al-markazayn (one of which, the deferent for these two, takes the place of the small sphere and its diameter is the same size as the eccentricity): "Its diameter" seems grammatically to refer to the small sphere. It should, however, be understood to refer to the equator of the small sphere. Similarly, the next occurrence of qutruhā must refer to dā'ira and not al-kabira. The reason this must be the case is that the center of the epicycle,

[^137]whose distance varies from the center of the World by twice the eccentricity, travels along a straight line equal to the diameter of the equator of the large sphere (see the commentary for II. 11 [4]). As such, qutruhā (its diameter) must refer to an understood mintaqa (equator) and not kura (sphere).
II.11 [5]19-20. markazuhā markaz...fa-yakūn (its center is that of a circle that the epicycle center touches at its farthest and nearest distances): This supposedly clarifying sentence, which is present in MSS FL, absent from MSS DGMT and Khafri's commentary, and erased in MS B, is from the new but not necessarily improved version if this sentence is any indication. In order to make sense of it, we must assume the "touching" that the epicycle center does to this circle only occurs at the endpoints of its straight-line path. This would exclude the possibility that the specified circle might have a different center or diameter but still be traversed-and thus "touched"-by the epicycle center. $b u^{c} d a y h \bar{a}$ (the two distances) then refers to the two points that are farthest and nearest to the Earth on the circle that is the equator of the large sphere.
I.11 [5]21. al-kabira fi thikhan hāmil...al-mā'il (the large [sphere] is within the thickness of a concentric deferent that is enclosed by the inclined [orb]): Unlike Ptolemy who must resort to an eccentric deferent and the so-called "crank mechanism" to achieve the necessary variation in distance of the epicycle center from the Earth, Țūsī, thanks to his couple, can employ a concentric deferent. The variation in distance, as we will detail below, occurs because of the back and forth motion of the epicycle center on its straight-line path. This concentric deferent is then placed within the inclined orb. But because the deferent and inclined orb in Țūsi's model have the same center and poles, we are faced with exactly the same problem that we discussed earlier in the case of the epicycle and its enclosing sphere. As with the enclosing sphere, we must conclude that the inclined orb is not, strictly speaking, necessary; its motion could be assumed by the deferent. Ṭüsī, however, wishes to keep the individual Ptolemaic parameters.

Although it is not mentioned here, the inclined orb is contained within the moon's parecliptic orb.
II. 11 [5]22. al-muhìt bi-'l-tadwir alladhī fihi (the enclosing [orb] of the epicycle, which is inside it): According to Khafri, alladhi (which) refers to al-muhit (the enclosing [orb]), while the "it" of fihi refers to hāmil (deferent). There are several other possible readings, all of which are inconsequential. An indication in MS F, for example, directs the reader from fihi back to al-muhit.
U. 11 [5]22-23. ${ }^{\text {cind }}$ al-dhirwa (at the [epicyclic] apex): The Marägha (α) version has bi-qurb min al-dhirwa (near the [epicyclic] apex). This formulation would serve to indicate that the tangent point of the enclosing sphere and deferent is not exactly at the epicyclic apex since the enclosing sphere intervenes between the epicycle and the deferent. The Baghdad (β) version has ${ }^{c}$ ind (at) instead of bi-qurb min (near) but this would only be true if one dispensed with the
enclosing sphere by having the epicycle assume its motion (see commentary to II. 11 [5]15). Khafrī also notes that if we assume that the center of the moon is on the equator of the epicycle, then there would also be space between the apex (also considered to be on the equator of the epicycle) and the deferent.
II.11 [5]23. wa-l-yutawahham...thābit ${ }^{\text {an }}$ (Let the diameter of the deferent that passes through the point of tangency be considered fixed): This diameter is for reference and hence does not move with the deferent.
II. 11 [6]. For a listing of the parameters in this paragraph, see Table 5 on p. 457.
II. 11 [7]. It is important to keep in mind that, for the most part, this paragraph concerns only the behavior of the epicycle center taken in isolation from the rotation of the inclined orb (motion of the apogee). Thus the diagram accompanying this paragraph (Fig. T13; cf. Fig. C15) does not represent the circuit of the epicycle center during a month but rather during half a synodic month. This circuit, as we shall see, is intended to replace the eccentric deferent of the Ptolemaic model.

Once again, we must be careful to note our reference points. Point Y, which is the reference point for the motion of the large circle, is no longer fixed in space. Being the point of tangency of the large sphere and the concentric deferent, it is now carried along by the deferent. The diameter $A B$ of the equator of the large sphere, upon which the epicycle center moves, remains in all circumstances aligned with the center of the universe. The apex T of the epicycle will also, thanks to the enclosing sphere, remain on AB and will always be the closest point on the epicycle to Y. (Conversely, it is the farthest point on the epicycle from the center of the universe.) Point K, from which the motion of the deferent is measured, has become the fixed point of reference in this diagram. We may define it as the point of intersection of the line OY with the deferent orb when the epicycle center is at its farthest distance from the center of the universe. (This cumbersome definition is necessary because the enclosing sphere intervenes between the epicycle and the deferent orb.) Thus point K corresponds to the lunar apogee in the Ptolemaic model. Now as seen from O (the center of the World), the path of the epicycle center, due to the motions of the deferent orb and the large and small spheres, will be similar to (but not exactly-see II. 11 [9]) a circle. The center of this "pseudo-circle" will be at point C, which is on line OK at distance e from O , and the radius will be $R-e\left(R=60^{\mathrm{p}}\right)$. These, of course, are the parameters of the Ptolemaic deferent. At $\alpha=0^{\circ}$ (where α measures the rotation of the deferent), the epicycle center will be at its farthest distance R from O , while at $\alpha=180^{\circ}$ it is at its nearest distance $R-2 e$. The mean distance $R-e$ occurs at $\alpha=90^{\circ}, 270^{\circ}$.
I. 11 [7]6. nazala...muläzim ${ }^{\text {an }}$ (the diameter of the epicycle will descend as it adheres): Although this phrase is awkward, it is attested to by a majority of man-
uscripts. The alternative lam yazal (it continues...) for nazala is preferred by a few copyists as well as by Khafri. Of some relevance in choosing between these alternatives is the use of $a l$ - $\operatorname{tas} \bar{a}^{c} u d$ (ascending) later in the paragraph to indicate the opposite motion of the epicycle from the one occurring here.

ח. 11 [7]7-8. quṭr al-hämil al-mārr bi-nuqtat al-tamāss al-madhkūra (the diameter of the deferent that passes through the tangent point cited above): This point is what we have labeled K . It is the fixed point of reference cited at the end of II. 11 [5] from which the motion of the concentric deferent is measured.
II.11 [7]10. madār shabīh bi-muhit dā'ira (a circuit resembling the circumference of a circle): See the commentary to II.11 [9].
H.11 [7]12. min qutr al-kura al-kabīra wa-'nṭabaqa quṭruhā thäniyan (of the large sphere's diameter, which will once more coincide): The diameter referred to here is that of the large sphere passing through point. Y.
H. 11 [7]13-14. wa-tumāssu al-muhiṭa...hadī $\underset{\text { al-tadwir (the epicycle's enclos- }}{ }$ ing [sphere] touches the concave [surface] of the deferent near the epicyclic perigee): The epicycle's perigee at $\alpha=180^{\circ}$ reaches its nearest distance to the Earth. It does not, however, touch the concave surface of the deferent because of the intervening enclosing sphere.

ח. 11 [7]15. wa-kāna dhālik al-qutr...wa-'l-aqrab (that diameter will pass through the farthest and nearest distances): The diameter of the deferent passing through point K also passes through the lunar apogee and perigee.
II. 11 [7]16. al-tas $\bar{a}^{c} u{ }^{c}$ calā al-qutrr al-madhkūr (will begin to ascend on the above diameter): This is the diameter of the large sphere.
II. 11 [7]20-21. wa-yakūnu al-fadl...al-markazayn (The difference between the farthest and nearest distances is in the amount of twice the eccentricity): The nearest distance of the epicycle center is $R-2 e$, while the farthest distance is R; obviously, the difference is $2 e$.
II. 11 [7]21-1. wa-takūnu ma ${ }^{c}$ dhālik...mutashäbiha (Despite this, the motion [of the epicycle center] about the center of the World is uniform): "The motion" refers to that of the center of the epicycle, which indeed moves uniformly about the center of the World since it is always on a given diameter of the uniformly moving concentric deferent. The "despite this" calls attention to the fact that the epicycle center moves uniformly even though it also, due to another component of its motion, travels alternatively closer and farther away from the center of the World.
11. 11 [7]1-2. wa-yastaqbiluhu...awwalan (As was the case previously, the apogee will meet it due to the motion of the inclined [orb]): Our "fixed" point K, the lunar apogee, moves as a result of the motion of the inclined orb (as well as the parecliptic, which is not mentioned here; in order to simplify the argument that follows, we also shall ignore its small effect.) This motion, in conformity with Ptolemy's attempt to account for the so-called evection of the moon's motion, brings the epicycle center to its nearest distance from the center of the World at the moon's quadratures from the sun. Thus at $\alpha=180^{\circ}$, the center of the epicycle will be at quadrature and not opposition to the sun since the apogee is moving $11 ; 9 \%$ day in counter-sequence of the signs, whereas the deferent moves $24 ; 23^{\circ} /$ day in the opposite direction. (The sun, moving at $0 ; 59^{\circ} /$ day in the sequence of the signs, will always be halfway between the apogee K and point Y of the deferent.) At opposition ($\alpha=360^{\circ}$), the epicycle center will be "met" by the apogee as was the case for the Ptolemaic model described in II. 7 [11].
II.11 [8]. Once again Ṭūsī affirms that this model is his own invention. The three additional orbs he refers to are the large and small spheres of the Ṭūsī couple and the muhitta (enclosing orb) of the epicycle. The concentric deferent is not an additional orb since it has taken the place of the eccentric deferent of the Ptolemaic model.
II.11 [9]. The proof that the eccentric path of the epicycle center is not a circle is fairly straightforward. To avoid confusion, however, we should first note that here Țūsi is not referring to the actual circuit of the epicycle center during the course of a month but rather, as we have discussed in our commentary to II. 11 [7], to the motion of the epicycle center taken in isolation from the rotation of the inclined orb. As such, we are here dealing with the circuit of the epicycle center as shown in Figure C15. In the Ptolemaic lunar theory, the corresponding circuit of the epicycle center is obviously a circle since the epicycle is carried by an eccentric deferent whose motion, though not uniform, does rotate in place about its center. The situation here, however, is rather more complex.

Referring to Figure C16 (which is simply a schematized version of Figure C15), ${ }^{35}$ we may proceed with the proof. AFHJ is the concentric deferent; ${ }^{36} \mathrm{~A}$ and B are the farthest and nearest distances of the epicycle center, respectively; C is the midpoint of $\mathrm{AB} ; \mathrm{M}$ and N are the mean distances; and O is the center of the World. As described in $\Pi .11$ [7], when the deferent has rotated 90°, the center of the epicycle will have traveled half-way along its straight-line path in an

[^138]amount equal to the eccentricity e in the Ptolemaic model. In Figure C16, the position of the epicycle center will at that point be at M. OM will therefore be equal to $R-e$, where $R=\mathrm{OF}=$ the radius of the concentric deferent. But since $\mathrm{AC}=\mathrm{CB}=R-e, \mathrm{CM}$ would also have to be equal to $R-e$ for AMBN, the circuit of the epicycle center, to be a circle. But clearly $\mathrm{CM}>\mathrm{OM}$ and so it follows that the circuit is not a true circle.

It is notable that Tūusi is concerned with comparing his model with that of Ptolemy. So far, as we have seen, he has noted the difference in the number of orbs and in the shape of the circuit of the epicycle center. What is of rather more interest, though, is his calculation of the maximum difference in the predicted positions of the two models as well as the point at which this maximum difference will occur. Presumably Țūsī has arrived at his value of $1 / 6^{\circ}$ at the octants based on arithmetical methods, which may indicate that he at some point prepared tables for his model that were never published. This seems implied, to a certain degree, in Khafri's commentary. ${ }^{37}$ In order to test T Tūsi's claim, however, we shall not prepare tables, of course, but instead resort to analytical methods. (In the following, I have relied on Hartner [1969], pp. 298-299.)

We first must determine the radius vector for the actual path of the epicycle center for each model. For that of Țūsī, we may refer to Figure C 17 where AGB is the equator of the "large sphere" with D as its center, DZ and ZE are radii of the equator of the "small sphere," and E is the center of the epicycle. Thus for the radius vector $\overrightarrow{\mathrm{OE}}$ we have

$$
\begin{aligned}
\overrightarrow{\mathrm{OE}} & =\overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{DZ}}+\overrightarrow{\mathrm{ZE}} \\
& =(R-e)+2(\mathrm{ZD}) \sin (90-\alpha) \\
& =(R-e)+2(e / 2) \cos \alpha \\
& =R-e+e \cos \alpha
\end{aligned}
$$

where α, the double elongation of the center of the epicycle from the mean sun, is also the motion of the "large sphere" and the concentric deferent orb. For the Ptolemaic model, the radius vector is

$$
\mathrm{p}=\sqrt{(R-e)^{2}-e^{2} \sin ^{2} \alpha}+e \cos \alpha
$$

where $R=60^{\mathrm{P}}$ and is the distance from the Earth to the apogee of the deferent. ${ }^{38}$ The difference between these vectors is then

$$
\begin{aligned}
\overrightarrow{\mathrm{OE}}-\mathrm{p} & =R-e+e \cos \alpha-\left(\sqrt{(R-e)^{2}-e^{2} \sin ^{2} \alpha}+e \cos \alpha\right) \\
& =R-e-\sqrt{(R-e)^{2}-e^{2} \sin ^{2} \alpha}
\end{aligned}
$$

[^139]By inspection, one can see without too much difficulty that the maximum difference occurs when $\alpha=90^{\circ}, 270^{\circ}$. Remembering that α is the double elongation from the sun, we may conclude that the greatest variation between the Ptolemaic and Țūsī models will occur at the octants, exactly as Nașir al-Dīn has stated. To find the maximum difference in the predicted values for the true position of the moon, we need to take into account, of course, the position of the moon on the epicycle. Since the maximum prosthaphairesis occurs when the moon is at the mean distance on the epicycle, i.e. at the point at which a line drawn from the center of the World is tangent to the epicycle, the maximum value at the octants for the Țūsì model will be (see Figure C18)

$$
\begin{aligned}
\sin \delta_{\mathrm{T}} & =r /(R-e+e \cos \alpha) \\
& =5 ; 15^{\mathrm{P}} /\left(60^{\mathrm{p}}-10 ; 19^{\mathrm{p}}+e \cos 90^{\circ}\right) \\
\delta_{\mathrm{T}} & =6 ; 4^{\circ}
\end{aligned}
$$

while for the Ptolemaic model we have

$$
\begin{aligned}
\sin \delta_{\mathrm{P}} & =r /\left(\sqrt{(R-e)^{2}-e^{2} \sin ^{2} \alpha}+e \cos \alpha\right) \\
& =5 ; 15^{\mathrm{P}} /\left(\sqrt{\left(60^{\mathrm{P}}-10 ; 19^{\mathrm{p}}\right)^{2}-\left(10 ; 19^{\mathrm{P}}\right)^{2} \sin ^{2} 90^{\circ}}+e \cos 90^{\circ}\right) \\
\delta_{\mathrm{P}} & =6 ; 12^{\circ}
\end{aligned}
$$

Thus the maximum difference is $0 ; 8^{\circ}$, which again is in agreement with 'Tūsi's statement. ${ }^{39}$

There are several points that should be made regarding the final sentence of this paragraph. In it Țūsī remarks that 10 minutes of arc is imperceptible when the moon is at the octants. Since this statement comes from the director of an observatory, it, of course, carries considerable weight and should be taken into account in any future studies on medieval observations. We should note that Ṭüsì is not saying that one cannot in general observe the moon to within 10 minutes of arc; one could, presumably, make finer judgments during eclipses. This is why he restricts his statement by adding hunāk (there, i.e. at the octants) to the end of the sentence. It turns out that the maximum difference between the predictions of Tūsi's planetary models and those of Ptolemy may exceed $1 / 6$ of a degree (see commentary to $\Pi .11$ [10]). Future research may indicate whether later astronomers were influenced in any way by such considerations.

[^140]II. 11 [9]1-2. wa-m \bar{a} bayn al-buc ${ }^{c} d a y n$ al-awsaṭayn...bayn al-bucdayn al-äkharayn (the [distance] between the two mean distances...between the other two distances): As it stands, this statement is at best misleading, at worst simply wrong. If one reads it straightforwardly, it is certainly incorrect since the distance between the mean distances measured as MON is the same, not longer, than AOB (see Fig. C16). Being charitable, one might take the first part of the phrase, lit., "what is between the two mean distances," as referring to MCN rather than MON. Clearly this ambiguity was felt by Tūsi's medieval audience since in MS M the phrase has been replaced by the correct, if inelegant, "the [distance] between the two mean distances on it and the midpoint of the other two distances is longer than half the [distance] between the other two distances." Not surprisingly, all the commentators follow this reading; in fact, with the exception of ${ }^{\text {c }}$ Ubaydi, they completely ignore the variant. It is therefore puzzling that the correction did not make it into the Baghdad (β) version. Its occurrence in MS M could indicate that it is one of Shïrāzi's corrections that was picked up by the commentators but not necessarily by the manuscript tradition; for another example where Shirāzī's suggestion to Țūsī was ignored, see the commentary to II. 2 [3]21-23.
I. 11 [10]. Țūsì here proposes his model for the superior planets and for Venus. His description is rather abbreviated, but the missing details may be easily supplied by analogy with the lunar model. The deferent in this case is an eccentric orb, embedded within the parecliptic, whose center Q is that of the equant in the Ptolemaic model, i.e. it is at a distance $2 e$ from the center of the World O and at a distance e from the center C of the Ptolemaic deferent (see Figure C19; note that for simplicity this diagram shows only the "inner equators" of the solid orbs. The reader should refer to the diagrams for the moon for the elaborated solid version of the model.). Embedded within the deferent of this model is a TTūsī couple, whose small circle has a diameter of e and whose large circle has a diameter of $2 e$. Now in order for the distance OE from the center of the World to the epicycle center to be $R+e$ at apogee and $R-e$ at perigee as in the Ptolemaic model (see Figure C20), the epicycle center E at apogee must be at its closest position to Q, while at perigee it must be at its farthest distance. It then easily follows that the deferent in this model has a radius of $R+e$ and the starting position of the epicycle center will not be on the deferent, as was the case for the moon, but 180° from that position on the equator of the large sphere. As he states, Tuusī will need three additional spheres for his model over what is used in the Ptolemaic planetary configuration: the large and small spheres of his couple and an "enclosing sphere" for the epicycle. This latter, as is the case for the lunar epicycle, is needed to keep the epicyclic apex and perigee aligned with the point about which uniform motion occurs, in this case the equant center Q.

TTūsī declares that the distances OE in both his model and that of Ptolemy will be essentially the same; at least, his model will not disturb the circumstances ($a h w \bar{a} l$) of the Ptolemaic system. Be this as it may, it must have been clear to Țūsī that the distances OE that result from his model are not precisely
the same as those of the classical theory. The reason is exactly the same as given by Ṭūsĩ for the moon; the epicycle center will not describe a perfectly circular path about the Ptolemaic deferent center C but will instead "bulge out" as can most easily be seen at the quadratures (see above commentary to II.11 [9] and Figure C16). Thus my interpretation of this sentence, as reflected in my translation, is that the difference between the models is insignificant and not that the models are completely equivalent.

This brings us to an interesting question. As we found in the case of the moon, Tuusī was willing to tolerate a $0 ; 10^{\circ}$ maximum difference in the true positions as predicted by the two models. But is he willing to overlook a larger variation in the case of the planets? Although he does not deal with this problem directly beyond the short statement mentioned above, it seems unlikely that having found the maximum variation for the lunar model he would have completely ignored this issue in the case of the planets. At any rate, it will be useful to find the maximum variation on the assumption that Tūsì did know it; we will then be in a position to see what quantity he considered insignificant. In addition, it will be useful to have such information if future research should turn up other discussions of this important subject.

First let us find OE, the distance between the Earth and the center of the epicycle in the Tūsī model. From Figure C19, it is clear that

$$
(\mathrm{OE})_{\mathrm{T}}^{2}=(\mathrm{QE})^{2}+(2 e)^{2}-2(\mathrm{QE})(2 e) \cos \left(180^{\circ}-\alpha\right)
$$

Now

$$
\mathrm{QE}=R-e \cos \alpha
$$

as we found for the moon (cf. Figure C17; note that the change in sign is due to the different starting position of the couple). Thus we have

$$
(\mathrm{OE})_{\mathrm{T}}=\sqrt{R^{2}+2 e R \cos \alpha-3 e^{2} \cos ^{2} \alpha+4 e^{2}}
$$

For the Ptolemaic model (see Figure C20), one may obtain the following: ${ }^{40}$

$$
(\mathrm{OE})_{\mathrm{P}}=\sqrt{\left[\sqrt{R^{2}-(e \sin \alpha)^{2}}+e \cos \alpha\right]^{2}+(2 e \sin \alpha)^{2}}
$$

The maximum difference $\left|(\mathrm{OE})_{\mathbf{T}}-(\mathrm{OE})_{\mathbf{P}}\right|_{\text {Max }}$ occurs near the quadratures when $\alpha \approx 90^{\circ}, 270^{\circ} .41$ At those positions, $(\mathrm{OE})_{\mathrm{T}}=\sqrt{R^{2}+4 e^{2}}$, while $(\mathrm{OE})_{\mathrm{P}}=\sqrt{R^{2}+3 e^{2}}$ and the maximum prosthaphairesis for each model will be given by $\delta=\arcsin (r / \mathrm{OE})$ (see Figure C18, where r is the radius of the epicycle). We will then obtain the following results:

[^141]| | $\delta_{\mathbf{P}}$
 (Max. Prosthaphairesis
 for Ptolemaic Model) | δ_{T}
 (Max. Prosthaphairesis
 for Ṭusī Model) | $\delta_{\mathrm{P}}-\delta_{\mathrm{T}}$ |
| :--- | :---: | :---: | :---: |
| Venus | $45 ; 58^{\circ}$ | $45 ; 57^{\circ}$ | $0 ; 1^{\circ}$ |
| Mars | $40 ; 26^{\circ}$ | $40 ; 12^{\circ}$ | $0 ; 14^{\circ}$ |
| Jupiter | $11 ; 1^{\circ}$ | $11 ;{ }^{\circ}$ | $0 ; 1^{\circ}$ |
| Saturn | $6 ; 11^{\circ}$ | $6 ; 11^{\circ}$ | - |

As can be seen, Tūsī is essentially correct in his assessment of the two models except in the case of Mars. Whether or not 14 minutes of arc was considered equally negligible by later Islamic astronomers will, one hopes, be the subject of further research.
II. 11 [11]. This straightforward paragraph was misread by Hartner, who thought that Nașir al-Dīn was saying that he had "invented a theory based on the same principle but too complicated to be explained here, which he hopes to bring as an appendix." ${ }^{42}$ Clearly, Naşir al-Dīn is saying no such thing; he is, at the time of writing, unable to devise a Mercury model because of the complicated motion of that planet. If he should discover a solution, he promises to append it to the Tadhkira, presumably in the manner in which he appended the Hall to his Risälah-i Muciniyya. I very much doubt that Naṣir al-Dinn ever solved the problem of Mercury; if he did, there is certainly no trace of it to be found.
II. 11 [12]. TTūsī now turns his attention to the moon's prosneusis point, a problem he has thus far neglected in the lunar model presented above. He begins by outlining a previous attempt to solve this difficulty; an additional orb is postulated, presumably containing the epicycle, that would have the prosneusis point as its center. Tuusī notes that it is not clear how one could add such an orb to the existing configuration of lunar orbs without disrupting their motions. Note that whatever Țūsi’s feelings are about this proposal, it calls into question his earlier statement in $\amalg .7$ [25] that his predecessors had "not ventured any explanation" for the difficulties of the moon.
II. 11 [13]. Part of TTūsì's genius lies in his ability to deal with a wide range of seemingly disparate problems with a single, unified approach. Here he indicates that the problem of the moon's prosneusis point may be viewed as an oscillatory motion of the lunar epicycle and thus basically similar to the problem of producing latitudinal variations by means of the motions of the epicycles of the planets. As the reader may surmise, the solution to this problem, which will occupy the rest of the chapter, will consist of producing an oscillatory motion along a single arc of a sphere. Obviously, this is analogous to the rectilinear oscillation in the

[^142]plane produced by the Țūsī couple. As we shall see, Nașīr al-Dīn proposes using this "curvilinear" Tūsï couple to solve a number of the difficulties with the Ptolemaic system that he has previously pointed out.

Regarding the specifics of this paragraph, we should point out that a somewhat similar discussion of the problem of the prosneusis point occurs in Ibn al-Haytham, Shukük, pp. 15-20. ${ }^{43}$ The mean apex, from which the mean argument of the epicycle is measured, is on a diameter of the epicycle that Ptolemy had found to be always aligned with a point P at a distance $2 e$ from the center of the deferent. ${ }^{44}$ As the epicycle center E moves along the deferent, the apex will oscillate on the epicycle between two maximum points that are reached when the epicycle center is on a line perpendicular to the line of apsides and passing through the prosneusis point (see Figure C21). To check this, we note that the inclination of the apex of the epicycle is given by

$$
\angle \mathrm{CEP}=\arcsin [(2 e / R) \cdot \sin \angle \mathrm{CPE}]
$$

which clearly reaches its maximum absolute value when $\angle \mathrm{CPE}=90^{\circ}, 270^{\circ}$ as stated by Țūī. Taking the derivative of the right-hand side of the equation, we find

$$
\mathrm{f}^{\prime}=\left[1 / \sqrt{1-[(2 e / R) \cdot \sin \angle \mathrm{CPE}]^{2}}\right] \cdot(2 e / R) \cdot(\cos \angle \mathrm{CPE})
$$

which reaches its maximum absolute value when $\angle \mathrm{CPE}=0^{\circ}, 180^{\circ}$. This confirms Țūsi's statement that the maximum speed (ghāyat al-sur ${ }^{c} a$) of the apex will occur at the apogee and perigee of the deferent.

It is important to keep in mind here that for Țūsī the motion of the apex is due to the motion of the epicycle as a whole. He must therefore find a way to move this entire sphere with this oscillatory motion.
II. 11 [14]\&[15]. Here Țūsī gives an account of Ptolemy's explanation of the latitudinal variations due to the motions of the diameters of the planetary epicycles. In the cases of all five planets, the endpoints of the diameters of the epicycles that are aligned with the equant will perform a revolution upon a small circle thus producing what is known as the deviation (mayl) (see Figure C22). For the two inner planets, the endpoints of a second diameter at right angles to the first and in the same plane will perform a similar revolution upon small circles (see $\Pi .10$ [5]). This latter variation is known as the slant (inhiräf). The apparent quote at the end of [14] seems to be a paraphrase of a passage in $B k$. XIII, Ch. 2 of the Almagest. ${ }^{45}$

[^143]Tūsī's objections are quite straightforward. Objection 1: one needs to account for these motions by a physical body. A point or line in a medieval cosmological system cannot simply move by itself. The fact that the endpoints travel along circular paths is completely irrelevant for the requirements of hay'a. Objection 2: because the motion of the endpoint along the small circle has the same movement as the motion of the epicycle center on its deferent, one will encounter the same difficulty in the former as in the latter, namely the motion will be nonuniform. Objection 3: the endpoints, as a result of their circular paths, cannot help but cause a displacement in longitude as well as latitude. Because the centers of the small circles occupy the former positions of the apex and perigee in the simpler model that is meant to account for longitude, it is clear that the displacement of the apex and perigee to the circumferences of the small circles will cause a longitudinal difference to result. Furthermore, the line joining these new positions of the apex and perigee will no longer be aligned with the equant point as they had been in the simpler model. It should be clear that this objection is not, as are the previous two, a problem of physics (or, as some would have it, "philosophy"). It concerns the disruption of the predicted positions in longitude due to the latitude theory.

The latitude theory was problematic from its inception. In fact, Ptolemy himself, in his famous aside in Bk. XIII, Ch. 2 of the Almagest, acknowledged the difficulties with his theory.

We should note in passing that the Ptolemaic approach to the latitudinal variations of the epicycles is virtually identical to the approach of pseudo-Thābit to trepidation (see the commentary to $I I .4$ [5] and the accompanying Figures C2 and C3). This has, I believe, important implications for the history of the Tüsì couple, a subject we shall explore in the comments to the following paragraphs.
II. 11 [16]. The subject of this paragraph, Ibn al-Haytham's Maqāla fi harakat al-iltifăf (Treatise on the Motion of iltifăf), is no longer extant. However, his reply to a critic of his work does exist and has been recently edited by A. I. Sabra [1979]. The original Maqāla was known to ${ }^{\text {CUmar al-Khayyām who, as }}$ we learn from Shirāzī's Nihāyat al-idräk, appended his own remarks on latitude theory to the text. ${ }^{46}$ Ṭūsī himself also discusses the treatise at some length in Ch. 5 of his Hall.

There is some ambiguity in the Arabic concerning the identity of the critic of truncated orbs (manāshir) in lines $4-5$ at the end of the paragraph. It is possible to interpret the phrase to mean that Țūsì is criticizing Ibn al-Haytham for suggesting the use of truncated orbs. But in view of Ibn al-Haytham's attempts to disassociate himself from manāshīr in his extant reply to his contemporary critic, the most reasonable interpretation is that the phrase is meant to be Ibn al-Haytham's own refusal to accept them. ${ }^{47}$

[^144]Ibn al-Haytham's proposal is fairly simple. He first encloses the epicycle with a concentric sphere whose poles K and L are located at a distance equal to the maximum inclination (which may be either the deviation or the slant) from the apex A and the perigee B of the epicycle (see Figure C23). (To avoid potential confusion, we should recall that the plane of the paper is that of the equator of the epicycle.) The enclosing sphere rotates with the same motion as that of points A and B on the small circles of the Ptolemaic model; thus A and B will trace out the same path at the same rate in Ibn al-Haytham's system. (Note that the enclosing sphere will not rotate uniformly.) However, it is clear that every other point on the epicycle, with the exception of the two points on axis KL, will also perform a complete revolution thereby disrupting the Ptolemaic planetary model. For this reason, Ibn al-Haytham postulates another enclosing sphere between the first and the epicycle whose motion is the same as the first but in the opposite direction. Its poles M and N are directly opposite points A and B; obviously, M and N will also describe circular paths due to the motion of sphere KL. What will be the effect of such a combination of motions on the epicycle? The answer is greatly simplified by noting that these two spheres form what may be called a "Eudoxan couple," i.e. two spheres corresponding to the third and fourth spheres of Eudoxus's planetary model that move in the above manner thereby producing a hippopedal motion. In Figure C24, we see that point S, an endpoint of the so-called mean diameter of the epicycle lying midway between A and B on the epicycle equator $A B$ in Figure $C 23$ will, due to the motion of sphere KL, move from S_{1} to S_{2} on a path parallel to that of point A from A_{1} to A_{2}. Now the motion of sphere MN will, of course, leave A stationary at position A_{2}; it will, however, move S from S_{2} to S_{3}. This will result in S performing a hippopedal motion of narrow dimension with respect to the great circle $A_{1} S_{1} .{ }^{48}$ Ibn al-Haytham's physical model will therefore very nearly duplicate Ptolemy's mathematical model. (We cannot say exactly duplicate since the motion of point S is not precisely defined by Ptolemy; presumably, it will remain on $A_{1} S_{1}$ in the way that the point $P\left(\Gamma+90^{\circ}\right)$ remains on the fixed ecliptic in the pseudo-Thābit trepidation model (see the commentary to II. 4 [5] and Figures C2 and C3).

The purpose of Ibn al-Haytham's proposal is not to "correct" Ptolemy in the manner of the Tuusī couple, but rather to provide a physical mechanism, i.e. solid spheres, for this aspect of his latitude theory. This is clear since Ibn al-Haytham attempts to reproduce the Ptolemaic model as closely as possible, thus retaining the flaws noted by Tuusī in his second and third objections. He has in no way dealt with these concerns of late medieval astronomy, namely the nonuniformity of motion on the small circle and the disruption by this model of the longitude theory. (Note that in the Hall, he does not mention the third objection, that pertaining to the disruption in longitude; see the commentary to II. 11 [18].)

[^145]Ibn al-Haytham's model is one of several attempts previous to the time of Țūsī to modify the Ptolemaic models. One dominant feature of these proposals, such as that of Ibrāhīm b. Sinān for trepidation, al-Jūzjäni’'s for the equant, the above model of Ibn al-Haytham and the alternative system of Bitrūiji, is the use of concentric spheres with different poles. Whether one calls such models Eudoxan or not, the fact remains that the basic idea is the same as that found reported in Bk. XII, Ch. 8 of Aristotle's Metaphysics. There has been considerable debate about whether Bitrüjī, for one, might have been influenced by Eudoxus. ${ }^{49}$ My own feeling is that such questions are beside the point. As should be abundantly clear from this chapter and the commentary to II. 4 [5], the Eudoxan technique was clearly understood and utilized at least as early as Ibrähïm b. Sinān'(d. 335/946) in his Kitāb fi harakāt al-shams and, as we have seen, formed the basis for Ibn al-Haytham's only known attempt to modify the Ptolemaic system. There hardly seems any reason, therefore, to question the use by Bitruijii of such a method as if it were somehow an isolated event. There is a certain irony, though, in the use of Eudoxus's technique especially as it pertains to Ibn al-Haytham. Ptolemy, in an attempt no doubt to simplify his models, dispensed with additional spheres (or circles) and had his desired motion of the epicycle in latitude occur on its surface. But here we have Ibn al-Haytham rejecting such "simplicity" and returning to a much earlier methodology that Ptolemy had specifically attacked in his Planetary Hypotheses. ${ }^{50}$ We hardly need reiterate that the history of science is not a linear affair.
II. 11 [17]. Țūsī here proposes a modification of Ibn al-Haytham's configuration. He suggests placing the poles of the first assumed sphere at a distance from the poles of the epicycle (rather than from the apex and perigee as before) equal to the radius of the small circle. Khafri and Birjandì both take this to be equivalent to Ibrähīm ibn Sinān's trepidation model described in II. 4 [5] by which one mover with poles near the ecliptic poles will supposedly be able to cause every point on the sphere to describe a circle. This, of course, is utter nonsense as the commentators realize. It would be ironic, to say the least, for Țūsī, who is hardly reticent in complaining about the failure of others to adhere to the principles of hay'a, to advocate such a model. I am therefore inclined to believe that he means this alternative model to have a second sphere, just as was the case for Ibn al-Haytham, to prevent a dislocation of the entire epicycle.

But what would be the effect of Tuusi's alternative model on the motion of the apex and perigee? I am tempted to see this modification as a realization by Țūsī that by placing the poles of the Eudoxan couple in the vicinity of the epicyclic pole, the apex and perigee will perform hippopedal motions that will lessen the longitudinal dislocation. His further modification in the next paragraph, the curvilinear Ṭūsī couple, would then be a natural outgrowth of this sort

[^146]of experimentation. But against this is the fact that all the commentators, beginning with Shīrāzī, assume that Ṭūsī believed that the motion of a small circle near the pole would somehow result in the motion of a small circle near the equator. (Presumably this is because Țūsī seemed to accept this in Ibrāhīm ibn Sinān's trepidation model.) Thus placing the Eudoxan couple of Ibn al-Haytham's model near the apex or near the pole would, for Țüsī, produce the same effect, viz. a circular motion of the apex and perigee.
I. 11 [18]. Here Țüsī introduces the curvilinear version of his couple. Because he presents it as an outgrowth of Ibn al-Haytham's model, it will be useful to see how well this presentation conforms to the historical record. Țūsì had announced the existence of the rectilinear version of his couple in the Risälah-i Mu ${ }^{c}$ iniyya, written in $632 / 1235$, and exhibited full control of it in the appendix to that work, the Hall-i mushkilät-i Mu ${ }^{c_{i}}$ iniyya, written shortly thereafter. ${ }^{51}$ In the latter, he used it for the longitudinal motions of the moon and planets (Hall, Ch. 3). He did not, however, have the curvilinear version that he details here and in the next paragraph; at least he made no mention of it. What he did instead was simply provide a summary of Ibn al-Haytham's treatise (Hall, Ch. 5). The obvious conclusion is that at the time of writing the H all Tūsī had not yet realized that he might modify his couple in order to produce a curvilinear oscillation. In fact, he does not mention the disruption of the longitude by the latitude theory (Objection 3) that the curvilinear version is meant to resolve. He was, however, intrigued by Ibn al-Haytham's approach and was using it as a starting point with which to deal with the difficulties of Ptolemy's latitude theory. ${ }^{52}$ By the time of writing his Tahrīr al-Majisṭ̄̄ (Recension of the Almagest) in 644/1247, Țūsī could suggest using a mathematical version of his rectilinear couple to produce an oscillation in latitude so as to avoid a disruption in longitude (Tahrir, Bk. XIII, Ch. 2, f. 161a-b). He had also realized that the difficulty brought on by the prosneusis point was fundamentally the same as that of the latitude difficulty since he stated as much in the $\operatorname{Tahrir}(\mathrm{Bk} . \mathrm{V}, \mathrm{Ch} .5, \mathrm{f} .66 \mathrm{a}) .{ }^{53}$

[^147]Thus the need for a model that could produce a curvilinear oscillation had become manifest, and Țūsī would have then seen the applicability of his already available couple. We should remember, however, that the couple of the Hall was used to produce rectilinear oscillation, whereas now he needed curvilinear oscillation. Because the device in the Tahrīr is so schematic (unlike a normal Ṭūsī couple, he uses two intersecting circles of the same size, one of which carries the center of the other), it is difficult to determine whether he also possessed the full physical model of the Tadhkira's curvilinear couple. It may well be that he only had the general idea of using his couple for the latitude theory at the time of writing the Tahrir; it was only later in writing the Tadhkira that he felt that a hay'a work required him to give the full physical model. It is here that he could also draw the connection between his curvilinear couple and Ibn al-Haytham's model. But in attempting to understand the historical situation of the mathematical device in the Tahrīr, it is worth noting that Țūsī drew a clear distinction between an astronomical presentation limited to circles and one in which the "principles of motion" (i.e. solid orbs) were invoked (see the Tadhkira, II. 5 [10]). In the Hall, for example, he criticized Khiraqī for accepting circles for the latitude theory in the Muntahā al-idrāk while insisting on solid orbs elsewhere in that work (pp. 15-16). Ptolemy, on the other hand, had consistently limited himself to circles throughout the Almagest, at least according to Ṭūsì. Thus the fact that Tiusì did not use the full physical model of his curvilinear couple in the Tahrir should not be used to prove that he did not have it at that time; he may simply have felt constrained by the Almagest format to restrict himself to circles.
II. 11 [18]\&[19]. Tūsĩ here presents the curvilinear version of his couple in order to deal with the third objection. We should again emphasize the importance of such a device in allowing the medieval astronomer to confine the effects of his assumed motions to a single parameter without disrupting any other.

As we have stated, Țūsi presents his lemma as an outgrowth of Ibn al-Haytham's model. We again have a sphere, which Țūsī calls the large sphere, whose axis intersects the epicycle at points H and T , which are at a distance equal to the maximum inclination from apex A and perigee B, respectively (see Figure C25; cf. Figure T15 in the edition and translation, which represents a medieval attempt at drawing in perspective). We should note, however, that great circle AHBT is not the same as $\mathrm{AS}_{1} \mathrm{~B}$ in Figure C23. In Ibn al-Haytham's model, $\mathrm{AS}_{1} \mathrm{~B}$ is the equator of the epicycle; here, the great circle shown in the diagram passes through the poles of the equator. We next bisect arc AH and arc BT at E and Z and assume a "small sphere" with axis EZ that is located between the large sphere and the epicycle. The large sphere is then given a certain motion (in this case equal to the mean motion [presumably] of the epicycle center on its deferent) in a given direction, while the small sphere rotates with twice this motion in the opposite direction. Ṭūsì concludes (incorrectly as we shall see later) that the apex will oscillate between points A and G on a great circle arc. This will account for the latitudinal deviation without a corresponding disruption of
the apex in longitude (see Figure C26; note that circles E and H are on the surface of the epicycle sphere and are not in the same plane.) But as a result of the motion of the two spheres, other points on the epicycle will be displaced. As with Ibn al-Haytham's model, one will need a third sphere (not shown in Figure C25) located between the small sphere and the epicycle with poles that are always aligned with the oscillating apex and perigee. As should be clear, this sphere must rotate at the same rate and in the same direction as the large sphere in order to bring the rest of the epicycle to its proper position. (This orb is analogous to the enclosing orb [muhiṭa] of the rectilinear version; cf. Figures C 12 and C13.) The net result for the epicycle as a whole will be an oscillation on an axis coincident with the mean diameter, i.e. the diameter in the plane of the equator of the epicycle perpendicular to AB .

There are problems with the curvilinear version, some of which Țūsi acknowledges, some of which he does not. One that seems to have escaped him is the failure of the couple to work as advertised. The resultant locus will not, in fact, be an arc but rather a stretched out figure 8 on the surface of a sphere (see Figure C26). ${ }^{54}$ To see this we need only note that in spherical triangle $\mathrm{EA}_{2} \mathrm{H}$ the exterior angle FEA_{2} must be less than the sum of interior angles EHA_{2} and $\mathrm{EA}_{2} \mathrm{H} ;{ }^{55}$ the endpoint of radius vector EA_{2} must therefore always extend beyond arc $A_{1} G$ except when $\theta=n \cdot 90^{\circ}, n$ any integer, in which case A_{2} will fall on it. Nevertheless, because of the small size of the arcs of oscillation, divergence will be slight. ${ }^{56}$

Another remaining difficulty, one that Țūsī must regretfully admit he is incapable of resolving, is related to Objection $2,{ }^{57}$ namely that concerning the uniformity of the motion about a point other than the center. Because the motion of epicyclic apex A is approximately given by $A_{1} H-A_{1} H \cos \theta,{ }^{58}$ it is clear that its inclination in either direction from H will be exactly equivalent in amount and duration; the Ptolemaic theory, however, requires that this inclination be of longer duration in one half than the other since the motion of point A on the small circle is coordinated with the irregular motion of the epicycle center on the deferent.

[^148]Ш. 11 [20-22]. Here Țūsī mentions the situations in which the curvilinear version of his couple may be applied. In all cases the basic approach is the same. For the motion of the epicycle due to the prosneusis point, Țūsī notes a problem that his model is unable to solve, namely that his construction will result in a motion of inclination that is symmetrical with respect to the line joining the centers of the epicycle and the deferent, whereas the Ptolemaic theory results in an asymmetrical motion of inclination (see II. 11 [13] and Figure C21). This drawback of the Tuusĩ model is somewhat analogous to its inability to deal with Objection 2.

The suggested use of the Tūsī couple for trepidation and the variability of the obliquity is of great historical interest since Copernicus introduces it for just this purpose in De revolutionibus, III.4; this should obviously be the subject of further research.
II. 11 [23]. These sorts of comments give us some understanding of the attitude of Țūsì toward what we might call the progress of science. Provided that we do not make too much of them, they are well worth noting. It is clear that he is more than aware of the remaining flaws in his models and seems to have no hesitation in accepting that they may be superseded. Țūsī perhaps hoped that his work would be the basis for a continuing program of research; if so, he would have been well pleased with subsequent developments.

Table 5. Parameters of Ṭūsi's Models for "Difficulties" 1-6. ${ }^{\dagger}$

	Moon	Venus	Mars	Jupiter	Saturn
Epicycle Radius (r) Motion(γ)	$\begin{gathered} 5 ; 15^{\mathrm{P}} \\ 13 ; 4^{\circ} / \text { day cs } \end{gathered}$	$\begin{gathered} 43 ; 10^{\mathrm{p}} \\ 0 ; 37 \% \text { day } \mathrm{s} \end{gathered}$	$\begin{gathered} 39 ; 30^{\mathrm{p}} \\ 0 ; 28 \% / \text { day } \mathrm{s} \end{gathered}$	$\begin{gathered} 11 ; 30^{\mathrm{P}} \\ 0 ; 54^{\circ} / \text { day s }^{2} \end{gathered}$	$\begin{gathered} 6 ; 30^{\mathrm{P}} \\ 0 ; 57 \% \text { day s } \end{gathered}$
Enclosing Sphere Thickness (ε) Radius ($r+\varepsilon$) Motion (α)	$\begin{gathered} \text { unspecified } \\ 5 ; 15^{\mathrm{P}}+\varepsilon \\ 24 ; 23^{\circ} \text { day s } \end{gathered}$	unspecified $43 ; 10^{\mathrm{P}}+\varepsilon$ $0 ; 59 \%$ day s	unspecified $39 ; 30^{\mathrm{P}}+\varepsilon$ 0;31\% day s	unspecified $11 ; 30^{\mathrm{P}}+\varepsilon$ $0 ; 5 \%$ day s	$\begin{gathered} \text { unspecified } \\ 6 ; 30^{\mathrm{P}}+\varepsilon \\ 0 ; 2 \% \text { day s } \end{gathered}$
Small Sphere Radius ($1 / 2 e+r+\varepsilon$) Motion (2 α)	$\left\lvert\, \begin{array}{r} 10 ; 241 / 2^{\mathrm{P}}+\varepsilon \\ 48 ; 46 \% \text { day cs } \end{array}\right.$	$\begin{aligned} & 43 ; 471 / 2^{\mathrm{P}}+\varepsilon \\ & 1 ; 58^{\circ} / \text { day cs } \end{aligned}$	$\begin{array}{r} 42 ; 30^{\mathrm{p}}+\varepsilon \\ 1 ; 2^{\circ} / \text { day } \mathrm{cs} \end{array}$	$\begin{gathered} 12 ; 52 \frac{1}{2} 2^{\mathrm{p}}+\varepsilon \\ 0 ; 10^{\circ} / \text { day } \mathrm{cs} \end{gathered}$	$\begin{gathered} 8 ; 12^{1} / 2^{\mathrm{p}}+\varepsilon \\ 0 ; 4^{\circ} / \text { day cs } \end{gathered}$
Small Sphere Inner Equator Diameter ($=\boldsymbol{e}$)	$10 ; 19^{\text {P }}$	$1 ; 15^{\text {P }}$	6;00 ${ }^{\text {P }}$	$2 ; 45^{\text {P }}$	3;25 ${ }^{\text {P }}$
Large Sphere Radius ($=e+r+\varepsilon$) Motion (α)	$\left\|\begin{array}{c} 15 ; 34^{\mathrm{p}}+\varepsilon \\ 24 ; 23^{\circ} / \text { day } \mathrm{s} \end{array}\right\|$	$\begin{gathered} 44 ; 25^{\mathrm{p}}+\varepsilon \\ 0 ; 59^{\circ} / \text { day s } \end{gathered}$	$\begin{array}{r} 45 ; 30^{\mathrm{p}}+\varepsilon \\ 0 ; 31^{\circ} / \text { day } \mathrm{s} \end{array}$	$\begin{aligned} & 14 ; 15^{\mathrm{P}}+\varepsilon \\ & 0 ; 5^{\circ} \text { day } \mathrm{s} \end{aligned}$	$\begin{array}{r} 9 ; 55^{\mathrm{P}}+\varepsilon \\ 0 ; 2^{\%} / \text { day } \mathrm{s} \end{array}$
Large Sphere Inner Equator Diameter ($=2 e$)	20;38 ${ }^{\text {p }}$	2;30 ${ }^{\text {P }}$	12;00 ${ }^{\text {P }}$	5;30 ${ }^{\text {P }}$	6;50 ${ }^{\text {P }}$
Deferent Orb Radius Moon: $R+r+\varepsilon$ Planets: $R+e+r+\varepsilon$ Motion (α)	$\begin{gathered} 65 ; 15^{\mathrm{P}}+\varepsilon \\ 24 ; 23 \% \text { day } \mathrm{s} \end{gathered}$	$\begin{aligned} & 104 ; 25^{\mathrm{p}}+\varepsilon \\ & 0 ; 59^{\circ} / \text { day } \mathrm{s} \end{aligned}$	$\begin{aligned} & 105 ; 30^{\mathrm{P}}+\varepsilon \\ & 0 ; 31 \% \text { day } \mathrm{s} \end{aligned}$	$74 ; 15^{\mathrm{P}}+\varepsilon$ $0 ; 5^{\circ} / \text { day s }$	$\begin{aligned} & 69 ; 55^{\mathrm{P}}+\varepsilon \\ & 0 ; 2^{\circ} / \text { day } \mathrm{s} \end{aligned}$
Deferent Inner Equator Radius Moon: R Planets: $R+e$	$60 ;{ }^{\text {P }}$	61,15 ${ }^{\text {p }}$	$66 ;{ }^{\text {P }}$	62;45 ${ }^{\text {P }}$	63;25 ${ }^{\text {p }}$
Inclined Orb Thickness (κ) Radius ($R+r+\varepsilon+\kappa$) Motion	unspecified $65 ; 15^{\mathrm{P}}+\varepsilon+\mathrm{K}$ $11 ; 9^{\circ}$ day cs	$\begin{gathered} \text { unspecified } \\ \text { NA } \\ \text { NA } \end{gathered}$	$\begin{array}{\|c} \text { unspecified } \\ \text { NA } \\ \text { NA } \end{array}$	$\begin{array}{\|c\|} \text { unspecified } \\ \text { NA } \\ \text { NA } \end{array}$	$\begin{gathered} \text { unspecified } \\ \text { NA } \\ \text { NA } \end{gathered}$
Parecliptic Thickness (μ) Radius Moon: $R+r+\varepsilon+\kappa+\mu$ Plan.: $R+e+r+\varepsilon+\mu$ Motion	$\begin{gathered} \text { unspecified } \\ 65 ; 15^{\mathrm{P}}+\varepsilon+\kappa \\ +\mu \\ 0 ; 3^{\circ}+/ \text { day cs } \end{gathered}$	unspecified $104 ; 25^{\mathrm{p}}+\varepsilon+\mu$ $1^{\circ} / 70$ years s	unspecified $105 ; 30^{P}+\varepsilon+\mu$ $1 \% 70$ years s	unspecified $74 ; 15^{\mathrm{p}}+\varepsilon+\mu$ $1 \% 70$ years s	unspecified $69 ; 55^{\mathrm{p}}+\varepsilon+\mu$ $1^{\circ} / 70$ years s

[^149]
Book II, Chapter Twelve

For this chapter, see Alm., pp. 243-244 (H401-402), 258-273 (H427-459); HAMA, 1: 100-101, 112-117; and Pedersen [1974], pp. 203-204, 213-219; see also Kennedy [1956]. Țūsi's attempt to be brief in this chapter results in some less than clear formulations. Bīrjandī is particularly upset and accuses him of being obscure and overgeneralizing, complaints that lead Birjandì in his commentary to rewrite a good part of the chapter in what he considers a clearer style.
Ш. 12 [4]4\&6; П.12 [5]10; П.12 [6]22. falak al-burūj (ecliptic orb): Falak (orb) is here being used in its secondary sense of equator; see commentary to II. 3 [2]13. Compare II.12 [1]21-22 where falak is used in its more customary sense of solid orb.
П. 12 [5]9-11. wa-idhā kāna al-kawkab...ikhtiläf al-carḍ bi-caynih (If the planet...precisely the difference in latitude): To understand this passage, it is helpful to keep in mind that in this particular case the ecliptic meridian circle and the altitude circle are one and the same; cf. II. 3 [17] 6-9. On the ecliptic meridian circle, see the commentary to $\amalg .3$ [16]20.
II. 12 [6]. Figure C27 (admittedly a grossly oversimplified diagram since it assumes the planet to be on the ecliptic meridian circle) should help give an indication of Țūsi's intention in this paragraph. When the planet P has the same direction in latitude as the invisible ecliptic pole (either north or south), the absolute value of the difference in latitude is added to the absolute value of the true latitude to arrive at the apparent latitude (position P_{1}). When the planet has the same direction as the visible ecliptic pole, one subtracts the absolute value of the difference in latitude from the absolute value of the true latitude (position P_{2}). An exception to the latter rule occurs when the planet is between the zenith and the visible ecliptic pole whereupon one adds the difference in latitude (position \mathbf{P}_{3}). In the case where the planet has no true latitude (position P_{4}), the apparent latitude will have the same direction as the invisible ecliptic pole.

The "same reason as before" at the end of the paragraph refers to the rule that the apparent position will always be closer to the horizon.
II. 12 [7]. The moon's distances are dealt with in IV.2.
II. 12 [8]. For solar parallax, see Alm., pp. 258-260 (H428-432), 265 (H442-443).

Book II, Chapter Thirteen

For this chapter, see Alm., Bk. VI, pp. 275-313 (H461-535); Pedersen [1974], pp. 220-235; HAMA, 1: 118-141.
II. 13 [1]16. mā lā yaṣilu ilayh nür al-basar (that which the light of the eye does not reach): The theory of vision implied here is that of the Greek mathematical tradition (viz. that of Euclid and Ptolemy) whereby vision was brought about by visual rays emanating from the eye. The Peripatetic tradition opposed this socalled extramission theory of vision with an intromission theory based on forms arising from an object and then traveling to the eye. Although Ibn al-Haytham had two centuries prior to Tūsī brought about a brilliant synthesis of these two traditions-one that maintained an intromission theory that at the same time employed the visual rays of the mathematicians-Ṭūsī here and elsewhere seems totally innocent of any knowledge of the optical work of his great predecessor. ${ }^{1}$ Again we have the curious historical situation of major breaks in the transmission of science within the Islamic tradition (cf. commentary to II. 1 [1] on the moon illusion problem; note though that Ibn al-Haytham's work in astronomy was generally known to Țūsī-see II. 11 [16]).
II. 13 [4]11. ${ }^{c}$ alā mintaqat al-burūj (on the [plane of the] ecliptic equator): TTūsī is rather confusing here since the center of the shadow cone is obviously in the plane of the ecliptic rather than on the ecliptic equator itself. The same will apply to ${ }^{c}$ alā al-mintaqa in 1.13 [4]14-15.
II. 13 [5]. For the derivation of the eclipse limit of $12^{\circ}\left(12 ; 12^{\circ}\right.$ in the Almagest), see Alm., pp. 282-287 (H476-484). The value $23 / 5$ for the ratio of the shadow circle's diameter to the lunar disk is from Alm., pp. 254, 285 (H421, 480). Compare IV. 3 [1].
II. 13 [5]2. $a l-a s \bar{a} b i^{c}$ (digits): On linear digits (for diameters) and area digits (for bodies), see Kennedy, Survey, p. 143 and Alm., pp. 302-305 (H512-518), p. 308.
II. 13 [6]. On the intervals between lunar eclipses, see Alm., pp. 287-290 (H485-489).
II. 13 [7]. On the need and method of adjusting for parallax in the case of solar eclipses, see Alm., pp. 173-174 (H267), 310-313 (H527-535).
II. 13 [8]2-4. wa-quṭr al-shams...ilā sitt wa-thalāthīn (The solar diameter...to 36 minutes): The following table is a sampling of some of the better known values for the apparent diameters of the sun $\left(d_{s}\right)$ and moon at syzygy $\left(d_{m}\right)$:

[^150]Table 6. Solar and Lunar Apparent Diameters.

Astronomer	d_{s} Apogee	d_{s} Perigee	d_{m} Apogee	d_{m} Perigee	Source
Ptolemy (2nd c. A.D.)	0;31,20 ${ }^{\circ}$	0;31,20 ${ }^{\circ}$	0;31,20 ${ }^{\circ}$	0;35,20 ${ }^{\circ}$	$\begin{aligned} & \text { Alm., pp. } \\ & 252,254, \\ & 284,285 \end{aligned}$
Khwārizmī (9th c.)	0;31,20 ${ }^{\circ}$	0;33,48 ${ }^{\circ}$	0;29,16 ${ }^{\circ}$	0;34,34 ${ }^{\circ}$	$\begin{aligned} & \text { Khw., pp. } \\ & 175,180 ; \\ & \text { Neugebauer } \\ & {[1962 \mathrm{~b}],} \\ & \text { pp. 105-6 } \end{aligned}$
Battānī (10th c.)	0;31,20 ${ }^{\circ}$	0;33,40 ${ }^{\circ}$	0;291/2 ${ }^{\circ}$	$0 ; 351 / 3^{\circ}$	$\begin{aligned} & \text { Batt., } \\ & 1: 58,236 ; \\ & 3: 87-8 \end{aligned}$
"Moderns"	0;31,03 ${ }^{\circ}$	0;33,33 ${ }^{\text {* }}$			Nīsäbūrī
Kūshyār (Zījal-jāmic) (10th c.)			0;29 $/ 3^{\circ}$	0;351/3 ${ }^{\circ}$	Bījandī
Tūsī (13th c.)	0;31 ${ }^{\circ}$	0;34 ${ }^{\circ}$	0;29 ${ }^{\circ}$	0;36 ${ }^{\circ}$	Tadhkira, II:13 [8]
Shīrāzī (13th c.)	0;30,02 ${ }^{\circ}+$	0;32,38 ${ }^{\circ}+$			$\begin{aligned} & \text { Tuhfa, IV. } 1 \\ & \text { (f. 270a) } \end{aligned}$
Kāshī (Zīj-i Khāqān $\vec{l})$ (15th c.)	0;30 ${ }^{\circ}$	0;32,12 ${ }^{\circ}$	$\begin{gathered} 0 ; 31,4^{\circ} \\ (\mathrm{lunar})^{\ddagger} \\ 0 ; 31,24^{\circ} \\ (\mathrm{solar})^{\ddagger} \end{gathered}$	$\begin{gathered} 0 ; 37,2^{\circ} \\ (\mathrm{lunar})^{\ddagger} \\ 0 ; 37,46^{\circ} \\ \text { (solar) }^{\ddagger} \end{gathered}$	Bījandī

Notes:

* This value is also given by Bīrūnī, Qānün, 2: 869.
${ }^{\dagger}$ These values are derived by assuming that Ptolemy's value of $0 ; 31,20^{\circ}$ occurs at the sun's mean distance; elsewhere (Tuhfa, II. 15 [Mabhath 3], f. 195b) Shīrāzī adopts Ṭūsi's figures.
\ddagger Kāshī makes a distinction between the moon's diameter during lunar eclipses, which he measures from the center of the World, and its diameter during solar eclipses, which he measures from the observer. (Note that I am depending on Birjandi's account; I do not have access to the actual $z i \bar{l}$. .)
II. 13 [8]2-32. wa-in kāna qutr al-shams...halqat al-nūr (If the sun's diameter...ring of light): One of the consequences of Tuusi's values for the apparent solar and lunar diameters (as well as those of other Islamic astronomers) is that the moon might be smaller than the sun during conjunction, a situation that could lead to an annular eclipse. This possibility is clearly foreclosed by Ptolemy's numbers; it is interesting that certain of Ptolemy's "predecessors," among whom, as Swerdlow has shown, we should include Hipparchus, allowed for annular eclipses-at least inasmuch as they took the moon's diameter to be equal to the sun's at the moon's mean distance rather than at apogee (Alm., p. 252, n. 53 [H417]; Swerdlow [1969], pp. 291-298).

There were a number of reports of annular eclipses that postdate the Almagest. In antiquity there is one observed by Sosigenes, the teacher of Alexander of Aphrodisias, probably that of 4 September 164 A.D. ${ }^{2}$ Birīnī (Qānün, 2: 632) cites the observation of an annular eclipse made on 28 July 873 by Abū al-čAbbās al-İrānshahrī in Nīsābūr (Schramm [1963], pp. 26-27 and 27, n. 1; Oppolzer, p. 200 and Plate 100).
II. 13 [9]11-14. fa-fíal-iqlīm al-rābic \ldots..ilā sabc darajāt mumkinan (In the fourth clime...after the node of the tail): Ptolemy, who calculates the solar eclipse limits by considering the boundaries of the seven climes, namely Meroe with latitude $16 ; 27^{\circ}$ and Borysthenes with latitude $48 ; 32^{\circ}$, finds them to be $17 ; 41^{\circ}$ when the moon is northerly and $8 ; 22^{\circ}$ when it is southerly. ${ }^{3}$ On the other hand, Țüsì here gives the eclipse limits for the fourth clime, which we learn from III. 1 [8] is bounded by latitudes $335 / 8^{\circ}$ and $399 / 10^{\circ}$. In order to obtain the maximum limit, at least to a good level of approximation, one considers two cases: ${ }^{4}$

[^151]Case 1. The moon is north of the ecliptic (or in Ṭūsi's terms when it is "after the node of the head or before the node of the tail"). Since in this case one wishes to maximize the effect of parallax so as to obtain the maximum limit, one assumes: a) the observer at latitude $399 / 0^{\circ}$; b) the moon at epicyclic perigee; c) the sun at perigee; d) conjunction occurring at Aries $0^{\circ} 6$ hours before noon with Capricorn 0° culminating. One then finds using Tables II. 13 and V. 18 from the Almagest that the latitude component for the adjusted lunar parallax ${ }^{5}\left(p_{\beta}\right)$ is about $0 ; 54^{\circ}$ and the longitude component $\left(p_{\lambda}\right)$ is $0 ; 28^{\circ}$. Then using Neugebauer's formula ${ }^{6}$

$$
\text { solar eclipse limit }=\left(p_{\beta}+0 ; 35\right) \cdot 11 ; 30+p_{\lambda}
$$

one obtains a limit of $17 ; 32^{\circ}$, which compares favorably with Țūsi's 18°.
Case 2. The moon is south of the ecliptic (or in Ṭüsi's terms it is "before the node of the head or after the node of the tail'). One should note here that since the ecliptic is always to the south for an observer in the fourth clime, one would wish to minimize the effect of the latitude component of the adjusted parallax while maximizing the longitude component in order to obtain the maximum limit. One therefore assumes: a) the observer at latitude 3358°; b) the moon at epicyclic perigee; ${ }^{7}$ c) the sun at perigee; d) conjunction occurring at Libra $0^{\circ} 6$ hours before noon with Cancer 0° culminating. Using the same procedure as before, one finds the latitude component for the adjusted lunar parallax to be about $0 ; 1012^{\circ}$ and the longitude component to be $1 ; 04^{\circ}$. The resulting eclipse limit is just under 6°, whereas Ṭūsī reports 7°.

One should not take the above numbers too seriously. For one thing, they are based upon Ptolemy's tables, which have been modified by Islamic astronomers. Furthermore, it is not clear to what extent Ṭūsī, or any other Islamic astronomer, has improved upon Ptolemy's, or Pappus's, rather defective techniques for finding the maximum solar eclipse limits. ${ }^{8}$ That my numbers correspond reasonably well with those of Țüsi should not disguise the fact that any coincidences in final results may be fortuitous. It is salutary to look at Birjandi's comments. For the case of the moon north of the ecliptic, basing himself on a maximum latitude component of 44 minutes and a maximum longitude component of 11 minutes, he finds the eclipse limit to be $15 ; 34^{\circ}$. In the case of the moon south of the

[^152]ecliptic, he arrives at an eclipse limit of $7 ; 26^{\circ}$, the latitude and longitude components in this case being 4 minutes and 50 minutes, respectively. But I have been unable to find the basis for his values of parallax, which are considerably at variance with those of Ptolemy and presumably those of Țüsì as can be inferred from the divergence in their eclipse limits. In the second case, Birjandi's value of 4 minutes for the latitude component seems particularly suspect, but the source of variance could range from a different boundary for the fourth clime to computational error. That Birjandī is not above the latter is attested by his finding $0 ; 30^{\circ} / \sin 5^{\circ}$ to be $6 ; 36^{\circ}$ (correct value: $5 ; 44^{\circ}$). In short, one would need to examine a number of discussions of solar eclipse limits in the $z \bar{j} j$ es in order to arrive at some conclusion concerning the assumptions and techniques under which these numbers were arrived at and whether there were any improvements over Ptolemy.
II. 13 [9]14-19. wa-li-dhālik yumkinu kusūfān...jihat al- ${ }^{\text {card }}$ (It is therefore possible for two solar eclipses...different directions in latitude): On the intervals between solar eclipses, see Alm., pp. 290-294 (H489-498).
II. 13 [9]19-21. wa-li-kawn al-qamar...awwal ${ }^{\text {an }}$ (And because the moon...to reappear): These are rather trivial consequences of the west to east motion of the moon and sun, and of the moon's greater speed.

Book II, Chapter Fourteen

II. 14 [1]. A rather more extensive discussion of sectors occurs in Bïrūnī, Tafhïm, 201 (pp. 107-110). See also Kennedy, Survey, p. 143; idem, [1958], pp. 247253; and idem, [1960], pp. 218-222. According to Kennedy, the sectors do not appear until Islamic times and seem to be motivated by astrological considerations.
II. 14 [2]. On the visibilities of the five planets and the "phases," see Alm., pp. 636-647; HAMA, 1: 230-261; and Pedersen [1974], pp. 386-390.
II. 14 [2]18. wa-thālith ${ }^{\text {an }}$ bi-hasab ikhtiläf al-äfāq (and third, according to different horizons): As we shall see in III. 4 [2]4, ufuq (horizon) may mean locality, which it probably does here as well. As such, Tūsī is not completely accurate since in addition to locality the inclination of the ecliptic to the horizon can affect visibility as stated in the Almagest (p. 636 [H590]); this, of course, will vary at a given location. Shïräzī and the commentators have noted the problem and corrected it.
II. 14 [2]19-20. wa-'l-zahara lā takhtafi...bukra wa-cashiyya (Venus does not become invisible...while retrograding): Ptolemy states that the interval from evening setting to morning rising is about two days (Alm., p. 641 [H597]).
II.14 [2]9-10. wa-aqall mā yakhtafi laylatān (The minimum that it is invisible is two nights): Shīrāzī in the Nihäya claims that it would be possible for the moon to disappear for only one night; although unusual this would not be impossible (cf. Ilyas [1984], pp. 100-101).
L.14 [2]10-14. wa-qad umtuhina...mar'iyya lahu faqat ([The matter] has been subjected to testing...in its case only, is apparent): Whether or not Tūsī subjected the matter to testing, he ends up with exactly the same values as Ptolemy (Alm., pp. 639 [H595], 640 [H597]). Note, though, that whereas for Ptolemy these values are of the sun's depression at the moment the planet is on the horizon, for Tūsi these amounts are the altitude of the planet when the sun is at the horizon. ${ }^{1}$ Birjandī states that this change was made because a depression is a calculated value, whereas an altitude could be observed.

It is of some interest that Ptolemy ignores the problem of the moon's visibility, this in spite of its probable importance for the Babylonians. Țūsi's 8° is a bit low compared with the values deduced by Hogendijk [1988] for Khwärizmi's $z \bar{j}\left(8 ; 54^{\circ}\right)$, and for the Mufrad $z i j j$ of al-Tabarī and for a table attributed to al-Khāzin (both $9 ; 30^{\circ}$). But 8° is given as a rule of thumb by the Royal Greenwich Observatory (Ilyas [1984], p. 100). (8° is also an implied minimum for Battānī; see Bruin [1977], p. 355.)

[^153]
BOOK III

Book III, Chapter One

III. 1 [1]7. $f i$ awwal al-kitāb (in the first part of the book): See II.1 [2-3] and [7].
 inhabited world has been determined...one-half revolution of the orb): The ultimate source for this is probably Alm., p. 75 (H88); Toomer (n. 3) discounts what seems to be implied, namely that Ptolemy had records of simultaneously observed eclipses at widely separated locations.
III. 1 [4]21. al-jibāl...al-mansūba ilā al-qamar (mountains...named for the moon): The "mountains of the moon" are mentioned by Ptolemy in the Geography where he states they lie between 57° and 67° longitude (measured from the Fortunate [Canary] Islands) and at $12 \frac{1}{2}{ }^{\circ}$ south latitude. ${ }^{1}$ In view of this there seems little to recommend reading qamar (moon) as qumr (white [$p l$.]), which is given as a possibility by Bīrjandī and by Wright in a note to his translation of Bīrūnī's Tafhim (p. 143, n. 8). Modern attempts have been made to associate the mountains of the moon with the snow-clad peaks of Ruwenzori located between Lake Edward and Lake Albert on the border between Zaire and Uganda, which do indeed feed into the Nile; but this seems problematical due to their great elusiveness and to the existence of the more prominent Mounts Kenya and Kilimanjaro, the melting snows of which, however, do not drain into the Nile. ${ }^{2}$
III. 1 [5]25-26. ka-'lladhī bayn al-Maghrib...wa-'l-Shām (such as: that between the Maghrib...and Syria): Note that Tūsi divides the Mediterranean into two parts, a not uncommon practice; cf. Dunlop, $E I^{2}, 1: 934-936$.
III. 1 [5]27-1. al-khalīj al-Bärbari wa-huwa aqrabuhā ilā al-Maghrib (the Gulf of Barbary [Gulf of Aden], which is the nearest of them to the Maghrib): This is the Gulf of Aden, which in actuality is east of the Red Sea. Maps by Bīrūnī (Tafhïm, p. 124) and Nīsābūrī (f. 78a) confirm Ṭūsī's error.

[^154]III.1 [5]1. al-khalīj al-akhdar (the Green Gulf): Although there is considerable difference of opinion concerning the identity of the "Green Gulf"-indeed Shïrāzī gives two widely divergent accounts-I believe that we may safely place it in East Asia and furthermore make it roughly coincident with the South China Sea. The source of the confusion is that it is often not distinguished from the Green Sea, which may be: (a) the Encompassing Sea or "Ocean"; ${ }^{3}$ (b) the Indian Ocean and Chinese Sea; ${ }^{4}$ (c) the Indian Ocean itself; ${ }^{5}$ or (d) part of the Indian Ocean. ${ }^{6}$ In the Tuhfa Shirāzī places the Green Gulf in the vicinity of the South China Sea, at least this is a reasonable inference since Khānqū (Canton) and Khānjū (Quanzhou ?) ${ }^{7}$ are mentioned as coastal cities. He furthermore seems intent on rectifying what he stated in the Nihāya since he says that the Green Gulf is "in the most distant of the land of China, not India ($f i$ aqsā bilād al-Sin lā al-Hind). ${ }^{8}$ Shīrāzī's Tuhfa account is followed by Nīsābūrī and Bīrjandī, but Jurjānī, copied by Khafrī, conflates the two accounts and states that it is the "Chinese and Indian Sea" (bahr al-Sin wa-'l-Hind). This confusion leads an exasperated Bīrjandi to declare that "whoever claims that [the Green Gulf] is in the land of India and calls it the Indian Sea is mistaken." Shïrāzī also gives the dimensions and delineation of the Green Gulf: it is basically triangular in shape with the eastern side being about 110 parasangs, while the western side along the Chinese coast is some 500 parasangs. This is a rough but recognizable description of the South China Sea.
III. 1 [5]2. wa-ka-bahr Warank (and such as the Sea of Warank): According to Minorsky ([1942], pp. 115-116), Warank was first used by Bīrūnī to indicate the Baltic, but he seems not to have distinguished between it and the Beloye More (White Sea). ${ }^{9}$ The word itself derives from the Varangians, one of the Scandinavian roving bands that invaded Russia in the 9th and 10th centuries and even managed to reach Constantinople.
III. 1 [5]6. al-masālik (the geographical placebooks): On this genre of geographical works, see Pellat, "al-Masālik wa 'l-Mamālik," EI', 6: 639-640; cf. Maqbul-Ahmad, "Djughrāfiyā," $E I^{2}, 2: 575$.

[^155]III. 1 [6]7-15. wa-qad $q \bar{a} l a b a^{c} d \ldots m a^{c} m \bar{u} r^{\text {an }}$ (Some practitioners of this science have stated...would be inhabited): Țūsī is probably referring to either Birrüni 10 or Khiraqi, ${ }^{11}$ or perhaps to both. Each emphasizes that the sun is at perigee near winter solstice, which makes the southern region beneath the maximum declination of the sun hotter and hence uninhabitable. Bïrünī further claims that southern latitudes beyond the maximum obliquity would have unbearably cold winters since at summer solstice the sun is near its apogee. Note that underlying Birrüni's argument is the assumption that the effects of actual solar distance are of the same order as zenith distance. On the other hand, Tuusī seeks to minimize the effect of the variability in distance by noting that the resulting size difference is imperceptible (31 to 34 minutes in the diameter of the solar disk; see II. 13 [8]). Shīrāzī, however, strongly rejects Ṭūsì's reasoning and insists that perceptible size is irrelevant to whatever effects may result from actual distance; since the difference between the distance of the sun at apogee and perigee is approximately 100 terrestrial radii (see IV. 5 [1]), Shiräzī concludes that this must have a substantial effect. ${ }^{12}$ (The ratio of the nearest to farthest distance of the sun in medieval cosmology was about 0.92 , whereas the modern value is closer to 0.97 .) Shirāzī is generally followed by the commentators.
III.1 [6]15-20. wa-dhakara aydan ${ }^{\text {an }}{ }^{c}$ duhum...yunāfi dhālik al-hukm (In addition some have stated...contradicts this judgment): Bīrünī gives a similar report in the Tahdīd of what "some people have argued" (pp. 56-58; trans. pp. 26-29). He also tends to discount the possibility that the southern seas and northern lands would exchange positions due to the motion of the apogee; he gives several reasons the first of which is virtually the same as Ṭüsi's. ${ }^{13}$
III. 1 [6]22. al-tariqua al-muhtariqa (the combust way): The "combust way" was defined in at least two ways. Here it is a narrow latitudinal band around the Earth (corresponding to a band on the celestial sphere) demarcated by the "fall" (hubüt) of the sun and of the moon, which are Libra 19° and Scorpius 3°, respectively. ${ }^{14}$ This then corresponds to a region between about $7 \frac{1}{2}{ }^{\circ}$ and 13° south latitude. The commentators cite Ptolemy's Geography as evidence against the notion that this region is uninhabited. ${ }^{15}$ Another definition is given by Khiraqī for whom the "combust way" is a small circle (rather than band) of local latitude

[^156]that is directly below the sun at perigee. ${ }^{16}$ Since he gives the solar perigee as 4° before winter solstice, this will result in a southern latitude circle of about $231 / 2^{\circ}$ (assuming an obliquity of $23 ; 35^{\circ}$). This is evidently an attempt to give a scientific basis to an astrological concept, thus being comparable to Ibrāhīm ibn Sinān's approach to trepidation (see commentary to II. 4 [5]).

Tüsì's disdain for some astrological doctrines is clear but any final judgment of his attitude should take into account his role as a practicing astrologer at the time he wrote these words.
II. 1 [6]25. al-cināya al-ilähiyya (divine providence): On the question of the reason for the lack of habitation in the southern region, both Bīrünī and Ṭūsī invoke "divine providence" but they use it in curiously divergent ways. For Țūsī, the fact that the inhabited quarter is in the north is a chance occurrence unconnected with a purposeful cause; in this sense it is similar to our modern "act of God." On this issue, Bīrünī subscribes to a more intentional universe that is closer to Aristotle's teleological approach:

In the south, however, the extreme of zenith culmination is added to extreme proximity to Earth, and no balanced effect is reached. All this is designed by the All-Wise. It is not fortuitous or haphazard, for He placed the water where civilization is not possible because of unfavorable climatic conditions, and made the land emerge where habitation and civilization can flourish (Tahdīd, p. 60 [trans., p. 31]).

One man's providence is another man's science.
III. 1 [7]. For the climes, see Honigmann [1929], HAMA, 1: 333-335, 2: 727-736, and Alm., pp. 19, 82-87 (H101-111), 122-130 (H172-189).
III. 1 [7]10. al-khälidāt (the Eternals): These islands, also called the Fortunate Islands ($s u^{c} a d \vec{a}$ '), are usually identified with the Canaries; their use as zero meridian goes back to Ptolemy's Geography. The designation of the western coast of Africa, taken to be 10° east of the Fortunate Islands, is apparently an Islamic innovation whose use is fairly widespread. ${ }^{17}$ Birjandī, elaborating on Țüsi's remarks about their current lack of habitation, states that they are in fact under water and for this reason are no longer used as the starting point for longitudes. (Is this somehow related to the myth of Atlantis?) Birūnī in the Taḥdīd explains the different initial meridians by citing a discrepancy of about 10° ($131 /{ }^{\circ}$ for Fazārī) that was found in calculating the meridian of a locality from the east versus from the west. ${ }^{18}$

[^157]III. 1 [7]13. Kankdiz (Kangdezh): This is a mythical Iranian castle supposedly built by a legendary king (either Kaykāwus or Jam) on the equator at the farthermost reaches of the inhabited world (180° from the Fortunate Islands). ${ }^{19}$ Bīrjandï states that it is reported that Indian scientists have an observatory there; he gives them as a group who use it as the initial meridian. Some Islamic astronomers also seem to have used an eastern starting point for longitudes. Bīrūnī in the India (p. 259 [trans., 1: 304]) cites Abū Ma ${ }^{\mathrm{c}}$ shar as having used Kankdiz and in the Tahdid he implies that there were others (see preceding comment). Hamdānī (d. 334/945) measures from the east and relates his longitudes to those of Ptolemy by the formula $\mathrm{L}+\mathrm{L}_{\mathrm{P}}=193.5^{\circ}$. This seems to be derived from the discrepancy of 1312° between using an eastern and a western starting meridian that was attributed to Fazārī (see commentary to III. 1 7[10]); Hamdānī in fact quotes values from Fazärī in his geographical work. ${ }^{20}$ Finally we should note that in later sources one often finds reference to a S-lā island that is at the eastern extreme of China, but I do not know if it was ever taken as the eastern boundary. Bīrūni's stated longitude for it of 170° from the coast of the Western ocean makes this a distinct possibility ($Q \bar{a} n u \bar{n}, 2: 549$). In the modern literature, S-lã is usually associated with Korea, but the basis for this is rather obscure. Since it is given a latitude of 5° and since Shīrāzī makes it the eastern extreme of the Green Gulf (i.e. the South China Sea; see commentary to ШI. 1 [5]1), it does not seem farfetched to identify it with the Sulu archipelago, which was the first part of the Philippines to be Islamized.
III. 1 [7]14. qubbat al-ard (cupola of the Earth): That the cupola is on the equator means that it should not be identified with Ujjain, the so-called Indian Greenwich that was the basis for the computations of the Sindhind. Bīrūnī, basing himself of Indian sources, identifies it with the island of Lañkã (longitude $100 ; 50^{\circ}$ on the equator in the $Q \bar{a} n \bar{u} n, 2: 547$). Ujjain itself is on the meridian that joins Lañkã with the alleged mountain Mīrū below the North Pole. As Ṭūsī states, the actual location of the cupola depends on one's starting point to which Birjandī adds the comment: "technical terms are not contestable." 21
III. 1 [8]. Table 7 summarizes the reported values and for comparison also gives those of Ptolemy, Bīrūnī, and a modern recomputation.

The differences between Ptolemy's values and those of Islamic astronomers are due to the use of a different value for the obliquity (see commentary to II. 4 [1]) and to more precise trigonometric tables. The new values are already found in Battānī, whose numbers do not significantly differ from Bīrūnī's (see Honigmann [1929], p. 163 for a convenient listing).

[^158]Table 7. Maximum Daylight and Latitudes of Climes.

Clime	Maximum Daylight (Hours)	Latitudes			
		Ptolemy*	Bīrūnī ${ }^{\dagger}$	T Tūsi ${ }^{\ddagger}$	Modern Recomputation ${ }^{\#}$
I	123/4	12;30 ${ }^{\circ}$	12;39,5${ }^{\circ}$	12;40 ${ }^{\circ}$	12;39,17${ }^{\circ}$
	13	16;27 ${ }^{\circ}$	16;38,34 ${ }^{\circ}$	16;37,30 ${ }^{\circ}$	16;38,48 ${ }^{\circ}$
	131/4	20;14 ${ }^{\circ}$	20;27,29 ${ }^{\circ}$	20;27 ${ }^{\circ}$	20;27,47 ${ }^{\circ}$
II	131/2	23;51 ${ }^{\circ}$	24;4,30 ${ }^{\text {¢ }}$	24;50¢	24;4,47 ${ }^{\circ}$
	133/4	27;12 ${ }^{\circ}$	27;27,40 ${ }^{\circ}$	27;30 ${ }^{\circ}$	27;28,55 ${ }^{\circ}$
III	14	30;22 ${ }^{\circ}$	30;39,27 ${ }^{\circ}$	30;40 ${ }^{\circ}$	30;39,47 ${ }^{\circ}$
	141/4	33;180	33;36,56 ${ }^{\circ}$	33;37,30 ${ }^{\circ}$	33;37,21 ${ }^{\circ}$
IV	141/2	36;00 ${ }^{\circ}$	36;21,29 ${ }^{\circ}$	36;22 ${ }^{\circ}$	36;21,55 ${ }^{\circ}$
	143/4	38;35 ${ }^{\circ}$	38;53,36 ${ }^{\circ}$	38;54 ${ }^{\circ}$	38;54,1 ${ }^{\circ}$
v	15	40;56 ${ }^{\circ}$	41;13,52 ${ }^{\circ}$	41;15 ${ }^{\circ}$	41;14,19 ${ }^{\text {\# }}$
	151/4	43; 1°	43;23,5 ${ }^{\circ}$	43;22,30 ${ }^{\circ}$	43;23,32 ${ }^{\circ}$
VI	151/2	45;1 ${ }^{\circ}$	45;22, 8°	45;21 ${ }^{\circ}$	45;22,29 ${ }^{\circ}$
	153/4	46;51 ${ }^{\circ}$	47;11,26 ${ }^{\circ}+$	47;12 ${ }^{\circ}$	47;11,54 ${ }^{\circ}$
VII	16	48;32 ${ }^{\circ}$	48;52,21 ${ }^{\circ}$	48;52,30 ${ }^{\circ}$	48;52,35 ${ }^{\circ}$
	161/4	50;4**	50; $24,34^{\circ} \dagger$	50;20 ${ }^{\circ}$	50;25,13 ${ }^{\circ}$

Notes:

* Alm., pp. 84-87 (H105-111). These values are reported as Ptolemaic by Khiraqi in the Muntah \bar{a} in two places, in the text (II.4, ff. 7a-9a) and in a table (f. 12a), but with two variants: (1) instead of $43 ; 1$, one finds $43 ; 15$, which derives from the Arabic manuscript tradition of the Almagest (see Alm., p. 86, n. 43); (2) one finds $50 ; 15$ rather than $50 ; 4$, which occurs in the table but neither value is in the text.
${ }^{\dagger}$ These are Dallal's restored values from the Qānūn ([1984], p. 14); the same are in the Tahdid (p. 141; trans., p. 106) and in the Tafhim (p. 138 though here rounded to minutes; for $24 ; 13$ read $24 ; 4$-corrected in the Persian edition). They are also given by Khiraqi (Muntahā, f. 11a) and attributed to the "moderns" with two exceptions: (1) $47 ; 52,21^{\circ}$ is instead of $47 ; 11,26$, an obvious scribal error repeating the minutes and seconds of the following entry; (2) $50 ; 24,34^{\circ}$ is not given.
${ }^{\ddagger}$ These values, with one interesting exception ($24 ; 5^{\circ}$; see following discussion), are also found in Shïrāzī's Tuhfa and Nihäya and in Jaghminī. [The exceptions noted by Honigmann ([1929], p. 163) are due either to misreadings by Rudloff and Hochheim or else the use of a defective manuscript.]
\# Cf. Kennedy, Tahdid Comm., p. 80 and Dallal [1984], p. 14. The value $41 ; 13,19^{\circ}$ in Dallal should be corrected.

For the most part, Țūsì seems to have adopted a unit fraction approximation of Bīrūnì's figures though there are some discrepancies (e.g. 27;30 and 50;20 ${ }^{\circ}$). These values, which do not occur in the earlier $M u^{c}$ inizyya (where Tūsī simply reports Ptolemy ${ }^{22}$), seem to originate here in the Tadhkira. We may confirm this by following the brilliant textual analysis of Bījandi. As he notes, the value ($24+1 / 2+1 / 6$), or $24 \frac{2}{3}$, occurs as such in Jaghminī's Mulakhkhas, Shīrāzī's Tuhfa and Nihäya, and in most manuscripts of the Tadhkira. But if Țūsī had intended $242 / 3$, he would have used two-thirds as he does in two other places and not unit fractions; on this basis Bīrjandī concludes that the mix-up must be due to scribal error. The correct reading should therefore be one-half of one-sixth (nisf suds) rather than one-half plus one-sixth (nisf wa-suds), the former being more in conformity with the $z \bar{j} j e s$. (Note that the difference in Arabic script is only one letter.) This error in the Tadhkira manuscript tradition must have occurred quite early since virtually all manuscripts have $1 / 2+1 / 6$; the notable exception is MS D, which purportedly is copied from an autograph.

As a corollary, we may conclude, as does Birjandī, that Jaghmini's Mulakhkhas is dependent on the Tadhkira since there we find an unambiguous 24;40 written in alphabetical numerals (II.1; Rudloff and Hochheim, p. 261). ${ }^{23}$
III. 1 [8]11-12. wa-qawm...khat! al-istiwä' (One group...equator): Khiraqī in the Muntahā (II.4, f. 7a) makes the equator the starting circle for the climes; he gives the circle with $123 / 4$ hours maximum daylight as the choice of "some." In either case, the middle circle of the First Clime corresponds to 13 hours maximum daylight. No doubt the inspiration for starting with the equator goes back to Ptolemy: "We begin with the parallel beneath the equator itself, which forms, approximately, the southern boundary of the [earth's] quarter which comprises our part of the inhabited world" (Alm., p. 82 [H101]).
III. 1 [9]. The following table summarizes the reported values and gives those of Ptolemy for comparison (Alm., pp. 87-90 [H112-117]). The recomputation for 17-24 hours has been done using modern trigonometric values and $\varepsilon=23 ; 35 .{ }^{24}$ For 1-6 months, I have used Bīrūnìs declination table. ${ }^{25}$ The two values given by Battānī ($69 ; 44^{\circ}$ for 2 months and $78 ; 28^{\circ}$ for 4 months) agree exactly with the recalculation. ${ }^{26}$

[^159]Table 8. Maximum Daylight for Latitudes $>54^{\circ}$.

Maximum Daylight	Latitude		
	Ptolemy	TTūsi	Recomputation
17 hrs .	54;1 ${ }^{\text { }}$	$54+^{\circ}$	54;21 ${ }^{\circ}$
18 hrs .	58°	58°	58;19 ${ }^{\circ}$
19 hrs .	61°	61°	61;11 ${ }^{\circ}$
20 hrs .	63°	63°	63;15 ${ }^{\circ}$
21 hrs .	641/2 ${ }^{\circ}$	6412°	64;43 ${ }^{\circ}$
22 hrs .	$651_{2}{ }^{\circ}$	$65+^{\circ}$	65;41 ${ }^{\circ}$
23 hrs .	66°	66°	66;14 ${ }^{\circ}$
24 hrs .	66;8,40 ${ }^{\circ}$	colatitude of obliquity	66;25 ${ }^{\circ}$
1 mo .	67°	6714°	67;16 ${ }^{\circ}$
2 mos.	691/2 ${ }^{\circ}$	$693 /{ }^{\circ}$	69;44 ${ }^{\circ}$
3 mos .	7313°	7312°	73;33 ${ }^{\circ}$
4 mos.	7813°	7812°	78;28 ${ }^{\circ}$
5 mos .	84°.	84°	84;30
6 mos .	90°	90°	$90 ;{ }^{\circ}$

Evidently Ṭūsī has simply reported (or approximated) Ptolemy's values for 17-24 hours but has recalculated (or taken over someone else's recalculation) for 1-6 months using $\varepsilon=23 ; 35$.

Book III, Chapter Two

III. 2 [1]. Compare Alm., pp. 82-83 (H101-104) and Tafhim, pp. 124-125.
II. 2 [1]23. dūläbiyyan (wheel-like): A dūlāb is a water wheel; the analogy is meant to evoke the circular motion of the attached jug coming out of and going back into the water. $\overline{\bar{u}} \bar{l} \bar{a} b \bar{i}$, however, is not simply descriptive; it is used in the literature as a technical term to describe the motion of the orb for an observer at the equator and is contrasted with rahawi ("spinning," the motion at the poles) and hamá 'ili ("slanted," the motion everywhere else). ${ }^{1}$
III. 2 [1]2. äfāq al-falak al-mustaqīm (horizons of the right orb): What I translate as "right orb" is, of course, the sphaera recta of medieval Latin astronomy. ${ }^{2}$ As stated previously, I have consistently used "orb" to render falak in order to retain in translation the ambiguity of its usage (see commentary to I. 1 [15] and II. 3 [2]).

[^160]III.2 [1]3\&4-5 . sa c at al-mashriq, sa ${ }^{c}$ at al-maghrib (ortive amplitude, occasive [setting] amplitude): See III. 3 [2].
III. 2 [2-4]. The argument concerning the temperateness of the equatorial region occurs in Ibn Sīnā's $Q \bar{a} n u \bar{n}$ fi al-t $t i b b ;{ }^{3}$ unless the passage occurs elsewhere, Tūsī is giving a paraphrase rather than a direct quotation. Fakhr al-Dīn al-Räzì (543(?)-606/1149-1209) was a famous theologian who did much to bring Hellenistic ideas and concepts into the mainstream of dialectical theology (kalām). According to Bīrjandī, Rāzī's criticism of Ibn Sīnā comes in his commentary on the $Q \bar{a} n \bar{u} n$, a work that is extant but which I have not seen. ${ }^{4}$ TTūsĩ, who generally tends to defend Ibn Sīnā from Rāzī's criticisms when commenting on Rāzī's Muhaṣsal and on his commentary to Ibn Sīnā's Kitāb al-Ishārāt wa-'l-tanbīhāt, here reverses roles and sides with Rāzī. The commentators tell us that Rāzī only rejected the "first argument" (that the equator is the most temperate locality); he agreed with Ibn Sinnā that the hottest localities would be those whose latitude is equal to the obliquity.

Bīrūnī in the Tafhīm (p. 125) seems to have heard of Ibn Sinā's position (though he does not name him); his rejection of it, based on the supposedly intemperate characteristics of the inhabitants along the equator, is quite similar to TTūsi's. That the climate (or air) can account for human variation is an idea going back to antiquity (e.g. in Airs, Waters, Places of the Hippocratic corpus).

Book III, Chapter Three

This chapter deals generally with latitudes greater than 0° and less than 90° (the "oblique horizons"). Chapter III. 4 deals specifically with latitudes between the equator and the colatitude of the obliquity, while III. 5 is concerned with locations whose latitudes are greater than the colatitude of the obliquity and less than 90°.

III. 3 [1]. Compare II. 1 [1].

III. 3 [1]16. hamá'iliyy ${ }^{\text {an }}$ (slanted): A hamä'il is a shoulder belt worn at an angle whence it evidently came to describe the motion of the orb for the sphaera obliqua. (See Bĩrūnī, Tafhīm, p. 140; Lane, Lexicon, 2: 650; and commentary to III. 2 [1]23 for further references.)
III. 3 [2]. Compare Alm., pp. 76-77. In Figure C28, ${ }^{1}$ the triangles (with sides δ, η, q) occurring toward the invisible pole have sides δ and q in solid lines, those

[^161]toward the visible pole have δ and q in broken lines. In the eastern triangle the amplitude (η) is ortive (or rising), while in the western triangle the amplitude is occasive (or setting). ${ }^{2}$ If one measures the day-circles and equinoctial arcs in hours, and D is the amount of daylight, then the equation of daylight (q) is $1 / 2(\mathrm{D}-12) .{ }^{3}$ For declination (δ), see $\Pi .3$ [6]. Finally we should note that Ṭūsī does not restrict the concepts of "daylight" (nahār) and "amplitude" to the sun but is willing to apply them to stars and planets as well; this extended usage, at least for amplitude, was presaged by Ptolemy.4 "Daylight" for a star or planet, of course, is simply the period it is above the horizon; the "arc of daylight" is the measure of this in equinoctial degrees (see III. 10 [1]9-15).
III. 3 [2]Fig. T19. This diagram occurs only in MS L; similar ones can be found in the commentaries. The attempt to show what is on the other side of the sphere by projecting it outward is fairly typical; cf. Fig. T15.
III. 3 [3]. For a depiction of the four possibilities, see Fig. C29. Despite some ambiguity, the last three day-circles mentioned are meant to be in the direction of the visible pole. For the prime vertical circle (dä'irat awwal al-sumūt), see II. 3 [14].

Book III, Chapter Four

III. 4 [2]. In the tropics there are two points on the ecliptic that will coincide with the zenith. If the sun is at one of these points, then at noon the ecliptic will be at right angles to the horizon circle and the ecliptic poles will be on the horizon. When the sun is on the arc that is toward the visible equinoctial pole and that connects these two points, then at noon the ecliptic pole adjacent to this pole will be below the horizon; the depression will reach its maximum value of $\phi-\varepsilon$ (ϕ being the local latitude and ε the obliquity) when the sun is at the solstice. When the sun is on the other arc of the ecliptic, this ecliptic pole will be above the horizon at noon and will reach its maximum altitude of $\phi+\varepsilon$ when the sun is at the other solstice.
III. 4 [2]19. fi al-qaws allatī bayn al-nuqtatayn (on the arc between the two points): This is the ecliptic arc connecting the two points that pass through the źenith.

[^162]III. 4 [2]3-5. wa-lā takūnu fuṣūl al-sana...lam takun mutashäbiha (The seasons of the year...would still not be uniform): For the case of four seasons, Tūsī presumably would take spring to be from spring equinox until the sun reaches the zenith for the first time. Summer would then be appreciably longer than spring since it would last from then through the summer solstice until the fall equinox. Fall and winter would be according to the standard definitions. Four seasons will work reasonably well for a latitude in the tropics close to that of the obliquity; for a latitude nearer 0° one might have recourse to the eight-season possibility mentioned in III. 2 [1]. In the latter case one would have two summers of unequal length since half the distance from one zenith coincidence to the summer solstice would not be equal to half the distance from the other zenith coincidence to the winter solstice.
III. 4 [2]4. $\bar{a} f a \bar{q} q$ (regions): Note that $\bar{a} f a ̄ q$ (horizons) is being used in the sense of localities; cf. II. 14 [2]18.
III. 4 [4]19. $k a-m \bar{a}$ bayyann \bar{a} (as we have [already] explained): See III. 3 and III. 4 [3].
II. 4 [4]19-22. fa-in kāna ${ }^{\text {card }}$ al-balad...wa-marra māāāa ${ }^{\text {carduhu al-fadl }}$ (Where the local latitude...while those whose latitude is equal to the excess [will pass over] once): By "other wandering [planets]" TTūsī means other than the sun with which he is here trying to make an analogy. Just as the sun passes over the zenith of places in the tropics, so also may a planet pass overhead if its maximum latitude (measured from the ecliptic; see II.10) is greater than or equal to the excess of the local latitude over the obliquity. (Remember that Țūsī is only considering latitudes greater than the obliquity in this paragraph; there is no question that planets may pass overhead in the tropics.)
III. 4 [4]22-24. wa-fi hādhih al-curūd...bi-'zdiyād al-card (In these latitudes...with increasing latitude): The rising or setting amplitude is given by $\eta=\arcsin (\sin \delta / \cos \phi)$ where η is the amplitude, δ is the declination and ϕ is local latitude. ${ }^{1}$ For any given declination, the amplitude will thus indeed increase with increasing latitude. The equation of daylight q is given by $\mathrm{q}=\arcsin (\tan \phi \cdot \tan \delta) .{ }^{2}$ As is evident, for a given declination the equation of daylight will also increase with increasing latitude. The qualification "in these latitudes" is apparently meant to exclude the arctic regions where the concepts of amplitude and equation of daylight will not be meaningful at certain times of the year.

[^163]III. 4 [5]5-6. nuqta quṭb awwal al-sumüt (pole of the prime vertical): These poles are the north and south points; see II. 3 [14].
Ш.4 [5]10-11. al-juz' al-tālī li-'l-munqalab; ${ }^{c}$ alā quṭb awwal al-sumūt (The point subsequent to the solstice; upon the pole of the prime vertical): "Subsequent" here means following in the sequence of the zodiacal signs. The subsequent points will not in actuality be upon the poles of the prime vertical since only the solstice points can coincide with them.
III. 4 [5]23-24. wa-yakūnu țulū ${ }^{c}$ niṣf dawr...lā fĭ zamān (The rising of a half revolution...does not [require] time): For a location on the arctic circle, the eastern half of the ecliptic that has the vernal equinox as midpoint will rise all at once, while the western half with the autumnal equinox as midpoint will take a full revolution of the equinoctial to rise (cf. III. 4 [5]8-18). Bīrjandī objects to the idea that motion can occur without time. On the other hand, Khafri states that this example disproves atomism. The two comments are too brief to be fully comprehensible, but they do indicate an issue in late medieval natural philosophy that would be worth pursuing.

Book III, Chapter Five

ШI. 5 [1]12. $m a^{c} k \bar{u} s a$ (in reverse order); mustawiya (in regular order): Regular order is in the sequence of the zodiacal signs, while reverse order is in their counter-sequence.
II. 5 [1]15-21. wa-yakūnu li-'l-munqalab... ${ }^{c}$ alā al-mayl al-kull̄̄ (The visible solstice...over the obliquity): Using modern symbols, we may summarize the passage as follows:

$$
\begin{aligned}
\text { Highest altitude of solstice: } & \bar{\phi}+\varepsilon \text { (toward invisible pole) } \\
\text { Lowest altitude of solstice: } & \phi-\bar{\varepsilon} \text { (toward visible pole) } \\
\text { Highest altitude of ecliptic pole: } & \bar{\phi}+\bar{\varepsilon} \text { (toward invisible pole) } \\
\text { Lowest altitude of ecliptic pole: } & \phi-\varepsilon \text { (toward visible pole) }
\end{aligned}
$$

All these altitudes occur on the meridian. ($\varepsilon=$ obliquity; $\phi=$ local latitude; a bar indicates the complement.)
III. 5 [1]23. wa-'l-irtifāácayn al-mutabādalayn (and their altitudes are at opposite [extremes]): In other words, when the solstice is at its lowest altitude the ecliptic pole will be at its highest, whereas the solstice will be at its highest altitude when the pole is at its lowest.
III. 5 [2]. Throughout this paragraph, as also in subsequent examples, Ṭūsī is speaking in approximate terms though the chosen latitude of 70° is a good one. From Bīrūnì's declination table one finds that a latitude of $69 ; 43,39,58^{\circ}$ will result in precisely 60° of the ecliptic (in other words Gemini and Cancer) being permanently visible. ${ }^{1}$

ШI. 5 [2]4-8. fa-idhā kāna awwal al-saraṭān...sitt wa-arbacūn daraja wa-rubc wa-suds (Then when the first of Cancer... $\left.(46+1 / 4+1 / 6)^{\circ}\right)$: From III. 5 [1]15-21, the highest altitude of the solstice is

$$
\bar{\phi}+\varepsilon=20^{\circ}+23 ; 35^{\circ}=43 ; 35^{\circ}=(43+1 / 3+1 / 4)^{\circ}
$$

The lowest altitude of the ecliptic pole is

$$
\phi-\varepsilon=70^{\circ}-23 ; 35^{\circ}=46 ; 25^{\circ}=(46+1 / 4+1 / 6)^{\circ}
$$

III. 5 [3]8. min al-janūb ilā al-shamāl ([extending] from south to north): Strictly speaking, the order of the zodiac here is from north to south.
III. 5 [4]6-9. wa-yantahī awwal al-saraṭān...sitt wa-thamānūn daraja wa-rub ${ }^{c}$ wa-suds (The first of Cancer... $\left.(86+1 / 4+1 / 6)^{\circ}\right)$: The lowest altitude of the solstice is

$$
\phi-\bar{\varepsilon}=70^{\circ}-66 ; 25^{\circ}=3 ; 35^{\circ}=(3+1 / 3+1 / 4)^{\circ}
$$

The highest altitude of the ecliptic pole is

$$
\bar{\phi}+\bar{\varepsilon}=20^{\circ}+66 ; 25^{\circ}=86 ; 25^{\circ}=(86+1 / 4+1 / 6)^{\circ}
$$

III. 5 [4]11. ${ }^{\text {calā }}$ tawālī mukhālif $l i$-' $l-m a^{c} h \bar{u} d$ (the directional sequence [of the signs here being] opposite the conventional one): One would normally expect the zodiacal signs to extend from a roughly west to east direction; in this case, the signs go from east to west with the first of Aries at the east point and first of Libra at the west point.
III. 5 [7]. This is another Tūsī "believe it or not" (cf. II. 1 [7], Ш. 9 [14], and III. 1 [1]).' The basic idea here is that if the horizon were close enough to the equator, then a wandering planet might, by means of its proper (i.e. secondary) motion, ${ }^{2}$ move enough in a day's time to transfer to a day-circle that would

[^164]allow it to set in the east or rise in the west. The best possibility for this would be the moon, which has a mean motion of about $12^{\circ} /$ day. It could easily then have a 5° declination shift in a single day.

Book III, Chapter Six

III. 6 [1]1. rahawiyya (spinning): A rah $h^{\text {an }}$ is a millstone whose spinning motion is here compared to the motion of the orb at the poles. It is used as a technical term, as were hamá'ilī and dūlābī. ${ }^{1}$
III. 6 [2]7. yawm bi-laylatih (day with its night [nychthemeron]): Bīrjandī complains that for the situation at the pole it is more appropriate to speak of a day and a night (yawm wa-layla) instead of "a day with its night," the nychthemeron, which should be reserved for a normal solar day. This terminological distinction was apparently introduced by Shirāzī. On the nychthemeron, see III. 8 [1].
III. 6 [2]8-10. fa-yakūnu taht al-quṭb al-shamālī...fi awākhir al-qaws (Beneath the northern pole...at the end part of Sagittarius): Ptolemy gives the period for spring and summer as 187 days and that of fall and winter as $1781 / 4$ days, the difference being $83 / 4$ days. ${ }^{2}$ If one takes the longitude of the solar apogee to be 90° instead of Ptolemy's $651 / 2^{03}$ and a solar eccentricity of $2 ; 05$ instead of $2 ; 30,4$ one comes up with a difference of a little over 8 days. It is thus a bit mysterious how TTūsī arrives at 7 days. Bīrjandī, who along with the other commentators notices the problem, suggests a slip of the pen on Țūsi's part since seven and nine are very similar when written out in Arabic script.

ПI.6 [2]11-12. wa-takūnu mudda ghurūb al-shafaq...fimā $b a^{c} d u$ (The period for the setting of dusk...later on): In III. 9 [2] TTūsī gives 18° as the amount of depression of the sun below the horizon needed for first rising of dawn and final setting of dusk. This translates into around a 50° arc of the ecliptic which in turn gives us the 50 days of the text.
III. 6 [2]13-14. wa-yakūnu tulū${ }^{c}$ al-shams...min al-ufaq (Neither the rising nor the setting of the sun...on the horizon): Because he is talking of the rising and setting of the sun and "stars" (kawākib), I take it that Țūsī intends by the "second motion" (al-haraka al-thäniya) the proper motion of the sun, moon, and

[^165]planets (i.e. their west to east motion through the zodiac). Since in general the periods of these motions are not integral multiples of the daily rotation, these bodies will not rise or set at fixed locations for an observer at the pole. The "second motion" usually refers to the motion of the ecliptic orb (i.e. the precessional motion; see ІІ. 2 [4], ІІ. 3 [3] and [5], and П. 4 [4] and [7]). ${ }^{5}$ Ṭūsī, however, sometimes uses this phrase to refer to the proper motion of the wandering stars; this is certainly the case in $\amalg .2$ [1]7 and is probably the case in III.5 [7]15. (For these I use the term "secondary motion.")
III. 6 [3]. The "stars" (kawākib) are here the fixed stars; the "second motion" is that of the ecliptic orb (the precessional motion; see preceding note). A fuller exposition of the information in this paragraph may be found in $\Pi .4$ [7] to which Tūūī is evidently referring.
III. 6 [4]22-23. wa-mā yajrī majrähāand what is comparable to them): Ṭūsī means to indicate the poles, which are degenerate day-circles, and perhaps also the equinoctial, which Birjandï tells us was not usually considered to be a daycircle.

Book III, Chapter Seven

For this chapter, see Alm., pp. 90-103 (H118-141); HAMA, 1: 34-37; Pedersen [1974], pp. 110-113. Compare Bīrūnī, Tafhīm, pp. 145-147.
III.7 [1]4. maṭālic (co-ascension): This curious word, Bīrjandī tells us, is the plural of matla", a "noun of time" (ism al-zamān) that means rising time. This form is used to indicate that the rising time of an ecliptic arc is being measured along the equinoctial whose units are time (azmän; see $\Pi .3$ [2] and cf. Alm., p. 90 [H117]). Bīrjandī rejects any attempt to read muṭălic ${ }^{c}$, which, if it existed, would mean "corresponding to the rising" arc of the ecliptic.
III. 7 [1]5. al-daraj al-sawä' (equal degrees): One would prefer to see the more grammatical daraj al-sawä, which one finds in the commentaries, in Bīrūnī, Tafhim, p. 145, and in MSS LT. But the form with the initial article is wellattested in the other manuscripts and analogous forms (e.g. ard saw \bar{a}^{\prime}) are given by Lane, Lexicon, 4: 1479, col. 3.
III. 7 [2]. Tūsī is here giving a general account of the co-ascensions for the equator without attempting to be exhaustive. (Bïrjandī rectifies this.) In Figure C30 we see that two zodiacal signs measured from Aries 0° will be larger than their co-ascensions. (The theorem used in lines $18-19$ is from Menelaus,

[^166]Spherics, I.24.) The same figure, of course, is applicable to a single sign measured from the equinox. (Note as well that the equal degrees will also be larger than their co-ascensions for signs measured in the other direction from the equinox.) Since $a>b$, then $90-a<90-b$ and therefore with the help of the figure one may conclude that Gemini, which adjoins the solstice, will be smaller than its co-ascension.
III. 7 [4]13-17. wa-idhä țala c at qaws...bi-didd mā kāna (When an arc...the opposite of what it was [before]): Birjandi gives his usual careful analysis of the situation ${ }^{6}$ and finds that Țūsī is incorrect in asserting that for the oblique horizons the ecliptic arc in the direction of the visible pole will always be larger than its co-ascension. ${ }^{7}$ By referring to Figure C31, we may summarize Bïrjandi's discussion as follows:
[KOT $=$ ecliptic meridian circle; $\phi_{\mathrm{e}}=$ arc $\mathrm{HO}=$ local ecliptic latitude (see $\Pi .3$ [16]); $\phi=\operatorname{arc} \mathrm{ZO}=$ local latitude; $\varepsilon=$ obliquity; a bar indicates the complement]

Assume $0<\phi<\bar{\varepsilon}$. Ecliptic arc ED is in the direction of the visible pole. (For $\phi \geq \bar{\varepsilon}$, see paragraphs [5] and [6].)
(1) For $\phi_{e} \geq 0, \angle \mathrm{BGK}=180^{\circ}-\bar{\phi}>90^{\circ}$, and $\angle \mathrm{ADT}=\operatorname{arc} \mathrm{HT}=\bar{\phi}_{\mathrm{e}} \leq 90^{\circ}$; thus arc ED $>\operatorname{arc} \mathrm{EG}$ (Fig. C31a).
(2) For $\phi_{\mathrm{e}}<0, \angle \mathrm{ADT}=\operatorname{arc} \mathrm{HT}>90^{\circ}$. There are three cases (Fig. C31b):
(a) if $\left|\phi_{\mathrm{e}}\right|<|\phi|$, then $\left|\bar{\phi}_{\mathrm{e}}\right|=\operatorname{arc} \mathrm{HK}=\angle \mathrm{ADK}>|\bar{\phi}|=\angle \mathrm{BGT}$;
therefore $\angle \mathrm{ADT}<\angle \mathrm{BGK}$ and thus arc $\mathrm{ED}>\operatorname{arc} \mathrm{EG}$;
(b) if $\left|\phi_{\mathrm{e}}\right|>|\phi|$, then $\left|\bar{\phi}_{\mathrm{e}}\right|=\operatorname{arc} \mathrm{HK}=\angle \mathrm{ADK}\langle | \bar{\phi} \mid=\angle \mathrm{BGT}$;
therefore $\angle \mathrm{ADT}>\angle \mathrm{BGK}$ and thus arc EG $>$ arc ED;
(c) if $\left|\phi_{e}\right|=|\phi|$, then $\operatorname{arc} \mathrm{EG}=\operatorname{arc} \mathrm{ED}$.

Thus contrary to what Ṭūsī states, $\angle \mathrm{ADT}$ will be obtuse for (2) and could be right for (1). Furthermore the ecliptic arc will be smaller than its co-ascension for 2(b) and equal to it for 2(c).

An analogous modification should be made for the situation when the ecliptic arc is toward the invisible pole away from the equinoctial. By a simple

[^167]argument from symmetry, it is clear that in this case the opposite set of relationships between arc EG and arc ED will hold (Fig. C32).
I. 7 [4]17-19. wa-yazharu min dhālik...takūnu muṭālicuhā mutasāwiya (It is apparent from the above...their co-ascensions are equal): Țūsī engages in a bit of hand waving here; the proof is more involved than he implies. For the details, see Alm., pp. 90-91 (H118-119) and HAMA, 1: 35.
III. 7 [4]19-23. wa-'l-falak yanqasimu...wa-'l-ukhrā takūnu asghar (The orb...the other is smaller): For an inhabitant of the northern hemisphere, the first segment of the ecliptic is that bisected by Aries 0°. From III. 7 [4]13-17, it is clear that the co-ascension is smaller than the arc bounded by Aries 0° and Cancer 0°. Since the arc bounded by Capricornus 0° and Aries 0° has an equal coascension (see III.7 [4]17-19), then this half of the ecliptic has a co-ascension less than 180°. Obviously the other half of the ecliptic has a co-ascension greater than 180°. For someone in the southern hemisphere, the first segment is that which is bisected by Libra 0°, and a similar result will follow.
III. 7 [4]23-24. wa-maṭālic al-qusiyy al-shamāliyya...wa-kadhālik fi al-janübiyya (The co-ascensions of northern arcs...the same holds for the southern [arcs]): For example, the co-ascension for Taurus at some latitude ϕ will be equal to the co-ascension of Scorpius for latitude $-\phi$.
III. 7 [4]24-25. wa-maghārib kull qaws...nazīr tilk al-qaws (The co-descension of any arc... of the arc directly opposite): For example, for any latitude the codescension of Libra is equal to the co-ascension of Aries. The proof is again based on a simple argument from symmetry.
III. 7 [5]. Tūisī is here referring to locations whose latitude is equal to the complement of the obliquity; see III. 4 [5].
III. 7 [6]. This paragraph is basically a repetition of what was stated in II.5. What Țūsī has left out here is how this relates to co-ascension, which is, after all, the subject of the chapter. Birjandi, as usual, fills in the details. From Figs. T20-T23 of II.5, it should be reasonably clear that when Pisces and Aquarius rise (from Fig. T22 to Fig. T23), the ecliptic pole will have traveled less than 90° on its circuit; therefore Aries 0° will have traversed less than 90° and the coascension of Pisces and Aquarius will consequently be less than 90°. On the other hand, when Libra and Scorpius rise (from Fig. T20 to Fig. T21), the ecliptic pole will have traveled more than 90°; therefore Libra 0° will have traversed more than 90° and the co-ascension of Libra and Scorpius will consequently be more than 90°. It then immediately follows ${ }^{8}$ that the co-ascension of Aquarius,

[^168]Pisces, Aries, and Taurus (these signs rising in reverse order) is less than 180°, whereas the co-ascension of Leo, Virgo, Libra, and Scorpius (these rising in regular order) is greater than 180°. The opposite will hold for the co-descensions. ${ }^{9}$

The "remaining regions" in line 12 refers to locations with latitudes other than 70° but greater than the complement of the obliquity.

Book III, Chapter Eight

For this chapter, see Alm., III.9, pp. 169-172 (H258-263); HAMA, 1: 61-68; and Pedersen [1974], pp. 154-158.
III. 8 [3]. In Figure C33, the sun will experience its slower speed in the apogeal segment DAB and its faster speed in the perigeal segment BPD; the mean speed will occur at D and B. At D, the position of the mean sun is behind that of the true sun by the amount of the maximum solar anomaly, namely CDO. In going from D to A, the mean sun will steadily gain on the true sun, eventually coinciding with it at the apogee A. From A to B, the mean sun will overtake the true sun until it is ahead of it by the maximum solar anomaly CBO at mean distance B . The reverse process takes place in segment BPD. One may therefore say, as Ṭūsī does, that in the far segment the mean sun will increase its position with respect to the true sun in the amount of twice the anomaly, whereas in the near segment it is the true sun that will increase its position with respect to the mean sun by this amount. In terms of the variability of the nychthemerons, a mean day will be longer than a true day in the far segment and shorter in the near segment; ${ }^{1}$ this is because the sun's observed speed is slower than the mean speed in the apogeal half and faster in the perigeal half.
III. 8 [4]20-21. bi-hasab al-tafāwut bayn daraj al-sawā' wa-matālíc nazūrihā (according to the difference between the equal degrees and the co-ascension of the [arc] directly opposite them): Țūsī could also have said "according to the difference between the equal degrees and the co-descension of the arc," but he probably wished to be consistent and state the relationship in terms of the coascension; cf. III. 7 [4]24-25.

HI. 8 [4]21-23. wa-in ju'ila mabādi' al-ayyām...dün al-wajh al-awwal (But if the beginning of the day is made...rather than the first alternative): Since each meridian circle is a horizon of the equator, one can eliminate the variability due to local latitude by having the day begin at noon; cf. III. 7 [3].

[^169]III. 8 [5]. This paragraph expands on the statements of III. 7 [2]3-6. The reason that Tuūī brings up these four segments here is that the maximum difference between the equal degrees and the co-ascension for sphaera recta, namely 5°, will occur in going from the beginning to the end of any one of these quarter segments. The way this works for the equation of time is indicated in Fig. T24. ${ }^{2}$ In the quarter segments bisected by the equinoxes, the co-ascensions will be smaller than the equal degrees; hence this will act to make the true days shorter than the mean days. In the quarter segments bisected by the solstices, the coascensions will be larger than the equal degrees; this will therefore act to make the true days longer than the mean days.

On the other hand, Ptolemy states that "the greatest [accumulated] difference will occur between two points enclosing two signs which are on either side of either a solstitial or an equinoctial point" ${ }^{3}$ and finds it to be $4 \frac{1}{2}{ }^{\circ}$. But Ptolemy's own rising-time tables (p. 100) show that TTūsī is more correct in considering the maximum difference to occur in a 90° rather than 60° segment of the ecliptic; cf. HAMA, 1: 67 (Table 4).
III. 8 [5]26, 2, 3; [7]13, 15, 16. awāsit, awā'il, awākhir (middle part, beginning part, end part): Țūsī uses these plurals of awsat (middle); awwal (beginning), and $\bar{a} k h i r$ (end) to indicate that the point in question is not exactly at the beginning, middle or end. I usually add "part" to indicate this approximation. In the case of the quarter segments of the ecliptic, the dividing points are slightly before the midpoints of Aquarius and Leo, and slightly after the midpoints of Taurus and Scorpius.
III. 8 [6-7]. We may express the equation of time as follows:

$$
\Delta \mathrm{t}-\Delta \overline{\mathrm{t}}=\Delta \mathrm{E}
$$

where t is elapsed true days, \bar{t} is elapsed mean days and E is the equation of the nychthemeron (or time). ${ }^{4}$ As Tuusī has stated, ΔE is the combination of two "differences," that resulting from the variability of the solar motion through the ecliptic and that resulting from the co-ascension. Now both differences are sinusoidal; combining them yields a curve whose maximum is near the first of

[^170]Scorpius and whose minimum is near the end of Aquarius. ${ }^{5}$ Thus by choosing an epoch near the end of Aquarius, one may ensure that all values of ΔE will be positive.

To see what this will mean in practice, we may go through the steps to convert a given number of true days into mean days. For a certain day, we may calculate the number of true days, hours, and so forth that have elapsed since the epoch. We then enter a table of $\Delta \mathrm{E}$ (provided in many $z \bar{j} j e s$) with the zodiacal sign and degrees corresponding to our given day to obtain $\Delta \mathrm{E}$; we then subtract this value from the true days to obtain the mean days that have elapsed during the same period. ${ }^{6}$ Note that using this epoch will result in the elapsed true days always being greater than or equal to the elapsed mean days. Obviously by using an epoch near Scorpius 0°, one will have the opposite state of affairs. On the face of it, this seems in direct contradiction to what is in the text since Tūsī states that for the epoch in Aquarius "the true days will always be shorter than the mean ones," whereas for the epoch in Scorpius "the true days will always be longer than the mean ones." In order to reconcile these two accounts, one needs to recall how Tūsī has set up the problem. As is clear in paragraph [2], he is intent on comparing the length of one or more mean days with the corresponding true day or days. ${ }^{7}$ Thus here in paragraph [7], he is comparing the length of a given whole number of mean days with the length of the same whole number of true days rather than comparing the amount of elapsed mean days with the amount of elapsed true days in a given period. For example, if one were to begin counting days using the end part of Aquarius as the initial point, then 50 true days will elapse in a shorter time than 50 mean days; but in a period of exactly 50 true days measured from the same initial point, there will obviously be fewer than 50 complete mean days. It is in this latter sense that the equation of time quoted at the beginning of this note should be understood and it is in this sense as well that one would normally use a table of $\Delta \mathrm{E}$ in a $z \vec{j}$, namely in order to convert elapsed true days into elapsed mean days. Țūsī's pedagogic intent in [3-6], however, is to show how one obtains ΔE and it is therefore in reference to the former problem, namely of comparing a given number of true days with the same number of mean days, that he uses "shorter" (nāqisa) and "longer" (zä'ida). The inevitable confusion leads even as competent an astronomer as Nīsābūrī into mistakenly stating that one should add $\Delta \mathrm{E}$ in order to convert true to mean days when the initial point is in Aquarius.

The choice of making the correction for the equation of time always subtractive seems to be fairly standard in the Islamic zij literature; at least this is what one finds in the $z \bar{j} j$ es of Battānī and of Khwarizmi despite the fact that both have

[^171]epochs whose solar longitudes are not at the end of Aquarius. ${ }^{8}$ In the Handy Tables, however, the equation of time is always additive and the epoch (-323 November 12) has a solar longitude of Scorpius 17°, which is near the location of the minimum (i.e. zero) value for $\Delta \mathrm{E}$ in the table. ${ }^{9}$

ШI. 8 [7]2. wa-yataghayyaru..fí mudda tawila (The difference...over a long period): Because of the motion of the solar apogee, ${ }^{10}$ the curve of the solar anomaly (and hence its maximum and minimum) will shift with respect to the ecliptic. (The other component of the equation of time, that of the co-ascension, does not vary over time if one assumes a constant obliquity.) There will therefore also be a slow shift in the curve of $\Delta \mathrm{E}$. Thus whereas Ptolemy finds the extremes occurring at approximately Scorpius 0° and Aquarius 15°, TTūī, as we have seen, gives the values as "the beginning part of Scorpius" and "the end part of Aquarius." We find in Khwarizmi's $z i \bar{j}$ that the positions ${ }^{11}$ are about Scorpius 10° and Aquarius 22°; from Battānī's $z \bar{l} j$ one extracts around Scorpius 9° and Aquarius $19^{\circ} .{ }^{12}$

ШI. 8 [8]4-5. ta ${ }^{c} d \bar{i} l$ al-ayyā̀m bi-layālīh \bar{a} (the equation of the nychthemeron): Ptolemy talks about $\dot{\eta} \tau \tilde{\omega} \nu v \nu \chi \theta \eta \mu \hat{\rho} \rho \omega \nu$ ' $\alpha v \imath \sigma o ́ \tau \eta s$ (the inequality of nychthemerons), ${ }^{13}$ but he does not have a word as such for equation, which is apparently a medieval innovation. ${ }^{14}$ The Byzantine and Latin terminology is virtually the same as the Arabic, which makes it something of a puzzle as to how the modern transformation to "equation of time" came about. ${ }^{15}$

Book III, Chapter Nine

This chapter does not have an analogue in the Almagest. The problem of twilight attained considerably more importance in Islam than in antiquity

[^172]inasmuch as three of the five Islamic prayer times were set with reference to dawn and dusk. (Evening prayers were to be performed between sunset and nightfall (end of dusk), night prayers between nightfall and daybreak (beginning of dawn), and morning prayers between daybreak and sunrise. $)^{1}$ The time for daily fasting to begin during the month of Ramadān was also made with reference to daybreak. ${ }^{2}$ See Bīrünī, Tafhïm, pp. 51-52; Davidian and Kennedy [1961]; Wiedemann and Frank [1926]; Wiedemann [1912]; and King [1973], pp. 365-368, who provides further references.
III. 9 [title]2. al-subh wa-'l-shafaq (dawn and dusk): I have adopted Goldstein's suggestion that dawn and dusk be used for the intervals from daybreak to sunrise and from sunset to nightfall, respectively, and that twilight denote both phenomena. ${ }^{3}$
III. 9 [1]G-8. wa-l-yamurr sath... ${ }^{\text {calā }}$ sath al-makhrūt (Let a plane pass...on the surface of the cone): Tuusisi is being rather sloppy here. To say that the plane passes through the centers of the sun and Earth as well as through the axis of the cone is to be redundant but without specifying a unique plane. Now Ṭūsi's added stipulation that the resultant triangle will have its base on the horizon (meaning, presumably, in the plane of the horizon) does specify a unique plane for a given moment, but this plane is not very useful for the purpose, namely to understand false dawn. To see this, we may note that at sunrise in the tropics and middle latitudes, the plane of the triangle, whose base would be the intersection of the plane of the horizon circle and the base of the shadow cone, would have a generally north-south orientation, whereas one would certainly need an eastwest one. The commentators have noticed the problem and Bïrjandī, for one, proposes that the base of the triangle be the intersection of the base of the shadow cone and the plane of the east-west circle. ${ }^{4}$ Birjandi also suggests that Țūsì added the horizon stipulation on the basis of his illustration, which shows the situation at midnight rather than at sunrise; in this case the base of the triangle is indeed on the horizon if one conceives of the triangle in the plane of the east-west circle. Bīrjandi is probably referring to something similar to Fig. C34, which is what one finds in the earlier Marägha (α) version of the Tadhkira. It is worth noting that MSS FL, which represent the later (β) version of the text, do not have the base of the cone in the plane of the horizon. (See Fig. T25 and the commentary to it.)

[^173]III.9 [1]10-11. awwal mā yurā nür al-shams (the first observed light of the sun): The Arabic construction is awkward but comprehensible; Bīrjandĩ complains that it is unnatural (fihi takalluf).
Ш. 9 [1]13. al-subh al-kädhib (false dawn): Redhouse [1878] seems to have been the first to identify "false dawn" (also known as the wolf's tail [dhanab al-sirhān] with the zodiacal light. ${ }^{5}$ This light is not atmospheric but rather extraterrestrial, its source being mainly the illumination of a disk of cosmic dust surrounding the sun. (Its modern name derives from the fact that this disk is within the zodiacal band, perhaps being a remnant of the early formation of the solar system.) As such, Țūsi's explanation is not a particularly happy one since it obviously depends on the illumination of the atmosphere; but even if we accept the premise that the light is atmospheric, the explanation is still rather weak since he has not taken into account the height of the atmosphere. ${ }^{6}$ For a modern discussion of the zodiacal light, see Minnaert [1954], pp. 289-295; for some insight into why Țūsi's explanation would not work even if we accepted that the light were atmospheric, see ibid., pp. 277-280 as well as the particularly useful discussion and diagrams of Dietze [1957], pp. 207-210.
III. 9 [1] Fig. T25. This version of the figure has been drafted using the illustrations in MSS FL. As we stated in our introductory remarks to the edition, these represent a revision of the Tadhkira, the so-called Baghdad (β) version of the text. ${ }^{7}$ Figure C34 has been drafted using MSS DGMT, which are witnesses of earlier versions of the Tadhkira. There seems to have been an attempt to deal with the problems mentioned above (see commentary to III.9 [1]6-8) and indeed Fig. T25 is something of an improvement over Fig. C34. ${ }^{8}$ First of all the apex of the cone is placed on the sun's orb in MSS FL, whereas it is beyond it in MSS DGMT. Actually the apex, according to Ptolemaic parameters, should be in Venus's system of orbs (see IV. 3 [5]) and thus inside the sun's orb in the figure. Hence MSS FL are somewhat better without being completely accurate. ${ }^{9}$ Second, the base of the cone in MSS FL is no longer parallel to the horizon, which may be an attempt to deal with the problem mentioned in the commentary to III. 9 [1]6-8. Finally the "plane of the apparent horizon" (saṭh al-ufaq al-mar'ī) in MSS DMT, which is incomprehensibly drawn obliquely to the horizon, is

[^174]replaced in MSS FL by an apparent horizon and by an east-west line, both correctly drawn, that extend across the figure.
III.9 [2]2-4. wa-qad curifa bi-'l-tajriba...thamäniya 'ashr juz'an (It has become known by trial and error...18"): The word that I have translated as "trial and error," tajriba, has something of our sense of experiment, which it has come to mean in modern Arabic. Without attempting to overgeneralize at this point, one might contrast tajriba with imtihān and $i^{c} t i b a \bar{a} r$, both of which are used in the astronomical literature to refer to the testing of some received value or parameter rather than finding a new one. ${ }^{10}$ Bïrjandī gives a number of methods by which one could arrive at a parameter for the solar depression; he wishes to dispel the notion (perhaps by some religious figures?) that one could not obtain a reliable value since the sun could not be observed at the appropriate time. He mentions observations of the fixed stars, the employment of an astrolabe, and the use of clocks. Whatever methods were used, we do know that 18° was only one of several values in use during the Islamic Middle Ages; for some of the different parameters and a discussion, see King [1973], pp. 366-367.
III. 9 [2]4-1. fa-fí al-biläd...fi al-munqalab al-sayfi (Thus in the lands...at the summer solstice): From III. 5 [1]15-21, we have
lowest altitude of summer solstice $=\phi-\bar{\varepsilon}=481 / 2^{\circ}-661 / 2^{\circ}=-18^{\circ}$
which indicates that for $\phi=48 \frac{1}{2} 2^{\circ}$ dusk and dawn will be continuous when the sun is at the summer solstice.
III. 9 [2]21. fi zamān akthar (for a longer period): There are two ways to interpret this phrase. Shīrāzī understands the increase in time to refer to the con-tinuity-and thus mixing-of dawn and dusk over a single night. At $\phi=48 \frac{1}{2} 2^{\circ}$, dawn will begin at just the moment dusk is ending. At higher latitudes where the solar depression at summer solstice decreases, one could say that dawn begins before dusk has ended. Bīrjandi does not think much of this interpretation and instead takes "for a longer period" to refer to the increase in the number of days during which dusk and dawn are continuous for $\phi>48 \frac{1}{2}{ }^{\circ}$. Although Birjandi makes a strong case for his admittedly more sensible interpretation, one must acknowledge that Shīräzī is closer in time and thinking to Naṣīr al-Dīn; the reader is free to choose between the alternatives.
III. 9 [2]3-4. wa-yatabayyanu mimmā wasafnā...li-'l-ufaq al-rahawī (From what we have described...should be clear): See III. 6 [2]11-12, in which Ṭūsì states that the setting of dusk or the rising of dawn will occur in 50 nychthemerons for an observer at the pole; this is a direct consequence of the 18° parameter as explained there in our commentary.

[^175]
Book III, Chapter Ten

III. 10 [1]. For Ptolemy's discussion of hours and daylight, see Alm., pp. 99, 104 (H142-145); HAMA, 1: 36-37, 40-41; and Pedersen [1974], pp. 113-114. Although his methods for determining length of daylight and of converting equal into seasonal hours (and vice versa) are obviously equivalent to those of Islamic astronomers, Ptolemy does not use the terms "arc of daylight" or "equation of daylight" as such; for these see Tafhim, p. 131; Kennedy, Tahdïd Comm., pp. 70, 113; and III. 3 [2].
III. 10 [1]9-15. al-mashhür...bi-hasab dhälik (It is commonly held...The arc of night is in accordance with the above): One may define the standard arc of daylight (d) as

$$
d=180^{\circ}+2 q
$$

where q is the equation of daylight. ${ }^{1}$ But as Ṭūsì notes, the sun will traverse a small arc of the ecliptic during daylight due to its proper motion, and the codescension ${ }^{2}$ of this arc must be added to or subtracted from the standard arc of daylight to obtain the true arc of daylight. Now one would assume at first glance that since the daily motion is from east to west and the sun's proper motion has a generally west to east direction the correction should always be additive, and this is the reading one finds in MSS DGLMT. But in MS F and in the margin of MS T, the words "or less" (aw anqas) have been added to indicate a possible subtractive correction. This addition is dismissed by Nisā̄ūrī and Jurjānī, ${ }^{3}$ who take it to be a phrase that has inadvertently (sahwan) entered the manuscript tradition. However, an annotator contends in a marginal note to Nissäbūri's commentary that the additional phrase is not inadvertent but is in fact correct, ${ }^{4}$ and this line is supported by Bīrjandī. They point to the Arctic region where the correction will be negative if the sun is on the arc that sets in reverse order. ${ }^{5}$ To see how this would work, we can refer to Figs. T20-T22, which represent the situation for $\phi=70^{\circ}$. If the sun is at Libra 0° when it rises (Fig. T20), it will move slightly into Libra during the course of the daylight period. But since Libra sets in reverse order, the point the sun has reached in Libra will set before Libra 0° and hence the correction to the standard arc of daylight will be negative (Fig. T22). Biirjandì further notes that if the latitude is equal to the complement of the obliquity (see III. 4 [5]), then when the sun is on the ecliptic arc that sets in one stroke ${ }^{6}$ the correction will be zero since the sun thereupon sets simultaneously with its rising point.

[^176]There is another anomaly that one might consider in correcting the standard arc of daylight, namely the one due to the shifting of the sun from one day-circle to another in the course of a day. In Fig. C28, this will result in the equation of daylight q in the western triangle differing from that of the eastern triangle. Generally this is a very small correction, but for $\phi>50^{\circ}$, it can reach a large enough negative value to result, when combined with the previous positive correction, in a negative correction. But since this second correction is not mentioned by anyone other than Birjandi, who dismisses it as insignificant, it seems safe to conclude that the additional phrase "or less" was added to account for the situation in the Arctic region. This would certainly not be inconsistent with what we have previously seen, namely a concern by Ṭūsī and by the commentators to have their statements be as all-inclusive as possible; I have therefore concluded that this addition should be considered part of the β version.
III.10 [1]15-20. fa-idhā qusima...lā yakhtalifäni (Now if each of the two arcs is divided by $15 \ldots$. that are invariable): If one divides the day into 24 hours of equal length, which are the kind of hours we are accustomed to using, then in general the number of hours of daylight will not be equal to the hours of darkness. If one has 12 hours of daylight and 12 hours of darkness no matter what the season, then these hours are of variable, or "unequal," length. The former type of hours were referred to by the ancients as equal or equinoctial hours, whereas the latter, which were in general use, were called seasonal or civil hours. ${ }^{7}$ In the case of equal hours, the number of degrees/hour is invariable, whereas for seasonal hours it is the hours/daylight or hours/darkness that is invariable. ${ }^{8}$

In order to clarify Tūsi's rather tortured phrasing here, let us take an example. Assume the arc of daylight is 150° and the arc of night is 210°. Then since there are 15% equal hour, one has

$$
\begin{aligned}
& 150^{\circ} \div 15 \% \text { equal hour }=10 \text { hours }(\text { daylight }) \\
& 210^{\circ} \div 15^{\circ} \% \text { qual hour }=14 \text { hours }(\text { night })
\end{aligned}
$$

On the other hand, there are 12 unequal hours/daylight or night; thus

$$
\begin{aligned}
& 150^{\circ} \div 12 \text { hours }=12 \frac{1}{2} \% \text { unequal hour (daylight) } \\
& 210^{\circ} \div 12 \text { hours }=17 \frac{1}{2} \% \text { unequal hour (night) }
\end{aligned}
$$

Compare Tafhïm, pp. 53-54.

[^177]III. 10 [2]. For the synodic month, see Alm., pp. 174-176 (H270-272); HAMA, 1: 69-70, 3: 1083-1084; and Pedersen [1974], pp. 160-164. Compare Tafhim, pp. 161-162.
III. 10 [2]21-22. wa-qad tabayyana...min al-shams (which have been shown...from the sun): This is a reference to II. 13 [1].
W. 10 [2]2-5. fa-mustac milüh min ahl al-zāhir...yasṭalihūna ${ }^{c}$ alayh (Those employing the [month] who [rely] on appearances...they have conventionally adopted): It is very likely that Țūsī is thinking of the Mongols when he refers to those who begin the month from the day of conjunction; Bīrjandī seems to confirm this when he ascribes this type of reckoning to the "Turks." This month and the calendar of which it is a part is ultimately Chinese in origin; for a discussion, see Kennedy [1964].

The Muslims, of course, take the first of the month to be from the first visibility of the lunar crescent;' they were preceded in this by the Jews and Babylonians among others.

That Țūsì has anyone specifically in mind when he states that a month may be from "some other shape to its like" is unlikely; Bïrjandī calls this an "intellectual possibility" with no known examples.
W. 10 [2]5-11. wa-mustac ${ }^{\text {milüh }}$ min ahl al-ḥisāb...wa-tusammā tilk al-ayyām $k a b \bar{a} ' i s$ (Those employing the [month] who [rely] on calculation...These are called intercalary days): The Islamic calendar is usually taken to be observational; in other words, the new month starts when the crescent is actually observed. There is no intercalation since on the one hand Holy Writ had forbidden its use ${ }^{9}$ and on the other a natural calendar is obviously self-regulating. But such a calendar is very difficult, if not impossible, to set in advance; a certain month does not have the same number of days from year to year and even two contiguous regions may have different starting days for a given month. Add to this the problems of weather and religious differences concerning the number of days that Ramaḍān, the month of fasting, should have and one can see that determining a date in the future (or, for that matter, in the past) is subject to a degree of uncertainty. ${ }^{10}$

This state of affairs was intolerable to the astronomers, of course, and they devised a "calculated" lunar calendar. ${ }^{11}$ In this system the odd-numbered months have 30 days, while the even-numbered months have 29 . But since 12 lunar months consist of approximately $354^{11 / 30}$ days, one will need to have 11

[^178]leap years in every 30 -year cycle. ${ }^{12}$ The added day was given to Dhü al-Hijja, the last month of the Islamic calendar, usually in years $2,5,7,10,13,16,18,21,24,26,29 .{ }^{13}$ This choice is dictated by the cumulative fractional part of a day, which exceeds $1 / 2$ for the 354th day of these years. In the case of year 16, there is a difference of opinion with some opting instead for year 15, the reason being that at the end of year 15 the cumulative fractional part is exactly $1 / 2$. Bīrūnī mentions another method of intercalation to obtain the 11 additional days whereby every 3rd year has 355 days, but he does not notice that in a 30 -year cycle one obtains 10 rather than 11 additional days. ${ }^{14}$

The existence of both an observational and a calculated lunar calendar raises the issue of which is being used when one is given a hijra date in a medieval source. Judging from what Bīrünī says in the Tafhim, these calculated "leap years of the Arabs" (kabā ${ }^{\prime}$ is $a l^{-}{ }^{c}$ Arab) are so called not because the Arabs themselves use (or used) them but because they are the basis for dating when the writers of astronomical tables (zijes) have recourse to Arabic years (p. 163). That the Islamic calendar is based on observation is also emphasized by Biriunī in his Chronology, ${ }^{15}$ and it is telling that he does not even mention a calculated Islamic calendar there. But I do not feel this is the end of the story. One may assume, with what degree of certainty is unclear, that when one encounters a hijra date for an observation in an astronomical text it is the calculated date; but should this assumption carry over to the date of composition or copying? One would need to analyze a large sample of dates that give the day of the week; in these cases an exact correspondence with the Julian day can be made.
III.10 [2]11. aw yazīdūna...wajh äkhar (Or else they add...some other way): Exactly what Țūsī has in mind here is not clear. Nisäbüria and Jurjãnī think he is referring to the systems of intercalation of the Jews, "Turks," and pre-Islamic Arabs. But as Bījandì notes, these calendars are observational, whereas Țūsì is discussing intercalation in a calculated lunar calendar. Perbaps he is thinking of the variations mentioned in the previous comment, namely having the 15th rather than the 16th be a leap year in the 30 -year cycle, Bīrūni's 3rd year rule, or perhaps the 8 -year cycle. Against this is the fact that he himself has not mentioned any specific rule.

[^179]III. 10 [3]. For the year, see Alm., pp. 131-141 (H191-209); HAMA, 1: 54-55, 3: 1082-1083; and Pedersen [1974], pp. 126-134. Compare Tafhim, pp. 162-165, 171.
II. 10 [3]14-17. wa-yahsulu dhālik...min al-kusür (This occurs in 3651/4 days...minus a fractional part): The following table gives the values for the tropical year as reported by Birjandī, who provides the fractional part to be subtracted from $3651 / 4$ days.

Table 9. Tropical Year Lengths.

Ptolemy ${ }^{16}$	$365^{\mathrm{d}} 6^{\mathrm{h}}-44 / 5^{\mathrm{m}}$	$\left(=365 ; 14,48^{\mathrm{d}}\right)$
Battānī (d. 929) ${ }^{17}$	$365^{\mathrm{d}} 6^{\mathrm{h}}-13 / 5^{\mathrm{m}}$	$\left(=365 ; 14,26^{\mathrm{d}}\right)$
Muhyī al-Dīn al-Maghribī (d. 1283)	$365^{\mathrm{d}} 6^{\mathrm{h}}-12^{\mathrm{m}}$	$\left(=365 ; 14,30^{\mathrm{d}}\right)$
Tūsī ("The new observations at Marāgha")	$365^{\mathrm{d}} 6^{\mathrm{h}}-11^{\mathrm{m}}$	$\left(=365 ; 14,32 \frac{1 / 2 \mathrm{~d}}{\mathrm{~d}}\right)$
A "Modern"	$365^{\mathrm{d}} 6^{\mathrm{h}}-93 / 5^{\mathrm{m}}$	$\left(=365 ; 14,36^{\mathrm{d}}\right)$

II. 10 [3]15-17. wa-yatimmu fihā...min al-kusür (During [a year]...minus a fractional part):

$$
12 \text { lunar months }=354^{\mathrm{d}} 8^{\mathrm{h}} 48^{\mathrm{m}}=354 ; 22^{\mathrm{d}}
$$

Subtracting this from Ptolemy's tropical year one obtains

$$
365 ; 14,48^{\mathrm{d}}-354 ; 22^{\mathrm{d}}=10 ; 52,48^{\mathrm{d}}\left(=10^{\mathrm{d}} 21^{\mathrm{h}} 71 / 5^{\mathrm{m}}\right)
$$

II. 10 [3]17-10. wa-musta ${ }^{c_{m i l u}}$ ā̄...sinīn qamariyya (Of those employing [the year]...which they call a lunar year): The following table summarizes the various years mentioned by Tuusī:

[^180]Table 10. Conventional Years.

Year	Adopted by	Reference
I. "True solar year," usually taken to begin at spring equinox		
Ia. "True solar" months, determined by arrival of sun at the same degree in each zodiacal sign	"Ancient Astrologers"	Ḱhafrī and Bīrjandī
Ib. 12 30-day "conventional" months plus 5 epagomenal days; leap year in 4th or 5th year	"Modern Astrologers"; the Seljuq ruler Malikshāh (1072-1092) ["Jalălī calendar"]; and the Mongol ruler Ghāzān Khān (12951304) ["Khänī calendar"]	Khafri and Bīrjandi; cf. Sayili, Obs., p. 229
II. "Conventional solar year" (i.e. with conventional starting date); average length slightly longer than a tropical year (for IIa); 12 months, each approximately (or exactly) 30 days long		
Па. 365 -day standard year with 366 -day leap year every 4th year	Greeks, Romans, "Syrians and Chaldaeans," and "modern" Copts; year of Caliph al-Muctaḍid bi-Allāh (892902) and Khwārizm-Shāh Aḥmad (calendar reform of 959)	Tafhīm, p. 163; Äthär, pp. 10, 31-33, 68, 241 (=Chron., pp. 12, 36-38, 81, 229-230)
IIb. 365-day year with no leap years	"Ancient" Copts (i.e. Ancient Egyptians) and pre-Islamic Persians*	Tafhīm, p. 163; Āthār, 10-11 (=Chron., 12-13)
III. Luni-solar calendar; month added every 3rd or 2nd year	Jews, Ṣābians, Ḥarrānians, Turks(?), and pre-Islamic Arabs (the latter not consistently)	Khafrī and Bīrjandī; Tafhìm, p. 164; Äthār, 11-12 (=Chron. 13-14)
IV. Pure lunar year	Muslims	III. 10 [3]9-10

[^181]III. 10 [3]22. al-mustaraqa (stolen): Birjandi insists on this vocalization, with which I agree; Steingass, however, has mustariqa.
III.10 [3]10-11. wa-li-kull qawm...bi-hādhā al-cilm (Every people has an epoch...to this science): On epochs, see Tafhïm, pp. 171-173 and Āthār (Chron.), Chs. 3, 6, 8. TTūsī is again careful to differentiate cilm al-hay'a from other disciplines; see our introduction, pp. 37-38, and cf. II. 4 [12], where Ṭūsī states that the science of the fixed stars is a separate discipline. Concerning the specific question of including a lengthy discussion of chronology in a hay'a work, Țūsì may be gently chiding Khiraqi, who had devoted a large part of his Muntahā to chronology.

Book III, Chapter Eleven

III.11 [1]. We may define the "degree of transit" of a star as the point on the ecliptic that crosses the meridian (or "culminates") simultaneously with that star, both the point and star being assumed above the horizon. ${ }^{1}$ In general the degree of transit will not be equal to the degree of longitude of a star, which is also a point on the ecliptic; ${ }^{2}$ the exception will be when the star and the ecliptic poles are all on the meridian. In this latter case the star's latitude circle and the meridian coincide, and thus the degree of transit and the degree of longitude will also coincide.

To give examples of the more general case, we shall refer to Fig. C35. Both the northern celestial and ecliptic poles are visible and the ecliptic pole is east of the meridian. ${ }^{3}$ For a star S_{1} north of the ecliptic (or, more correctly, in the same direction from the ecliptic as the visible ecliptic pole), its degree of longitude is L_{1}, while its degree of transit is L_{T}; in this case L_{1} will have transited before L_{T}. For a star S_{2} south of the ecliptic (or, more correctly, in the direction opposite the visible ecliptic pole), its degree of longitude is L_{2}, while its degree of transit is L_{T}; in this case L_{T} will transit before L_{2}. If the ecliptic pole is west of the meridian, the situation of L_{1} and L_{2} will be reversed.
III. 11 [2-3]. The degree of rising (or the degree of setting) may be defined in a way analogous to the degree of transit, viz. the point on the ecliptic that rises (or sets) simultaneously with a given star. For the equator the situation is straightforward. If the ecliptic poles are on the horizon circle when a star rises

[^182](or sets), the degree of rising (or setting) will be the same as the degree of longitude. For the remaining cases, we see from Fig. C36 that if a star S_{1} is in the direction of the visible pole (here the northern one), then it will rise before its degree of longitude and set after it. For a star S_{2} in the direction of the invisible pole, it will rise after its degree of longitude and set before it. The similarity that Țūsī draws between the situation of rising and setting at the equator and that of transit for the other horizons is a consequence of the fact that in general any meridian circle is also a horizon circle for the equator (cf. III. 7 [3]).

It is reasonably clear that for $\phi \neq 0$, the situation for rising and setting will be the same; in other words, a star toward the visible pole will rise before its degree of longitude and set after it, while a star away from the visible pole will rise after and set before. Now for $\phi=0$, the circuits of the ecliptic poles are bisected by the horizon circle; thus each ecliptic pole is visible half the time. As a consequence, as stated at the end of paragraph [2], the half of the ecliptic bisected by the vernal equinox will rise, while the southern half will transit during the time the northern pole is visible. But if $0<|\phi|<\varepsilon$, the circuits of the ecliptic poles will be unequally divided by the horizon circle and as a result one will not have half of the ecliptic rising or transiting during the period of visibility of one ecliptic pole or the other. This is what Țüsī is trying to get at in paragraph [3]. For example, if $\phi \approx 20 ; 16^{\circ}$, Gemini 0° and Leo 0° will pass over the zenith; consequently 10 zodiacal signs will transit (or rise) when the northern ecliptic pole is visible, while only 2 zodiacal signs will transit (or rise) when the southern ecliptic pole is visible.

If I understand the last sentence of the chapter, Tūsī is pointing out that for $0 \leq|\phi|<\varepsilon$ one could have the situation whereby for a given star one pole is visible at rising and the other is visible at setting; thus in applying the above rule, one uses one pole for the degree of rising and the other for the degree of setting. For $|\phi|>\varepsilon$, this "variation" (ikhtiläf) would not arise, of course, since one ecliptic pole is permanently visible; in this case the rule may be uniformly applied with reference to that single pole.

Book III, Chapter Twelve

III. 12 [1-2]. For the justification of these two methods for determining the meridian line, see Bīrūnĩ, Shadows, 1: 144-148, 2: 78-79. The first method is based upon direct observations of two equal solar altitudes on the two sides of the maximum altitude; Birūnī tells us they can be found by the use of the armillary sphere or the safiha (astrolabe?) (ibid., 1: 150). The second, by which one finds two equal solar altitudes indirectly by observing two equal shadow lengths, is the method of the Indian circle; see ibid., 1: 150-160, 2: 80-90 and Tafhïm, pp. 49-50.

Taking the radius of the Indian circle to be twice the length of the gnomon (lit., measuring instrument [miqyās]) is standard according to Bīrjandī. But such a ratio will not be applicable for all latitudes, even for all those of the inhabited
quarter. Since the Indian circle method depends upon the shadow being within the circle at noon, a $2: 1$ ratio of radius to gnomon will not be usable for the entire year unless $\phi<40^{\circ}$. To see this one should note that at $\phi=40^{\circ}$, the minimum solar altitude at noon is about $261 / 2^{\circ}$ and $\tan \left(261 / 2^{\circ}\right) \approx 1 / 2$. Bīrūnï wishes to give a rule for $\phi<48^{\circ}$ and so he is led to recommend a radius of 4 times the gnomon. For Bīrūni's discussion and an elaboration of the method, see Shadows, 1: 152-153, 2: 81-82.

Although Ptolemy in the Almagest does not give a method for finding the meridian line, ${ }^{1}$ Diodorus of Alexandria (1st c. B.C.) did advance one in his nonextant Analemma, which was known in some form to Bīrūni. (See Shadows, 1: 162-166, 2: 91-93; Kennedy [1959]; and HAMA, 2: 841-842.) On other methods used or discussed in medieval Islam, see Shadows, 1: 161, 167-172, 2: 91, 94-97 (cf. Tahdīd, pp. 287-288 (trans., pp. 256-258); Kennedy, Tahdìd Comm., pp. 216-219; and Kennedy [1963]).
III.12 [1]8 \& [2]16. dä'ira awwal al-sumūt; sumūt (prime vertical circle; azimuths): For these terms, see $\Pi .3$ [14] and [17].
III. 12 [3-4]. For a competent overview of the determination of the qibla, see King, "Ḳibla," in which one also finds an extensive list of further references.
III.12 [3]19; [4]8\&17. samt al-qibla (the qibla bearing): This phrase is usually intended to indicate the point of intersection in the direction of Mecca of the horizon with the great circle joining the local zenith with the zenith of Mecca. ${ }^{2}$ Thus one sometimes finds this referred to as the nuqta samt al-qibla (qibla bearing point). The qaws samt al-qibla (arc of the qibla bearing) is defined by Birjandī as the arc along the horizon between the samt al-qibla and either the north or south point (depending on which would yield an arc less than 90°); alternatively it could be between the samt al-qibla and the east or west point. Bīrjandī claims that qaws inhiräf al-qibla (arc of deviation of the qibla) is an equivalent formulation. ${ }^{3}$ Finally the khatt samt al-qibla is defined as the line joining the zenith with the qibla bearing point. (See Fig. C37, where the above terms are indicated for a special case.)

[^183]These definitions should clear up the matter, but unfortunately Naṣir al-Dīn is not being cooperative; although samt al-qibla is taken by the commentators to be a point in line 19, it almost certainly is a line or direction in line 17 . Given this, I have translated samt al-qibla by the ambiguous "qibla bearing" since Ṭusī does not seem to be using it strictly as a point.
III.12 [3]19-22. wa-ammā samt al-qibla...wa-thulthā juz' (As for the qibla bearing... $21^{2 / 3^{\circ}}$): These fairly common values for Mecca's longitude and latitude ($77 ; 10^{\circ}$ and $21 ; 40^{\circ}$, respectively) are, according to the list of Kennedy and Kennedy [1987], pp. 225-226, first found in Al-Züj al-jāmic of Kūshyār b. Labbān (ca. 990). It is noteworthy that the values they report for Țūsi's $\bar{I} l k h a \bar{n} \bar{i}$ $Z \bar{l} j$ are $77 ; 13^{\circ}$ and $21 ; 40^{\circ}$. For the 10° longitude difference between the Eternal Islands and the "coast of the western sea," see III. 1 [7].
III. 12 [3]4-7. wa-kull balda...maghrib al-ictidāl (Every locality...setting place of the equinox): Țūsì is here pointing out that if the locality has the same latitude as Mecca, Mecca's zenith will not be on the east-west line but will be north of it. To see this, we refer to Fig. C37 where a locality with zenith Z has latitude ϕ_{M} equal to that of Mecca. Since the maximum declination along the east-west line occurs at the local zenith, then the zenith of Mecca M will necessarily be north of the east-west line. Thus if Mecca is to the east, it will be "to the left of the rising place of the equinox" (i.e. the east point) and if it is to the west it will be "to the right of the setting place of the equinox" (i.e. the west point). This problem is akin to that old puzzler of why one (normally) flies north to go from New York to Madrid despite the fact that they are very nearly on the same latitude circle.
III. 12 [4]. One also finds this technique for determining the qibla in Jaghminī, $\Pi .3$ (trans., p. 272). ${ }^{4}$ It takes advantage of the fact that Mecca is in the Tropics and thus witnesses two zenith transits of the sun every year. ${ }^{5}$ At these two moments, the shadow of a gnomon elsewhere will be in the plane of the altitude circle that joins the local zenith with that of Mecca. By translating the longitude difference between the locality and Mecca into an exact time difference (i.e. hours before or after noon), one has a straightforward way of determining the qibla.

[^184]We should here note several points: this is probably the simplest of the many ways of determining the qibla; it is based on direct observation rather than on a trigonometric or graphical (analemma) solution; and in principle it is exact. But besides not being very useful for someone in Boston, it has a number of other drawbacks. First one has only two chances during a year to use it; one must hope for sunny weather on those two days. More serious is the problem of time determination. Even if one assumes that he has a correct longitude difference, ${ }^{6}$ one would still need a fairly precise means for determining time before or after noon since the exact formula for the qibla is rather sensitive to inaccuracies in longitude difference. For example, an error of only a few minutes (not unlikely considering the time-keeping devices of the medieval period) can result in a discrepancy of a degree or more depending on the latitude and longitude of the locality in question. Thus this method could have been of use to someone who wanted a reasonably accurate qibla, but it could hardly compete with the exact and vastly more sophisticated solutions that were developed in the Islamic Middle Ages. Again it is clear that Țūsi, who was fully in control of these latter methods, did not wish to burden the reader of the Tadhkira with such mathematical detail.

[^185]
BOOK IV

Book IV, Chapter One

No hay'a work would be complete without a section dealing with sizes and distances; ${ }^{1}$ for it is here that the relative sizes and distances of the celestial bodies that have been individually derived are converted into absolute quantities so that these bodies may be fitted together to form a coherent, unified structure, or hay'a.
IV. 1 [1]. The following is a summary of the propositions with references to works by Archimedes and Țūsī's recensions. Țūsī seems to have modified (2) and (3) so that the component variables of the areas are given as sides of rectangles. The actual Archimedean propositions, in modern symbols, are provided in brackets.
[$C=$ circumference of circle (or of largest circle in sphere); $A=$ area of circle (or of largest circle in sphere); $S=$ surface area of sphere; $\mathrm{L}=$ area of lune; $\mathrm{d}=$ diameter; $\mathrm{r}=$ radius; $D C=$ Dimension of the Circle; $S C=$ On the Sphere and Cylinder; Ras = Ṭūsī, Rasä'il.]
(1) $\mathrm{C} \approx 31 / 7 \cdot \mathrm{~d} \quad[310 / 71 \cdot \mathrm{~d}<\mathrm{C}<31 / 7 \cdot \mathrm{~d}] \quad D C$, Prop. 3; Ras., 2(5): 129.
(2) $\mathrm{A}=\mathrm{r} \cdot 1 / 2 \mathrm{C} \quad[\mathrm{A}=1 / 2(\mathrm{r} \cdot \mathrm{C})] \quad D C$, Prop. 1; Ras., 2(5): 133.
(3) $\mathrm{S}=\mathrm{d} \cdot \mathrm{C} \quad[\mathrm{S}=4 \mathrm{~A}] \quad$ SC 1, Prop. 33; Ras., 2(5): 63.
(4) $\mathrm{L}=\mathrm{d} \cdot\left(\left(\alpha / 360^{\circ}\right) \cdot \mathrm{C}\right)$ [α is the angle of the lune; note that $\left(\left(\alpha / 360^{\circ}\right) \cdot C\right)$, the maximum inclination, is a linear measure.]

[^186]IV. 1 [1]6. musādarāt (preliminary propositions): In the Arabic translations of Euclid and Aristotle, this term was used to render the $\alpha i \tau \eta \mu \alpha \tau \alpha$ (postulates), but it could also be used to cover all the premises of a mathematical work. ${ }^{2}$ Here, however, the word clearly does not have the restricted sense of unprovable premises since it refers to propositions (or "principles") that are "proved in another science and are taken for granted in this science" (I.Intr. [1]). Since they have not been necessary until now, Țūsì did not place them in I.1, which is generally restricted to geometrical definitions. Note that for his couple, T. Tusĩ uses the word muqaddama in $\Pi .11$ [2], which I have translated as lemma. Since he also uses the same word to refer to these musādarāt at the beginning of the next paragraph, he apparently does not strictly distinguish between the two terms.
IV. 1 [2]. There is a serious problem in this paragraph inasmuch as the length of a meridian degree that is cited by Țūsĩ, namely $22 / 9$ parasangs ($=662 / 3$ miles), is Ptolemaic and at considerable variance with the value that one usually finds attributed to Ma'mūn's astronomers, which is something between 56 and 57 miles. Although at first sight this may appear to be a simple mistake, it turns out to be the tip of a rather unwieldy iceberg. Thus to explain this "mistake," we need to have an extended but far from complete discussion of the measurement of the Earth, an excursus for which I beg the reader's indulgence.

Although Ptolemy in the Almagest does not give an absolute linear value for the size of the Earth, we know from the Planetary Hypotheses and the Geography ${ }^{3}$ that he adopted the norm of 180,000 stades for the circumference, a figure that seems to have replaced Eratosthenes's (3rd c. B.C.) 252,000 stades well before his time. ${ }^{4}$ Now one of the equivalences that was introduced during the reign of the Ptolemies in Egypt and that spread to Syria was 1 mile $=7 \frac{1}{2}$ stades. From this and from Ptolemy's norm one arrives at a rather tidy circumference of 24,000 miles and thus a value of $662 / 3$ miles for the length of a terrestrial degree. These numbers are attested in various Syriac writers and even in the Talmud. ${ }^{5}$ No doubt some of these accounts came to be known in Islam in addition to the direct statements from the Planetary Hypotheses and the Geography. The received conversion of stades into miles, however, was not universally accepted; we learn from Habash that the Caliph Ma'mūn (reigned 813-33) was not satisfied with the answers he was given concerning the length of a Ptolemaic stade. ${ }^{6}$ We know from a variety of sources that Ma'mūn thereupon ordered his astronomers to undertake one or more expeditions to ascertain anew the size of the Earth, this time in the standard measures of the day. But despite considerable

[^187]research by Nallino ${ }^{7}$ and Barani [1951], the actual details of these expeditions have been rather obscure, in large part because modern historians have until recently been forced to rely upon later sources for their information. But two contemporary sources have lately turned up, and they shed considerable, though not complete, light on Ma'mün's attempts to determine the Earth's circumference. The first has been uncovered by Langermann [1985], and it is Habash's (d. after 864) Kitäb al-ajräm wa-'l-abc $\bar{a} d$ (Book of Bodies and Distances). The second has hitherto gone unnoticed, at least as a source for this problem, and it is Kitāb Harakat al-aflāk (Book of the Motion of the Orbs) by Muḥammad b. Mūsā b. Shākir (d. 873), the eldest of the Banū Mūsā. ${ }^{8}$ Although it would take us far afield to deal adequately with these new sources and reopen the whole question of Ma'mūn's attempts to measure the Earth's size, it will be necessary to rehearse at least part of the story in order to understand TTūis's apparently incorrect statement in this passage.

Habash tells us ${ }^{9}$ that Ma'mūn sent Khālid ibn ${ }^{\text {c} A b d ~ a l-M a l i k ~}$ al-Marwarrūdhī, ${ }^{10}{ }^{\text {c}}$ Alī̀ ibn ${ }^{\text {CIIssā }}$ al-Asțurlābī, and Aḥmad ibn al-Buhtarī al-Dharrā̄ ${ }^{\mathrm{c}}$ to the Plain of Sinjār near Mosul to make the measurements, and they arrived at a figure of 56 miles for a terrestrial degree, each mile being 4000 black cubits, which was a standard unit established by Ma'mūn. Habash states that he got this information directly from Khālid, and it is clear that this text by Habash served as a source for Mas ${ }^{\mathrm{C}} \bar{u}^{\mathrm{d}} \mathrm{i}$ (d. 957-58), Ibn Yūnus (d. 1009), and Bīrūnī (d. ca. 1050). ${ }^{11}$

There is little, if any, reason to doubt the authenticity of what Habash tells us; the same courtesy, however, should not be extended to various other reports of Ma'mūn's scientific expeditions. Bīrūnī already cast doubt on a survey allegedly undertaken between Baghdad and Sāmarrā ${ }^{12}$ and Nallino was skeptical of a reported survey near Kūfa. ${ }^{13}$ Another expedition, this one between Raqqa

[^188]and Palmyra in Syria, has escaped the doubts cast on these others. At first glance the evidence in its favor seems strong. Ibn Yūnus tells us that his information for this expedition comes from a text by Sanad ibn ${ }^{\text {c Alī (}}$ (fl. 1st half 9th c.), who stated that he was part of one of two groups sent by Ma'mūn to determine a terrestrial degree by measuring it in the level area between Palmyra and Raqqa; ${ }^{14}$ their final agreed-upon value was 57 miles/degree. ${ }^{15}$ But despite the authenticity bestowed on this report as a result of Ibn Yūnus's claim that he is quoting directly from a work of Sanad, it does contain a number of suspicious features. First, the participants, with the exception of Sanad, are precisely the same individuals named by Habash for the Sinjār expedition. Second, Ibn Yūnus, who clearly knows of the Sinjār expedition from Habash's Book of Bodies and Distances, ${ }^{16}$ does not list any names at all in connection with it even though Habash, as we have seen, does so. Finally Ibn Yūnus is the only known source for this version of the Palmyra-Raqqa expedition, whereas several sources confirm a similar expedition to Sinjār. ${ }^{17}$ On the other hand, Bīrūnī does mention Sanad in connection with finding the size of the Earth but the method described has to do with measuring the dip of the horizon from the summit of a high mountain. This was undertaken when Sanad was "in the company of al-Ma'mūn when he made his campaign against the Byzantines."18

Where does this leave us as far as the Palmyra-Raqqa expedition is concerned? Despite the suspicions raised above, there is certainly not enough evidence to discard Ibn Yūnus's account out of hand. Ma'mūn could well have had several expeditions only one of which, that to Sinjär, was widely reported in the later literature. But another possibility presents itself, namely that Ibn Yūnus has somehow conflated Habash's account with Sanad's attempted measurement using the "dip of the horizon method." Yet another possibility is that he has confused the Sinjār expedition with a widely reported procedure for finding the size of the Earth that simply used well-known values for the latitudes of Raqqa and Palmyra and the distance between them. The earliest Arabic account of this known to me is due to Muḥammad ibn Mūsā in his Harakat al-aflāk (Motion of the Orbs). The relevant passage ${ }^{19}$ and translation is as follows:

[^189]
Passage from Harakat al-afläk (Motion of the Orbs)

Muḥammad ibn Mūsā
Furthermore if we find two cities beneath a meridian line, which is the orb [falak] that cuts the ecliptic circle from south to north, their longitude being the same but they being different in latitude, one being less than the other and its northern pole being less in altitude than the other by a single degree or thereabouts, then when we measure the distance between the two cities we will find how many miles long is each degree of the circle [istidāra] of the sky on the Earth \therefore Now if there is between the two cities a single degree in the altitude or depression of the pole, then when you measure the distance of that you will find it to be $66^{2} / 3$ miles. This has been measured for two known cities, the city of Palmyra and the city of Raqqa. That is, they found the inclination of Palmyra [lacuna?] from the zenith that is the altitude of its northern pole $351_{3}{ }^{\circ}$, and [from] Palmyra it is in the direction of the northern side. They are both beneath a meridian line. They then found what is between Raqqa and Palmyra to be 90 miles just as was found by him [or those] who had measured it before us. From that it was learned |that each degree of the great circle [istidära] of the celestial sphere [falak] has a length of $66^{2} / 3$ miles on the Earth. Furthermore: for finding the Earth's diameter we demarcate the meridian in a town whose latitude is known. Then one travels in its direction, any deviation kept to a minimum and any curving from it being guarded against. Then when we arrive at another town whose latitude is different from the latitude of the first town from which we began, we take the difference of the two latitudes and retain it. Then we take the number of parasangs and cubits that we have traversed along the Earth; then its amount to the degrees that were retained is as the entire circumference [dawr] of the Earth to 360 [lacuna or copyist error?] to the degrees that were retained from it; this then is the circumference of the Earth. From this we then know its diameter.

Furthermore: the construction of a figure for the circumference of the Earth. If we wish to do this we should ascend a high, towering mountain but in front of 25 which is level land. Then we take an altitude plate [safihat al-irtifă ${ }^{c}$, i.e. of an astrolabe] and then its alidade or its line [khatt] is raised until our horizon is sighted, which is the place at which the sky touches the Earth at a point on [end of extant text]

وايضا انا [!] وجدنا مدينتين تحت خط نصف النهار وهو
الفلك الـذي يتطع دايـره البروج مـن الجنوب الي الشمـال يكون طولهما واحد ويكونان في العرض مختلفين الواحده الاقن اقل من الاخري الانري
 5 ذلك فلما مسحنا بعد ما بين المدينتين علمنا الما كم ميلا لكل در درجة من الاستداره السمـاوية في الارض من الطول
 مسحت مسافة ذلك ستجده 7 7 ج 77 ميلا وثلثي ميل وقد مسح ذلك في مدينتين معروفتين مدينه تدمر ومدينه الرقه وذلك انهم[؟] 10 وجـد ميل تـدمر عن سمت رؤسا [!] الذي هو ارتفاع قطبها
 وهما جميعا تحت خط نصف النهار فوجدوا ما ما بين الرقه وتدمر
 من استداره الفلك الاعظم يكون طولها من الارض 77 ميلا وثلثى 15 ميل وايضا في معرفة قطر الارض نستخرج حد نصف النهار في بلد
 وينحرس من الاعواجاج [!] عنه فاذا صرنا الي بلد اخر خالف عرضه عرض البلد الاول الذي ابتدانا منه اخذنا فضل ما ما بين العرضي
 20 والاذرع من الارض فيكون قدره من الارضن جزا المحفوظه كقـدر جميع دور الارض من •ج7 الي الاجزا المحنوظه منها فتكون ذلك دور الارض ثم نعرف منه قطرها
وايضا عمل شكل في دور الارض اذا اردنا ذلك فانا نعلا نلوا
جبلا عاليا مرتفعا ولكن بين يـديه استوا من الارض ثم ناخـذ 25 صفيحة الارتفاع فيرفع عضادتها او خطها حتي يري الاريا افقنا وهو الموضع الذي كان السماء يماس فيه الارض علي نتطة من

There are at least two textual problems: a lacuna in line 10 and an apparent repetition in line 21 . The second is not of any significance; more serious is the first in which the latitude of Palmyra (or Raqqa) is missing. Fortunately Bīrūnī has preserved a report from a certain Muḥammad ibn ${ }^{\text {cAlī al-Makkī (fl. 850), }}$ who has virtually the same method as Muhammad ibn Mūsä. The latitude of Raqqa is given there as $35 ; 20^{\circ}$, while Palmyra is 34°, the figure missing from our text. We then have

$$
90 \text { miles } \div 1 ; 20^{\circ}=671 / 2 \mathrm{miles} / \text { degree }
$$

not the $662 / 3$ miles/degree in the text; ${ }^{20}$ nevertheless this was probably close enough to confirm the Ptolemaic standard. We can now make sense of the passage in Firdaws al-hikma in which it is clear, despite a somewhat garbled account, that the latitudes for Palmyra and Raqqa are as above and that the purpose of the "expedition" was to confirm the $662 / 3$-mile Ptolemaic figure; as the author ${ }^{c}$ Alī ibn Rabban al-Tabarī (ca. 800-ca. 864) states: "they sought to attain that knowledge" (istadrak $\bar{u} c^{\text {cilm }}$ dhälik) by undertaking the survey. ${ }^{21}$

It is important to note here that Muhammad ibn Mūsā, Tabarī, and Makkī are younger contemporaries of Ma'mūn and as such we should take these accounts very seriously. By dismissing them (at least the latter two), Barani and Kennedy have interpreted these early reports of a Raqqa-Palmyra "expedition" in the light of the account by lbn Yūnus, who lived some century and a half after the fact, and have discounted contemporaneous evidence. At one point in his analysis, Kennedy (Tahdīd Comm., p. 131) states that Makki and Țabari got only the Raqqa-Palmyra part of Ibn Yūnus's story right and that "someone then cooked up a derivation of the Ptolemaic $66 ; 40$." It is now clear that the chef was none other than Muhammad ibn Mūsā, who, we should recall, was a protégé of Ma'mūn himself.

There are several points concerning this "measurement" by Muhammad that we should emphasize. First it is clear, as Kennedy notes, that the reported latitudes for Raqqa and Palmyra are simply lifted from Ptolemy's geography without modification. This argues both for an early date for Muhammad's "measurement" (since beginning with Muḥammad ibn Mūsā al-Khwārizmĩ (fl. 813-33) the Islamic values for the latitudes of Raqqa and Palmyra are generally different from Ptolemy's ${ }^{22}$) and against an independent determination (for obvious reasons). The most that can be said in terms of independent observation is that Muhammad would have us believe that the received value of 90 miles for the Raqqa-Palmyra distance has been latterly confirmed.

[^190]At the end of this passage Muḥammad begins to describe the method involving the measurement from a high mountain of the dip of the horizon. As we have seen, Bīrūnī associates this with Sanad and what we have here may well be related to that determination. But Bīrūnī gives no actual values arrived at by Sanad and it does not seem likely that what Muhammad is here beginning to describe will result in numbers at odds with the Ptolemaic values. Taking all the evidence together, I am inclined to see the Palmyra-Raqqa "expedition" as little more than a youthful thought experiment (half-baked at that) by Muhammad ibn Mūsā (who probably would have been rather too young to head scientific missions during the reign of Ma'mūn ${ }^{23}$). Sanad's contribution then becomes an ear-ly-and extemporaneous-attempt at the urging of Ma'mūn to measure a meridian degree, but this does not seem to have led to a result other than a confirmation of Ptolemy. ${ }^{24}$ It may well be that at this point Ma'mūn, who as we know from Habash was not averse to riding roughshod over his scientists when he wanted a job done, ${ }^{25}$ felt that something was amiss if Ptolemy's suspicious values were being so glibly confirmed. He therefore ordered that the Sinjär expedition be undertaken as reported by Habash.

The story that I have just outlined gains some support from Ibn Khallikān's biographical entry for Muhammad ibn Mūsā. ${ }^{26}$ Although the details are hopelessly askew, we can at least glimpse part of the process that led to the Sinjär expedition. Ma'mūn is said to have asked the Banū Mūsā about the 24,000 mile circumference, and he was informed "that the fact was certain." Curiously enough, though, Ma'mūn was not completely satisfied and insisted upon verification. Ibn Khallikăn then: (1) has the Banū Mūsā leading the expedition to Sinjär; (2) confirming the $66 \frac{2}{3}$ miles for a meridian degree; and then (3) reconfirming the result in Kūfa. The first two statements are unquestionably incorrect, and the third, to say the least, is also suspect. But if we take the skeleton of the report and ignore all the uncomfortable fleshy details, we are left with an early assertion by the Banū Mūsā of the correctness of the Ptolemaic value of $66^{2 / 3}$ miles/meridian degree (confirmed in the passage above), a healthy skepticism by Ma'mūn leading to a first attempt to verify what the Banū Mūsā had stated (perhaps by Sanad using the mountain/level plain method?), and a second attempt (presumably to Sinjär, not Kūfa) that settled the matter.

Whatever the early history of the problem, it is reasonably clear that by the 10th century 56 miles (or $562 / 3$ miles) per meridian degree was generally

[^191]accepted as the Ma'mūnī value. ${ }^{27}$ Birūnī seems to have played a pivotal role in making $56 \frac{2}{3}$ the Ma'mūn value inasmuch as his earlier wavering between 56 and $56 / 3$ in the Tahdied, p. 214 (trans., pp. 179-180) is superseded by his assertion of $56 \frac{2}{3}$ in his later Tafhīm, p. 119 and Qānūn, 1: 52, 2: 529. ${ }^{28}$ By the time we reach Khiraqi (d. 1138-39), ${ }^{29} 562 / 3$ miles/degree is accepted without question as the Ma'mūn value; he further gives the following standard equivalences: ${ }^{30}$
\[

$$
\begin{aligned}
& 1 \text { mile }=4000 \text { cubits } \\
& 1 \text { cubit }=24 \text { digits } \\
& 1 \text { digit }=6 \text { barleycorns }
\end{aligned}
$$
\]

Khiraqī then gives the Ptolemaic value of $66 \frac{2}{3}$ miles but adds a new twist. The equivalences are now

$$
\begin{aligned}
1 \text { mile } & =3000 \text { cubits } \\
1 \text { cubit } & =36 \text { digits } \\
1 \text { digit } & =6 \text { barleycorns }
\end{aligned}
$$

We are at long last able to return to Tūsī and the passage from the Tadhkira that has led to our own excursion. Tūsī in the $M u^{c}{ }^{\text {inniyy}}$ a repeats the information from the Muntahā with only one minor change; instead of 1 cubit $=36$ digits for the Ptolemaic standard, he has 1 cubit $=32$ digits. ${ }^{31}$ (I do not know whether this is a correction or a misreading on Ṭūsi's part. ${ }^{32}$) But here in the Tadhkira Ṭūsī

[^192]gives a completely different account, maintaining that the $66 \frac{2}{3}$-mile figure is what was found by the Ma'mūn expedition to Sinjār! This is obviously no slip of the pen ${ }^{33}$ since all the other numbers are based on this value and the unit equivalences given are the "modern" ones. How are we to account for this confusion, especially in view of the contradictory information from the $M u u^{c}$ iniyya? One explanation could be that Ṭüsī has simply made a silly mistake. Though I cannot discount this possibility, and I hardly wish to advocate the position that Naṣir al-Dīn is incapable of error, I believe there is a far more interesting-and plausible-explanation that presents itself. As we have seen above, Ibn Khallikān claims that the Banū Mūsā were responsible for the Sinjär expedition and confirmed the Ptolemaic value of $662 / 3$ miles. As we have also seen, there is a morsel of truth here since Muḥammad ibn Mūsā did indeed "confirm" Ptolemy though he scarcely needed to leave his divan to do so. Where did İbn Khallikān get his information? Undoubtedly some corrupt version of the passage from Muḥammad ibn Müsā came into his possession. A likely source is Kamāl al-Dīn ibn Yūnus, the great legal scholar of Mosul whom he visited several times. ${ }^{34}$ Ibn Yūnus was also noted for his knowledge of astronomy though his historical reconstructions are certainly suspect if Ibn Khallikān's anecdotes are any indication. ${ }^{35}$ Țūsĩ was also a student of Kamäl al-Dīn, ${ }^{36}$ and the latter provides a possible link between Naṣir al-Dīn and Ibn Khallikān and thus may be the common source for both this passage in the Tadhkira and the information in Ibn Khallikān's entry for Muḥammad ibn Mūsā. At any rate sometime between the writing of the $M u^{c}$ iniyya in 1235 and the Tadhkira in 1261, Țūsī probably came to view the version of Ma'mün's expedition in Khiraqi's Muntah \bar{a} (or some similar source) as suspect and relied instead upon the bogus story we find in Ibn Khallikān (though perhaps it did not come directly from him).

The subsequent history of reconciling these contradictory stories is not without interest, but we shall content ourselves with a brief overview. Nīsābūrī and Jurjānī repeat the version in the Tadhkira without comment; whether they were getting tired by the end of the book or whether they believed Țūsīs Tadhkira version is unclear. What makes the latter seem unlikely is that Shīrāzī had already dealt extensively with the problem in both the Nihāya (IV.2) and the Tuhfa [IV.1(2)] and had revived the earlier history as found in the Mu ${ }^{c}$ iniyya. ${ }^{37}$

[^193]But Shiräzī adds another element to our story: he asserts in the Nihāya that the investigation (bahth) of the ancients is more reliable (awfă) than that of the "moderns." (These words are echoed faithfully by cUbaydi, but he uses them to make the extraordinary claim that Țūsi's faith in the ancients led him to assign their value to the moderns!) In the Tuhfa, however, it is Ma'mūn's figure that is "correct and verified" (sahih mumtahan); he seems to be influenced there by the account of the two groups in Sinjār finding approximately the same amount for a meridian degree. But despite this Shīrāzī is still not willing to abandon the ancient value, in part because it is the basis for the Ptolemaic standard measuring stick for sizes and distances. Both Khafrī and Birjandi quote this passage from the Tuhfa but without further comment.

The length of the meridian degree is but one of several parameters (others being the obliquity of the ecliptic, the precessional rate, and the motion of the solar apogee) that could be studied as a group in order to shed light on the question of tradition and innovation in Islamic science. If nothing else, I hope the above discussion indicates both the complexity and the worth of such a venture.
IV. 1 [2]6-7. hasala miqdār qutrihä...bi-'l-taqrīb (one obtains for the size of the diameter...approximately): $8000 \div 31 / 7=2545.45$. In the Baghdad version (MSS FL), wa-nisf farsakh (and half a parasang) has been added to account for the fractional part.
IV. 1 [3]10-11. wa-idhā duriba al-qutr...farsakh (If the diameter is multiplied...[20,360,000] parasangs): The number is obtained by using Lemma 3 in IV. 1 [1] as follows:

$$
S=d \cdot C=2545 \cdot 8000=20,360,000 \text { sq. parasangs }
$$

In the $M u^{\text {cinniyya, }}$, Tūsī gives $183,264,000$ sq. miles ($=20,362,666^{2} / 3$ sq. parasangs). ${ }^{38}$ The discrepancy is due to his use there of the slightly more accurate 7636 miles $(=25451 / 3$ parasangs) for the diameter.
IV. 1 [3]12, 13. al-rub c al-maskūn; al-ma ${ }^{c} m \bar{u} r$ (the populated quarter; [actually] inhabited): Tūsì seems to use maskūn to indicate the quarter of the Earth's surface where population occurs; al-ma ${ }^{c} m \bar{u} r$ (lit., the settled area) is used to designate the actual inhabited region. Compare \amalg II. 1 [2-3] and [5-8].
IV. 1 [3]13-20. wa-ammā al-qadr al-macmür...wa-suds. ${ }^{c} u s h r i h$ (As for the amount that is [actually] inhabited...entire surface of the Earth): Ṭūsī makes an

[^194]error here that was pointed out by Shīrāzī. ${ }^{39} \mathrm{He}$ calculates the surface area of the inhabited region by considering it a lune. Thus from IV. 1 [1], Lemma 4:
$$
\mathrm{L}=\mathrm{d} \cdot\left[\left(66 ; 25^{\circ} / 360^{\circ}\right) \cdot \mathrm{C}\right]=2545 \cdot 1476=3,756,420 \text { sq. parasangs }
$$
(In the $M u^{c}$ ini iyya, Țūsī has $7636 \cdot 4428=33,812,208$ sq. miles $=3,756,912 \mathrm{sq}$. parasangs; as in IV. [3]10-11, the discrepancy is due to a different value for the diameter. ${ }^{40}$) Shïrāzī notes that the actual area in question is not a lune, however, but half the zone ${ }^{41}$ bounded by the equator and the day-circle with latitude $66 ; 25^{\circ}$. Although he does not carry out the computation, he advises finding half the surface area of the segment whose vertex is the celestial pole and whose base is the plane of the day-circle with latitude $66 ; 25^{\circ}$ and then subtracting this from the area of the populated quarter. ${ }^{42}$ Birjandi does the calculation and arrives at $4,665,7121 / 30$ sq. parasangs (which is accurate to the nearest $1 / 30$ of a square parasang assuming $\pi=22 / 7, \mathrm{C}=8000$ parasangs and $\varepsilon=23 ; 35^{\circ}$).
IV. 1 [3]18. wa-sitta wa-khamsün (fifty-six): In the earlier version (MSS DGMT), one finds $3,765,420$; this has been corrected to $3,756,420$ in MS L. In MS F one has $3,756,231 \frac{1}{2}$, which seems to be the result of using a diameter of 2545 parasangs and a rather more accurate maximum width for the lune of about 1475.926 parasangs. Shīrāzī has $3,765,420$ in the Nihāya but may have corrected this to $3,756,420$ in the Tuhfa. ${ }^{43}$ Jurjānī and Khafrī have the incorrect figure, while Nīsābūrī gives the correct value. Birjandī quotes the incorrect value that he found in his copy of the Tadhkira but corrects it.
IV. 1 [4]. Abū al-Rayhān, of course, is Birūnī, and his method is presented in the Tahdīd, pp. 218-223 (trans., pp. 183-189) and the Qānūn, 2: 530-531.44 There exist several expositions: for example, Kennedy, Tahdid Comm., pp. 137-143; Nallino [1911], pp. 289-292 (Racc. V, pp. 302-305); Barani, pp. 31-44; and

[^195]Wiedemann [1909]. As we have seen (IV.1 [2]), Bīrūni did not originate this method since he mentions in the Tahdīd that Sanad ibn ${ }^{\text {c Alī }}$ had used this technique and furthermore we see the beginning of a description of the method in the passage by Muḥammad ibn Mūsā quoted on pp. 504-505. In Bīrūnī's Book on the Astrolabe there is a puzzling reference to al-Nayrizī's inspiration in connection with the method, but there is no evidence to connect him with a determination of the size of the Earth along similar lines.

TTūsī again reiterates his stand against giving geometrical proofs in the Tadhkira (cf. I.Intr. [3]) though there have certainly been lapses (most obviously in II.11).
IV. 1 [5]. The "promise" was made in $\Pi .1$ [2]. We have the following proportion:

$$
1 / 2 \text { parasang : } d=x \text { barleycorns : } 1 \text { cubit }
$$

Since $d=2545$ parasangs and 1 cubit $=144$ barleycorns (according to the "modern" system), then $x \approx 1 / 35.3$ barleycorns, which, in unit fractions, is approximately equal to ($1 / 5$ of $1 / 7$) barleycorns. In passing we may note that half a parasang is something around 3 kilometers, ${ }^{45}$ an impressive but hardly formidable size for a mountain.

Book IV, Chapter Two

IV. 2 [1]. For calculating the positions of the planets, Ptolemy only needed to use relative distances; for each model he set the deferent circle at 60 parts. ${ }^{1}$ In the Almagest he calculated absolute distances only for the sun and moon; in the Planetary Hypotheses he computed them for the other planets. Absolute distances were given using the Earth's radius as the measuring stick.
IV. 2 [2-4]. This is a nontechnical summary of Alm., V. 13 (H408-416); for discussions, see HAMA, 1: 101-103 and Pedersen [1974], pp. 204-207.
IV. 2 [2]. Note that Ptolemy gives zenith distances ($50^{11 / 12}{ }^{\circ}$ and $49 ; 48^{\circ}$), whereas TTūsī converts these into altitudes ($391 / 12^{\circ}$ and $401 / 5^{\circ}$).
IV. 2 [3]1-3. wa-qad tabayyana fí cilm al-handasa...wa-zawāyāh maclūma (It may be shown in the science of geometry... and angles are known): Euclid's

[^196]Elements I. 26 shows that two angles and a side uniquely determine a triangle, but it does not, of course, provide a method for calculating the sizes of the angles and sides. For this one needs the law of sines (or some equivalent), which was widely known and used in the Islamic Middle Ages.
IV. 2 [3] Fig. T26. Compare Alm., Fig. 5.10, p. 248.
IV. 2 [3]10-11. tis $^{c} a$ wa-thalāthin juz'an wa-nisf wa-rub ${ }^{c}$ juz' $((39+1 / 2+1 / 4)$ parts): Bīrjandì corrects this to $(39+1 / 2+1 / 3)$ parts, i.e. $39 ; 50$ parts; cf. Toomer, Alm., p. 249 (n. 47), who has the same correction.
IV. 2 [4]. For the Earth's radius $r_{e}=1$ part, Ptolemy found the moon's distance for the above observation to be $39 ; 45$ parts; for the inclined radius $\mathrm{R}=60$ parts, he arrived at a distance of $40 ; 25$ parts for the same observation. One thus has a means of converting from one system to the other since one now has the ratio of $r_{\mathrm{e}}: \mathrm{R} / 60$, which is equal to $39 ; 45^{\mathrm{P}} / 40 ; 25^{\mathrm{P}} \approx 0.984$. We may therefore set up the following table of equivalences:

Table 11. Conversion of Lunar Parameters.

	$\mathrm{R}=60$	$\mathrm{r}_{\mathrm{e}}=1$
Inclined Radius	60^{p}	59^{p}
Epicyclic Radius	$51 / 4^{\mathrm{p}}$	$51 / 6^{\mathrm{p}}$
Eccentricity	$10 ; 19^{\mathrm{p}}$	$10 ; 9^{\mathrm{p}}$
Farthest Distance	$65 ; 15^{\mathrm{p}}$	$641 / 6^{\mathrm{p}}$
Nearest Distance	$34 ; 7^{\mathrm{p}}$	$33 ; 33^{\mathrm{p}}$

${ }^{*}$ MS T corrects $33 ; 33^{\mathrm{P}}$ to $33 ; 32^{\mathrm{P}}\left[=59^{\mathrm{P}}-2\left(10 ; 9^{\mathrm{P}}\right)-51 / 6^{\mathrm{P}}\right]$, but this latter is based on rounded numbers; $33 ; 33^{\mathrm{P}}$ is correct and is found in the $A l$ magest (e.g. V.17).

Book IV, Chapter Three

For this chapter, see Alm., V.14-15, pp. 251-257 (H416-425); HAMA, 1: 103-112; and Pedersen [1974], pp. 207-213.
IV. 3 [1]16-17. fi dhirwat al-tadwir (at the epicyclic apex): It would be a bit much to ask for eclipses to occur when the moon was precisely at the apex; in fact the two observations in question occurred within 30° of the apex.
IV. 3 [1]23-24. wa-huwa bi-'l-taqrīb...qutrih (This [radius] was approximately... $3 / 5$ times its radius): The latitude when half the moon was eclipsed was $40^{2 / 3}$
minutes, which Ptolemy then took to be the radius of the shadow. This radius to the radius of the moon is then

$$
40^{2} / 3 \text { minutes } / 15^{2} / 3 \text { minutes } \approx 23 / 5
$$

IV. 3 [2]. On the diameters of the sun and moon, compare commentary to II. 13 [8]2-4. Tūsì here follows the Almagest in making the moon's apparent diameter at its farthest distance equal to the sun's (allegedly constant) apparent diameter; he thus ignores both his previously stated values as well as Planetary Hypotheses, BM 91a (trans., p. 8) in which Ptolemy gives the moon's diameter at mean distance (on both its epicycle and eccentric) as $11 / 3$ the sun's.
IV. 3 [3] Fig. T27. See Alm., Fig. 5.12, p. 256; cf. II. 13 [7], Fig. T18. The remark at the bottom of the figure in which Tüsī notes that indicated diameters are not the actual diameters is a paraphrase of the last sentence of Alm., V.14, p. 254; as Toomer explains in n. 64, pp. 254-255, the half-bases MN, HT, and GD of the shadow cones are not the actual radii of the Earth, moon, and sun, respectively, but the "simplifying approximation is fully justified."
IV. 3 [3]. Țūsī is giving a summary of Alm., V.15, p. 255 (H422-424), and he repeats the Ptolemaic values. However he recasts the calculation using the law of sines thus avoiding Ptolemy's dependence on chords. The proportion then becomes

$$
\begin{gathered}
\mathrm{HT} / \mathrm{NT}=\sin \angle \mathrm{HNT} / \sin \angle \mathrm{NHT}=\sin 0 ; 15,40^{\circ} / \sin 89 ; 44,20^{\circ} \\
\approx 0 ; 16^{2} / 5 \text { parts } / 60 \text { parts }
\end{gathered}
$$

(Tִūsi's statement that the actual figure is something less than 60 is correct; it is approximately equal to 59.98 .)

Now then to obtain the moon's radius using e.r. $=1$, one has

$$
(0 ; 162 / 5 \text { parts } / 60 \text { parts }) \cdot 641 / 6 \text { e.r. } \approx 0 ; 17,33 \text { e.r. }{ }^{1}
$$

The shadow's radius $(0 ; 45,38$ e.r.) is obtained by multiplying this by $23 / 5$ (see IV. 3 [1]).
IV. 3 [4]. Tūsī here gives a verbal account of Ptolemy's mathematical derivation in Alm., V.15, pp. 255-256 (H424-425) of the distance of the sun. In order to simplify the discussion, we shall translate the text into symbols using Fig. C38, which is extracted from Fig. T27; my clarifying additions are in brackets.

[^197]$\left[F Q=N R=T X=r_{s h}, N M=r_{e}, T H=r_{m}, T Y=\right.$ radius of shadow at moon's position, HY = excess of radius of cone at moon's position over radius of moon.]

Since $T F=2 N F$, then $X Q=2 R Q$ and thus $X Y=2 R M$; it follows
that]
$T Y-F Q=2(N M-F Q)$
$\mathrm{FQ}+\mathrm{TY}=2 \mathrm{NM}=$ diameter of Earth
[Since $\mathrm{TY}=\mathrm{TH}+\mathrm{HY}$, therefore $\mathrm{FQ}+\mathrm{TH}+\mathrm{HY}=2 \mathrm{r}_{\mathrm{e}}$ and $]$
$H Y=2 r_{e}-(F Q+T H)=56^{\prime} 49^{\prime \prime}$
[Now referring to Fig. T27, if we make the reasonable simplifications that $\angle \mathrm{NMG}=90^{\circ}, \mathrm{NG}=\mathrm{ND}=$ Earth-sun distance, $\mathrm{GH}=\mathrm{DT}=$ moon-sun distance, and $\mathrm{NH}=\mathrm{NT}=$ Earth-moon distance, then using triangle MNG it follows that]
$1 / \mathrm{HY}=\mathrm{ND} / \mathrm{DT}=1 / 56^{\prime} 49^{\prime \prime}$

If $\mathrm{ND}=1$, then $\mathrm{DT}=56^{\prime} 49^{\prime \prime}$ and $\mathrm{NT}=3^{\prime} 11^{\prime \prime}$.

Setting NT $=641 / 6$ parts, we have ND $=1209.4 \approx 1210$ parts.
IV. 3 [5]. Continuing, we have
$\mathrm{NM} / \mathrm{FQ}=\mathrm{NS} / \mathrm{SF}=1 / 45^{\prime} 38^{\prime \prime}$
If NS $=1$, then $\mathrm{SF}=45^{\prime} 38^{\prime \prime}$ and $\mathrm{FN}=14^{\prime} 22^{\prime \prime}=(14+1 / 5+1 / 6)^{\prime}$
Setting $F N=641 / 6$ parts, we have

$$
S F=203.81 \approx(203+1 / 2+1 / 3) \text { parts }
$$

Tūsī has made a mistake in this passage. In lines 18 - 19 , instead of "the distance of the cone's apex from the center of the shadow" (SF), one has "the distance of the cone's apex from the center of the Earth" (SN) in MSS DFLT. (MS G is missing this section.) He seems to have intended to give the more interesting distance of the apex from the center of the Earth ($\mathrm{SN}=268$ parts) but mistakenly gave the distance to the shadow center ($\mathrm{SF}=203+1 / 2+1 / 3$). In the $A l$ magest, the two numbers are juxtaposed and the magnitudes are designated by XP and XN; it is easy to see how one could make a careless error. In MS M, "Earth" (arḍ) has been replaced by "shadow" (zill) and in the margin one reads: "for the center of the Earth it is 268 ." But this manuscript is based on one in

Shīrāzi's hand, and my inclination is to see this as his correction rather than Tūsì's; at any rate the correction did not make it into the Baghdad version (MSS FL) but Shïrãzì gets it right as early as the Nihāya (IV.4). The commentators have quietly corrected the manuscripts. For confirmation that this error originated with Ṭūsī, see IV. 5 [6].

Book IV, Chapter Four

For this chapter, see Alm., V.16, p. 257 (H426-427).
IV. 4 [1]3-5. thabata fic cilm al-manāzir...ilā $b u^{c} d$ al-abcad (It has been established in the science of optics...to the distance of the farther): Birjandi provides the simple proof for this theorem after correctly noting that it does not actually occur in Euclid's Optics. Ptolemy states it and outlines a proof in Plan. Hyp., BM 91a (trans., p. 8).
IV. 4 [1]. We have

$$
\begin{aligned}
& 0 ; 17,33^{\mathrm{p}} / \mathrm{r}_{\text {sun }}=641 / 6^{\mathrm{p}} / 1210^{\mathrm{p}} \\
& \mathrm{r}_{\text {sun }} \approx 51 / 2^{\mathrm{p}}, \text { where } \mathrm{r}_{\text {Earth }}=1^{\mathrm{p}} \\
& \text { For } \mathrm{d}_{\text {moon }}=1^{\mathrm{p}}, \mathrm{~d}_{\text {Earth }} \approx 32 / 5^{\mathrm{p}} \text { and } \mathrm{d}_{\text {sun }} \approx 184 / 5^{\mathrm{p}}
\end{aligned}
$$

All these values are from the Almagest.
IV. 4 [2]. For the proposition, see Elements, XII.18. Technically speaking, though, Euclid has $S_{1} / S_{2}=\left(d_{1} / d_{2}\right)^{3}$, whereas Țūsī gives $S_{1} / S_{2}=d_{1}{ }^{3} / d_{2}{ }^{3}$. Birjandī is not one to let this pass and upbraids the other commentators for doing so. To reach Țūsi’s proposition, he proposes using in addition Elements XI. 33^{1} and V.11, which allow one to equate $\left(\mathrm{d}_{1} / \mathrm{d}_{2}\right)^{3}$ and $\mathrm{d}_{1}{ }^{3} / \mathrm{d}_{2}{ }^{3} \cdot{ }^{2}$

Turning to the volumes, one has

$$
\begin{align*}
& \mathrm{V}_{\text {sun }} / \mathrm{V}_{\text {Earth }}=(11)^{3} /(2)^{3}=166.375=166+1 / 4+1 / 8 \tag{Alm.:170}\\
& \mathrm{~V}_{\text {sun }} / \mathrm{V}_{\text {moon }}=(18.8)^{3} /(1)^{3}=6644.672 \approx 6644\{2 / 3\}
\end{align*}
$$

[Alm.: 6644½]
$\mathrm{V}_{\text {Earth }} / \mathrm{V}_{\text {moon }}=(3.4)^{3} /(1)^{3}=39.304 \approx 39 ; 18=39+1 / 4+\{1 / 2$ of $1 / 10\}$
[Alm.: 391/4]

[^198]In the Planetary Hypotheses, Ptolemy gives the volume of the sun as $1661 / 3$ and that of the moon as $1 / 40$, where the Earth's volume is $1 .{ }^{3}$

Some variants should be noted. For $(166+1 / 4+1 / 8)$, MS F gives $(169+1 / 2+1 / 7)$; a similar number $(169+(1 / 2$ of $1 / 7))$ is given as a variant by MS T. I do not have a plausible explanation for either number. Only MSS DF add $2 / 3$ to 6644 and both do so in the margin. MSS L and F (the latter in the margin) add ($1 / 2$ of $1 / 10$) to $391 / 4$.

Book IV, Chapter Five

This chapter, as well as the following two, does not correspond to anything in the Almagest, but much of the information may be found in the Planetary Hypotheses. Note, though, that Țūsī himself does not refer to the Planetary Hypotheses but instead uses some circumlocution such as "they have stated" or "it seemed likely to them"; see, for example, IV. 5 [5] and [7], IV. 6 [2], [5] and [7], and IV. 7 [2].
IV. 5 [1]. As is his usual practice, Țūsī simply reports Ptolemy and does not attempt to modify parameters based upon the observations of the "moderns." Thus Ptolemy's solar eccentricity of $2 \frac{1}{2}$ parts is used here rather than the $2 ; 05$ that was quoted in $\Pi .6$ [4]. Since $21 / 2 / 60=1 / 24$, then where e.r. $=1$,

$$
\text { solar eccentricity }=1 / 24(1210 \text { e.r. }) \approx 50 \text { e.r. }
$$

Thus the farthest distance is 1260 e.r. and the nearest distance is 1160 e.r. as one finds in Planetary Hypotheses, BM 89b (trans., p. 7).
IV. 5 [2]. This is the basic "nesting" principle for the orbs and as such is a cornerstone of hay'a. Compare Planetary Hypotheses, BM 90b (trans., p. 8) where Ptolemy makes the interesting remark that even "if there is space or emptiness between the [spheres], then it is clear that the distances cannot be smaller, at any rate, than those mentioned." Ṭūsī echoes this statement here but he does not allow for the possibility of empty space. Ptolemy is compelled to do so since he finds the farthest distance of Venus to be 1079 e.r., whereas the nearest distance of the sun is $1160 ;{ }^{1}$ he does make the suggestion that the gap could be filled in by slightly increasing the distance of the moon. ${ }^{2}$ As we shall see, Trūsī is able to sidestep this problem, and thus avoid the unthinkable void, by correcting an error made by Ptolemy in the ratio of Venus's nearest to farthest distances. ${ }^{3}$

[^199]IV. 5 [3]. All the values are Ptolemaic. ${ }^{4}$ For the farthest distance one has
$$
60+431 / 6+11 / 4=104+1 / 4+1 / 6
$$
for the nearest distance
$$
60-(431 / 6+11 / 4)=15+1 / 3+1 / 4
$$

Then

$$
157 / 12: 1045 / 12 \approx 0.15=1 / 10+1 / 20
$$

In the Planetary Hypotheses (BM 89b [trans., p. 7]), this latter value is given as 16 : 104 .
IV. 5 [4-5]. The values for the eccentricity and the epicycle radius are from the Almagest. In the case of Mercury, the distance from the Earth to the deferent center is 3 times the eccentricity or 9 parts (see Fig. T8); thus the farthest distance is $60+9+221 / 2=911 / 2$ parts. Because the nearest distance for Mercury occurs at about 120° from the farthest distance, rather than at 180° as Ptolemy found for the other planets (with the exception of the moon), one cannot calculate the nearest distance of Mercury in the simple way we did for Venus. Presumably by successive approximation, Ptolemy finds $55 ; 34$ parts for the least distance of Mercury's epicycle center from the Earth; ${ }^{5}$ subtracting the epicycle radius ($221 / 2$ parts) from this, one obtains $33 ; 4$ parts as in the text. Then

$$
33 ; 4: 911 / 2=0.36 \approx 1 / 5+1 / 6
$$

For the ratio of Mercury's nearest distance to Venus's farthest distance, one may designate the former by $(1 / 5+1 / 6) z$ and the latter by $(20 / 3) z$, where z is both Mercury's farthest distance and Venus's nearest distance. Then

$$
(1 / 5+1 / 6) z:(20 / 3) z=11: 200 \approx 1: 18
$$

Now from IV. 5 [1], the sun's nearest distance is 1160 e.r. The ratio of the moon's farthest distance to this is then

$$
64 \frac{1}{6}: 1160 \approx 1: 18
$$

It is important to note here that these two equal ratios were arrived at from values totally independent of one another; this "incredible numerical accident,"

[^200]as Neugebauer calls it, ${ }^{6}$ was one of the strongest bits of evidence for the standard medieval ordering of the planets as well as for the entire system of contiguous orbs. Tūisi says as much here and in II. 2 [4] to which he is referring.

The numerical basis for fitting Mercury and Venus below the sun, however, has a rather checkered career. In the Planetary Hypotheses, Ptolemy gave 34:88 as the ratio of the least to greatest distance for Mercury. Now Ptolemy had there modified his parameters for Mercury so that the epicycle radius became 22;15 (instead of 22;30 in the Almagest) and the distance between the dirigent center and the deferent and equant centers each became $2 ; 30$ (instead of 3). (The distance from the center of the World to the equant center remained 3.) ${ }^{7}$ Now subtracting $22 ; 15$ from $55 ; 34$ yields $33 ; 19$, and one may surmise that Ptolemy carelessly rounded up instead of down. ${ }^{8}$ The 88 , however, is a real puzzle. As Goldstein has noted, even by using these new parameters one will arrive at $90 ; 15(=60+3+2 ; 30+2 ; 30+22 ; 15)$ and not 88 for the farthest distance. ${ }^{9}$ My only suggestion, one I shall not insist on, is that Ptolemy simply forgot to add one of the eccentricities (i.e. 2;30 or 3) and, arriving at 87;45 (or $87 ; 15$), again rounded up, this time to $88 .{ }^{10}$

What makes this mistake of more than marginal interest is that without it Ptolemy could have avoided a good portion of the grief brought on by the gap between the orbs of Venus and the sun. To see this, we note that a $34: 88$ ratio yields a farthest distance for Mercury of 166 e.r. and a farthest distance for Venus of 1079 e.r.(assuming a farthest distance for the moon of 64 e.r. and a ratio for Venus of $16: 104$). Using Țūsi's ratio of $11: 30$ for Mercury, and the somewhat more accurate values of $641 / 6$ e.r. and $3: 20$ for the moon distance and Venus's ratio, respectively, one comes up with 175 e.r. for Mercury's farthest

[^201]distance and 1167 e.r. for Venus's farthest distance, which is only slightly greater than the sun's nearest distance. ${ }^{11}$

The involved history of the attempts to fit Mercury and Venus between the sun and moon would take us far afield; accounts may be found in Swerdlow [1968], pp. 99-106, 121-165, 194-203; Van Helden [1985], pp. 20-33; and HAMA, 2: 917-921. For our purposes it is worth mentioning that Proclus (5th c. A.D.) had already plugged the gap, and more so, between Venus and the sun in his Hypotyposes where he finds Venus's farthest distance to be 1190 e.r. based upon exact figures from the Almagest. ${ }^{12}$ It is also noteworthy that in the Muciniyya, Ṭūsī gives Ptolemy's value for the farthest distance of Mercury (166 e.r.) but by a sleight of hand he manages to reach 1160 for Venus's farthest distance by using an approximate ratio for Venus of $1: 7 . .^{13}$

One cannot avoid the impression from this rather facile number juggling that the subject of sizes and distances was not afforded great importance by astronomers before Țūsī-or indeed by Ṭūsī himself. An insight into the reason this may have been so is offered by Birjandī in his comment to IV. 5 [2]14-16. He tells us that since the most knowledgeable realized that certainty was not possible in this matter-one could only set the lower limit as we have seen-the basic goal was to know the sizes and distances in a general way (cala al-ijmāl); thus, he continues, a great deal of simplification occurred both in calculation and in the conceptualization of the problem. As an example of the latter, Birjandi notes that the distance of the convex surface of each orb should be equal to the concave surface of the orb immediately above it; but most astronomers did not take into account such things as the radii of the planets themselves, ${ }^{14}$ the thickness of the parecliptic of the moon, ${ }^{15}$ and part of the thickness of the complementary bodies of Mercury. ${ }^{16}$

This latter is particularly interesting since it illustrates so well the inability, or unwillingness, to resolve the different approaches of the Almagest and the Planetary Hypotheses before the 13th c. When we examine a standard hay'a diagram for Mercury, for example Fig. T8, it should be readily apparent that if we are to take the orbs seriously, then the nearest distance for Mercury should be the radius of the concave surface of the parecliptic orb. This radius, $281 / 2$

[^202]parts, is readily calculated $[60-(3 \cdot 3+221 / 2)] ;{ }^{17}$ but as far as I can tell no one before the 13 th c . did this but instead took the least distance of the planet, which, as we have seen, is a difficult quantity to obtain. Of course once Ptolemy had set the pattern of using this latter approach in the Planetary Hypotheses, it would take on a life of its own but I still think this is an excellent example of how long it took for the hay'a approach (not to mention the Planetary Hypotheses) to be taken seriously enough to investigate all its consequences. ${ }^{18}$

These consequences could be unfortunate if not embarrassing to the hay'a
 have this new sensitivity to the distances of the orbs, makes the rather startling discovery that by taking the ratio for Mercury to be $281 / 2: 911 / 2$, Venus can no longer be fitted between Mercury and the sun since its farthest distance then becomes about 1380 e.r. ${ }^{20}$ which is considerably larger than the sun's minimum, or for that matter maximum, distance. But in putting Venus above the sun, one is faced with an even larger gap than the one Ptolemy had to contend with. Furthermore the aesthetic arrangement by which the sun was the medial orb is lost; ${ }^{21}$ how the later hay'a tradition coped with these unpleasant "realities" is a subject for future research. ${ }^{22}$

[^203]IV. 5 [6]. For Venus's nearest distance, which is Mercury's farthest distance, Ṭūsī has
$$
(1 / 10+1 / 20) \cdot 1160 \text { e.r. }=174 \text { e.r. }
$$

In calculating this from the other direction, we have

$$
(91 ; 30 / 33 ; 4) \cdot 64 ; 10 \text { e.r. } \approx 177^{1 / 2} \text { e.r. }
$$

or, less exactly,

$$
[1 /(1 / 5+1 / 6)] \cdot 64 ; 10 \text { e.r. }=175 \text { e.r. }
$$

Turning to the shadow cone: one has for the mean distance of Venus ${ }^{23}$

$$
(174 \text { e.r. }+1160 \text { e.r. }) / 2=667 \text { e.r. }
$$

TTüsi's value for the height of the shadow cone (203^{+}e.r.) then falls between the near and mean distances for Venus. But Țūsī here repeats the error that he made in IV. 3 [5], namely of confusing the Ptolemaic value for the distance from the Earth to the cone's apex (268 e.r.) with the distance from the moon (or "the center of the shadow") to the apex (203;50 e.r.). This, of course, has no practical significance for the gross limits he uses in this paragraph to locate the disappearing point of the shadow.

The thickness of Venus's orb is

$$
1160 \text { e.r. }-174 \text { e.r. }=986 \text { e.r. }
$$

This distance is between the convex and concave surfaces of Venus's parecliptic (see. Fig. T10). In the case of Mercury, however, Ṭüsì gives the diameter of the convex surface of the parecliptic, namely

$$
2 \cdot(174 \text { e.r. })=348 \text { e.r. }
$$

The reason he compares the thickness of Venus's orb with this diameter for Mercury, the latter including not only the orbs of Mercury but also the orbs of the moon and the levels of the Earth, is unknown to me. ${ }^{24}$

[^204]At any rate, the ratio of Mercury's orb "plus what is contained inside it" to Venus's orb is

$$
348 \text { e.r. } / 986 \text { e.r. } \approx 1 / 3
$$

and, finally, one finds Mercury's nearest distance to be

$$
(11 / 30) \cdot 174 \text { e.r. } \approx 64 \text { e.r. }
$$

which is close to the $641 / 6$ e.r. found for the moon's farthest distance (IV. 2 [4]).
IV. 5 [7-8]. The apparent diameters are from the Planetary Hypotheses (BM 90b-91a [trans., p. 8]), but the actual diameters and volumes vary from those of Ptolemy due to Țūsi's different distances. Variations will be noted below. ${ }^{25}$

For Venus, one has

$$
\begin{gathered}
667 \text { e.r. }{ }^{26}: 1210 \text { e.r. }=\text { Venus's diameter }: 1 / 10 \text { sun's diameter } \\
1: 1 ; 49 \approx \text { Venus's diameter }: 1 / 10 \text { sun's diameter } \\
1: 181 / 6=\text { Venus's diameter }: \text { sun's diameter }
\end{gathered}
$$

Since the ratio of the diameter of the Earth to that of the sun is $2: 11$ (IV. 4 [1]), then the ratio of Venus's diameter to the Earth's is ${ }^{27}$

$$
1:(181 / 6 \cdot 2 / 11) \approx 1: 33 / 10
$$

The ratio of the volume of Venus to that of the Earth is then ${ }^{28}$

$$
1^{3}:(33 / 10)^{3}=1: 35 ; 56 \approx 1: 36
$$

[^205]Turning to Mercury, we find its mean distance to be ${ }^{29}$

$$
(64 \text { e.r. }+174 \text { e.r. }) \div 2=119 \text { e.r. }
$$

Thus

$$
\begin{gathered}
119: 1210=\text { Mercury's diameter }: 1 / 15 \text { sun's diameter } \\
1: 153 \approx \text { Mercury's diameter }: \text { sun's diameter }
\end{gathered}
$$

Converting this to a ratio of Mercury's diameter to the Earth's, one has ${ }^{30}$

$$
1:(153 \cdot 2 / 11) \approx 1: 28
$$

The ratio of the volume of Mercury to that of the Earth is then ${ }^{31}$

$$
1^{3}: 28^{3}=1: 21,952 \approx 1: 22,000
$$

Book IV, Chapter Six

IV. 6 [1]. The parameters are from the Almagest; Mars's boundaries of 1260 e.r. and 8820 e.r. are from the Plan. Hyp., BM 90a (trans., p. 7).
IV. 6 [2]. The $1: 20$ ratio comes from the Plan. Hyp., BM 91a (trans., p. 8). Mars's average distance is 5040 e.r., which is about $4 \frac{1}{6}$ times 1210 e.r., i.e. the sun's mean distance. Now at the sun's mean distance, Mars's apparent diameter would be

$$
1 / 20 \cdot 51 / 2^{p}=161 / 2 \text { minutes }
$$

Adjusting for Mars's mean distance, one has

$$
0 ; 161 / 2^{p} \cdot 41 / 6 \approx 1 ; 9^{p}
$$

which is the diameter of Mars in terms of Earth diameters (not radii!). ${ }^{1}$
The volume of Mars is then $(1 ; 9)^{3}$ or $1 ; 31$ times the volume of the Earth. ${ }^{2}$

[^206]IV. 6 [3]. The "thickness" (thikhan) of Mars's orb is arrived at by subtracting its nearest distance (1260 e.r.) from its farthest distance (8820 e.r.). The diameter of the sun's "sphere" (kura) is the orb of the sun plus everything contained inside it, i.e. the orbs of Venus, Mercury, and the moon as well as the levels of the four elements; its measure is simply twice the sun's farthest distance of 1260 e.r.

Tūsi engages in a bit of hand waving here since the fact that Mars's orb is 3 times the "sphere" of the sun is hardly an "elucidation" (bayän) much less an explanation for the problem originally stated in $\Pi .9$ [14], namely that Mars is always closer to the sun at opposition than it is at combust. Using Ptolemaic parameters, we may supplement the text as follows: during combust, Mars is at the apex of its epicycle and thus its distance from the Earth can vary between $(60+6+391 / 2)^{\mathrm{P}}$ and $(60-6+391 / 2)^{\mathrm{P}}$, the radius of the deferent circle being 60. Converting these into absolute distances, one has a range between 8820 e.r. and 7817 e.r. Since the sun ranges between 1260 e.r. and 1160 e.r., the maximum and minimum distances between the sun and Mars at combust are 7660 e.r. and 6557 e.r. At opposition, Mars is at the perigee of its epicycle and thus its relative distance varies between $(60+6-391 / 2)^{\mathrm{p}}$ and $(60-6-391 / 2)^{\mathrm{p}}$. Converting these to absolute distances, one has a range between 2303 e.r. and 1260 e.r. The maximum and minimum distances between the sun and Mars at opposition are then 3563 e.r. and 2420 e.r., which are considerably less than the distances at combust.
IV. 6 [4]. The basic parameters are from the Almagest. Instead of a ratio of $741 / 4: 453 / 4$, Ptolemy uses $74: 46$ in the Plan. Hyp., which he reduces to $37: 23 .{ }^{3}$ Thus Ptolemy's farthest distance is $14,187^{4}$ rather than T Tūsi’'s $14,259$.
IV. 6 [5]. That Jupiter's diameter is $1 / 12$ that of the sun is from Plan. Hyp., BM 91a (trans., p. 8). Because TTūi's value for Jupiter's farthest distance differs from that of Ptolemy, the mid-distance also differs-Ṭūsī has 11,540 e.r., whereas Ptolemy has 11,504 e.r. (ibid.). At the sun's mean distance, the diameter of Jupiter's planetary body would be

$$
1 / 12 \cdot 51 / 2 \text { e.d. }=0 ; 271 / 2 \text { e.d. }
$$

At Jupiter's mean distance it becomes ${ }^{5}$

$$
0 ; 27^{1 / 2} \text { e.d. } \cdot(9+1 / 3+1 / 5)=4.37 \text { e.d. } \approx(4+1 / 5+1 / 6) \text { e.d. }
$$

By cubing this last quantity, one obtains Jupiter's volume, which is approximately equal to $831 / 4$ Earth volumes. ${ }^{6}$
${ }^{3}$ Plan. Hyp., BM 90a (trans., p. 7); cf. Goldstein's commentary, p. 11.
${ }^{4}$ Goldstein surmises that this was probably 14,189 in the original Greek.
${ }^{5}$ Plan. Hyp. has $(4+1 / 3+1 / 40)$.
${ }^{6}$ Actual volume based on Țüsi's diameter for Jupiter: 83.26 e.v.; Plan. Hyp. has $(82+1 / 2+1 / 4+1 / 20$). Note that the β version (MSS FL) has $831 / 4$; earlier versions (MSS DMT) have $82 \frac{1}{4} .82$ has been corrected above the line to 83 in MS D.
IV. 6 [6]. The basic parameters are from the Almagest. That the farthest distance of Saturn is $12 / 5$ times the nearest is in the Plan. Hyp. ${ }^{7}$ Because of the difference in the farthest distance for Jupiter, Tüsi has 19,963 for the farthest distance of Saturn, whereas Ptolemy arrives at $19,865 .{ }^{8}$
IV. 6 [7]. That Saturn's diameter is $1 / 18$ that of the sun is from Plan. Hyp., BM 91a (trans., p. 8). For Țūsi's mean distance of 17,111 e.r., Ptolemy has 17,026 e.r. At the sun's mean distance, the diameter of Saturn's planetary body would be

$$
1 / 18 \cdot 51 / 2 \text { e.d. }=0 ; 181 / 3 \text { e.d. }
$$

At Saturn's mean distance, it becomes ${ }^{9}$

$$
0 ; 181 / 3 \text { e.d. } \cdot 14=4.28 \text { e.d. } \approx 41 / 4 \text { e.d. }
$$

By cubing this last quantity, one obtains Saturn's volume, which is approximately equal to 77 Earth volumes. ${ }^{10}$

Book IV, Chapter Seven

IV. 7 [2]. The 1:20 ratio for the apparent size of a first magnitude fixed star in relation to the sun comes from Plan. Hyp., BM 91a (trans., p. 8); Tūsī takes this to be for an "average size" first magnitude star but Ptolemy implies in two places that this is a minimum value (BM 91b, lines 12-14, 19-20). Now the fixed stars are 19,963 e.r. from the Earth, which is about $16 \frac{1}{2}$ times 1210 e.r., i.e. the sun's mean distance. At the sun's mean distance, the apparent diameter of a first magnitude star would then be

$$
1 / 20 \cdot 51 / 2^{p}=161 / 2 \text { minutes }
$$

Adjusting for the star's actual distance, one has

$$
0 ; 16^{1 / 2} \cdot 161 / 2=4 ; 32,15^{p} \approx(4+1 / 3+1 / 5)^{p}
$$

which is the diameter of the star in terms of Earth diameters. ${ }^{1}$ The volume of the star is therefore $(4+1 / 3+1 / 5)^{3}$ or about 93 times the volume of the Earth. ${ }^{2}$

[^207]IV. 7 [3]. The calculated results of Țūsi's approach are displayed in Table 13. ${ }^{3}$ Note that he correlates an increasing magnitude with a linearly decreasing volume; this widely-held medieval interpretation of Hipparchus's magnitude is apparently due to Farghāni. ${ }^{4}$ The division of each magnitude into large, mean, and small could well be due to Tūsī himself since it is otherwise unattested before him. ${ }^{5}$

We should emphasize here that in ancient, medieval, and early modern astronomy, stellar magnitudes were generally correlated with size, not brightness. ${ }^{6}$ But the convention apparently adopted by Hipparchus and reiterated by Ptolemy was that magnitudes were measures of stellar diameters, not volumes. And since the only reported observations, due evidently to Hipparchus, ${ }^{7}$ had the fixed stars ranging in apparent diameter from $1 / 20$ to $1 / 30$ of the apparent diameter of the sun, the scale based on volume makes little sense. This criticism is stated explicitly by Jurjanī and is expanded on by Birjandī, who notes correctly that a fixed star that is $1 / 30$ the diameter of the sun will have a volume of approximately $27^{2} / 3$ Earth volumes, which would be a 5 th magnitude star in Tüsi's scheme. Bījandī rather mysteriously attributes the magnitude scale based on volume to Ptolemy and notes that it is quite popular among the moderns despite the problem associated with it. Less mysteriously, he traces the scale based on diameters to Hipparchus and reports the clumsy relationship whereby a 2nd magnitude star is $1 / 22$ the sun's diameter, a 3rd magnitude star is $1 / 24$, and so on. This latter relationship, of course, cannot be attributed to Hipparchus; indeed it seems to be due to ${ }^{\text {c Urdịi. }}{ }^{8}$

Before leaving this topic, I should mention another scale based on diameters that Bīrūnī tells us he found in Abū Jacfar al-Khāzin's Book on Sizes and Distances. ${ }^{9}$ The scale is as follows: ${ }^{10}$

[^208]Table 12. Al-Khāzin's Magnitude Scale.

Star	Diameter	
	Qänūn	Tafhīm
Sun's Diameter	1	1
1st magnitude	$1 / 17$	$1 / 20$
2nd magnitude	$1 / 201 / 4$	$4 / 81$
3rd magnitude	$1 / 21 / 5$	$5 / 109$
4th magnitude	$1 / 24$	$1 / 24$
5th magnitude	$1 / 271 / 2$	$2 / 55$
6th magnitude	$1 / 36$	$1 / 36$

Bïrūnī rather caustically remarks that al-Khāzin "does not attribute this [scale] to himself nor to anyone else; neither does he indicate the way in which it was derived or discovered." Although Swerdlow believes these values to be "the result of some sort of computation rather than observation,"11 they are so odd that I doubt that there is any computational rationale for them. (The fact that they defeated both Bīrünī and Swerdlow is eloquent testimony to this.) I am inclined to see them as the result of some kind of observation, but I am at a loss to understand what sort of instrumental scale could have given al-Khāzin, or whomever, both $1 / 201 / 4$ and $1 / 214 / 5$.
IV. 7 [4]. The ordering of bodies is basically correct except that large and average 2nd magnitude stars should have been placed between Jupiter and Saturn (see Table 13). This ordering, with the exception of those fixed stars with magnitudes other than 1 for which Ptolemy gives no accounting, is the same as in the Planetary Hypotheses, BM 91b (trans., p. 9). This is something of a coincidence since in giving his volumes, Ptolemy, unlike TTūsī, has the moon larger than Venus. What seems to have happened is that Ptolemy ordered the celestial bodies on the basis of his true diameters rather than his volumes; accordingly Venus would be larger than the moon. The reason for the discrepancy is that Ptolemy's stated diameter for Venus is not in conformity with the amount he gives for its volume. ${ }^{12}$
IV. 7 [5]. Țüsĩ uses 1273 parasangs for the Earth's radius and 33;33 e.r. for the moon's nearest distance to obtain 42,709 parasangs. Subtracting 1273 parasangs from this results in 41,436 parasangs for this distance measured from the surface of the Earth. For the distance of the fixed stars one has

19,963 e.r. $\cdot 1273$ parasangs/e.r. $=25,412,899$ parasangs

[^209]Table 13. Sizes and Distances. ${ }^{1}$

Celestial Body	Nearest Distance (in Earth radii) Tūsi [Ptol]	Apparent Diameter ${ }^{2}$ (in apparent solar diameters) Tūsī [Ptol]	True Diameter (in Earth diameters) Tūsi $[$ Ptol $]$	Volume (in Earth volumes) Tūsi $[$ Ptol $]$
Moon	$33 ; 33$ $[33]^{3}$	1 $[11 / 3]^{4}$	$0 ; 17,33$ $[1 / 4+1 / 24]^{5}$	$1 /(39+1 / 4+\{1 / 20\}$) $[1 / 40]^{6}$
Mercury	$641 / 6[64]^{7}$	$1 / 15[1 / 15]$	$1 / 28[1 / 27]$	$1 / 21,952[1 / 19,683]$

Notes to Table 13.

${ }^{1}$ For Ptolemy all numbers are from the Planetary Hypotheses; differing Almagest values are noted.
${ }^{2}$ At mean distances except for Țūsìs moon and for the fixed stars.
${ }^{3}$ Alm.: $33 ; 33$. The distance of $94 ; 36$ myriad stades given for the boundary of the level of fire and the lunar orb (Plan. Hyp., BM 90b [trans., p. 8]) is equivalent to 33 e.r.
${ }^{4}$ Ṭüsī in IV. 3 [2] follows the Almagest in giving the moon's apparent diameter at its farthest distance as 1 apparent solar diameter; he thus ignores both his previously stated values in II. 13 [8]2-4 and the diameter of $1 / 3$ occurring at mean distance as given in the Hypotheses.
${ }^{5}$ Alm. has $0 ; 17,33$ for the moon at its farthest distance.
${ }^{6} \mathrm{Alm}$. has $1 / 391 / 4$.
${ }^{7}$ Tuusini finds the moon's farthest distance to be $641 / 6$ (as in Alm.) and Mercury's nearest distance 64.
${ }^{8}$ The farthest distance for Venus is 1079 e.r. in Plan. Hyp., BM 89b (trans., p. 7).
${ }^{9}$ In the Almagest, the only distance given for the sun is 1210 e.r.
${ }^{10}$ Alm. has 170.
${ }^{11}$ Ptolemy probably used 20,000 to calculate the true diameter and volume.
.12 Despite Țūsi's claim in IV. 7 [2] that "they" have given $1 / 20$ for "average-size stars of first magnitude," Ptolemy simply gives this value for first magnitude stars without further qualification; cf. Plan. Hyp., BM 91a (trans., p. 8).
${ }^{13}$ Ptolemy gives these as minimum values (Plan. Hyp., BM 91b [trans., p. 9]).
${ }^{14}$ This is attributed to Hipparchus (Plan. Hyp., BM 90b [trans., p. 8]).

Critical Apparatus

$$
531 \ell
$$

Γ

Explanation of Signs and Conventions Used in Apparatus

Numbers in right column indicate page numbers of the edited text.
/2-24/ Refers to lines of the edited text; here from line 24 to line 2 of the following page (reading right to left)
[Separates reading in edition from any variant
: \quad Separates variant and manuscript sigla
$+\quad$ Added in

- Missing from
$=\quad$ Indicates another variant
(...) Editor's comments
(Y) Indicates variant is the second occurrence of the word or phrase on the line

ض Istanbul, Feyzullah MS 1330, 1
b Istanbul, Ahmet III MS 3453, 19 (= Topkapı Saray MS 7005, 19)
$\dot{\varepsilon} \quad$ St. Petersburg (a.k.a. Leningrad), Oriental Institute MS A 437
ف Vatican, ar. MS 319, 1
J Leiden, University Library MS or. 905 (= 1093)
Istanbul, Lâleli MS 2116
باض (blank)
تا تحت السطر في (under the line in)
خا خرم (hole)
شا مشطوب في (crossed out in)
b مطموس ، غير مقروء ، إلخ (smudged, unreadable, etc.)
فوت السطر في (above the line in)
ها هامش (margin)

§1. Text Apparatus

الديباجة والمقدمة

91 /1/ الرحيم] +رب تقم بالخير :ض = + +رب زدني علما :غ = + وبه

 ذلكُ العلم| طاف . /13/ الهيئة] طاف . /13-14/ البسيطة...كـيـاتها "

 الحركات] طاض . [/18/ وعلل] وعللُ : ف . . اختلاف الأوضاع] الاختلاف
 وتُبَّن] فاض (بخط غير النّاسخ) = وتتبيّن : ض (بإعجام التاء الثاني

 الناسخ) = تنريف : ض (بإعجام الناء فتط) . /6/ سبيل التصدير] طاف .

533Ω

الباب الأول ، النصل الأول

|134-14 أي ...بالحس] -

 المفروضة : هام م عليه] + بعضها لبعض : م . 191-20 هو الذئي يكون فرض
 ل = هو الذي يمكن أن تخرج فيه (= منه : م) الخطوط المستقيمة في جميع الجهات : م ، '(كذا. مقيّدة في شروح الجرجاني والخفري والبيرجندي) = = هو الذي تكون الخطوط المفروضة عليه في جميع الجهات مستقيمة : ض ("هو

 الخارجة] + منها : : .

 تتحرك بحركتها : فام (مع رمز "ظ" ولعله بخط غير الناسخ) . /13/ عليها] /17/ . دايرة: متوازية وموازية] موازية : غ . للمنطتة] للنتطة : ل . . والمحور] فالمحور : ض .

 عظمى أو صغرى في الكرّة] ل = - غ = عظمى : ض (التصحيح في الهامش

مطموس) = عظمى : ط ("وصغرى" فوت السطر مع رمز "صح") = عظمى وصغـرى :ف ("ي الكـرة" في الهـامـش مـع رمـز "صـحّ") = عظمى : م ("اذالصغرى" (؟) في هامش م مع رمز "ظ" ولعله بخط غير الناسخ) . /121

 "خ اصح") ، ف، ل = ويكون الخط الواصـل بيـن المركزيـن عمودا على سطحي الدايرتين وهو سهم الاسطوانة : ض ، ط ، م = ويكون الخط الواصل بين المركزين محيطاً على سطح الدايرتين وهو سهم الاسطوانة :غ . $19 /$ الا قائمة] + والا فهائلة : هاض (لعله بخط غير الما الناسخ) . /10/ مستدير] + صِنوبرى : هاض (بخط غير الناسخ) . /12-13/ يكون سهمه ...قائماً]

 قايما" فلعله بخط غير الناسخ ومن المحتمل أنه بدل "وهو سهمه"، الذي ربما قد شُطب) ، (كذا في شرح النيسابوري إلا أنه يضيف "وهو سهـهه") = يكون عهودا على قاعدته وهو سهمه : ض ، ط، غ . /13/ قائماً] + والا فمائلا : هاض (بخط غير الناسخ) .

الباب الأول ، الفصل الثاني

 والاول : غ . هـو] فـاط . /4/ والحيوانات] والحيوان : غ . /15 ولكـل]
 وإن] فإن :غ • نُسـبـ] نسبت :ض ، ل . /10/ بغيره] بغير :غ .
 تصدر l يصدر :غ غ / ا17/ أو] و :

 تضعف] ولا تضعف في حركاتها : غ . حركاتها الما حركتها] حركانها : م . /26/ المتشابهة] المتشابه :ض ص ع

الباب الثاني ، الغصل الأول

 بعينها : م • /14/ زمـان] ع
 دورة] (بإعجام التاء في ض ، فی، م) .

+ في :

 اللميَات : ل

الباب الثاني ، النصل الثاني
109 /44 بالحركة] الحركة : غ ، ل . ما يطلع منها] منها ما يطلع : ع . /15 فيه]

 + قد : ل . بعديها] بعدها : ل . الأبعد والأقرب] الاقرب والابعد : غ ، فـ . 14// المركبة] م = المولفة : هام (مع رمز "خ") . . وسيأتي] فسيانتى : ط. .

 فيها نتولـد] تتـولد فيها : ض ، م . / /2 النباتيـات] النبـاتـات :غ ، ل . والحيوانات] والحيوانيات : م .

الباب الثاني ، الفصل الثالث
/5/ المشهورة] المشهور : ف . ا7/ وستين] وستون : م . /8/ الربع] ربع : م .

وعندهما : م . تُربَعَع] تتربَع :غ = = يتربع : فـ . وتسميان] وتسمى :ط

 /177/ تسمى أيضاً] ايضا تسمى : غ ، ف . . أيضاً] -ط .

 بتطبيها] بتطبيهما : : . /10// وتسميان] ويسميان : ف . / ا/11/ أو بين قطب

النتقطة] النقط : غ . /11/ من] هال .

الباب الثاني. ، الفصل الرابع

 123 موجودة في ض فقط) . 2-16 وتللك الغاية ... في بتعة بعينها] هاض (من
"مرتين" (سطر 3) إلى "التقدير" (سطر 15)) ، هاط (من "مرتين" (سطر3)

 انطباقها ويمكن ان تكون قبل انطباقها وعلى التقدير الاول يمكن تبادل نصني فلك البروج اعني الشمالي والجنوبي بالتمام وعلى التقدير الثاني يمكن ذلك في البعض وعلى التقدير الثالث لا يمكن ذلك الا ان النهار والليل
 وعلى التقدير الرابع† لا يكون ذلك الا ان الارتغاعات ومقات ومادير الايام والليالي تزيد وتنتص في بتعة بعينها : ض (مشطوب من "ومفارقتها*" إلى "الاحوال" " ؛

 والجنوبي" ناقصة) = وتللك الغاية يمكن ان تكون انـون حالِ انطباقها الاولّ ويمكن النا ان تكون قبل انطباقها الاول وعلى تقدير الاول والثاني اذا انطبق مرتين

 عليه غير مرة واحدة من التقدير الثاني يمكن التبادل في المنطقة فقط وعلى التقدير الثالث لا يمكن ذلك الا ان النهار والليل يصيران متساويين عند الانطباق في جميع الاحوال وتبطل فصول السنة وعلى التقدير الرابع لا يكون ذلك الا ان الارتغاعات ومقـاديـر الايـام والليالى تزيـد وتنتـص في بتعـة بعينها : غ = (نجد التالية في شرح الخفري كعبارة النسخة القديمة : "ثم المنطقة ان تحركت فاما ان تتم الدورة او لا بل تا تتحرك الى الى غاية ما ثم الم تعود وتلك الغاية اما بعد انطباقها على معدل النهار ومفارقتها اياه مرة او مرتين واما حال احد الانطباقين واما قبله") . /5/ تصل] يصل : هاط . /6/ الأول]

 الاولى : هاط . /13/ منطقة] فلك : هاض الاض ع المجاور] المجاوز : ل . /14/ النهار والليل] الليـل والنهار : هاض . /14-15 في جميع البقاع وتبطل فصول
 125 = ض ، -ط ، - غ ،

تَبطو : ف ، ل = تبطُؤُ : م (ولعل المقصود تُبطئ) . /5/ وتسرع] وَتسْرَعُ :ل

-ف . النصف] -غ • /3/ أيضاً معـدل النهـار] ف، ، م = معـدل النهار
 كان العرض شماليا فيكون راس السرطان فـن في منتصف القسم الاكبر من مداره وان كان جنوبيا فيكون منتصفه راس الجدي واصغر المدارات اليومية

 رجل] - غ • وكانت] وكان : ض . /6/ ثمانية] (كذا في كل النسخ) .

 /15/ وقَنْطُورِس] وقَنطورس : ض = وقنطورِس : ف = وقَنْطورِس : مـ . متقـاربة] -غ . وصغرها] وصغـارها : ف . /233 جعلته] (كذا في كل
 فهي : ض . مفرد] منفرد : ض (بإهمال النون) . $127 /$ هاهنا] منها : ف .

الباب الثاني ، النصل الخامس
131 /15/ تتشابه] يتشابه : ف، ، م . أيضاً] فال . 8/10-10/ الذي نحنبمركز

 133 16/ فُرْ l كل النسخ) . /122 جهتها] جهته : غ . 137
.
 (المركز : هاض) الموافق وحضيض الخارج إلى نصف قطر الخارج كنسبة الخط الواصل بين مركز الموافق وحضيض التدوير] هاض (مع ملاحظة "ح الما

 الواصل بين مركز الموافق والبعد الالقرب من التدوير :ل = نسبة المبر نصف قطر

 او التدوير : فـ . مهكن] -
 141 إلى الخط الثاني] -

 ومشطوب في ط) . /11/ فلا بدّ] + له : ف . /12/ تظهر] يظهر : ف، ، . .

 ومنطقة] ومنطقةَ: ف = ومنطقتُ : ل . /44 الموافق] هاض
 /11/ وهذه صورتها] وصورتهما ما قد مضى : غ '

الباب الثاني ، الفصل السادس

 (ونجد "هو" في شرح الخغري) . /15/ توالي البروج] التوالي : فـ .

 مضاف؟؟ ، ، ل = فلكيه : ض ، غ غ ، ف، ، م . $/ 77$ بقدره

 على التوالي : ل . /8/8/8/8/ دامت] دام : ض .

الباب الثاني ، الفصل السابع

/17// عنها] عنه : ض . /19/ عائدٌ] عايدٌ : ض = عايدة : ط ، غ ، ف ، ، ل ، م . /217/ بزمان قليل]] بقليل : ط . مختلفاً] مختلف : ل . / /23/ ومتابلتها] او

 /13// تدوير] التدوير : غ،

 والخسوفات] طافـ . /2 عن] من : ل . /3 الجوزهر لاتَحاد موضوعيهها] طاف . /4/ الجوزهر] الجوهر :ل . /5/1/ البسيطة] هام (مع رمز "خ") = البطية : م . /7 أيضاً] -ط . إحدى عشرة] احدى عشر : الغ • /8/ الحركة]

 + متشـابهـة: ف .
 /16// خارج مركز] خارج المركز : غ . /20/ إلى بطء أكثر] الى اكثر : ل =

157 اكثر : م . /21/ وغيرهما] وغيرها : ل . !1/ تلزمه] تلزمها : ض . الحركات]

قطر] القطر : ف . ستون] + جـزءاً :ل . /15/ وكـذلك المركز] + في : شاط . أو الحضيض] والحضيض : ط ، ل . . ويكون زائداً]

163

165

الباب الثاني ، الفصل الثامن
/111/ حواليها] حواليه : ض ، غ ، م . منْها] منه : ض ، غ ، ل ‘ م . . شمالها]

 وإذا] اذا : ف . 19/ لم توجد] لا توجد : ل = لم يوجد : : م م م متشابهة] متشاهد : ط . /20/ قدرأ] دورا: ض ،ط . /21 أكثر] + واكبر : ض .

/8/ المركز] طاف . /10/ يقاطع] نتاطع : ض . ز زوايا] طاف . /11/ فتَحدث]

 بمتساويين] متساويين : ض ،ط م • من أوج] في اوج : ط . / /22/ مقابلته] طاف = مقابليه :ل . /24/ وحركة الأوج] هام . /1/ والحركة] + والحركة :

 مشطوب) . /20/ عند] + ما : شاف ف . /21/ وعند] عند : ط . / /24/ اللازمة
 173

 الذروتين] الذورتين : م • 17// والثاني] والآخر : ل • معدل] المعدل : م

 سيجى : ف . باب] فصل : ل . مفرد] +والله اعلم : ف . الباب الثاني ، الفصل التاسع

 /16/ عنه(1)] عنها : ل . /18// ووجدوا] ووجد : : ع /19/ مقابل] يقابل : ط. .

 اضفت :غ = اضيف :ض .

 أواسـط| اوسـاط :ل • رجـوعـاتها] رجـوعها : الغ ا

 /15// في هذا العلم] هاط ه العلم] الفن : غ . 126 الاختلافات] اختلافات :

 الكواكب! الكوكب : : .

الباب الثاني ، الفصل العاشر

191 الميلان]. المَيَلاَن : ف . /22 على] الى : ض . /24-2/ شمالياً ... مركزه إليه] -

 بين "بسبعين درجة" و "وذنب المشتري" في غ) . /11/ متقدم ...المشتري]
 /12// درجات] درجة : غ . /19/ للعلوية] العلوية : ض ، ط • وللسنفليين]

 193
 غاية] غايته في :ط . /4/ الجنوبي] الجنوب : غ . /5/ ال في غاية] غايته في : ط .

 /12/ تعالى] -ض ، -ط .

الباب الثاني ، الفصل الحادي عشر

 فيتم : ض ، ف ، م . /3/ المار"] المارة : 199

 6-77 أن تقطع قوسَ] طاف . /71 ولتتحرك] وليتحرك : ض ، ف . /8ا تلك

 /12// طرفيه] طرفيها : م = طرفها : ض ، ط، ، غ • زائلة] زايل, :ل . /144-15/

 203 الحامل : غ • /6/ نتل] لم ينل :ط ط م الكرة] -ف = الدايرة : ل . /8/ وتلي]
 وتمأّ" شاض • فكان التدوير]-غ . /16/ تتحرك] يتحرك : ف . . القطر] م =

 للأصل] -ط . /3-15 مطابقة ... عليه] هاغ . . /4/ الحساب] الحستّاب : ف .
/5-4 في هذا ...الحساب] هام . /6/ وغايته تكـون] وتكون غايته : ف .
تكون] يكون : ل ‘ م . /9/ الدايرة] هاط (مع رمز "خ اصح") ، ف ، ل = =
 للمسيـر :غ • الـدايـرة] فـاط (مـح رمـز "خ اصـح") ، ف ،ل الكـرة: ض ،ط، ، غ ، . .

 -ض . /23/ العلم] الفن : غ . النتطة (توجد كلمة مشطوبة بعدها في ض) .
 وأنا أقول] طاض . تداوير] التداوير :غ (ال "ال" مشطوب) . . الكواكب]

 سطحها] سطحـه : ض ،ط، $19 /$ /

 بالمراكز] -ف ، "م . فكان] وكان" : ط = = وكان : غ ، (يوجد "و" فوق السطر

تـداويـر] التـداويـر : غ ، ف . /8 ميـول] الميـول : ض ا ف مسـاويـة] متساوية : غ. /10/ تتشابه] يتشابه : ف . نقط] نقطة : ض ، ط ، غ ، ف . .
 يتشابه : ف . /12/ نتط]. نقطة : ط ، غ ، ف ف . الدوائر] التداوير : غ .

 ل ل • •

 219
 منها : م ـ مساويتين] متساويتين ومساويين : ل = = متساويين : ط ، ف ف . . تكون ا يكون : م • نتطتا] نتطتي :

 223

 الباقي] الثاني": غ

الباب الثاني ، الفصل الثاني عشر

 225 الاختلاف] هاط . /1/ وهذه صورته] وصورته في الصفحة الإخرى :غ .

 /11/ اختلافه] اختلاف : غ

 229
 سيجيء : غ ، ط ، م " /5/ الحساب] الحستاب : ض ، غ غ ، ف . /6/ يُخرج] . له +

الباب الثاني ، الفصل الثالث عشر

/10// وني] في :

 اثنتي عشرة] اثنى عشر :ط، غ، ف ، ل • /6/ ووقع] وقع : ف .

لموضح] موضع : م . /12/ بحركته] بحركتها : ط . /18/ المرئي] للهراى : ف . /25/ أكثر] اكبر :غ • /3 أربعـة] (كذا في كل النسـخ) .
 انكسف : ض ، غ . 12 كلها] كله : ض . أكبر] اكثر : ل . /3 بقي] (كذا
 تزاد :ط . /10/ تكون] يكون : ف . /11 / يكون] + امكان : ض ، ط، ، غ ، ،

 طرف : ف . 171/ استقبال واجتماع] اجتمـاع واستقبال : ط ، م (نجد ميمين (= منعكس ؟) فوق الكلدتين) . /19-120 الداخل في الخسوف والكاسف]
 شرقيَّهُ ش شرقيّه ابداً : غ . /21 غربي] غربية : غ .

الباب الثاني ، الفصل الرابع عشر
241 2-3-3 والاقترانات وأحوال الظهور والاختفاء] ف = والاقتترانات وأحوال الظهور والاختفاء والقرانات : الظهور والاختناء والاقترانات : ض ،طه ، ل . /15 البعيدة والتريبة] القريبة

 الكواكب] الكوكب : ض . 137/ "مقادير] -ط . التنوين) ، ف، ،ل = وعشية : ط ، غ ، م . /21 راجعة] ف ، ل = مستقيمة :

 أحد القطبين] -ض . ض ، ط، غ ، (ال "ينن" فوق السطر في م) . إليهما] اليها :ط = = + والله اعلم : ف .

الباب الثالث ، الفصل الأول
245 / 141 اثنا عشر فصلاًا وفيه فصول : هاض = (يوجد قبل عنوان الباب في م) .

المشرق :

247

 (غير مشكلة في النسخ الباقية؛ ؛ ويقول ابن منظور : "ونئّف وهو لحن عند

 النسخ إلاَ أنَّ البيرجندي وضع "جزافات" وأورد "خرافات" أيضاً ويقولً إنها
 أوضاعها : غ ، ف . 271 السماويَّات] السماوات : م . /1/ في + + في : ض .

شاض = عرضا لا طولا : هاض . فتتشابه] فيتشابه : ف، لـ = متشابه : : غ =

 أربع] اربعة : غ . .

 وعشر : غ . /81 عشرة] عشر : ع
 -

 ط ، ف، ل ، م م . 261 ولنشرع] ونشرع : فـ .

الباب الثالث ، الغصل الثاني

255 /37 دوائر ...الاستواء] -غ .

 257

 التاءين) = ((تمكث" في شروح الجرجاني والخفري والبيرجندي ؛ "تلبث" في

 الفِجاجة : ف . اللازمين] اللازمتين : ل .

الباب الثالث ، الفصل الثالث
/12/ المواضع] -ف . عرض] عروض : ف . /133/ وتُستمى] ويسمى : ض ،

 + عن ذلك : شال . ا7 يقطع] + دايرة : م . /91 الكوكب] الكواكب : ل .
الباب الثالث ، الفصل الرابع

 هاف .

الباب الثالث ، الفصل الخامس
269 /15 يتساوى] تتساوى: ض . /6/ لها ا -ط . متقابلتين ! مقابلتين :

 (موقعان)) ويُريد : ض (ابإهال الياء الثاني) = (علامة الإهمال فوق الراء في

 277 /10/ الظاهر] -ض . /11/ للمعهود] المعهود : غ = للمعهودة : م . 1/8-8/ ثم ...

 وصغناه] وضعناه : ف . 141/ لقرب] بقرب : :ض ،ط (بإهمال الباء) ، ، غ غ

الباب الثالث ، الفصل السادس

/20/ المواضع] الموضع : ض . التي] الذي : ض . /121 عرضها] ع عرضه : ض .

= غروب :غ .

 /21/ وليحكم] ف ، م = ولنحكم :ل = (بإنمال الياء في النسخ الباقية) . هاهنا] -ض = ههنا :ط، ع، ، ف . ل

الباب الثالث ، الفصل السابع
283 121 مَطالِ] (كذا مشكَلة في ل) . /3/ تطلع] يطلع : ض = تقع : غ (بابهال

 - غ

 القول] القوس :

ومنطتة] وْمَنطقة : ل . 10/ والمغارب] والنارب : ض . كالطال [كالطالع :

الباب الثالث ، الفصل الثامن

 (هناك إشارة فوقها ولكّن لم نجد تصحيح) . /13/ ويكون] فيكون : م (يوجد رمز "خو" فوق السطر) • /15/ التناوت] الاختلاف : ل . ج جعل] جُعل : فـ .

=

 291
 مَطالعهمـا :ل = مطالعيهـا :غ .

293 ط، ط، م . - بحسب :

الباب الثالث ، الفصل التاسع

 الارض : فاط (مع رمز "خ") . /15/ يصدُق] يَصدُق : ل = = يصْدق : م اغير

 299

الباب الثالث ، الفصل العاشر
/71 يتركب] تركب : ف . /8/ وهي] وهو : ف . والسنون] والسنين : ض .

 (كذا في ض ، م، وفي شـرحين النيسابوري والخفـري ولــل في شرح

 ويسمى : ف، ،م . ا221 المسترَقة] (مشكّلة كذا في شرح البيرجندي) =
 303 سنيّهم (؟) : غ (بإهمال الياء) . /1/ يوم] هام • موضع ! فال • / ا/ على
 اصططاحية ... شمسية] هاف . . /5 وإن] فان : هاف . /6/ الشهور القمرية]

 ويسسونها سنين l -ف .

الباب الثالث ، الفصل الحادي عشر
/15/ /24 كان] كانا : فـ = كاكان : م . /19/ يكون] فاط . /21/ الظاهر] -غ . /24! الخـارج] (كـذا في كـل النسـخ = الخـارجـة في شـروح النيسـابوري

 ظاهرأ] ظاهر : غ . $120 /$ الكواكب] الكوكب :
 (بالتشديد في غ'، ف' ، م)

الباب الثالث ، الفصل الثاني عشر
307 /4/ يُرصد] (بالضدة في م) . /15 ويُخط] (بالضمة في ف) . مستويـة]

 التاء) . ويُرصد] (بالضمة في م) = ويَرصصُد : ل (بإهمال الياء) . /11/

الظل] + الداخل : شا ف • في] -ض ، -ط ، - 'غ ، -م . الدائرة] لدايرة : ض .

تسعين : ض ،ط، ل ، م . /16// ليعرف] يعرف :ل (بإهمال الياء) =

وشمالية] شمـالية : غ • يساوي] تساوى : ض ‘ ، م . /4-15 عرضها عرض
 عرضها :غ . 6/77 أقل ...طـولها] -ف . 181 هاهنا

شرقيتها : غ . كانت] كان :غ . 17/ القبلة] + والله اعلم : ف .

الباب الرابع ، الفصل الأوِل
311 [12 معـرفة] -ط . 31 الأبعـاد والأجـرام] الاجـرام والأبعـاد : م : والأجـرام]

وأربعين] واربعون : ط ، ل . . 77 ونصف فرسخ ا

في ل) • /10/ الدائرة] دايرة : م . /12/ الربع(1)] ربع : ط ، ف . المسكون]

 رمز "صح") ، ل = = اض ، -ط ، " ألف] الاف : غ • وسبعمائة] وسبعه مايه : غ . /18-19/ وستة وخمسون ألفاً وأربعمائة وعشرون فرسخاً] ل = وخمسة وستين الفا واربعماية وعشرين
 ("ونصف فرسخ" في الهامش مع رمز "صح") : ف . /21/ الفراسخ] فراسخ :

الباب الرابع ، الفصل الثاني

 واحدا : ف . /10/ وذلك] هام . /122 وثلاثاً] +واثنين : فاط (مع رمز "صح") . .

الباب الرابع ، الفصل الثالث

 جميع : غ . ا22-23/ قطر الظل وقطر مخروط الظلّ| قطرى الظلّ ومخروطه

 النيسابوري والجرجاني والخفري والبيرجندي .

الباب الرابع ؛ الفصل الرابع
327 /22 في متدار جرم النيترين] ف ، م ، (كذا في شرح النيسابوري) = في

 + جُزء :ل .

الباب الرابع ، الفصل الخامس

 الشـس : ض ، ط ("الشدس" في الهامش) . /15// ونعود] ويعود : ط (؟) .

 ل ل ، . 141 بالتقريب| هال • فإذن جرم] فجرم :ض ، ف = ف فاذاً

 ف، • •

الباب الرابع ، الفصل السادس

 /14/ أخذ l أُخذَ :ل . ست عشرة] ستة عشر : ض ،ل = ست عشر : فـ .

رمز "صح") = اُُخدَ :ل . /111 لنصف قطر الأرض] للارض : ض ، ط ، ف ف ،

 كعبنا : ض ، ف .

الباب الرابع ، الفصل السابع

 341 عشر :

وتجعل :ط ، ف = ونجعل :غ = ويجعَل (بإهمال الياء) :ل . أكبر كل]

 واله حسبنا اللّه ونعم الوكيل نعم المولى ونعم النصير : غ = محمد وآله الطّاهريـن : ف = المصطفى والحمد لواهب العقـل ومبـدع الكـل وعليه التكلان : م .

§2. Figure Apparatus

الباب الثاني ، الفصل الخامس
(موقعان في صورة أصل الخارج)] بعد الاوسط . البعد P. 133

 و "البعد الأوسط" في صورة أصل التدوير) ل ل مركز الخارج المركز] مركز
 تبادل الوضع وصورة أصل التدوير مدورّة ربع دور باتجاه ميرئ معاكس لحركة عقارب 'الساعة) . م (صورة أصل التدوير مدورة ربع دور باتجاه حركة . عقارب الساعة)

 غ غ مدار الكوكب] (توجد على دائرة فللُ الحامل) . فلك الحامل] (ناقص) .

 مدار الكوكب] (ناقص) . كوكب (في كل موقع)] الكوكب . كوكب (في

الوضع الموافت للبناءة الثانية)] (ناقص) . فلك التدوير] (ناقص) . مركز التدوير] ((اقنص) . ل كوكب (في الوضع الموافق للساعة الثانية)] (وضع
 التدوير] (توجد في مخطوط ل فقط) . (الخط الواصل بين الكوكب ومركز المرك التدوير غير موجود في الأوضاع الموافقة للساعات الثانية والرابعة والثالثامنة

 الحقيتة مركز مدار الكوكب) . (الصورة مدورّة ربع دور الحـر باتجاه حركة ع عقارب الساءة) .
(p. 139 صورة أصـل الخارج)" (وضع النتطتين غير دقيق ولعل الناسخ أراد ألم أن ينصّف قطعة الخط بين مركز الموافق المركز ومحيط الموافق المركز من جان جانب
 البعد الأقرب (في صورة أصل التدوير)] (ناقص) . مركرك المركز الموافت المركز

 أصل الخارج)] (ناقص) . الموافق المركز (من صورة أصل الخارج) المرج
 صورة أصل التدوير)] (وضع النتطتين غير دقيق بل نحـ نحو مركز موافق

 م البعد الأقرب (في صورة أصل التدوير)) بعد الاقرب . (توجد "نتطة وقوف" عند نتطتي تقاطع الخطين الخارجين من مركز الموافير المنق المركز إلى التدوير الواقتتي عن الجانبين من البعد الأقرب) . الحامل الموافت المركز]
(ناقص ؟) . الخارج المركز] (مكرر) . منتصف الوتر (الواقع في يمين صورة

 المنتصف بين مركز الموافق المركز ومحيط الموافق المركز من جانب البعد الأبعد) . (الصورتان على تبادل الوضع وصورة أصل التدوير مدورّرة باتجاه حركة عقارب الساعة إلى الوضع الموافق للساعة الثانية) .
.
p. 143 التدوير (في صورة أصل التدوير)] (ناقص) . الذروة] (ناقص) . (لا يوجد

الخطان من مركز الحامل المماستان التدوير المر والخط المـر الواصل بين نتطتي
 الموافق)] (ناقص) . مقعَر الموافت] (توجد عند مقعَر الخارج ولا تكـون
عبارة تعريف على مقعَر الموافق) . التدوير (في صورة أصل المـون التدوير)]
(ناقص) . (لا يوجد الخطان من مركز الحامل المماستان للتدوير والخط

 الحامل] (ناقص) . (لا يوجد الخطان من مركز الحامل المماسَّان للتدوير
 أصل الخارج المركز)] (ناقص) . الموافق المركز] (ناقص) . الخارج المركز] (ناقص) . الحضيض (في صورة أصل الخارج المركز))] (توجد على المر محدّب
 (ناقص) . الذروة] (ناقص) . الحامل] (ناقص) . (الخط من ذروة التدوير

 التدوير • التدوير (في صورة أصل الحـامل)] (ناقص) . المضيض (في

صورة أصل الحامل)] (ناقص) • م الندوير (في صورة أصل الخارج)]] تدوير . الحضيض (في صورة أصل الخارج)] (ناقص) . التدوير ('في صورة أصل الحامل)] (ناقص) . (الصورتان على تبادل الوضع) . (لآي يوجد الخطان من مركز الحامل المماستان للتدوير والخط الواصل بين نتطتي التماسَ في التدوير ،

الباب الثاني ، النصل السادس
Fig.T5 p. 147
 مركز الخارج] مركز خارج المركز . المتم (موقعان)] (ناقص) . (تنتهي الخطوط إلى مركز الشمس عند محدرَب الخارج الأوسطين المارّ بمركز الخارج مستقيم) . فـ مركز الخارجـ المرج مركز الخارج المركز . (يوجد "الذروة المرئية"، عند طريفي الخطين الخارجين من مرين مركز العالم إلى مركز الشدس و"الذروة الوسطى" عند طرئي الخطين المرين الخارجين من منرين

 البعدين الأوسطين اللذين نحو الأوج) . ل ل متعر الخارج] (زائد) . متعر

 الخارج في الموضع المناسب) ـ البعد الأوسط (الموقعان نحو الأوج)] + اول . البعد الأوسط (الموقعان نحو الحضيض)] + ثاني . المتسم (موقعان)]
 (يوجد رسم زائد للشهس عند الأوج) •

ض Fig.T6 p. 161 خارج . نقطة المحاذاة] نقطه محاذاه . الخارج المركز] فلك خارج . الور الفلك المائل] فلك مايل . الفلك الممثل] فللك ممثل . (موضع كل مركز المركز نحو الأوج

 اختلاف (ثلاثة مواقع)] (ناقص) . تعديـل خاصة (موقعان)] ((ناقص) .

 مقعر المائل ومقعر الخارج)] (زائد) . (يوجد خطّان من نقطة المحاذاة إلى

 المرئية" (موقعان) توجد على محدتب فلك المائل) . (يوجد خطَّ من نقطة

 الاختلاف (نحو الاوج)] (ناقص) . حضيض] الحضيض . المتمم] (ناقص) .
 ((الفللك الممثل" على محدّب الغلكُ المائل) . م م زاوية اختلاف (كلا (كل موقع إلاّ

 (وتوجد على محدّب فلك المائل) . ذروة مرئيـة (موقعان)] ذروه المرئيـية (وتوجد على محدّب فللك المائل) . الخارج المركز] الغلك الخارج •

Fig.77

 منطةة الممثل I منطة(!) المثثل .

الباب الثاني ، الفصل الثامن
.

 المعدل للمسير" عند موضع مركز المدير الحقيتي و"مركز المدير" عند مند موضع

 المدير) . ("مركز معدل المسير" عند موضع مركز المدير المير الحقيقي) . مركز

 (ينتهي الخطين الواصلين بين الذروة الوسطى وبين مركز التير التدوير عند
 مركز التدوير] (يوجد في التدوير الفوقاني فتط) . التدوير] (ناقص) .

 المرئية (يمينأ)] الذروة الوسطى . (ينتهي الخطان من محيط التدوير عند مركز معدل المسير) • م الذروة المرئية (موقعان)] ذروة المرئية . الذروة

الوسطى (موقعان)] ذروة الوسطى • (ينتهي الخطان من محيط التدوير عند مركز معدل المسير) . (ينتهي الخطان الواصلان بيـن الذرورة المرئية وبين مركز التدوير عند مركز معدل المدر المير) . (ينتهي الخطان الواصلان بين الذروة الوسطى وبين مركز التدوير عند مركن المرك المدير) . الحضيض (عند مقعر المدير ومقعر الممثل)] (زائد) . التدوير (يساراً ويميناً)] (زائد) . مركز التدوير (فوقاً ويميناً)] (زائد) . (زير)

ض تر تربيع الأوج وهو حضيض الحامل (يميناً)] تربيع اوج المدير وهو p. 177 حضيض الحامل . ط تربيع الأوج وهو حضيض الحامل (يميناً)] (يوجد

 المائل] (ناقص) . الفلك المدير] (ناقص) . فـ مدار التدوير] (ناقص) .
 (ناقص) . م تربيع الأوج وهو حضيض الحامل (يميناً)] تربيع اوج المدير وهو حضيض الحامل •

ضig.T10 p. 187 اختلاف . متدم (بين مقعر الحامل ومتعر الممثل)] (ناقص) . مركز معدل المسير] مركز معدل مسير • مركز الحامل] مركز المر حامل • مركز العالم]

 (ناقص) . فلك حامل] (ناقص) . فـ فا زاوية اختلاف زائد] الاختلاف الزايد . زاوية اختلاف ناقص] الاختلاف الناقص • متمـ (بين مقعر الحامل

 (الظاهر أن الناسخ وضع "مركز معدل المسير" عند النتطة التي هي المركز الحقيقي لدائرتي الحامل) . (ينتهي الخطان من محنيط المير التدوير عند "مركز المرك

 هي المركز الحقيقي لدائرتي الحامل) .
[ig.T11
 والكبيرة ربع دَورة . والكبيرة نصفها | والكبيرة نصف دوَرْةَ . م قطعت الصغيرة دورة] قطعت الصغيرة دوراً
(الصورة مقلوبة) . (الخط بين "ز" و "ه" ناقص) .

Fig.T13 ض منطقة الكبيرة] منطقة الكرة الكبيرة . منطقة الصغيرة] منطقة الكرة

(اتتماسن منطقتا الكبيرة والصغيرة عند ذروة التدوير بدلاً من مركز التدوير
في الموضع الأول والموضع الثالث) . (لا يكون التدوير والمحيطة في جوف الككرة الصغيرة في الموضع الثاني والموضع الرابع) . ط منطتة الكبيرة] منطقة

 مركز التدوير في الموضع الأول والموضع الثالث) • غ الفلك المائل] (ناقص) .
 الصغيرة . مدار مركز التدوير] (ناقص) . ما ما هو بمنزلة المركز المرك لمدار

 بمنزلة المركز لمدار المدير • "البعد" (عند نتطة تماسَّ للكرة المكرة الكبيرة والكرة الصغيرة في الموضع الأول) و ״القرب" (عند نتطة تماسن للكرة الكبيرة والكرة

 الكبيرة والكرة الصغيرة في الموضع الأول) و "الحضيض" (عندر (المند نتطة تماسن

 الأول والموضع الثالث) . ما هو بمنزلة المركز لمدار التدوير] ما هو بمنزلة

المركز لمدار المدير . ״الدايـرة الموازية للمايـل" (وهي تمـاسن منطتة الكرة

 بالحمرةّ هي المجسّةة والتي بالستّاد هِي الدايرة") .
(ضig. T14 (207 p.

 التدوير] (ناقص) . البعد الأبعد] الابعد . البعد الأقرب] الاقرب . . (الحروف
 البعد الأوسط (موقعان)] مركز التدوير وهو البعد الاوسط . (الحروف . ناقصة)

 الدائرتان السفليتان إلى جهة اليسار وفي الثانية هما إلى جهة اليمين) .

 (زائد) • موضعه المرئي] موضع المرئي

ض Fig.T17

 رأس المخروط] راس مخروط الظل . مخروط النور] مخروط الظل . مخر منطقة

مائل القهر] منطقة المايل • غ منطقة مائل القـر] (ناقص) . منطتة ممثل

 نصفاً] (ناقص) . مخروط الظل] (ناتص) . ل ل مركز الشمس] مركزها .
 للقـر بلا خسوف . القهر في وسط الخسوف مح العقدة] القـر في وسط
 (ناقص ؟) . القـر مماس الظل ولا ينخسف] القتر مـاس دايرة الظل ولا
("بدء" مكتوبة "بدو" في كل النسخ .)
(ض مخروط القمر] (ناقص) • غ العقدة] ((ناقص) . ف عند العقدة] في

 مخروط ظل التهر • (يوجد "منطنة المايل للقمر" و"منطقة الممثل للقتر" على
نغس الدائرة) .

> (لا يوجد الشكل إلاَ في مخطوط ل) .

Rig.T20 ض دائرة معدل النهار] معدل النهار . مدار قطب البروج] مدار قطب

 (ناقص) . المغرب] مغرب . منطقة البروج] فلك البروج • مدار قطب البروج| مدار قطب فلك البروج • قطب البروج| قطب فللك البروج .

ف قطب البروج] (ناقص) • م مدار قطب البروج] مدار قطب فلك البروج • قطب البروج] قطب فلك البروج
(المشرق [المص) . المغرب] (ناقص) . مدار قطب البروج] مدار قطب

مـدار قطب البروج] مدار قطب فلك البروج . قطب البروج] قطب فلك البروج • الاعتدال (موقعان)] الاعتدالين • غ الجنوب] جنوب . الشهال الـرال شمـال . أول التوس] (ناقص) . أول السـرطـان] (ناقص) . مغينب الاعتدال] مغيب الاعتدالين • مدار قطب البروج] مدار ثطب فلك البروج • قطب البروج] قطب فلك البروج . فـ دائرة فللك البروج] (ناقص) . أول.
السرطان] (ناقص) . الاعتدال (موقعان)] الاعتدالين . لـ لـ مغيب] مغرب .

 البروج . قطب البروج] قطب فلك البروج . الاعتدال (موقعان)] الاعتدالين •

ض ضig.T22
 دائرة نصف النهار] (ناقص) . قطب معدل النهار] قطب الكل . الشمال] (ناقص) . (مدار قطب فلك البروج مرسوم في اليمين من الصورة) . مدار
 المغرب] (ناقص) . دائرة فلك البروج] (ناقص) . قطب البروج] قطب فللك
 ف الجنوب] (ناقص) . الشمال] (ناقص) . (الصورة مدورّة بحيث المغرب في أسفل الصفحة) . م قطب معدل النهار] قطب فلك معدل النهار .

ضig.T23
p. 277 السـرطـان] (ناقص) . نتطة الشمال] (ناقص) . الاعتدال (موقعان)]

الاعتدالين • قطب البروج] قطب فلك البروج • مدار قطب البروج] مدار

((ناقص) . الاعتدال (موقعان)] لاعتدالين . قطب البروج] قطب فلك البروج •

مدار قطب البروج] مدار قطب فللك البروج • غ نتطة الجنوب] (ناقص) . دائرة معدل النهار] (ناقص) . منطقة البروج] (ناقص) . . دائرة نصف ار إنص

 ("اول الحمـل" مكرزر عند نتطة المشرق) . نقطة الشمـل] (ناقص) . (الصورة مدورّة بحيث المغرب في أسفل الصفحة) . قطب البروج] قطب فلك
 (غير مقروء) . الاعتدال (موقعان)] الاعتدالين • قطب البروج] قطب فللك البروج • مدار قطب البروج] مدار قطب فللك البروج • الاعن

ضig. T24 p. 293 الحقيقية تنقص من الوسطى بسبب المطالع . (لا توجد الدائرة الصغيرة ولا

 الشمس] الدور (؟) . تربيع الأوج (في يمين الصنا الصورة)] (ناقص) . (لا (لا توجد
 (ناقص) . أول الميزان] (ليس بالتوسط بين أول السرطان وأول الجدي بل يقرب من أول الجدي) . أول الحمـل المـل] (ليس بالتوسط بين أول الجدي وأول السرطان بل يقرب من أول السرطان) . تربيع الأوج (موقعان)] (هما الج بالتوسط بين أول السرطان وأول الجدي) . الوسطى (في كل موقع)]

 الاختلاف] الحقيقية تنقص من الوسط بسبب الاختلاف . (الدائرة الصغيرة تماسَ فلك البروج عند أول السرطان) . ل ل وسط الأسد] اوسط الاسد . الائرة الا الحقيقية تنتص من الوسطى بسبب الاختلاف] الحقيقية تنتص عن الوس الوسطى بسبب الاختلاف . الحقيقية تزيد على الوسطى بسببب الاختلاف] الحقيقية تزيد على الوسطى بسبب المطال . (الدائرة الصغيرة تماسَ فلك البروج عند أول السرطان) . (الخطّان الخارجان من مركز الدائرة الصغيرة يمران تقاطع ضلعي المربَع والخط الفاصل بين القطعة البعيدة والقطعة القريبة) .

أول الميزان] (ليس بالتوسط بين أول السرطان وأول الجدي بل يقرب من
 السرطان بّل يقرب من أول السرطان) • تربيع الأوج (موقعان)") (همـا
 (لا توجد الدائرة الصغيرة ولا الخطان الخارجان من مركزها) .
الباب الثالث ، النصل التاسع

 العوود ...أولاً] موضع العمود (وخط العمود نغسه ناتصن) . موضع الاتصال المال (ناقص) . المشرق] شرق . المغرب] غرب .
. Fig. C34b p. 369 يوجد خط من موضع الناظر إلى المثلث) . ط طرف الأفق المرئي] طرف

 (يمتد الخط من "طرف الأفق المرئي" إلى الضلع الآخر من المثلث) .

الباب الرابع ، النصل الثاني
Fig.T26 ض (يمتد الخط من "موضع الناظر" إلى "فلك البروج") . ل ل (يمتد الخط
 عهودي قائم على الخط من "سمت الرأس" إلى "مركز الأرض" وهو الئو يمتد من "مركز الأرض" إلى "فلك البروج" في الجهتين) .

الباب الرابع ، الفصل الثالث

Fig. T27 ض " ج "(؟) و"د" و"ي" و"م" و"ن"] (ناقص) . قطر الظطل في بعد 1321 أبعد القمر من الأرض عن جانب رأس المخروط] مركز الظل في البعد المر الأبعد
 قطر آلشسس] (غير مقروء) . الأقطار ليست حقيقية لكن في الحس لا فرق بينها وبين الحقيقية] (ناقص) . ط قطر الظل في بعد "أبعد القهر من الأزض عن جانب رأس المخروط] قطر الظل في بعد ابعد القــر عـر عن جانب
 (ناقص) . مركز الظل عن جانب رأس المخروط] (ناقص) . قطر الظر الظل في بعد أبعد القهر من الأرض عن جن انب رأس المخروط] قطر الظّل في بعد
 جانب الشهس] مركز القهر في البعد الابعد وهو ايضا مركز محيط مخرورط الظل عند القهر . نصف تطر مخروط الظل عند التمر] نصف مخرئ مخروط
 القهر] (يوجد على "ي") . مركز التمر في البعد الإبعد وهو أيضا مركز
 مركز مخروط الظل عن جانب الشمس . نصف قطر مخروط الظل عند القهر] (ناقص) . ل (لا توجد الحروف الأبجدية) . نصف قطر مخرورو
 نصف قطر القهر] طرف قطر القمر • مركز القـر في البعد الأبعد وهو أيضاً مركز مخروط الظل عن جانب الشمس] مركز القـر القر في البعد الابعد وهو ايضا مركز مخروط الظل عند القمر عن جانب الشهس من . تطر الظل في بعد أبعد القهر من الأرض عن جانب رأس المخروط] قطر الظل في بعد ابعد القمر عن جانب راس المخروط

Part VI

Appendices and Indices

$$
583 e
$$

§1. Maps of Places Cited

$$
585 \text { \& }
$$

Map 1. Southwest Asia

Map 2. The Eastern Oikoumenē

§2. Conventions

For an explanation of the signs and conventions used in the apparatus, see page 532; sigla for the manuscripts are on pages 76-81.

A. Transliteration System for Arabic and Persian Words

The transliteration system is generally orthographic with no attempt being made to indicate actual pronunciation. Particles are joined by a dash with the following word; al becomes ' l if preceded by a joined particle. Persian ezāfe is indicated by $-i$.

- ä	ظ	z	-	a
ب b	ε	c	-	u
\#	$\dot{\varepsilon}$	gh	-	i
- t	ف่	f		
\star th	g	q	1	- ${ }^{\text {an }}$
T j	5	k	-	-in
F ch	ζ	g		
τ^{h}	\downarrow	1		
$\dot{\text { c }}$ kh	1	m		
\bigcirc d	$\dot{\sim}$	n		
$j \mathrm{dh}$	-	h		
, r	9	w, ü		
j z	ي	y,ī		
; zh				
س	\because	iyy		
ش	ي	ì		
¢	\checkmark	ā		
ḍ	c	, (ex		
b !	-	a; at		

sise

B. Transcription System for Arabic Letters in Figures

1 A	, W ك K	$\varepsilon \bigcirc$
ب B	j Z ل L	ف F
c G	$\mathrm{C}^{\mathrm{H}} \quad \stackrel{\mathrm{M}}{ }$	صC
\bigcirc D	b T ن N	ق Q
E	ي Y س S	, R
C. Abbreviations and Symbols		
A	area	
ar.	Arabic	
b.	ibn (son of)	
c.	century	
C	circumference	
comm.	commentary	
ctr.	center	
d	days	
d	standard arc of daylight; diameter	
D	amount of daylight	
e	eccentricity	
earth	the element	
Earth	the body	
Engl.	English	
e.d.	Earth diameter	
e.r.	Earth radius	
e.v.	Earth volume	
f., ff.	folio(s)	
Fr.	French	
${ }^{\text {b }}$	hours	
H.	hijra year; Heiberg (Almagest pagination)	
H. Sh.	solar hijra year	
Intr.	Introduction of edited text (pp. 91, 93)	
L	area of lune	
lit.	literally	
m	minutes	
MS, MSS	manuscript(s)	
MS 1330, 1	first treatise in MS 1330	
MS 1330 (1)	first treatise in MS 1330	
n .	note	
n. d.	no date	
0	observer, center of World	

or.	Oriental
p	parts
Pref.	Preface of edited text (p. 91)
pt.	point
q	equation of daylight
Q	equant
R	radius of eccentric; radius of smaller equator
r	radius of epicycle; radius
S	surface area of sphere
trans.	translation, translated by
V	volume
α	Marāgha version of Tadhkira (see pp. 71-75 and 85-88)
β	Baghdad version of Tadhkira (see pp. 70-71 and 85-88)
M	Istanbul, Lâleli MS 2116 (see pp. 85-88)
δ	declination
$\Delta \mathrm{E}$	equation of time
ε	obliquity of ecliptic
η	amplitude
λ	longitude
ϕ	local latitude
ϕ_{e}	local ecliptic latitude

A bar over a letter indicates the complement.

D. Miscellaneous

[...] editor's/translator's additions and comments
(...) for figures, indicates that this is missing in MSS FL
/.../ text or translation with variant reading given at foot of page
<...> computations or insertions due to editor/translator
II. 11 [9] $1-2_{2}$ standard reference notation for edited text; in this case, Book II, Chapter Eleven, paragraph 9, from line 1 of the page to line 2 of the following page
23;33,30 standard sexagesimal notation; in this case, the number represents $23 \times 60^{0}+33 \times 60^{-1}+30 \times 60^{-2}$

The first of two dates separated by a slash is the hijra date; the second is the corresponding Christian date. When only one date is given, it is Christian unless otherwise indicated.

§3. Glossary

II. 3 [12] = first appearance or definition of term occurs in Book II, Chapter 3, paragraph 12 of edition; trans. = transitive; intrans. = intransitive; adj. = adjective; const. $=$ constellation; $\underset{\sim}{\text { (}}$ (plural); مصدر $=$ (verbal noun)

592 أيْنِبـّة	
$\begin{aligned} & \text { displacing (motion) } \\ & \text { (I.2[3]) } \end{aligned}$	simple (bodies) بَسِيط (ج) بَسائُط (1.2[1]) the light spreads (III.9[2])
sea بَحر (ج)	the eye (III.9[1]) الِّصنر
Caspian Sea	slower motion (II.5[3]); بُطْهُ
Warank (Baltic) Sea	slowest speed (II.7[14]
Aral Sea	
vapor (II.1[1])	Ptolemy بطلميوس
principle (I.Intr.[1]);	Crater (II.4[9]) الباطِّة
principle of motion (I.2[2])	distance; interval بُعْد (ج) أبْعاد
starting (initial) point (II.4[4]);	elongation (II.9[1]) بُعْد في الطُول
epoch (III.10[3])	farthest distance البُعْد الأبْبَدِ
full moon (II.13[1]) البَدْر	(II.5[3-4])
to interchange (II.4[3])	nearest distance البُعْد الأقرْبَبِ
converse(ly) (II.1[1])	(II.5[3-4])
	mean distance (II.5[3]) البُعْد الأونْسُ
zodiacal sign (II.3[5]); (ج) بُوْجِج	double elongation البُعْد المُضَعَفْف
zod. constellation (II.4[9])	(II.7[11])
the ecliptic مِنْطَقَة (فَلَك) البُرُوج	elongation (IV.5[1])
equator (orb) (II.3[3])	location (II.3[2]); بُقْنة)
lightning (II.2[5]) بَوْقو	locality (II.4[3])
	to remain (after subtraction) يَبْـْقى
(demonstration) (I. Intr.[3])	to result (from an arithmetical operation)

Glossary
الحَرَكَة الوُسْطَى

Ara (II.4[9]) المُجْمَرَ0	convex (I.1[15])
to add	to face; be aligned with
sum مَجْمٌوعٌ	alignment point
conjunction	(II.7[18])
summary (Pref.[2]) جُمَّل	to face one another; يَتَحاذى
side (I.1[5])	to be aligned
side (II.1[7]) جانبِ جا جُوانبِ	slant (II.10[5]) الإنحِراف
south point (II.3[14])	to combust يَحْتْرِّ
crossing point (II.7[7])	(II.9[12])
to exceed بُجاوِز	
Gemini الجَوْزاء	(III.1[6])
lunar nodes الجَوْزهرَ / الجَوْهَهْرْ	motion حرَكَ
(II.7[7])	motion of the apogee
sine (I.1[9])	(II.7[9])
	the primary motion الحَركَكِ الأُوْلَى
2	
Abyssinia (III.1[3]) الحَبَشَّ	(I.2[3])
definition (I.Intr.[4]); حَدّ (ج) حُدؤود	motion of the center
boundary (I.1[1])	
حدّ الخُسوف	celestial motion (I.2[2])
(II.13[5])	motion by nature الحَركَ بالطبَعْ
حد" الكُسوف	
(II.13[9])	elemental motion (I.2[2])
acute (I.1[5]) حادّ	حَرَكَة الوَسَطِ /الحَرَكَة الوُسْطْىَ mean motion

حَركَّ	
	descent (II.1[1]);
the daily motion الحَركَكِ اليَوْمِّبة	decreasing altitude (II.1[2]);
to move (something) بُحِرّكُ	depression (II.3[17])
mover	true حَقِقِيّ
to move	principle; rule;
to be self-moved بَتْحرَكَكُ بِنْفِهِ	judgment
movement	astrologer (III.1[6]) أحْكامِّ
mobile	scientist (IV.1[2])
self-moved mobile المُتحَرِكْ بِنَفْسِه	narrative; report (I.Intr.[3]) حِكايَّ
stationary غِيْر مُتَحرِّكِ	ring of light (II.13[8]) حَلْقَة النُور
the senses	Aries الحَمّل
appreciable; perceptible ${ }_{\text {criom }}$	deferent (orb) (II.5[5])
perception \quad الإحْساس	
calculation	erent orb for the deferent orb's
mathematician; حاسِب (ج) حُستاب	center (II.8[9])
calculator	Perseus (II.4[9]) حامِل رأس الغُول
to deem elegant يَسْتَحْسِنُ	slanted (III.3[1]) حَمائِلّيّ
unit (IV.1[2]) حِصنّة (ج)	possibility (II.4[3])
argument of latitude	Pisces (II.14[2]) الحُوت
(II.7[29])	الحُوت الجَنُوبيّ
to result (from an	axis (I.1[12]) محْور
arithmetical operation)	confines (I.2[4]) حَّرّ
perigee; epicyclic perigee	to bound (I.1[3])
(II.5[11])	circumference of a circle (I.1[8]) or sphere (T.1[10])

الخافِقان	
east and west (III.1[7]) الخافقان	الْتْلافِ البُعْد الأقْرَب
to disappear; be invisible	nearest distance (II.7[17])
	الخْتِلاف البُعْد الأبْعِد والأقْرَبِ
of permanent أبَدِيَ الخَفاء	of the farthest and nearest
invisibility (II.1[1])	distances (II.8[16])
period of invisibility زَمان الخَفاء	change of state اخْتِل\|ف حال
invisible خَفِيّ	angle of divergence
gulf (III.1[5]) خَليّج	(II.12[1]);
Gulf of Barbary الخَليج البَبْبَري	angle of anomaly (Fig. T6)
(Aden)	difference in longitude إخْتِلا
Red Gulf (Sea) الخَلِّجِ الأحْحْرَ	(II.12[4])
Green Gulf الخَلِيـج الأخْضِرْ	difference in latitude إخْـِلا الحَزْ
Persian Gulf خَليجِ فارِس	(II. 11 [4])
to expand (I.2[4])	
Eternal (Islands) جَزإِّر) الخالِّات	(II.12[1]); divergence of sight
(III.1[7])	void (I.2[1])
to vary (I.2[3]);	mole (II.2[4]) خالَة
to be irregular (II.2[3])	
to be invariable لا يَخْتَلفـُ	3
variation انْتّلاف (ج) اخْتال\|فات)	Ursa Minor (II.4[9]) الدُبت الأصْنَ
(II.1[2]); variability (II.11[22]);	Ursa Major (II.4[9]) الدُبت الاكْبَرْ
change (I.Intr.[2]);	recession (II.4[4]) إدْبار
divergence (II.4[4]); anomaly;	Cygnus (II.4[9]) الدَجاجَّ
anomalous speed (II.7[14])	interior angle (II.11[3]) زاوِيَّه داخلَّة

Glossary 5	
memoir ([title]); تَذْكِّة	retrogradation (II.5[8]) رُجُوع
memento (Pref.[2])	Rigil Centaurus رِجْل قِنطورِسِ
tail (a node) (II.7[7])	(II.4[8])
comet (II.2[5]) (كَّكب) ذُوُ الذُ نُّ	spinning (III.6[1])
(ج) ذَوات اللأذنابِ	to oscillate (II.11[2])
quadrilateral	to draw (III.12[2]) بَرْسُمُ
(I.1[18])	observation رَصْ)
Cassiopeia (II.4[9])	by observation بالرصَدَد
	thunder (II.2[5])
$〕$	ascent (II.1[1]);
apex (I.1[17]); رأس (ج) رُؤوس	altitude (II.3[17]); height (IV.5[6])
head (a node) (II.7[7])	altitude circle (II.3[17]) دائرّة اللإرْتفا
head (of Aries, etc.) رأس (الحَّل)	compound; composed مُركَّب\%
(Fig. T20)	to be composed
apparent مرَّبِيْ	to be combined
quarter mark (II.11[9]); ربٌ)	additively (III.8[6])
fourth (III.1[2])	to have the
spring (i.e. the season) رَبِّE	difference taken (III.8[6])
to divide into fourths (III.12[2])	center (I.1[8])
quadrature	solar center (II.6[5])
	center of the World مَزْزَز العالَّ
arrangement (II.2[title]) تَرْتِبِبِ	Onar center (II.7[29])
to reverse direction;	
to retrograde	embedded (II.5[10]) مَرْكُ

Glossary 601		
the populated quarter الرّبْع المَسْكُون	axis	
(III.1[2])	versed sine (القونس	
geographical المَساللك (والمَماللكِ)	(I.1[9])	
placebooks (III.1[5])	Sagitta (II.4[9])	
course, line; سَمْتِ ج(ج) سُؤوت	hour (III.10[1])	
direction; azimuth (II.3[17])	seasonal (temporal)	
circle of the initial دائرَة أولّ السُمُوت	hours (III.10[1])	
azimuth (prime vertical) (II.3[14])	equal hours	
zenith (II.3[12]) سَمْت الرأس	(III.10[1])	
qibla bearing (III.12[3]) سَدْتِ القِبْلة	unequal (distorted)	
alignment; being directly مُسامَتِّ	hours (III.10[1])	
overhead (III.2[2])	distance	مَسا
sky (II.1[title])	leg (e.g. of a triangle)(1I	
the heavens (III.1[6]) السَّوريّات	exactly (III.6[title])	
De caelo (كتاب) السِّاء والعالَّ	to equal; be equal to	
Virgo (II.14[2]) السُنْبُلَة	to be equal to one anoth	
سَنَّة (ج)	converse التَبادٌ	
	equality (II.1[1])	
(conventional) solar year	equidistant	
(III.10[3])	regular order (III.5[1])	
ستّنة قَمَرِيّة (III.10[3])	motion (II.1[4]); speed (
Plain of Sinjār بَرِّيِّة سِنجار	mean speed (II.5[9])	
Canopus (II.4[8])	planet (II.2[3])	

 equinox (point)
average (IV.1[2])
مُعْتَدِلِ
to disappear (e.g. a value) يَنْعَدُ mineral مَعْدِن (ج) مَعادِن width (I.1[1]); latitude (II.3[7]) عرَض local ecliptic عَرْض إقْلِيم الرُؤيَة latitude (II.3[16])
circle of دائزَة عَرْض إقِلْمَ الرُؤيَة

> local ecliptic latitude (II.3[16])
local latitude (II.3[13]) عَرْض البَلَد
دائرَة الحَرْض parallel of latitude مَدار عَرْضيَ (II.3[5])
characteristics عَرَض (ج) أَعْراض accidental (I.2[2])

Mercury (II.2[4]) عَرَضيَ
to turn (I.2[4])
يَنْعَطِفُ
Aquila (II.4[9])
العُقاب
node (II.7[7]) عُقْدَة

Scorpius العَقْرَبِ
conversely; opposite; بِالْعَكْس reverse; vice versa
reverse order (III.5[1])
to be reflected (II.13[1])
 the converse does not لا يَنْعَكِسُ hold (I.2[3])
a reason عِلَّة (ج) عِلَّل science; discipline the World عِلْم (ج) عُلُوم العالَم world of genera- عالَم الكَوْن والفَساد tion and corruption (IV.7[5]) to mark (III.12[2]) يُعَلّْحُ عَلَويَ /عُلوِي /عِلْوِيت superior
(I.Intr.[2]); celestial (II.1[title]) (الكِواكِبِ) العَلَوِيـة
celestial bodies (III.[title]) العَلَوِيّات elevated (II.14[1]) مُسْتْتَلْ perpendicular (I.1[5]) عَمُودد inhabited world (III.1[3]) المَعْمُور depth (I.1[1]) عُمْتُقْ

 light element (I.2[3]) الُنْصُر الخَفِيفـ divine providence العِنايَة الإلِّهِيَّة
(III.1[6])
to return

608 يَقْطَعُ	
to cut off or describe	arc of night (III.10[1]) قَوْس اللَّبْلِ
(e.g. an arc); to traverse	arc of daylight (III.10[1]) قَّس النَهار
part (I.1[9]); segment قِطْة (ج)	to stand erect يُقومُ
(I.1[11]); portion (V.1[1])	at right angles علَّلى
Equuleus (II.4[9]) قِّعَة الفَركّ	
to intersect يُقاطـع	perpendicular
to intersect one another	true position (II.6[5]) تُقْوِيم
intersection point تُقْطَة تَقاطُع	
base (I.1[16]) قاعِدَة (ج) قواعِد	(II.5[9])
concave (I.1[15]) مُعقّرك	gnomon (III.12[1]) مِيـاس
solstice (point)(II.3[4])(نُقُّة) الانْنِلاب)	Cetus (II.4[9]) قِّبّطس
	Cepheus (II.4[9]) قَبْقّاؤس
solstice (point) (II.3[4])	5)
summer نُقطّة) الإنْقِلابِ الصَيْنِّة	
solstice (point) (II.3[4])	differing size
clime (III.1[7]) إْلْمِ	to intercalate (III.10[3])
the moon (II.2[4]) القَّرَ	intercalary يَوم)
almucantar of	(day) (III.10[2])
depression (II.3[12])	practical handbook كِتاب العَمّل
almucantar of مُقَنْطَرَة اللِرْنِفاع	thickness (II.13[1]) كثtفَة
altitude (II.3[12])	thick ك́بف
Centaurus (II.4[9])	to contract (I.2[4])
	sphere (I.1[10]) كُرّة (ج) كُرات
Sagittarius القَوْسِ	enclosing sphere الكُرَة المُحِيطَة (II.11[4])

الكُرَة الصَغيرَّةٌ small sphere (Fig. T13)	starless (II.2[4]) غْيْر مُكوْكِبْ
large sphere (Fig. T13) الكُرَة الكَبِيرَة	
fraction كَسْر (ج) كُسُور	natural place (I.2[2]) مَكان بِالْطِّعْعِ
area (IV.1[1])	quality; كَيْنِيّة (ج)
square (e.g.miles) (IV.1[3]) تكّسِبري	weather condition (III.2[2])
to eclipse or occult (used for the sun) (II.2[4])	
solar eclipse (II.13[7]) كُّوف	to mend (I.2[4])
occulting (body) (II.13[9]) كاسف	the Milky Way الدائرِّ اللَبَنِّتِّتِ
to be eclipsed or occulted 'يَنْكسِفـ	(II.4[10])
(used for the sun) (II.13[7])	the supplementary اللَواحت
uncovering of the إنـكـشاف الأرضّ	(epagomenal) days (III.10[3])
Earth	to dissolve (II.2[5]) يَتُّلاشى
to cube (IV.5[7])	winding (II.10[5]) الالْتِفاف
cube (IV.4[2]) مُكتِبْ	to meet (trans.) يُلاقِي
balancing (III.2[4]) تَكافؤ	to meet one another
the Universe (II.1[4]) الكُل	to meet (intrans.) يَلْتُقِي
Corona Australis الإكْلِلِ الجَنُوبِينِ	twist (II.10[5]) الأْتِواء
(II.4[9])	night (time) لَيْلِ جا لَبالٌ
Canis Minor (II.4[9]) الكَلْب الأصْنْر	arc of night (III.10[1])
Canis Major (II.4[9]) الكَلْب الاكَبْبَ	
Kangdezh (III.1[7])	the equal of; times مبثل (ج) أمْنّال
star; planet كوْكب (ج) كواكِب	ecliptic (orb) (II.6[3])

610 G	كَنْشُور
Almagest المَجِسْطى	first declination (II.3[7]) مَنْل أولّ
new moon (II.13[1]) المُحاو	second declination (II.3[7]) مَيْل
to test (II.14[2])	particular declination
lunar marking (II.7[23])	(II.3[6])
to transit يَمُر"	rectilinear inclination مَيْل مُسْتِقْمِ
transit; passage	(II.1[6])
	total obliquity (II.3[3]) declina- دائرَة المَيْل (ج) دَوائِر المُيُولِ
المَرْأة المُسَلْسِلَة (9ndromeda (II.4[9])	tion circle (II.3[6])
Mars (II.2[4]) المِرّبح	inclined (orb) (II.7[4]) الفَلكَ) المائِل ()
to touch; be tangent to; يُمّاسٌ	oblique horizons (الآفات (المائلِّة
be contiguous with	(III.3[title])
to be tangent to one another	mile (IV.1[2]) مـيْل (ج) أمْيَال
area; measure (IV.1) مساحَة	
Auriga (II.4[9])	
(الطَرَف) المَسائِيَ (endpoint)	plants نَبات (ج)
(II.10[5])	vegetative (I.2[2]) نَباتيّ
Egypt (III.1[4]) مصصر	mansions of مَنْزِلِ (ج) مَنازِل القَمَرِ
elapsed (III.8[7])	the moon (II.4[11])
to have duration	ratio نِسْبَ (ج) نِسْب)
(said of eclipses) (II.13[4])	عَعَلَى نِسْبَة
duration (of eclipse) (II.13[3])	place of origin (II.2[5])
water	truncated orb مَنْشور (ج) مَنْاشِير
inclination; declination مَيْل (ج) مُمُوْل	(II.11[16])

hemisphere (III.1[6]) نصف⿴囗	عكلْم المَناظِر science of optics (IV.4[1])
radius نصْف تُطلْ (ج) أنْصاف أقْطار	soul (I.2[2])
noon	to subtract from
meridian circle	subtractive ناقص
(II.3[13])	point (I.1[1])
meridian line	to shift (II.4[4]) يَنْتْقِلُ
(III.12[1])	to grow (I.2[4])
to bisect (I.1[8]) S	monoformly (I.2[1]) عـلَى نَهْج واحِ
to bisect one another	Eridanus (II.4[9]) النَهْر
noon (III.4[2]) انْتُصاف النَهار	day (time); نُهار
midpoint (I.1[9]);	daylight (III.1[8])
middle part (II.3[17]);	period of daylight
mid-distance (IV.6[5])	(III.1[8])
Frimangement; order	equation of daylight تَعْدِيل نَهارِ
(planetary) sector (II.14[1]) نطاق	(III.3[2])
equator (I.1[13]);	arc of daylight (III.10[1]) قَوْس النَهار
inner equator (II.5[10])	without limit إلى غِيْر نِهايَة / بِلا نِهايَّ
equator of مِنْطَةِ الكُرَة الصَغِّهِّ	to end (I.1[1])
small sphere (II.11[4])	to reach (II.1[1]) يَنْتَهِي إلَلى
equator of مِنْطَقَة الكُرَة الكُبِيرَة	termination (III.1[8])
large sphere (II.11[4])	
in appearance	illumination (II.13[title]) نُور
observer (II.2[1]) ناظر	luminous نَّتر
parallax (II.12[1]) اخْتِلافِ المَنْكَر	أَجْرامِ نَّرّهِّ

the two luminaries النَبِّران	unit (IV.6[5]) وحـد
إنارَة	slope (II.10[5]) الوراب
illuminated	Libra المِّزنانِّ
species; class; type	to be parallel to يُوازِي
	to be parallel to one another
the Nile (III.1[4]) النـينّ	the middle; وَسَط (ج) أوْساط the mean; midpoint
∞	middle (of Aries, etc.) وُسَط (الحَمَلِ
falls of the two هُبوطا النَيَرِيْنِ	(Fig. T24)
luminaries (III.1[6])	nodal mean (II.7[29]) وَسَط الجُوْزهُر
descending (II.5[11]) هابِط	solar mean (II.6[5])
crescent (III.10[2]) Jo	lunar'mean (II.7[29]) وَسَط القهرَ
crescent-shaped هِلاليَ الشَكْل	ecliptic (دائِرَّ) وسَط سَهاء الرؤيَّة
(II.13[1])	meridian circle (midheaven circle
geometry الهَنْدِسَة (ج)	of appearances) (II.3[16])
air ه́واء	
	of the zodiacal signs (II.3[9])
astronomy	middle; أوْسَط (ج) أواسِط
	mean (adj.); avera
9	middle part (III.8[5]) أواسِط
chord (I.1[9]); subtense (III.7[2]) وَتر	to be at a mean; to bisect يَتْوَسِّط
to subtend (IV.3[3])	سَعْةّ مَشْرقِ
face (of a celestial body) ؤجْ	occasive amplitude
direction جهَّ (ج)	(III.2[1])

Glossary يَوْمَ أونْسَط	
to join وُصَل / يَصلٌ	station (of a planet) (II.5[8]) و'قوف
to be joined to; بَتِّتصل' بِ	in the عكلى (خلافِ) تَوالِي البُروج
to be adjacent or contiguous	(counter-) sequence of the
position وَضْ (ج) أوضضاع	zodiacal signs
location مَوْضـع (ج) مَواضـع	consecutive
true position	
apparent position مَضْـِ مَرْنِيَّ	
subject (I.Intr.[1])	
	true day (III.8[6]) يَوْمِ حَقِيقِي
(II.5[5])	
time وقْتٌ (ج) أوْقات	(III.8[2])

§4. Works Cited

Note that the Arabic particle al-has been ignored for alphabetizing the entries.

Abū al-Fidā' Ismā`īl ibn ${ }^{\text {C }}$ Alī ibn Maḥmūd al-Malik al-Mu'ayyad. Taqwīm al-buldān. Edition by Joseph-Toussaint Reinaud and MacGuckin de Slane. Paris, 1840. Introduction and translation of the first half of the Arabic text into French by J.-T. Reinaud and the second half by Stanislas Guyard as Géographie d'Aboulféda. 2 vols. (vol. 1 [intro. by Reinaud] Paris, 1848; vol. 2, pt. 1 [translation of first half by Reinaud] Paris, 1848; vol. 2, pt. 2 [translation of second half by Guyard] Paris, 1883). Paris [1848] and [1883] reprinted Frankfurt am Main: Institut für Geschichte der Arabisch-Islamischen Wissenschaften, 1985.
Ahwāl. See Riḍawĩ.
Akhlāq-i Nāsirī. See Țūsī, Nāṣirean Ethics.
Alfraganus. See Farghăní.
Alm., Almagest. See Toomer [1984].
Aminn, Aḥmad. puhā al-Islām. 3 vols. Cairo: Maktabat al-nahḍat al-Miṣriyya, n.d.
al-Andalusī. See $\widehat{S}_{\bar{a}} \mathrm{c}_{\mathrm{id}}$ al-Andalusī.
Aqsäm. See Ibn Sīnā, Tis ${ }^{c}$ Rasā'il (Epistle 5: Fî aqsām al-culūm al- ${ }^{C}$ aqliyya).
Arberry, A. J. [1958]. Classical Persian Literature. London: George Allen and Unwin.
Archimedes. See Dijksterhuis.
Aristotle. The Complete Works of Aristotle. Edited by Jonathan Barnes. 2 vols. Princeton: Princeton University Press, 1984.
Āthār. See Bìrūnī, Al-Āthār al-bāqiya ${ }^{c^{\prime}}$ an al-qurün al-khāliya.
Autolycus. On a Moving Sphere=The Books of Autolykos: On a Moving Sphere and On Risings and Settings. Edition and translation by Frans Bruin and Alexander Vondjidis. Beirut: American University of Beirut, 1971.
Avicenna. See Ibn Sīnā.
 Baghdad and Beirut: Maktabat al-muthannā, n.d.
al-Bahrānī, Yūsuf. Lu'lu'at al-Bahrayn. Najaf, 1966.
Bar Hebraeus, Gregorius Abū al-Faraj Ibn al-'Ibri. The Chronography of Gregory Abū'l Faraj...Commonly Known as Bar Hebraeus Being the First Part of His Political History of the World. 2 vols. (vol. 1: Translation from the Syriac by Ernest A. Wallis Budge; vol. 2: Facsimiles of the Syriac Texts in the Bodleian MS. Hunt no. 52). Oxford University Press, 1932.

Barani, Syed Hasan [1951]. "Muslim Researches in Geodesy." In Al-Bīrüni Commemoration Volume, A.H. 362-A.H. I362, pp. 1-52. Calcutta: Iran Society.

Batt. See Battānī.

al-Battãnī, Abū ${ }^{c}$ Abd Allāh Muḥammad b. Sinān.
Zijj=Kitäb al-Zij al-şābi' (Opus astronomicum). Edition, translation, and commentary by Carlo A. Nallino. 3 vols. Milan, 1899-1907 (vol. 1 [1903]; vol. 2 [1907]; vol. 3 [1899]).
Bickerman, E. J. [1968]. Chronology of the Ancient World. Ithaca: Cornell University Press.
Bidāya. See Ibn Kathīr, Al-Bidāya wa-'l-nihāya.
al-Bīrjandī, cAbd al-c Alī b. Muhammad b. Ḥusayn. Sharh "al-Tadhkira." Cambridge, Harvard College Library, Houghton MS Arabic 4285.
al-Bīrūnī, Abū Rayḥān Muḥammad b. Aḥmad.
Al-Āthār al-bāqiya ${ }^{c}$ an al-qurūn al-khāliya. Edition by C. Edward Sachau. Leipzig, 1878 (reprinted 1923). Translation by C. Edward Sachau as The Chronology of Ancient Nations: An English Version of the Arabic Text of the Athārul-Bäkiya of Albirūni or the "Vestiges of the Past." London, 1879 (reprinted 1967).
India. Edition of Arabic text by C. Edward Sachau as Alberuni's India: An Account of the Religion, Philosophy, Literature, Geography, Chronology, Astronomy, Customs, Laws and Astrology of India About A. D. I030. London: Trübner, 1887. Translation with notes by C. Edward Sachau as Alberuni's India. 2 vols. London: Trübner, 1888 (reprinted 1910).
 1954-1956.
Shadows. Translation and commentary by E. S. Kennedy as The Exhaustive Treatise on Shadows by al-Bīrünī: Translation and Commentary. 2 vols. Aleppo: Institute for the History of Arabic Science, 1976.
Kitāb al-Tafhīm li-awä'il sinā ${ }^{c}$ at al-tanjīm. Translation by R. Ramsay Wright, with the facsimile reproduction of an Arabic MS. London, 1934. Edition of Persian text by Jalāl al-Dĩn Humā'ī. Tehran: Intishārāt-i Bābak, 1362 H. Sh./1983-4 A.D.
Tahdīd nihāyāt al-amākin li-taṣhĭh masāfāt al-masākin. Edition by P. Bulgakov. Cairo, 1962. Translation by Jamil Ali as The Determination of the Coordinates of Cities. Beirut: American University of Beirut, 1967.
Transits. Translation by Mohammad Saffouri and Adnan Ifram as Al-Bīrūn̄̄i on Transits with commentary by E. S. Kennedy. Beirut: American University of Beirut (Oriental Series 32), 1959.
al-Biṭrūjī, Nūr al-Dīn abū Isḥāq. On the Principles of Astronomy. Edition, translation, and commentary by Bernard Goldstein. 2 vols. New Haven: Yale University Press, 1971.

Boyle, J. A.
History of the World Conqueror. See Juwaynī.
[1961]. 'The Death of the Last 'Abbāsid Caliph: A Contemporary Muslim Account." Journal of Semitic Studies 6: 145-161.
[1963]. "The Longer Introduction to the Zïj-i i l̆khänī of Naṣir ad-Dīn Țüsī." Journal of Semitic Studies 8: 244-254.

Brockelmann, Carl.

GAL=Geschichte der arabischen Litteratur. 2nd ed. 2 vols. plus 3 supplements. Leiden: E.J. Brill, 1937-1949 (vol. 1 [1943]; vol. 2 [1949]; suppl. 1 [1937]; suppl. 2 [1938]; suppl. 3 [1942]).
"al-Murtaḍā." Encyclopedia of Islam. 1st ed. 3: 736.
Bruin, Frans [1977]. "The First Visibility of the Lunar Crescent." Vistas in Astronomy 21: 331-358.

Carmody, F. J. [1960]. The Astronomical Works of Thabit b. Qurra. Berkeley: University of California Press.
Carra de Vaux [1893]. "Les sphères célestes selon Nasīr Eddin-Attūsī." In Paul Tannery, Recherches sur l'histoire de l'astronomie ancienne, Appendix VI, pp. 337-361. Paris: Gauthier-Villars.
Chron., Chronology. See Bīrünī, Āthār.
Copernicus, Nicholas. De revolutionibus orbium coelestium. Nuremberg, 1543. Translation and commentary by Edward Rosen as On the Revolutions. Baltimore: The Johns Hopkins University Press, 1978.
Cornford, Francis M. Plato's Cosmology: The Timaeus of Plato Translated with a Running Commentary. London: Routledge and Kegan Paul Ltd., 1937.

Dallal, Ahmad [1984]. "Al-Bīrūnī on Climates." Archives internationales d'histoire des sciences 34 (no. 112): 3-18.
Davidian, Marie Louise and Kennedy, E. S. [1961]. "Al-Qāyinī on the Duration of Dawn and Twilight." Journal of Near Eastern Studies 20: 145-153. Reprinted in Kennedy, Studies, pp. 284-292.
Delambre, J. B. [1819]. Histoire de l'astronomie du Moyen Age. Paris. Reprinted New York, 1961.
Dicks, D. R. [1970]. Early Greek Astronomy to Aristotle. Ithaca: Cornell University Press.
Dictionary of Scientific Biography [1970-1981]. 18 vols. New York: Charles Scribner's Sons.
Dietze, Gerhard [1957]. Einführung in die Optik der Atmosphäre. Leipzig: Akademische Verlagsgesellschaft.
Dijksterhuis, E. J. Archimedes. Princeton: Princeton University Press, 1987.
Dorotheus. See Pingree.
Dreyer, J. L. E. [1906]. History of the Planetary Systems from Thales to Kepler. Cambridge: Cambridge University Press. Reprinted as A History of Astronomy from Thales to Kepler. New York: Dover Publications, 1953.
DSB. Dictionary of Scientific Biography.
Duhem, Pierre.
[1908]. " Σ OZEIN TA Φ AINOMENA: Essai sur la notion de théorie physique de Platon à Galilee." Annales de philosophie chrétienne 6 (4ee série): 113-139, 277-302, 352-377, 482-514, 561-592. Issued in book form also in 1908 by Hermann, Paris; reprinted 1982 by J. Vrin, Paris. Page references are to the 1908 Hermann publication. Translation as To Save the Phenomena: An Essay on the Idea of Physical Theory from Plato to Galileo by Edmund Doland and Chaninah Maschler. Chicago: University of Chicago Press, 1969.

Duhem (continued)
[1913-1959]. Le Système du monde. 10 vols. (vol. 1 [1913]; vol. 2 [1914]). Hermann, Paris.
Dunlop, D. M. "Bahr al-Rūm." Encyclopedia of Islam. 2nd ed. 1: 934-936.
$E I^{1}$. See Encyclopedia of Islam, 1st edition.
$E I^{2}$. See Encyclopedia of Islam, 2nd edition.
Elders, Leo [1965]. Aristotle's Cosmology: A Commentary on the "De caelo." Assen, The Netherlands: VanGorcum and Comp.
Elements. See Euclid.
Encyclopedia of Islam [1913-1942]. 1st ed. 4 vols. plus supplement. Leiden.
Encyclopedia of Islam [1960-]. 2nd ed. Leiden.
Euclid. The Thirteen Books of Euclid's Elements. Translated from the text of Heiberg with introduction and commentary by Sir Thomas L. Heath. 2 nd ed. 3 vols. Cambridge: Cambridge University Press, 1926. Reprinted New York: Dover, 1956.
$F a^{c}$ alta. See Shīrāzī, Facalta fa-lã talum.
al-Fāräbī, Abū Naṣr. Kitāb Iḥ̣ā' al- ${ }^{c} u l u \bar{m}$. Edition by ${ }^{\text {c }}$ Uthmān Amin. Cairo: Dār al-fikr al-carabī, 1949.
al-Farghānī, Aḥmad ibn Muḥammad ibn Kathĩr.
Elements of Astronomy=Jawāmic cilm al-nujūm wa-uṣul al-harakāt al-samāwiyya. Edition, translation, and commentary by Jacobus Golius as Alfraganus, Elementa astronomica. Amsterdam, 1669. Reprinted (without Golius's notes) Frankfurt am Main: Institut für Geschichte der Arabisch-Islamischen Wissenschaften, 1986.
al-Fārisī, Kamāl al-Dīn al-Hasan b. ${ }^{c} A l \bar{i}$ b. al-Ḥusayn. Hāshiya ${ }^{\text {c }}$ alā dhikr aș al-rujū̃ ${ }^{c}$ wa-'l-istiqäma fi "al-Tadhkira" (Glosses on Retrograde and Direct Motion as Described in the Tadhkira), by Kamāl al-Dīn al-Fārisī. Al-Najaf, Āyat Allāh al-Ḥakīm Library MS 649 (= Arab League uncatalogued falak Film 315).
Fawāt. See Kutubī, Fawāt al-wafayāt.
Ferrand, Gabriel [1913-1914]. Relations de voyages et textes géographiques arabes, persans et turks relatifs à l'extrême-orient du VIIr au XVIIre siècles. 2 vols. Paris: Emnest Leroux. Reprinted Frankfurt am Main: Institut für Geschichte der ArabischIslamischen Wissenschaften, 1986.
Fih., Fihrist. See Ibn al-Nadïm, Kitäb al-Fihrist.
GAL. See Brockelmann, Geschichte der arabischen Litteratur.
GAS. See Sezgin, Geschichte des arabischen Schriftums.
Geo., Geography. See Ptolemy, Geography.
al-Ghazälī, Abū Hāmid Muḥammad b. Muḥammad.
Maqāsid al-falāsifa. Edition by Sulaymā̉n Dunyā. Cairo: Dār al-maª̄rif, n.d.
Tahāfut al-falāsifa. Edition by M. Bouyges. Beirut: Imprimerie Catholique, 1927. Translation by S. van den Bergh as The Incoherence of the Incoherence. 2 vols. London: Luzac \& Co., 1954.
Ginzel, F. K. Handbuch=Handbuch der mathematischen und technischen Chronologie. 3 vols. Leipzig: Hinrichs, 1906-1914.
Goichon, A.-M. Lexique de la langue philosophique d'lbn Sīnā. Paris, 1938.

Goldstein, Bernard R.
On the Principles of Astronomy. Edition and translation by Bernard R. Goldstein. See Biṭrūjī.
[1964]. "On the Theory of Trepidation according to Thäbit b. Qurra and al-Zarqāllu and its Implications for Homocentric Planetary Theory." Centaurus 10: 232-247.
[1967]. The Arabic Version of Ptolemy's Planetary Hypotheses. Transactions of the American Philosophical Society, n.s., 57, part 4. Philadelphia.
[1969]. "Some Medieval Reports of Venus and Mercury Transits." Centaurus 14: 49-59.
[1972]. "Theory and Observation in Medieval Astronomy." Isis 63: 39-47.
[1980]. "The Status of Models in Ancient and Medieval Astronomy." Centaurus 24: 132-147.
[1985]. "Review of Ptolemy's Almagest by G. J. Toomer." Isis 76: 117-1 18.
Goldstein, Bernard R. and Swerdlow, Noel M. [1970]. "Planetary Distances and Sizes in an Anonymous Arabic Treatise Preserved in Bodleian Ms. Marsh 621." Centaurus 15: 135-170.
Grant, Edward [1978]. "Cosmology." In Science in the Middle Ages, edited by David C. Lindberg, pp. 265-302. Chicago: University of Chicago Press.

Habib al-siyar. See Khwāndmīr, Tarikh-i Ḥabīb al-siyar.
Häajjī Khalīfa. Kashf al-zunūn. 2 vols. Istanbul, 1941.
Halma, M. [1820]. Hypothèses et époques des planètes, de C. Ptolémée, et hypotyposes de Proclus Diadochus. Paris.
HAMA. See O. Neugebauer.
al-Ḥanbalī. See Ibn al-CImād.
Handy Tables. See Ptolemy.
Harakāt al-shams. See Ibrāhīm b. Sinān.
Hartner, Willy.
"al-Battānī." Dictionary of Scientific Biography. 1: 507-516.
"Djawzahar." Encyclopedia of Islam. 2nd ed. 2: 501-502. Reprinted in OriensOccidens 2: 264.
"Falak." Encyclopedia of Islam. 2nd ed. 2: 761-763.
Oriens-Occidens: Ausgewählte Schriften zur Wissenschafts- und Kulturgeschichte. 2 vols. Hildesheim: George Olms, 1968, 1984.
"Zamān." Encyclopedia of Islam. 1st ed.
[1955]. "The Mercury Horoscope of Marcantonio Michiel of Venice: A Study in the History of Renaissance Astrology and Astronomy." Vistas in Astronomy (edited by Arthur Beer, Pergamon Press, London) 1: 84-138. Reprinted in Hartner, OriensOccidens, 1: 440-495.
[1964]. "Medieval Views on Cosmic Dimensions and Ptolemy's Kitäb al-Manshūrāt." In Mélanges Alexandre Koyré, 2 vols., 1: 254-282. Paris: Hermann. Reprinted in Hartner, Oriens-Occidens, 1: 319-348.
[1969]. "Nașīr al-Dīn al-Țūsìs Lunar Theory." Physis 11: 287-304.
[1971]. "Trepidation and Planetary Theories, common features in late Islamic and eatly Renaissance Astronomy." Accademia Nazionale dei Lincei, Fondazione Alessandro Volta. Atti dei Convegni 13: 609-629, 630-632 (Discussione).

Hartner (continued)
[1973]. "Copernicus, the Man, the Work and its History." Proceedings of the American Philosophical Society 117: 413-422.
[1975]. "The Islamic Astronomical Background to Nicholas Copernicus." In Studia Copernicana XIII (Colloquia Copernicana III), edited by Owen Gingerich and Jerzy Dobrzycki, pp. 7-16. Warsaw: Ossolineum.
Hartner, W. and Schramm, M. [1963]. "Al-Bīrūnī and the Theory of the Solar Apogee: An Example of Originality in Arabic Science." In Scientific Change, edited by A. C. Crombie, pp. 206-218. London, New York:
Hāshimī, ćAlī ibn Sulaymān. The Book of the Reasons Behind Astronomical Tables (Kitāb $f \hat{i} c_{i l a l}$ al-zijāt). Facsimile reproduction of the unique Arabic text contained in the Bodleian MS Arch. Seld. A. 11 with a translation by Fuad I. Haddad and Edward S. Kennedy and a commentary by David Pingree and E. S. Kennedy. Delmar, New York: Scholars' Facsimiles \& Reprints, 1981.
Heath, Sir Thomas L.
[1913]. Aristarchus of Samos, the Ancient Copernicus: A History of Greek Astronomy to Aristarchus Together with Aristarchus's Treatise "On the Sizes and Distances of the Sun and Moon," a New Greek Text with Translation and Notes. Oxford: Clarendon Press. Reprinted 1959.
See also Euclid, Elements.
Heiberg, J. L. (ed.)
[1898, 1903]. Claudii Ptolemaei opera quae exstant omnia. Vol. 1: Syntaxis mathematica (2 parts). Leipzig: Teubner.
[1907]. Claudii Ptolemaei opera quae exstant omnia. Vol. 2: Opera astronomica minora (2 parts). Leipzig: Teubner.
Heinen, Anton [1982]. A Study of As-Suyūtī's "al-Hay'a as-sanìya fî l-hay'a as-sunniya." Edition, translation, and commentary by Anton Heinen. Beirut: OrientInstitut der Deutschen Morgenländischen Gesellschaft.
Hero of Alexandria. Opera quae supersunt omnia. 5 vols. plus supplement to vol. 1. Leipzig: Teubner, 1899-1914.

Hinz, Walter.

"Farsakh." Encyclopedia of Islam. 2nd ed. 2: 812-813.
[1955]. Islamische Masse und Gewichte. Leiden: Brill.
Hippocratic Writings. See Lloyd.
Hodgson, Marshall.
[1955]. The Order of Assassins: The Struggle of the Early Nizārī Ismä ${ }^{c}$ cilīs against the Islamic World. The Hague: Mouton.
[1974]. The Venture of Islam. 3 vols. Chicago: The University of Chicago Press.
Hogendijk, Jan P. [1988]. "Three Islamic Lunar Crescent Visibility Tables." Journal for the History of Astronomy 19: 29-44.
Honigmann, Ernest [1929]. Die sieben Klimata. Heidelberg.
IAU. Seé Ibn abī Ușaybic ${ }_{\text {a }}$.
Ibn abī Ușaybic ${ }^{\text {a }}{ }^{c}$ 'Uyūn al-anbā' fí tabaqāt al-aṭibbā'. Edition by A. Müller, 2 vols. plus corrections. Cairo: Al-Maṭba ${ }^{{ }^{\text {}}}$ a al-Wahabiyya, 1299/1882, Königsberg, 1884.

Ibn al-Fuwati, Kamāl al-Dīn ${ }^{\text {c Abd al-Razzāq b. Aḥmad. }}$
Talkhis Majma ${ }^{c}$ al-ädäb fi mucjam al-alqāb. Vol. IV, edition by Mustafā Jawād. 3 parts to date. Damascus, 1962-1965. Vol. V, edition by M. ${ }^{\mathrm{c}}$ Abd al-Quddūs alQāsimī. Oriental College Magazine (Lahore), supplement (1939) and vols. 16-23 (1940-1947).
Ibn al-Haytham, al-Hesan.
Hay'at al-cälam (Configuration of the World). See Langermann [1990].
Maqäla fí hall shukük harakat al-iltifăf. See Sabra [1979].
Optics. See Sabra [1989].
Al-Shukūk calā Batlamyūs. Edition by A. I. Sabra and N. Shehaby. Cairo: Dār alkutub, 1971.
Ibn al-cImād, Abū al-Falāh ${ }^{\text {c }}$ Abd al-Ḥayy al-Ḥanbalī. Shadharāt al-dhahab. 8 vols. Cairo, 1351/1932-3.
 Maṭba ${ }^{\text {c at al-sa }}{ }^{\text {Cãda, }}$ 1351-1358/1932-1939.
Ibn Khaldün. The Muqaddimah: An Introduction to History. Translation by Franz Rosenthal. 3 vols. (Bollingen Series XLIII.) Princeton University Press, 1967.
Ibn Khallikãn, Abū al-c ${ }^{\text {Abbās Shams al-Dīn Aḥmad b. Muḥammad ibn Abī Bakr. }}$ Wafayāt al-a ${ }^{c} y \overline{a ̄ n} w a-a n b a \bar{\prime}$ ' abnā' al-zamān. Edition by Ihsān ${ }^{\text {c }}$ Abbās. 8 vols. Beirut: Dār Ṣādir, 1977. English translation by MacGuckin de Slane as Biographical Dictionary. 4 vols. Paris, 1842-1871 (facsimile reprint by Johnson Reprint Corporation of New York and London, 1961).
"Ibn Khallikān." Encyclopedia of Islam. 2nd ed. 3: 832-833 (article by J. W. Fück).
Ibn Manzuūr, Jamāl al-Dīn Muhammad ibn Mukarram al-Anṣārī. Lisān al- ${ }^{c}$ Arab. 20 vols. Būlāq, Cairo, 1300-1308 H. Facsimile reprint, Cairo, n.d.
Ibn Mūsā ibn Shākir, Muḥammad. Harakat al-aflāk (Motion of the Orbs). Damascus, Zāhiriyya MS 4489.
Ibn al-Nadīm. Kitāb al-Fihrist. Edition by Gustav Flügel. 2 vols. Leipzig, 1871-1872. Reprinted Beirut: Khayyāt, 1964.
Ibn Qayyim al-Jawziyya. Ighāthat al-lahfän min masāyid al-shayṭān. 2 vols. Cairo, 1357/1939.
Ibn Rushd, Abū al-Walīd Muḥammad b. Aḥmad b. Muḥammad.
Tafsĩr $m \bar{a} b a^{c} d a l-t-t a b i c a$. Edition by M. Bouyges. 3 vols. Beirut: Imprimerie Catholique, 1938-1948.
Tahāfut al-tahāfut. Edition by M. Bouyges. Beirut: Imprimerie Catholique, 1930. Translation by S. van den Bergh as The Incoherence of the Incoherence. 2 vols. London: Luzac and Co., 1954.
Talkhiṣ mā $b a^{c} d a l-t a b i ̄{ }^{c} a$. Edition by ${ }^{c}$ Uthmān Amĩn. Cairo, 1958.
Ibn Shākir. See Ibn Mūsā.
Ibn Sīnā, Abū ${ }^{\text {ch }}$ Alī al-Husayn b. ${ }^{\text {chabd Allāh. }}$
Dānishnāma. Translation by P. Morewedge as The Metaphysica of Avicenna. New York: Columbia University Press, 1973.
 hindiyya, 1326/1908.

Ibn Sīnā (continued)
Al-Ishārāt wa-'l-tanbīhāt (with the commentary of Naṣī al-Dīn al-Ṭūsī). Edition by Sulaymān Dunyā. 4 vols. Cairo: Dār al-ma ${ }^{C}$ ārif, 1957-1960.
Al-Ishārāt wa-'l-tanbīhāt (with the commentary of Naṣir al-Dīn al-Ṭūsi). 3 vols. Tehran, 1378/1958.
Al-Qānūn fĩ al-țibb. Būlāq, Cairo: al- ${ }^{-}$Āmira Press, 1294/1878. Kitāb al-Qānūn fī al-tibb. Rome, 1593. Partial English translation by O. Cameron Gruner in A Treatise on The Canon of Medicine of Avicenna Incorporating a Translation of the First Book. London: Luzac \& Co., 1930.
Al-Shifă'. General editor Ibrāhïm Madkūr. Al-Samā' wa-'l-cālam (part 2 of Natural Philosophy). Edition by Maḥmūd Qāsim. Cairo, 1969. Al-Ma ${ }^{c} a \bar{d}$ in $w a-1-\bar{a} t h a ̄ r ~ a l-~$ ${ }^{\text {calawiyya }}$ (part 5 of Natural Philosophy). Edition by ${ }^{\mathrm{C}} \mathrm{Abd}$ al-Halīm Muntaṣir, $\mathrm{Sa}^{\mathrm{C}} \overline{\mathrm{i} d}$ Zāyid, and ${ }^{\mathrm{C}}$ Abdallāh Ismā̄ ${ }^{\text {inl }}$. Cairo, 1965 (or 1964?). Al-Ilähiyyāt. 2 vols. (vol. 1: edition by G. C. Anawati and $\mathrm{Sa}^{{ }^{\mathrm{I}} \mathrm{I}}{ }^{\text {Z Zāyid; vol. 2: edition by Muhammad Y. Mūsā, }}$ Sulaymān Dunyā, and $\mathrm{Sa}^{\mathrm{c}_{\mathrm{id}}}$ Zäyid). Cairo, 1960. ${ }^{\text {cllm }}$ al-hay'a (part 4 of Mathematics [al-Riyādiyyāt]). Edition by Muḥammad Madwar and Imām Ibrāhīm Ahmad. Cairo, 1980.
Tis ${ }^{\text {C Rasā'il. Cairo: Maṭba }}$ ª hindiyya, 1326/1908.
Ibn Sinān. See Ibrāhīm b. Sinān b. Thābit b. Qurra al-Ḥarrānī.
Ibn Țā'ūs. Faraj al-mahmūm fi ta'rīkh 'ulamā' al-nujūm. Najaf, 1368/1949.
Ibn Yūnus, Abū al-Hasan ${ }^{\mathrm{c}}{ }^{\text {Alī ibn }}{ }^{\mathrm{c}}$ Abd al-Raḥmān ibn Ahmad.
Hāakimi $Z \bar{j} j=K i t a ̄ b$ al-Zīj al-kabir al-Haākimī... . Partial edition and French translation by Caussin de Perceval in Notices et extraits des Manuscrits de la Bibliothèque Nationale 7 (Year 12 of the Republic=1803-4): 16-240.
Ibrāhīm b. Sinān b. Thăbit b. Qurra al-Harrānī. Kitāb Harakãt al-shams. In Rasā’il ibn Sinān, edition by Ahmad S. Sacī̄dān. Kuwait, 1983.
$I h s \bar{a}^{\prime}$. See Fāräbī, Kitāb Ihsā’ al- ${ }^{c} u l \bar{u} m$.
Ikhwān al-Şafá'. Rasä'il. 4 vols. Cairo, 1928.
Iltifaff. See Sabra [1979].
Ilyas, Mohammad [1984]. Islamic Calendar, Times and Qibla. Kuala Lumpur: Berita Publishing.
Ishārāt. See Ibn Sinā, Al-Ishārāt wa-'l-tanbīhāt.
Ivanow, W.
[1931] "An Ismailitic Work by Nasiru'd-din Tusi." Journal of the Royal Asiatic Society: 527-564.
[1933] Two Early Ismā́cilī Treatises. Edition by W. Ivanow. Bombay.
[1950] Taṣawwurāt [purportedly by Naṣir al-Dīn al-Ṭūsī]. Edition and introduction by W. Ivanow. Leiden: E. J. Brill.

Izmīrlī, Ismā̄ $\overline{\mathrm{i}}_{1}$ Haqqī. Faylasūf al- ${ }^{c} a r a b: Y a^{c} q u \bar{b} b$ b. Ishāq al-Kindī. Translated from the

al-Jaghminnī, Mahmūd b. Muhammad b. ${ }^{\text {CUmar. }}$
Al-Mulakhkhas fí al-hay'a al-basīta. (For the Arabic text, see under Qādīzāde.) Translation into German by Rudloff and Hochheim in Zeitschrift der Deutschen Morgenländischen Gesellschaft 47: 213-275 (1893).
"A Treatise on Planetary Distances and Sizes." Cairo, Dār al-kutub, Tal ${ }^{c}$ at majāmi ${ }^{c}$ MS 429(2), f. 4a-b. (See King [1986], p. 150.)

JHAS. Journal for the History of Arabic Science.
JNES. Journal of Near Eastern Studies.
al-Jurjānī, al-Sayyid al-Sharīf. Sharh "al-Tadhkira." Damascus, Zāhiriyya MS 3117.
al-Juwaynī, 'cAlă’ al-Dīn.
History=History of the World Conqueror (Ta'rikh-i jahān-gushā). Translation by J. A. Boyle. 2 vols. Manchester, England: Manchester University Press, 1958.
al-Kāshī, Jamshīd Ghiyāth al-Dīn. See Kennedy [1960].
Kennedy, E. S.
Shadows=Translation and commentary by E. S. Kennedy of The Exhaustive Treatise on Shadows by al-Bīrüni. See Bīrünị.
Studies=Studies in the Islamic Exact Sciences by E. S. Kennedy, Colleagues and Former Students. Edited by David A. King and Mary Helen Kennedy. Beirut: American University of Beirut, 1983.
Survey=A Survey of Islamic Astronomical Tables. Transactions of the American Philosophical Society, n.s., 46, pt. 2. Philadelphia, 1956, pp. 121-177.
Taḩdid Comm. $=$ A Commentary Upon Bīrūni's "Kitāb Taḥdìd al-Amākin": An 11th Century Treatise on Mathematical Geography. Beirut: American University of Beirut, 1973.
[1956]. "Parallax Theory in Islamic Astronomy." Isis 47: 33-53. Reprinted in Kennedy, Studies, pp. 164-184.
[1958]. "The Sasanian Astronomical Handbook Zij-i Shäh and the Astrological Doctrine of 'Transit' (mamarr)." Journal of the American Oriental Society 78: 246-262. Reprinted in Kennedy, Studies, pp. 319-335.
[1959]. "Biriunī's Graphical Determination of the Local Meridian." Scripta Mathematica 24: 251-255. Reprinted in Kennedy, Studies, pp. 613-617.
[1960]. The Planetary Equatorium of Jamshïd Ghiyāth al-Dīn al-Käshi. Princeton: Princeton University Press.
[1963]. "Al-Bīrünī on Determining the Meridian." The Mathematics Teacher 56: 635-637. Reprinted in Kennedy, Studies, pp. 618-620.
[1964]. "The Chinese-Uighur Calendar as Described in the Islamic Sources." Isis 55: 435-443. Reprinted in Kennedy, Studies, pp. 652-660.
[1966]. "Late Medieval Planetary Theory." Isis 57: 365-378. Reprinted in Kennedy, Studies, pp. 84-97.
[1973]. "Alpetragius's Astronomy." Journal for the History of Astronomy 4: 134-136.
[1975]. "Al-Bīrūn̄ on the Muslim Times of Prayer." In The Scholar and the Saint: Studies in Commemoration of $A b \bar{u}$ ' l-Rayhān al-Bīrünī and Jalāl al-Dīn al-Rūmī, pp. 83-94. New York: New York University. Reprinted in Kennedy, Studies, pp. 299-310.
[1984]. "Two Persian Astronomical Treatises by Naṣīr al-Dīn al-Ṭūsī." Centaurus 27: 109-120.
Kennedy, E. S. and Ghanem, Imad [1976]. The Life and Work of Ibn al-Shätir. Aleppo: Institute for the History of Arabic Science.
Kennedy, E. S. and Hamadanizadeh, Javad [1965]. "Applied Mathematics in EleventhCentury Iran: Abū Jacfar's Determination of the Solar Parameters." The Mathematics Teacher 58: 441-446. Reprinted in Kennedy, Studies, pp. 535-540.

Kennedy, E. S. and Kennedy, M. H. [1987]. Geographical Coordinates of Localities from Islamic Sources. Frankfurt am Main: Institut für Geschichte der ArabischIslamischen Wissenschaften.
Kennedy, E. S. and Muruwwa, Ahmad [1958]. "Bīrūnī on the Solar Equation." Journal of Near Eastern Studies 17: 112-121. Reprinted in Kennedy, Studies, pp. 603-612.
Kennedy, E. S. and Roberts, Victor [1959]. "The Planetary Theory of Ibn al-Shātir." Isis 50: 227-235. Reprinted in Kennedy, Studies, pp. 55-63.
Kennedy, E. S. and Van der Waerden, B. L. [1963]. "The World-Year of the Persians." Journal of the American Oriental Society 83: 315-327. Reprinted in Kennedy, Studies, pp. 338-350.
al-Khafrì, Shams al-Dīn Muḥammad b. Aḥmad. Al-Takmila fi sharh "al-Tadhkira." Damascus, Ẓāhiriyya MS 6727.
al-Khiraqī, Shams al-Dīn abū Bakr Muḥammad b. Ahmad.
Kitāb Muntahā al-idrāk fí taqāsīm al-aflāk. Tehran, Majlis Shūrāy Millī MS (uncatalogued) [= Arab League $B a^{c}$ that Īrān Film 330-331].
Al-Tabsira fi cilm al-hay'a. Istanbul: Ayasofya (?) MS 3398 [=Arab League falak musannaf ghayr mufahras Film 183].
Khw. See Khwārizmī (Abū Jacfar Muḥammad ibn Mūsā).
Khwāndmīr, Ghiyāth al-Dīn. Tarikh-ī Habīb al-siyar. 4 vols. Tehran, 1333 H. Sh./ 1954 A.D.
al-Khwārazmī, Abū ${ }^{\text {c }}$ Abd Allāh Muḥammad. Kitäb Mafãtīh al- ${ }^{c}$ ulūm. Edition by G. van Vloten. Leiden: E. J. Brill, 1895.
al-Khwārizmĩ, Abū Jacfar Muḥammad ibn Mūsā.
Șüra=Das "Kitäb ṣūrat al-arḍ" des Abū Ğacfar Muhammad ibn Mūsā al-Ȟuwārizmi. Edited from the unique MS copy (Stassburg Cod. 4247) by Hans von Mžik. Leipzig: Harrassowitz, 1926.
$Z_{\bar{\imath}}^{\mathbf{j}}=$ Die astronomischen Tafeln des Muhammed ibn Mūsā al-Khwārizmī in der Bearbeitung des Maslama ibn Ahmed al-Madjriti und der latein. Uebersetzung des Athelhard von Bath. Edition by H. Suter. Danske Vidensk. Selsk. Skrifter, 7. R. Hist. og filos. Afd. 3,1 (Copenhagen, 1914). For the English translation with commentary, see Neugebauer [1962b].
King, David A.
Islamic Mathematical Astronomy. London: Variorum Reprints, 1986.
"Kibla." Encyclopedia of Islam. 2nd ed. 5: 83-88.
[1973]. "Ibn Yūnus' Very Useful Table for Reckoning Time from the Sun." Archive for History of Exact Sciences 10: 342-394. Reprinted in King, Islamic Mathematical Astronomy IX.
[1980]. "A Handlist of the Arabic and Persian Astronomical Manuscripts in the Maharaja Mansingh II Library in Jaipur." Journal for the History of Arabic Science 4: 81-86.
[1981]. "The Origin of the Astrolabe According to the Medieval Islamic Sources." Journal for the History of Arabic Science 5: 43-83.
[1983]. "The Astronomy of the Mamluks." Isis 74: 531-555. Reprinted in King, Islamic Mathematical Astronomy III.
[1986]. A Survey of the Scientific Manuscripts in the Egyptian National Library (American Research Center in Egypt / Catalogs, vol. 5). Winona Lake, Indiana: Eisenbrauns.

King, David A. and Saliba, George (eds.) [1987]. From Deferent to Equant: Studies in Honor of E. S. Kennedy (Annals of the New York Academy of Sciences, vol. 500). New York.
Krause, Max [1936]. "Stambuler Handschriften islamischer Mathematiker." Quellen und Studien zur Geschichte der Mathematik Astronomie und Physik. Abteilung B, Studien 3, pp. 437-532.
Kunitzsch, Paul.
"al-Madjarra." Encyclopedia of Islam. 2nd ed. 5: 1024-1025.
"Manäzil al-qamar." Encyclopedia of Islam. 2nd ed. 6: 374-376.
[1974]. Der Almagest: Die Syntaxis Mathematica des Claudius Ptolemäus in arabischlateinischer Überlieferung. Wiesbaden: Otto Harrassowitz.
al-Kutubī, Muḥammad b. Shäkir. Fawāt al-wafayāt. Edition by Iḥsān CAbbās. 5 vols. Beirut: Dār al-thaqāfa, 1973-1974.

Lane, Edward W. An Arabic-English Lexicon. 8 parts. London: Williams and Norgate, 1863-1893. Facsimile reprint by Libraire du Liban in Beirut, 1968.
Langermann, Y. Tzvi.
[1982]. "A Note on the Use of the Term Orbis (Falak) in Ibn al-Haytham's Maquälah [sic] fì hay'at al-cälam. Archives internationales d'histoire des sciences 32: 112-113.
[1985]. "The Book of Bodies and Distances of Habash al-Ḥāsib." Centaurus 28: 108-128.
[1990]. Ibn al-Haytham's "On the Configuration of the World." Edition, translation, and commentary by Y. Tzvi Langermann. New York: Garland (Harvard Dissertations in the History of Science).
Levy, Reuben [1923]. Persian Literature: An Introduction. London: Oxford University Press.
Lindberg, David C. [1976]. Theories of Vision from Al-Kindi to Kepler. Chicago \& London: University of Chicago Press.
Livingston, John W. [1973]. "Naṣīr al-Dīn al-Țūsi’s al-Tadhkira: A Category of Islamic Astronomical Literature." Centaurus 17: 260-275.
Lloyd, G. E. R.
Hippocratic Writings. Edited with an introduction by G. E. R. Lloyd. Penguin, 1978.
[1978]. "Saving the Appearances." Classical Quarterly 28: 202-222.
Mach, R. Catalogue of Arabic Manuscripts (Yahuda Section) in the Garrett Collection, Princeton University Library. Princeton, 1977.
Madelung, Wilferd.
[1970]. "Imamism and Muctazilite Theology." In Le Shī cisme Imāmite: Colloque de Strasbourg (6-9 mai 1968), pp. 13-30. Paris: Presses universitaires de France.
[1976]. "Ǎs-Šahrastānīs Streitschrift gegen Avicenna und ihre Widerlegung durch Naṣir ad-Dĩn aṭ-Ṭīsī." In Akten des VII. Kongresses für Arabistik und Islamwissenschaft [=Abhandlungen der Akademie der Wissenschaften in Göttingen: phil-ologisch-historische Klasse, edited by A. Dietrich, ser. 3, no. 98], pp. 250-259. Göttingen.
[1985]. "Nașīr ad-Dīn Țūsi’’s ethics between philosophy, Shīcism, and Sufism." In Ethics in Islam (Ninth Giorgio Levi Della Vida Conference, 1983), edited by R. G. Hovannisian, pp. 85-101. Malibu: Undena.

Mafātīh. See Khwārazmĩ, Kitāb Mafâtīh al-culūm.
Maimonides (Mūsā ibn Maymūn).
Guide=Dalālat al-hā'irīn. Edition by Ḥusayn Ātāy (Arabic text in Arabic characters). Ankara: University of Ankara Press, 1974. French translation and edition of Arabic text in Hebrew characters as Le Guide des Égarés: Traité de théologie et de philosophie par Moïse ben Maimoun dit Maïmonide. 3 vols. Paris, 1856, 1861, 1866 (reprinted by G.-P. Maisonneuve, Paris, 1960 but without the Arabic text). English translation as Guide for the Perplexed by M. Friedländer. Second edition (1904) reprinted New York: Dover, 1956. English translation as The Guide of the Perplexed by S. Pines. Chicago: University of Chicago Press, 1963.
Majālis. See Shūshtarī, Majālis al-mu'minīn.
Makdisi, George [1981]. The Rise of Colleges: Institutions of Learning in Islam and the West. Edinburgh: Edinburgh University Press.
Maqāsid. See Ghazālī, Maqāṣid al-falāsifa.
Maqbul-Aḥmad. "Djughrāfiyā." Encyclopedia of Islam. 2nd ed. 2: 575.
Mas $^{\text {c }}{ }^{\text {üdī, Abū al-Hasan }}{ }^{\text {c } A l i ̄ ̀ ~ i b n ~ a l-H u s a y n ~ i b n ~}{ }^{\mathrm{C}}$ Alī.
Murüj al-dhahab wa-macädin al-jawhar. Edition by Barbier de Meynard and Pavet de Courteille. Reviewed and corrected by Charles Pellat. 7 vols. Beirut: Lebanese University, 1966-1979. French translation as Les Prairies d'or by Barbier de Meynard and Pavet de Courteille. Reviewed and corrected by Charles Pellat. 4 vols. Paris: Société asiatique, 1962, 1965, 1971, 1989.
Tanbīh=Kitäb al-Tanbīh wa-'l-ishrāf. Edition by M. J. de Goeje. Leiden: Brill, 1894. Facsimile reprint Beirut: Khayyāt, 1965 and reprinted Leiden: Brill, 1967. French translation as Maçoudi, Le Livre de l'avertissement et de la revision by Carra de Vaux. Paris: L'Imprimerie nationale, 1897.
Matvievskaya, G. P. and Rozenfeld (a.k.a. Rosenfeld), B. A. Matematiki i astronomi musulmanskogo srednevekovya i ikh trudi (VIII-XVII vv.) [Mathematicians and Astronomers of the Muslim Middle Ages and Their Works (VIII-XVII centuries)]. 3 vols. Moscow: Nauka, 1983.
Menelaus.
Spherics=Die Sphärik von Menelaus aus Alexandrien in der Verbesserung von Abū Naşr Manṣ̄̃r b. ${ }^{c}$ Alī b. ${ }^{C}$ Irāq. Mit Untersuchungen zur Geschichte des Textes bei den islamischen Mathematikern von Max Krause. (Abh. d. Ges. d. Wissenschaften zu Göttingen, Philol.-hist. Kl., 3 Folge, nr. 17). Berlin, 1936.
Tahrīr (Recension of the Spherics by Naṣīr al-Dīn al-Ṭūsī). In Țūsī, Majmū ${ }^{c}$ al-Rasä'il. 2 vols. Hyderabad: Osmania Press, 1358-1359 H./1939-1940 A.D.
Mercier, Raymond [1976-1977]. "Studies in the Medieval Conception of Precession." Archives internationales d'histoire des sciences 26: 197-220 and 27: 33-71.
Millás Vallicrosa, José M ${ }^{\text {a }}$ [1943-1950]. Estudios sobre Azarquiel. Madrid-Granada.
Minnaert, M. [1954]. The Nature of Light and Colour in the Open Air. New York: Dover.
Minorsky, V. [1942]. Sharaf al-Zamān Țāhir Marvazī on China, the Turks and India. London: Royal Asiatic Society.
Momen, Moojan [1985]. An Introduction to Shi c_{i} Islam: The History and Doctrines of Twelver Shicism. New Haven: Yale University Press.
Morelon, Régis [1987]. Thäbit ibn Qurra: EEuvres d'astronomie. Paris: Les Belles Lettres.
Mountjoy, Alan B. and Embleton, Clifford [1967]. Africa: A New Geographical Survey. New York: Frederick A. Praeger.

Mudarrisī, Muhammad. Sar-gudhasht wa- ${ }^{\text {caqā̀'id-i falsafi-i khwäja Nasir al-Dīn Tūsí. }}$ Tehran: Intishārāt Dānishgāh Tahrān (no. 309 in the series), 1335 H. Sh./ 1956-7 A.D.
Mulakhkhas. See Jaghmīnī, Al-Mulakhkhas fi al-hay'a al-basiṭa.
Müller, C. See Ptolemy, Geography.
Muntahā. See Khiraqī, Kitäb Muntahä al-idrāk fí taqāsīm al-aflāk.
Mushār, Khānbābā. Mu'allifîn-i chāpī. 6 vols. Tehran, 1340-1344 H. Sh./1961-1965.
Nallino, Carlo.
Opus astronomicum. See Battān̄̆.
Racc. $=$ Raccolta di Scritti editi e inediti. 6 vols. Rome: Instituto per l'Oriente, 19391948.
[1911]. ${ }^{c}$ Ilm al-falak: ta'rīkhuhu ${ }^{\text {cind al-c }}$ arab fĩ al-qurūn al-wusṭā. Rome.
[1921]. "Sun, Moon and Stars (Muhammadan)." In J. Hastings' Encyclopaedia of Religion and Ethics.
Neugebauer, Otto.
Astronomy and History: Selected Essays. New York: Springer-Verlag, 1983.
HAMA $=$ A History of Ancient Mathematical Astronomy. 3 parts. New York: SpringerVerlag, 1975.
[1949]. "The Early History of the Astrolabe." Isis 40: 240-256. Reprinted in Neugebauer, Astronomy and History, pp. 278-294.
[1953]. 'On the 'Hippopede' of Eudoxus." Scripta Mathematica 19: 225-229. Reprinted in Neugebauer, Astronomy and History, pp. 305-309.
[1957]. The Exact Sciences in Antiquity. 2nd ed. Providence: Brown University Press. Reprinted New York: Dover Publications, 1969.
[1959]. "The Equivalence of Eccentric and Epicyclic Motion According to Apollonius." Scripta Mathematica 24: 5-21. Reprinted in Neugebauer, Astronomy and History, pp. 335-351.
[1962a]. "Thäbit ben Qurra 'On the Solar Year' and 'On the Motion of the Eighth Sphere."' Proceedings of the American Philosophical Society 106: 264-299.
[1962b]. The Astronomical Tables of al-Khwārizmi. Translation with Commentaries of the Latin Version edited by H. Suter, supplemented by Corpus Christi College MS 283 (Hist. filos. Skrifter...det Kongelige Danske Videnskabernes Selsk., Bind 4, nr. 2). Copenhagen.

Nihāya. See Shīrāzī, Nihāyat al-idrāk fi dirāyat al-aflāk.
al-Nīsäbūrī, Niẓäm al-Dīn Ḥasan b. Muḥammad. Tawdīh "al-Tadhkira." Najaf, Āyat Allăh al-Hakīm Library MS 649 (= Arab League uncatalogued falak Film 315). London, British Library MS Add. 7472.
Nobbe, C. F. A. See Ptolemy, Geography.
Oppolzer, Th. v. Canon der Finsternisse (Akad. d. Wiss., Wien, Math.-Naturwiss. Cl., Denkschriften 52). Vienna, 1887.

Pannekoek, Antonie [1961]. A History of Astronomy. London: Allen \& Unwin and New York: Interscience Publishers, Inc.
Pedersen, Olaf [1974]. A Survey of the Almagest. Odense: Odense University Press.
Pellat, Charles. "al-Masälik wa-'l-Mamälik." Encyclopedia of Islam. 2nd ed. 6: 639-640.
Peters, F. E. [1968]. Aristotle and the Arabs: The Aristotelian Tradition in Islam. New York: New York University Press.

Pines, S .
[1962]. "Ibn al-Haytham's Critique of Ptolemy." In Actes du Xe Congrès international d'histoire des sciences, Ithaca, NY. 2 vols. 1: 547-550. Paris, 1964.
[1963]. "What was Original in Arabic Science?" In Scientific Change, edited by A. C. Crombie, pp. 181-205. New York.
Pingree, David.
Dorotheus $=$ Dorothei Sidonii Carmen Astrologicum. Edition and translation by David Pingree. Leipzig: Teubner, 1976.
[1968]. "The Fragments of the Works of Yacqüb ibn Täriq." Journal of Near Eastern Studies 27: 97-125.
[1971]. "c Ilm al-hay'a." Encyclopedia of Islam. 2nd ed. 3: 1135-1138.
[1973]. "The Greek Influence on Early Islamic Mathematical Astronomy." Journal of the American Oriental Society 93: 32-43.
[1975]. "Māshā'allāh: Some Sasanian and Syriac Sources." In Essays on Islamic Philosophy and Science, edited by G. F. Hourani, pp. 5-14. Albany, NY: State University of New York Press.
[1978]. "Islamic Astronomy in Sanskrit." Journal for the History of Arabic Science 2: 315-330.
[1980]. "Some of the Sources of the Ghāyat al-ḥakīm." Journal of the Warburg and Courtauld Institutes 43: 1-15.
[1987]. "Indian and Islamic Astronomy at Jayasimha's Court." In From Deferent to Equant: Studies in Honor of E. S. Kennedy (The Annals of the New York Academy of Sciences 500), edited by D. A. King and G. Saliba, pp. 313-328. New York.
Plan. Hyp., Planetary Hypotheses. See Ptolemy.
Plato. See Cornford.
Plessner, M. "Baṭlamiyūs." Encyclopedia of Islam. 2nd ed. 1: 1100-1102.
Poonawala, Ismail K. [1977]. Biobibliography of Ismā̄īī̄ Literature. Malibu, CA: Undena Publications.

Proclus.

Les Commentaires sur le Premier Livre des Éléments d'Euclide. Translation with an introduction and notes by Paul Ver Eecke. Bruges, 1949.
Commentary $=$ A Commentary on the First Book of Euclid's Elements. Translation by Glenn R. Morrow. Princeton: Princeton University Press, 1970.
Ptolemy.
The Almagest. (Plain page references are to Toomer [1984]; page references in parentheses preceded by "H" are to Heiberg [1898, 1903].)
Geography=Claudii Ptolemaei Geographia. Edition by C. F. A. Nobbe. Leipzig, 1843-1845. Reprinted 1898 and 1966 (by G. Olms, Hildesheim with introduction by Aubrey Diller). Edition of Books I-V only with Latin translation by Karl Müller (Carolus Müllerus). 1 vol.=2 parts. Paris, 1883-1901.
Handy Tables=Tables manuelles astronomiques de Ptolémée et de Théon. Edition and translation by N. Halma. 3 parts. Paris, 1822, 1823, 1825.
Planetary Hypotheses. See Goldstein [1967] for a facsimile reproduction of the Arabic text of both books, British Museum MS Arab. 426, and translation of I.2; see Halma [1820] for Greek of I. 1 with French translation; see Heiberg [1907] for Greek of I. 1 and German translation of Arabic text of both books.
Tetrabiblos. Edition and translation by F. E. Robbins. Cambridge, MA: Harvard University Press, 1940.
 Zāhiriyya MS 4871, ff. 66b-72a.
Qāḍīzāde al-Rūmī, Mūsā b. Muḥammad. Sharh "al-Mulakhkhaṣ fí al-hay'a." Tehran (?), 1880 (?).
Qānūn. See Bīrūnī, Al-Qānün al-Mas ${ }^{C} \bar{u} d \bar{d}$.
al-Qifṭi, Jamāl al-Dīn Abū al-Ḥasan ${ }^{\text {c } A l \bar{i}}$ ibn Yūsuf. Ta'rīkh al-hukamā'. Edition by J. Lippert. Leipzig, 1903.
Qur'än. Azhar edition. Cairo, 1398/1978.
Ragep, F. Jamil
[1982]. Cosmography in the "Tadhkira" of Naṣir al-Dīn al-Ṭüsĭ. 2 vols. Ph.D. dissertation, Harvard University.
[1987]. "The Two Versions of the Țūsī Couple." In From Deferent to Equant: Studies in Honor of E. S. Kennedy (The Annals of the New York Academy of Sciences 500), edited by D. A. King and G. Saliba, pp. 329-356. New York.
[1990]. "Duhem, the Arabs, and the History of Cosmology." Synthese 83: 201-214.
Ragep, Jamil and Kennedy, E. S. [1981]. "A Description of Zaāhiriyya (Damascus) MS 4871: A Philosophical and Scientific Collection." Journal for the History of Arabic Science 5: 85-108.
Rashīd al-Dĩn, Faḍl Allāh. Jämic al-tawärīkh. Edition and translation by E. M. Quatremère. Paris, 1836.
Rawdat al-taslīm. See Ivanow, Tasawwurāt.
Redhouse, J. W. [1878]. "On the Natural Phenomenon Known in the East by the Names Sub-hi-Kāzib, etc., etc." The Journal of the Royal Asiatic Society of Great Britain and Ireland, n.s., vol. 10, pt. 3, pp. 344-354.
Richter-Bernburg, Lutz [1987]. "Ṣācid, the Toledan Tables, and Andalusī Science." In From Deferent to Equant: Studies in Honor of E. S. Kennedy (The Annals of the New York Academy of Sciences 500), edited by D. A. King and G. Saliba, pp. 373-401. New York.
Riḍawī, Muḥammad Mudarris. Aḥwāl wa-äthär...Nasīr al-Dīn. Tehran: Farhang Iran, 1976.

Roberts, Victor.
[1957]. "The Solar and Lunar Theory of Ibn ash-Shātir: A Pre-Copernican Copernican Model." Isis 48: 428-432.
[1966]. "The Planetary Theory of Ibn al-Shātir: Latitudes of the Planets." Isis 57: 208-219.
Rome, A. [1939]. "Le problème de l'équation du temps chez Ptolémée." Annales de la Société scientifique de Bruxelles, sér. I, 59: 211-224.
Rosen, Edward.
[1975]. "Copernicus' Spheres and Epicycles." Archives internationales d'histoire des sciences 25: 82-92.
[1976]. "Reply to N. Swerdlow." Archives internationales d'histoire des sciences 26: 301-304.
[1978]. See Copernicus.
[1983]. "No Solid Sphere Planetary Theory in Ibn al-Haytham, as Translated into Latin, or in Later Latin Treatises." Archives internationales d'histoire des sciences 33: 168.

Rosenthal, Franz. "Ibn al-Fuwaṭi." Encyclopedia of Islam. 2nd ed. 3: 769-770.
Rudloff and Hochheim. See Jaghminī, Al-Mulakhkhas.
Sabra, A. I.
"Al-Farghānī." Dictionary of Scientific Biography. 4: 541-545.
Al-Shukūk. See Ibn al-Haytham,
[1968]. "The Astronomical Origin of Ibn al-Haytham's Concept of Experiment." In Actes du Congrès international d'histoire des sciences. Paris.
[1969]. "Simplicius's Proof of Euclid's Parallels Postulate." Journal of the Warburg and Courtauld Institutes 32: 1-24.
[1972]. "Ibn al-Haytham." Dictionary of Scientific Biography. 6: 189-210.
[1977]. "Maqālat al-Hasan ibn al-Haytham fī al-athar al-zā̄hir fî wajh al-qamar" (Ibn al-Haytham's Treatise on the Marks Seen on the Surface of the Moon). Journal for the History of Arabic Science 1: 5-19 (Arabic numeration), 166-180 (English numeration).
[1978]. "An Eleventh-Century Refutation of Ptolemy's Planetary Theory." In Studia Copernicana XVI, pp. 117-131. Warsaw: Ossolineum.
[1979]. "Ibn al-Haytham's Treatise: Solutions of Difficulties Concerning the Movement of Iltifaf." Journal for the History of Arabic Science 3: 388-422.
[1984]. "The Andalusian Revolt Against Ptolemaic Astronomy: Averroes and alBitruiji." In Transformation and Tradition in the Sciences, edited by E. Mendelsohn, pp. 133-153. Cambridge: Cambridge University Press.
[1987a]. "The Appropriation and Subsequent Naturalization of Greek Science in Medieval Islam: A Preliminary Statement." History of Science 25: 223-243.
[1987b]. "Psychology versus Mathematics: Ptolemy and Alhazen on the Moon Illusion." In Mathematics and Its Applications to Science and Natural Philosophy in the Middle Ages: Essays in Honor of Marshall Clagett, edited by Edward Grant and John Murdoch, pp. 217-247. Cambridge: Cambridge University Press.
[1989]. The Optics of Ibn al-Haytham: Books I-III On Direct Vision. Translation with introduction and commentary by A. I. Sabra. 2 vols. (vol. 1: translation; vol. 2: introduction, commentary, glossaries, concordance, indices). London: The Warburg Institute.
Sabra, A. I, and Shehaby, N. [1971]. See Ibn al-Haytham, Al-Shukūk ${ }^{\text {calā Batlamyūs. }}$
al-Ṣafadĩ, Khalīl b. Aybak.
Al-Ghayth al-musjam fì sharh lāmiyyat al-cajam. 2 vols. Beirut: Dār al-kutub al-cilmiyya, 1975.
Al-Kitāb al-Wāfi bi-'l-wafayāt. 20 vols. to date (1-18, 21-22). (Vol. 1: edited by H. Ritter, 1931.) Bibliotheca islamica 6. Leipzig: Deutsche Morgenländische Gesellschaft, in Kommission bei F. A. Brockhaus.
Saghān̄̄, Abū Ḥāmid Aḥmad ibn Muḥammad. Maqāla fí al-abcād wa-'l-ajrām. Damascus, Zִăhiriyya MS 4871, ff. 78b-79b.
Ṣācid al-Andalusī. Kitāb Țabaqāt al-umam. Edition by P. Louis Cheikho. Beirut: Imprimerie Catholique, 1912. French translation with notes by Régis Blachère as Livre des Catégories des Nations. Paris, 1935. [Note that there has recently appeared a new edition due to Heayāt Bū ${ }^{-}$Alwān (Beirut, 1985) and a new translation (Science in the Medieval World) due to Sema ${ }^{\mathrm{C}}$ an I. Salem and Alok Kumar (University of Texas Press, 1991).]
as-Saleh, Jamil Ali [1970]. "Solar and Lunar Distances and Apparent Velocities in the Astronomical Tables of Habash al-Ḥāsib." Al-Abḥāth 23: 129-177. Reprinted in Kennedy, Studies, pp. 204-252.
Saliba, George.
[1979]. "The First Non-Ptolemaic Astronomy at the Marāghah School." Isis 70: 571-576.
[1980]. "Ibn Sīnā and Abū ${ }^{\text {c }}$ Ubayd al-Jūzjānī: The Problem of the Ptolemaic Equant." Journal for the History of Arabic Science 4: 376-403.
[1983]. "An Observational Notebook of a 13th Century Astronomer." Isis 74: 388-401.
[1985]. "Solar Observations at the Marāghah Observatory Before 1275: A New Set of Parameters." Journal for the History of Astronomy 16: 113-122.
[1986]. "The Determination of New Planetary Parameters at the Marāgha Observatory." Centaurus 29: 249-271.
[1987a]. "The Role of the Almagest Commentaries in Medieval Arabic Astronomy: A Preliminary Survey of Țūsī's Redaction of Ptolemy's Almagest. Archives internationales d'histoire des sciences 37: 3-20.
[1987b]. "The Height of the Atmosphere According to Mu'ayyad al-Din al-CUrḍĩ, Quṭb al-Dīn al-Shīrāzī, and Ibn Mucāah." In From Deferent to Equant: Studies in Honor of E. S. Kennedy (The Annals of the New York Academy of Sciences 500), edited by D. A. King and G. Saliba, pp. 445-465. New York.
Sarton, George. Introduction to the History of Science. 3 vols. in 5 parts. Baltimore: The Williams and Wilkins Company for the Carnegie Institution of Washington (Publication No. 376), 1927-1948 (vol. I [1927]; vol. II_{1-2} [1931]; vol. III_{1} [1947]; vol. III ${ }_{2}$ [1948]).
Sayili, Aydin [1960]. The Observatory in Islam. Ankara: The Turkish Historical Society.
Sayr. See Țūsī, Risälah-i Sayr wa-sulūk.
Schiaparelli, Giovanni. Scritti sulla storia della astronomia antica. 3 vols. Bologna: Zanichelli, 1925-1927.
Schramm, Matthias [1963]. Ibn al-Haythams weg zur Physik. Wiesbaden: Steiner.
Şeşen, Ramazan (=Shashan, Ramaḍān). Nawādir al-makhtūṭāt al-carabiyya fĭ maktabāt turkiya. 3 vols. Beirut: Dār al-kitãb al-jadīd, 1975, 1980, 1982.
Sezgin, Fuat. GAS=Geschichte des arabischen Schrifttums. 9 vols. to date. Leiden: E. J. Brill, 1967-.
al-Shïrāzī, Quṭb al-Dīn.
$F a^{c}$ alta fa-lā talum. Tehran, Majlis-ì Shūrā MS 3944.
Nihäyat al-idräkfi diräyat al-aflāk. Istanbu1, Ahmet III MS 3333 (2).
Al-Tuhfa al-shāhiyya. Mosul, Jāmic al-Bāshā MS 287 (= Arab League falak muṣannaf ghayr mufahras Film 346).
al-Shīrwānī, Fath Allāh b. c'Abd Allāh. Sharh "al-Tadhkira." Istanbul, Ahmet III MS 3314 (= Topkapı Saray MS 7093).
al-Shūshtarī, Nūr Allāh al-Marcashi. Majālis al-mu'minīn. 2 vols. Tehran, 13751376 H./1955-1957 A.D.
Siddiqi, B. H. [1963]. "Naṣīr al-Dīn al-Ṭūsī." In vol. I of A History of Muslim Philosophy, edited by M. M. Sharif. 2 vols. Wiesbaden: Otto Harrassowitz, 1963, 1966.
Solmsen, F. [1960]. Aristotle's System of the Physical World. New York: Cornell University Press.

Spuler, B. "Shams al-Dīn...Djuwayni." Encyclopedia of Islam. 2nd ed. 2: 607.
Steingass, F. Persian-English Dictionary. London: Routledge and Kegan Paul Ltd., 1892.
Storey, C. A. Persian Literature. 2 vols. London: Luzac and Co, 1927-1971.
Suter, Hans.
[1900]. "Die Mathematiker und Astronomen der Araber und ihre Werke." Abhandlungen zur Geschichte der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen 10. Leipzig: Teubner. Reprinted New York, 1972 and reprinted Frankfurt am Main: Institut für Geschichte der Arabisch-Islamischen Wissenschaften, 1986.
[1902]. "Nachträge und Berichtigungen." Abhandlungen zur Geschichte der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen 14: 157-185. Reprinted New York, 1972 and reprinted Frankfurt am Main: Institut für Geschichte der Arabisch-Islamischen Wissenschaften, 1986.
[1914]. See Khwārizmī, Zīj.
Suter, H. and Vernet, J. [1965]. "al-Djaghminni." Encyclopedia of Islam. 2nd ed. 2: 378.
Swerdlow, Noel M.
[1968]. Ptolemy's Theory of the Distances and Sizes of the Planets: A Study in the Scientific Foundation of Medieval Cosmology. Ph.D. dissertation, Yale University.
[1969]. "Hipparchus on the Distance of the Sun." Centaurus 14: 287-305.
[1972]. "Aristotelian Planetary Theory in the Renaissance: Giovanni Battista Amico's Homocentric Spheres." Journal for the History of Astronomy 3: 36-48.
[1973]. "The Derivation and First Draft of Copernicus's Planetary Theory: A Translation of the Commentariolus with Commentary." Proceedings of the American Philosophical Society 117: 423-512.
[1975]. "Copernicus's Four Models of Mercury." In Studia Copernicana XIII (Colloquia Copernicana III), edited by Owen Gingerich and Jerzy Dobrzycki, pp. 141-155. Warsaw: Ossolineum.
[1976]. "Pseudodoxia Copernicana: or Enquiries into very many received Tenets and commonly presumed Truths, mostly concerning Spheres." Archives internationales d'histoire des sciences 26: 108-158.
Swerdlow, N. M. and Neugebauer, O. [1984]. Mathematical Astronomy in Copernicus's De Revolutionibus (Studies in the History of Mathematics and Physical Sciences 10). 2 parts. New York: Springer-Verlag.

TCabaqāt. See $S \bar{a} \bar{a}_{i}{ }_{i d}$ al-Andalusī.
al-Ţabarī, Abū al-Hasan calī b. Sahl Rabban. Firdaws al-hikma fial-ṭibb. Edition by M. Z. Siddiqi. Berlin, 1928.

Taf., Tafhīm. See Bīrūnī, Kitāb al-Tafhìm li-awā'il sinā ${ }^{\mathcal{C}}$ at al-tanjīm.
al-Tahānawī, Muhammad A ${ }^{\mathrm{C}} 1 \mathrm{ā}$ b. ${ }^{\mathrm{C}}$ Alī.
Dictionary=Kashshāf istillạhāt al-funūn: A Dictionary of the Technical Terms Used in the Sciences of the Musalmans. Edited by Mawlawies Mohammad Wajih, Abd al-Haqq, and Gholam Kadir under the superintendence of A. Sprenger and W. Nassau Lees. 2 vols. Calcutta: W. N. Lees' Press, 1862.
Tahdīd. See Bīrünĩ, Tahdīd nihāyāt al-amākin li-taş̣īh masāfăt al-masākin.
Takmila. See Khafrī, Al-Takmila fi sharh "al-Tadhkira."
Talkhīs. See Ibn Rushd, Talkhīs mā bacd al-ṭabic a.

Tannery, Paul.
[1893]. Recherches sur l'histoire de l'astronomie ancienne. Paris: Gauthier-Villars. Reprinted New York: Arno Press, 1976.
[1912-1950]. Mémoires Scientifiques. 17 vols. Paris: Gauthier-Villars.
Taṣawwurät. See Ivanow.
Țāshkubrīzāde, Aḥmad b. Muștafā. Miftāh al-sa ${ }^{c} a \bar{d} a$ wa-miṣbāh al-siyāda. 3 vols. Cairo: Dār al-kutub al-ḥadítha, 1968.
Tawdïh. See Nīsābūrī.
Theodosius. Sphaerics=Les sphériques de Théodose de Tripoli. Edition and translation by Paul Ver Eecke. Bruges, 1927. Reprinted Paris: Albert Blanchard, 1959.
Theon of Alexandria. See Tihon.
Tihon, Anne [1978]. Le "Petit Commentaire" de Théon d'Alexandrie aux tables faciles de Ptolémée. Vatican City: Biblioteca Apostolica Vaticana.
Toomer, Gerald J.
[1968]. "A Survey of the Toledan Tables." Osiris 15: 5-174.
[1969]. "The Solar Theory of az-Zarqāl: A History of Errors." Centaurus 14: 306-336.
[1984]. Ptolemy's Almagest. Translated and annotated by G. J. Toomer. New York: Springer-Verlag.
Tuhfa. See Shïräzī, Al-Tuhfa al-shāhiyya.
al-Ṭūsī, Abū Jacfar Muḥammad ibn Muḥammad ibn al-Ḥasan Naṣīr al-Dīn.
Ḥall-i mushkilāt-i Muciniyya. Introduction by Muḥammad Taqī Dānish-Pizhūh. Tehran: Intishārāt Dānishgāh Tahrān (no. 304 in the series), 1335 H. Sh./ 1956-7 A.D.
Majmū${ }^{c}$ al-Rasā'il. 2 vols. Hyderabad: Osmania Press, 1358-1359 H./1939-1940 A.D.
Majmū̄ ${ }^{c} a h-i$ Rasä'il. Edition and introduction by Muhammad Mudarris Riḍawī. Tehran: Intishărät Dānishgăh Tahrān (no. 308 in the series), 1335 H. Sh./1956 A.D.
Nāsirean Ethics (Akhlāq-i Nāsirī). Translation by G. M. Wickens. London: Allen and Unwin, 1964.
Rawḍat al-taslïm and Taṣawwurāt. See Ivanow.
Risālah-i Mu'īniyya. Introduction by Muhammad Taqī Dānish-Pizhüh. Tehran: Intishārăt Dānishgāh Tahrān (no. 300 in the series), 1335 H. Sh./1956-7 A.D.
Risālah-i Sayr wa-sulūk (Epistle on the Journey and Conduct). In Ṭūsī, Majmūcah-i Rasä'il. Tehran.
Sharh al-Ishārät=Hall mushkilāt al-Ishārāt. See Ibn Sīnā, Al-Ishārāt wa-'l-tanbühät.
Tahrīr al-Majisṭī. Damascus, Z̄āhiriyya MS 7790.
Zīj-i $\bar{I} l k h a ̈ n i$. See Boyle [1963].
Al-Zubda fí al-hay'a. An Arabic translation by 'Imād al-Dīn ${ }^{\text {C Alī al-Qāshī (?) of Țūsì's }}$ Persian Zubdah-i hay'a. Princeton, Mach MS 4884 (4066).
Zubdat al-idrāk fíal-hay'a. Istanbul, Topkapı Saray, Ahmet III MS 3430 (5), ff. 59b-92b (=Arab League falak Film 123).
al-cUbaydī, Jalāl al-Dīn Faḍl Allāh. Bayān al-Tadhkira wa-tibyān al-tabṣira. Istanbul, Ahmet III MS 3325, 2 (= Topkapı Saray MS 7058, 2), ff. 34b-131b.
Uktā’ī. Fihrist...Quds Riḍawi. 5 vols. Mashhad, 1354-1370/1935 (or 1936)-1950 (or 1951).

Usmanov, A. U. [1978]. "Astronomicheskií traktat Muciniíia Nasir ad-Dina Tusi." Matematika na srednebekovom Vostoke (Tashkent), pp. 113-126.

Van Helden, Albert [1985]. Measuring The Universe: Cosmic Dimensions from Aristarchus to Halley. Chicago: University of Chicago Press.
Vardjavand, P. [1366 H. Sh.]. La découverte archéologique du complexe scientifique de l'observatoire de Maräqé (=Parvīz Varjāvand, Kāvish-i rasadkhānah-'i Maräghah). Tehran: Amìr kabīr.
Veselovsky, I. N. [1973]. "Copernicus and Naṣīr al-Dīn al-Ṭūsī." Journal for the History of Astronomy 4: 128-130.
Voss, Don L. [1985]. Ibn al-Haytham's "Doubts Concerning Ptolemy": A Translation and Commentary. Ph.D. dissertation, University of Chicago.

Wafayāt. See Ibn Khallikān, Wafayāt al-a ${ }^{c}$ yān wa-anbā' abnā' al-zamān.
Wāfi. See Ṣafadī, Al-Kitāb al-Wäfi bi-'l-wafayät.
Walbridge, John T. [1983] The Philosophy of Quṭb al-Dïn Shīrāzī: A Study in the Integration of Islamic Philosophy. Ph.D. dissertation, Harvard University. [Note that there has now appeared his The Science of Mystic Lights: Qutb al-Dīn Shīrāzī and the Illuminationist Tradition in Islam. Cambridge: Harvard University Press, 1992.]
Wasṣāf al-Ḥaḍra. Tazjiyat al-amsār wa-tajziyat al-a $c_{s ̣ a ̄ r}$. Edited by Hammer-Purgstall. Vienna, 1856.
Wickens, G. M.
The Nāsirean Ethics. See Țūsĩ.
[1962]. "Naṣīr ad-Dīn Țūsī on the Fall of Baghdād." Journal of Semitic Studies 7: 23-35.
Wiedemann, Eilhard.
[1909]. "Bestimmungen des Erdumfanges von Al Bêrūn̄̄." Archiv für die Geschichte der Naturwissenschaften und der Technik 1: 66-69. Reprinted in Wiedemann [1984], 1: 310-313.
[1912]. "Über al-Şubḥ al-kādib (Die falsche Dämmerung)." Der Islam 3: 195. Reprinted in Wiedemann [1984], 2: 700.
[1970]. Aufsätze zur arabischen Wissenschaftsgeschichte. 2 vols. Hildesheim: Georg Olms Verlag.
[1984]. Gesammelte Schriften zur arabisch-islamischen Wissenschaftsgeschichte. 3 vols. Frankfurt am Main: Institut für Geschichte der Arabisch-Islamischen Wissenschaften.
Wiedemann, E. and Frank, J. [1926]. "Die Gebetszeiten im Islam." Sitzungsberichte der Physikalisch-Medizinischen Sozietät zu Erlangen 58: 1-32. Reprinted in Wiedemann [1970], 2: 757-788.
Wiedemann, Eilhard, and Kohl, Karl [1926-1927]. "Einleitung zu Werken von al-Charaqī." Sitzungsberichte der Physikalisch-Medizinischen Sozietät zu Erlangen 58 and 59: 203-218. Reprinted in Wiedemann [1970], 2: 628-643.
Wright, L. [1973]. "The Astronomy of Eudoxus: Geometry or Physics?" Studies in History and Philosophy of Science 4: 165-172.

Wüstenfeld-Mahler. Wïstenfeld-Mahlerische Vergleichungs-Tabellen zur muslimischen und iranischen Zeitrechnung mit Tafeln zur Umrechnung orient-christlicher Ären. Unter Mitarbeit von Joachim Mayr neu bearbeitet von Bertold Spuler. Wiesbaden: Deutsche Morgenländische Gesellschaft in Kommission bei Franz Steiner Verlag, 1961.

Zand, Āqā-i ${ }^{\text {c }}$ Alī Akbar. "Khwājah Naṣīr al-Dīn Țūsī." Hiläl. Pakistan, 1956.
al-Ziriklï, Khayr al-Dīn. Kitāb al-A ${ }^{\text {c }}$ läm. 10 vols. plus 2 supplements. 3rd printing. n. p., n. d.

§5. Indices

A. Subject Index

Note that the Arabic particle al- as well as kitäb (book of...) have been ignored for alphabetizing entries. References of the form II.5[2] refer to the text, translation, and, if there is any, commentary; in this case, Book II, Chapter 5, paragraph 2.
${ }^{\text {c }}$ Abbāsid Caliphate, end of 13
${ }^{\text {c Abd al-Jabbār, }}{ }^{\text {Mu }}$ Ctazilite Judge 5
Ābida, Muḥammad 57
Abū al-Fidā’ 61
Abū Ma ${ }^{\mathrm{C}}$ shar 399-400, 469
Abyssinia (al-Habasha) III.1[3], III.2[4] accession and recession. See trepidation Aden, Gulf of (Barbary Gulf) III.1[5] Ādharbayjān 14
aether (meaning fire) 385 , II.1[6].
See also bodies, celestial
Afḍal al-Dīn al-Kāshī 5
Aḥmad ibn al-Buḥtarī al-Dharrāc ${ }^{\text {c }} 502$
air, various levels of II.2[5]
$\alpha i \tau \eta \mu \alpha \tau \alpha$ (postulates) 501
Al-Ajrām wa-l-abcād. See Ḥabash
${ }^{\text {c }}$ Alā’ al-Dīn Muhammad, Grand Master 9, 12
 al-Ghaniy Ta ${ }^{\text {cas }}$ sif $9 n .31$
Alamüt 9, 10, 11-13, 16, 18, 21, 65
library $13,18-19$
al-ćcAlawī, al-Qāsim 407-408
Alburz mountains 10
${ }^{\mathrm{c}}$ Alī ibn CÏsā al-Asṭurlābī 502
${ }^{\text {c Allămĩ, Abū al-Faḍl } 509 \mathrm{n} .33}$
Almagest. See Ptolemy, works. See also
Ṭūsī, works, Recension of Almagest
almucantars of altitude/depression II.3[12]
altitude, definition of II.3[17]
altitude circle II.3[17]
amplitude.
See ortive; occasive
ancients, the 510, II.4[4], II.10[6]
Ancient Sciences 5, 8
Andalusia III.1[5]
angle of divergence II.12[1]
angles, definitions of I.1[3-6]
anomaly (ikhtiläf), definition of II.6[4]
anomalous speed 417, 418-419
apex of epicycle II.5[11], II.7[18]
apogee orb II.5[11]
apogees, planetary 409
of eccentric II.5[11].
See also under individual planets
Apollonius 47
approximation, successive (istiqrā') IV.5[4]

Arab calendar (pre-Islamic) 494
Arabic years 492
Arabs II.4[11]
Aral Sea (Lake Khwārazm) III.1[5]
arc, definition of I.1[9]
arc of descent $464 n$.
Archimedes 53, 55, 511n.42, IV.1[1]
al-Ardabīlī, Kamāl al-Dīn 64

Aristotle 17n.8, 38, 42, 53, 58, 385, 432, 501
comets 384
fact/reasoned fact 39, 386-387
infinite 43
metaphysics 15
Milky Way 411
qualities 43
relationship with astronomers 26-27
simple bodies $43,45 \mathrm{n} .20,381$
unrolling spheres 26,452
works
De caelo 35, 39, 55, 388, II.1[8]
Metaphysics 26-27
Physics 39, 42n. 7
armillary sphere 496
ascendent 393, II.3[17]
ascending, definition of II.5[11]; II.14[1]
astrologers, ancient 397, 494
astrology 29, 34-35, 39n.17, 397, 463, 494, III.1[6]
astronomers
observational 416, 419
practical 422
theoretical 422
' $\alpha \sigma \tau \rho о v о \mu \dot{\alpha} \alpha 34$
astronomy as understood in Islam 34-35,
47n.5,59, 88
atlas orb II.2[4]
atomism 476
Autolycus 53, 378
Averroes. See Ibn Rushd
Avicenna. See Ibn Sīnā
$a w a \bar{a} i l$ sciences 8
axis, definition of I.1[12]
ayniyya (displacing [motion]) 381, 410
azimuth, definition of II.3[17]
azimuth, circle of initial II.3[14]
Babylonians 398, 464, 508n. 32
Baghdad 11, 12, 13, 14, 15, 72, 74, 76, 78-79, 86, 502
Baghdad (β) version of Tadhkira. See Tadhkira
Baltic Sea III.1[5]
Banū Mūsä 48n. 11
Ahmad 390n. 5
Muḥammad
book on ninth sphere 390

Kitāb Ḥarakat al-aflāk 502, 503-507, 509
parameters 416
Barani, S. H. 502, 506
Bar Hebraeus 3n.4, 527n. 5
barleycorn II.1[2], IV.1[2]
al-Battãnī
diameters of Iuminaries 460
equation of time 484-485
parameters $394,396,416,464,469$, 471
solar apogee, motion of 415
trepidation 397-398, 399, 401, 406n. 55
tropical year 493
Zij 401
Bāyazid II, Sultan 80
Beijing, unbuilt observatory 14
Bīrjandī, ${ }^{\text {c }}$ Abd al- ${ }^{\text {c }}$ Alī $63,384,392,406$, 418-419, 420-421, 426, 452, 460n., 469, 491, 492, 516
arc of daylight 489-490
co-ascension 480, 481-482
dawn 486,488
eclipse limits 462-463
Eternal Islands 468
Green Gulf 466
Indian circle 496-497
Jaghmīnī, dating of 471
measurement of Earth 510, 511
motion 381n.2, 476
parallax 458, 463
qibla 497
sizes and distances $520,521 \mathrm{n} .22$, 522n.24, 527
solar depression 488
terminology 417, 424, 465, 478, 479
textual revisions $72,73,75,379,390$
(ninth orb problem), 395, 412-414,
422, 423, 471, 478, 513
visibility 464
works
commentary on Ulugh-beg's
Astronomical Tables 63
Risālah-i hay'a (=Sharh Mukhtaṣar al-hay'a?) 63
Sharh al-Tadhkira 57, 59, 63
supercommentary on Qāḍīzāde's commentary on Jaghminni's Al-Mulakhkhas 63
al-Bīrūnī, Abū Rayhān 29,53-54, 55, $411,415,461,465,467,469,473$, 527-528
Book on the Astrolabe 512
calendar 492
criticism of Ptolemy 40, 49n. 17
defines orb 378
divine providence 468
maximum daylight and climes 470
measure of Earth $37,502,503$, 506-508, IV.1[4]
meridian line 496-497
parameters 394, 416, 477
trepidation 397-398, 404
al-Biṭrūjī, Nūr al-Dīn 47n.3, 452
bodies 38, I.2[1]
compound 43, I.2[1]
external aspects of subject of hay'a 38 , 39, 41, 375
nature of bodies subject of De caelo 39, 46, 375
simple 43,44, I.2[1]
as subject of astronomy 38,39 , I.Intr.[2]
celestial $38,40,43,409$, II. 5 [10]; variation in size of II.1[1]
sublunar (elemental) 38,43; levels of II.2[5]
boundaries, definition of I.1[1]
Brethren of Purity. See Ikhwān al-ṣafā'
al-Būzjānī, Abū al-Wafā' 416
calendar, calculated lunar 491-492
calendars, listing of 494
Callippus 26, 29
Canary Islands. See Eternal Islands
Canopus II.4[8]
Carra de Vaux 81, 85
Caspian Sea (Ṭabaristān Sea) III.1[5]
celestial sphere II.3[15]
Chaldeans 397n.18, 398; calendar 494
China 466
Chinese and Indian Sea 466
Chinese month 491
Chinese Sea 466
Chingiz Khān 6
Chioniades, Gregory 58
chord, definition of I.1[9]
chronology 38, III.10[3]
circle, definition of I.1[8]
division of II.3[1]
great $\mathrm{I} .1[11,13,14]$
measure of IV.1[1]
circles in astronomy $30,51-53,454$, II.5[10], II.7[28],
total number of II.9[18]
circuit, definition of I.1[12]
climes, the seven III.1[7]
listing of latitudes 470,472 , III.1[8-9]
clouds II.2[5]
co-ascension, definition of III.7[1]
for equator III.7[2]
for latitude equal to complement of obliquity III.7[5]
for latitude greater than colatitude of obliquity III.7[6]
for oblique horizons III.7[4]
co-descension III.7[3,4]
colatitude, definition of II.3[7]
cold, intense (zamharir) (level of) II.2[5]
combust way III.1[6]
comets II.1[6], II.2[5]
common part, definition of I.1[4,11]
complementary bodies II.5[10]
concave surface of orb I.1[15], II.5[10]
concentric II.5[5,10]
cone, definition of I.1[17,18]
conjunction, latitudinal II.14[3]
constellations, listing of U1.4[9]
zodiacal II.3[5]
convex surface of orb I.1 [15], II.5[10]
Copernicus 55, 57, 58, 85, 430-431
Commentariolus 431
De revolutionibus 57
on Earth's motion 384-385, 431, 456
Coptic calendar 494
cosmography. See hay'a
cubit II.1[2], IV.1[2]
black cubit 502
Hāshimì cubit 508n. 32
Ptolemaic cubit 508n. 32
cupola III.1[7]
cylinder, definition of I.1[16,18]
daily universal motion II.2[1], II.3[2]
Dallal, A. 470
dawn
dawn/dusk at pole 488, III.6[2]
dawn (continued)
dawn/dusk continuous $\operatorname{III} .9[2]$
false (first dawn) III.9[1]
true III.9[2]
day
initial III.8[7]
mean III. $8[2,6]$
true III.8[6]
See also nychthemeron
day-circle, definition of II.3[2]; 479, II.4[7], III.1[10]
days, stolen / supplementary / epagomenal III.10[3]

Daylamān 10
daylight, amount of 474
daylight, arc of 474, III.10[1]
daylight, equation of 475, III.3[2], III.10[1]
daylight, maximum III.1[7]
listing of 470,472 , III.1[8-9]
daytime/night at pole III.6[2]
declination, circle of II.3[6]
declination, first II.3[7]
declination, particular II.3[6]
declination, second II.3[7]
declination of sun 474, III.3[2]
De elementis et orbibus coelestibus. See Māshā’allāh
deferent II. $5[5,10]$
degrees, definition of II.3[5]
Delambre, J. B. 400
depressed II.14[1]
depression, definition of II.3[17]
constant depression criterion 464n. 1
solar III.9[2]
descending, definition of II.5[11]; II.14[1]
deviation (mayl) 425, 449, II.10[4]
diameters of luminaries, list of 460
difference in latitude II.12[4,6]
difference in longitude II.12[4,5]
difficulties (ishkālāt) of Ptolemaic theory
49-50, 57, 59, 67-70, 420,
427-429, 448-449, II.7[25],
II.8[19], II.9[15], II.10[2,6], II.11[1]
digit IV.1[2]
digits, absolute and adjusted II.13[5]
Diodorus of Alexandria 497
dirigent. See Mercury
distance of star from equinoctial III.3[2]
divine providence 53,392 , III.1[6]
down, definition of II.1[7]
Dreyer, J. L. E. 57, 85
Duhem, P. 26n.4, 31, 41, 47nn.5-6, 401n. 35, 402n. 40
dusk III.9[2]
dynamics, celestial 385, 415-416, 437, 440, II.4[6-7]

Earth
centrality 43, 45, II. 1[4]
characteristics II.13[2]
cupola of II.1[7]
divisions of III.1[2]
levels of II.2[5]
measurement 37, 54, II.1[2], IV. 1
Ma'mūn's scientists IV.1[2]
principle of rectilinear inclination 41, II.1[6]
rotation 41, 45, 58, II.1[6]
size II.13[3]; relative to orbs II.1[5]
sphericity 39,40 , II.1[2], III.1[1]
standard of measurement IV.1[2], IV.2[1]
surface area IV.1[3]
travel around III.1[1]
east-west circle II.3[14]
east-west line III.12[2]
east/west points II.3[13]
eccentric II. $5[2-3,10]$
eclipse
annular solar $47 \mathrm{n} .2,461$
limits, lunar II.13[5]; solar II.13[9]
lunar II.1[4], II.13[2-6], III.1[3], IV.3[1]
solar II.13[7-9]
See also shadow
ecliptic equator, motion of 72,427, II.4[2-3,5]

Tū̄si's model for II. 11 [22]
ecliptic latitude, local II.3[16]
ecliptic meridian circle (circle of local ecliptic latitude) II.3[16]
ecliptic orb/equator II.2[4], II.3[3], II.4[7]
Egypt 5, 7, 9, 18, 19, 501
elements. Seé bodies
Elements. See Euclid, works. See also
Țūsī, works, Recension of Elements
elevated II.14[1]
enclosing (muhita) orb 409, 436-437, 439, 455, 520n. 16
epagomenal days III.10[3]
epicycle II.5[2,4,6,10]
equivalence to eccentric II.5[5]
epochs III.10[3]
equal degrees IIII.7[1]
equant 49-51, 68, 69n.12. See also under individual planets
equation of daylight III.3[2]
equation of time 37, 483-485, III.8[8]
equator, definition of I.1[13]
equator, inner 435-436, II.5[10]
equator, terrestrial III.1[2]
beginning of climes III.1[7]
characteristics III. 2
equinoctial orb/circle II.3[2], II.4[7]
equinoctial, distance from II.3[6]
equinox points II.3[3]
Eratosthenes 501
Erythraean Sea 466n. 6
Eternal Islands 465, III.1[7]
Euclid 53, 55, 376-377, 379, 501, 512-513, IV.4[2]
works
Elements 13. See also Ṭūsī, works, Recension of Elements
Optics 516
Eudoxus
and Ibn al-Haytham 451, 452-453
planetary models 26-27, 29, 409
evening endpoint II.10[5]
Fakhr al-Dīn al-Rāzī 6, 20, 53, 55
exegesis on the Qur'än 389
on climate of equator III.2[3]
falak. See orb
falls of the luminaries III.1[6]
Fārābī, Abū Naṣr 34
Farghānī, Elements of Astronomy 33n.23, 66n.5, 508n.27, 527
Farīd al-Dīn Dāmādh 5, 6, 8
al-Fārisī, Kamāl al-Dīn 412
Ḥāshiya ${ }^{c}$ alā dhikr aṣl al-rujū̄ ${ }^{c}$ wa-'listiqāma fi al-Tadhkira 59,61
Tanqüh al-Manāąir 61, 383
al-Fārisī, ${ }^{\text {CU }}$ Umar b. Da'ūd
Takmil al-Tadhkira 61
farthest distance II.5[3-4]

Faṣịh al-Dīn, Häshiya 61
Fătimids. See Ismā두ilis
al-Fazãrí 399-400, 468
Fï iṣlāh harakãt al-nujūm 407
finitude of universe 42-43
Firdaws al-hikma 506
fire, level of 439, II.2[5], II.7[4]. See also aether
Fīīūzābād 64
fixed stars and orb of 37, II.2[4], II.4[7-12]
diameters IV.7[2]
distance from Earth IV.7[1,5]
magnitudes 529, IV.7[3]
number of orbs of 389
volumes 529, IV.7[2,3]
Fortunate (Canary) Islands. See Eternal Islands
Fuṣūl-i muqaddas 16
Geminus 39, 389, 430, 432
generation and corruption, world of IV.7[5]
geographical placebooks (al-masālik) III.1[5]
geometry corpus 55, I.Intr.[4]
science of geometry IV.2[3], IV.3[3]
terminology 501
Gerard of Cremona 407
al-Ghazālī 387n. 10
Ghāzān Khān 494
Ghiyāth al-Dīn Manṣūr
Taclïqāt (annotations on the Tadhkira) 64
Ginzel, F. K. 491n. 11
gnomon III.12[1-2]
Goichon, A.-M. 386n. 4
Goldstein, B. 486, 519, 521n.18, 523nn.27-28, 525n. 4
Grant, E. 391
Greek calendar 494
Greek words in Arabic 391
Green Gulf 469, III.1[5]
Green Sea 466
Greenwich Observatory 464
Habash 394, 396n.9, 399-400, 501, 502, 507
Kitāb al-ajrām wa-'l-abcād 502, 503
parameters 416

Hājjiī Khalīfa 60, 67
Hamāh 59, 61
al-Hamdāni 469
Hanbalīs 7n. 22
handbooks, practical 37, II.14[1], III.8[8]
al-haraka fíal-makān (motion through space) 381
haraka intiqāliyya (translocation) 381
Hִarakat al-aflāk. See Banū Mūsā, Muhammad
Harrān 29, 401
Harrānian calendar 494
Hartner, W. 85, 378, 417, 432, 439, 444, 448, 519n. 10
Hasan ${ }^{\text {calä a dhikrihi al-salām } 16}$
Hasan-i Sabbăh 10
al-Hāshimī, Kitāb fi cilal al-zījāt 399
hay'a (cosmography, configuration) 20 , 34-35, 58, II.5[10]
and astrology 30
guidelines and approach $389,402,405$, 406, 409, 415-416, 450, 452, 517, 521, II.5[10]
hay'a basitta (plain hay'a) 35-36, 56, 65, 376
hay'at al-ard (configuration of Earth) 36, 38, III. 1
hay'at al-sama' (configuration of celestial region) 36
$c_{i l m}$ al-hay'a as branch of astronomy 34; distinct from De caelo tradition $39,41,46,375,388$
meaning astronomy 24,34
See also bodies
Heinen, A. 20
Hellenism
and Islam 4, 8-9, 473
importance for Ṭūsī 4
Hero of Alexandria 53, 376, 377
hijra calendar 491-492
hikma (philosophy) 5-6, 16
al-Ḥimädhī, Muḥammad b. ${ }^{\text {CAlī }}$
Tibyān maqāṣid al-Tadhkira 59-60, 428
Hipparchus 396, 398, 406, 461, 527, 530n. 14
hippopedal motion 451, 452
Hogendijk, J. 464
horizon 463
meaning locality 475
horizon circle II.3[12]
horizon of the right orb III.2[1]
hours, equal and unequal (seasonal) III. 10[1]

Hülegü 10, 13-14, 18
hypothesis 48n.10, 411
Hypotyposes 520
Ibn abī Ușaybica 6
Ibn al-Ādamī, al-Husayn b. Ḥamīd 407-408
Ibn al-Akfānī 25n. 2
Ibn al-Aclam 396
Ibn al-c Alqamī, Mu'ayyad al-Din 12
Ibn Bājja 391, 428n. 5
Ibn al-Fuwaṭī 8,71n. 19
Ibn al-Haytham, al-Ḥasan 25n.2, 53, 55, $56,411,420,428-429$
dual meaning of orb 378
models for latitude 52-53, 54, 67, 68-70, 426, 453, 454-455, II.11[16-17],
solid sphere astronomy $30-33,34$, II.11[16]
vision, theory of 459
works
Maqāla fì harakat al-iltifāf 406, 450
Al-Maqāla fi hay'at al-cālam 30, 36, 42, 54; relationship with Planetary Hypotheses 32-33
Optics 54, 61, 382-383
Al-Shukūk calā Baṭlamy \bar{s} 17n.8, 32, 49, 54, 428, 449
Ibn Hazm 17n. 8
Ibn Hibintā, Astrology 29
Ibn al-CImād al-Hanbalī 19n. 20
Ibn Kathīr 7, 19
Ibn Khallikān 8n.29, 507, 509
Ibn Qayyim al-Jawziyya 19
Ibn Rushd, Abū al-Walīd
celestial dynamics 385,409
Ptolemaic astronomy 17n. 8
Ibn al-Șalāḥ 8n. 29
Ibn al-Shātir
Nihāyat al-sūl 57, 85
Al-Zījal-jadid 394, 396

Ibn Sīnā, Abū ${ }^{\text {c }}$ Alī $16,20,33,53,55,389$, 392	Ismāc ${ }^{\text {cill }}$ I, Shāh 64 Ismä ${ }^{\mathrm{c}} \mathrm{il} \overline{\mathrm{I}}$ (Sevener) Shī ${ }^{\text {cites }} 5 \mathrm{n} .1,16$
criticism of Ptolemy 48-49	Fātimids 10n. 2
defining astronomy and astrology	Nizārīs 10
34-35	Ivanow, W. 18n. 15
temperateness of equator III.2[2]	
works	al-Jaghminni
Aqsãm al-culūm al-caqliyya 34	Al-Mulakhkhas fíal-hay'a al-basiṭa 35,
Al-Ishārāt wa-'l-tanbīhāt 12, 19, 21	56, 63, 67, 470n., 471, 498, 500n.
Qänūn 6, 473	treatise on sizes and distances 500n.
Shifă' 388; 'Ilm al hay'a 394;	Jalālī calendar 494
Al-Samā' wa-'l-cālam 419-420	Jam 469
Ibn Yūnus, Abū al-Ḥasan ${ }^{\text {c Alî 396, }}$	Jayasimha 57
502-503, 506	Jewish calendar 494
Ibn Yūnus, Kamāl al-Dĩn. See Kamāl alDīn	Jupiter II.2[4], II. 9 anomalies II.9[15]
Ibn Zuhra, ${ }^{\text {cIzz al-Din }}$ Hamza 6 n .17	circles II.9[17]
Ibrāhīm ibn Sinān	diameter IV.6[5]
trepidation $54,394,404-405,408$, 452-453, 468	distance farthest IV.6[4]
works	mean IV.6[5]
Fī wasf al-ma ${ }^{\text {coanī }} 401 \mathrm{n} .39$	nearest IV.6[4]
Hִarakāt al-shams 400n.29, 401,	eccentricity II.9[9], IV.6[4]
404-405, 408, 452	epicycle, size of II.9[13], IV.6[4]
On the Area of the Parabola 401n. 39	equant center and orb II.9[9]
ijüza (teaching license) 6	inclined orb II.9[6]
İjī, Mawāqif 62	irregular Ptolemaic motion (difficulties)
Ikhwān al-şafā' 34,409	II.9[15], II.10[6]
${ }_{\text {cilm al-nujüm (science of the stars) }} 34$	latitude II. $10[1,3,4]$
${ }^{\text {CImād al-Dīn }}{ }^{\text {c Alī al-Qāshī (?) }} 70$	mean apex II.9[11]
Imāmī (Twelver) Shīcites 5n. 1	mean motion II.9[10]
inclination in latitude 424, II.10[1],	motion of center II.9[8]
II.11[13]	motions II.9[7-11]
inclination in longitude II.11[13]	observations for II.9[1]
India 466	orbs II.9[3-5]
Indian astronomy 57,377	parameters 457
Indian circle III.12[2]	retrograde motion II.9[12]
Indian Ocean 466	TTūsi's model for longitude II. 11 [10]; for
inhabited world 510, III.1[3], IV.1[3] reasons for location III.1[6]	latitude II.11[19]; differences with Ptolemy's model 446-448
innī (fact) proof 39, 42, 382, 383, II.1[8]	visibility II.14[2]
intercalary days III.10[2]	volume IV.6[5]
al-Īrānshahrī, Abū al- ${ }^{\text {c }}$ Abbās 461	al-Jurjānī, al-Sayyid al-Sharif 418, 466,
Islam	492, 509, 511
groups 5nn.1-2	celestial dynamics 409-410,416
"Islamic" sciences 8	Earth's motion 384-385
relationship with nonreligious sciences 8-9	explanation of textual revisions 72,73 , $75,376-377,379,422,489$
study between sects 9	magnitude scale 527

Jurjānī (continued)
works commentary on İji's Mawāqif 62 Sharh al-Tadhkira 62, 64
al-Juwaynī, 'Alā' al-Dīn 11, 18-19
al-Jūzjānī, Abū cUbayd 33, 48-49, 428-429, 452
kalām (dialectal theology) 16, 19, 473
Kamäl al-Dĩn ibn Yūnus 6,7-9, 509
teacher of mathematics and astronomy 7-8
teacher of religious studies $8,8 \mathrm{n} .25$
Kamāl al-Dīn Muḥammad al-Ḥāsib 5, 16
Kangdezh III.1[7]
al-Kāshī, Ghiyāth al-Dīn
diameters of luminaries 460
Sullam al-samā' 521n. 22
Zīj-i Khāqänī 394, 396
al-Kāshī, Manṣūr 63
al-Kāshî, Mu ${ }^{\text {cinn }}$ al-Dīn 63
Kaykāwus 469
Kennedy, E. S. 57, 85, 393n.7, 455n.54, 463,506
Khafr 64
al-Khafri, Shams al-Dīn 384, 394, 418, 444, 466, 510, 511
celestial dynamics 416
composed motion 432-433
curvilinear Țūsī couple 455 n .55
difficulties, the sixteen 427
enclosing orb 439
fact/reasoned fact 387-388
motion 381n.2, 476
precession 396
Al-Takmila fi sharh al-Tadhkira 63-64
terminology 376, 393, 417
textual revisions 72, 73-74, 379, 396, $435,437-438,439,442$
trepidation 402-404, 452
Khälid b. ${ }^{c}$ Abd al-Malik al-Marwarrūdhī 502
Khānī calendar 494
Khānjū (Quanzhou?) 466
Khānqū (Canton) 466
al-Khayyām, ${ }^{\text {c }}$ Umar 450
al-Khäzin 404, 464
Book on Sizes and Distances 527-528
al-Khãzini 394
al-Khiraqī, Shams al-Dīn 33, 467, 470, 471
chronology $36 \mathrm{n} .12,38,67,495$
combust way 467-468
genre of astronomical works 33,36
measure of Earth 508, 509
physical principles 42
solid sphere astronomy 33,454
works
Muntahā al-idrāk 33, 36, 54, 67
Al-Tabșira 33, 54, 61, 67
Khuräsān 3n.2, 5, 6, 11
khwāja 3
Khwărazm, Lake (Aral Sea) III.1[5]
al-Khwārazmī, Abū ${ }^{\text {c }}$ Abd Allāh 34
al-Khwārizmī, Muhammad ibn Mūsā 464
diameters of luminaries 460
equation of time 484-485
latitudes of cities 506
Khwārizm-Shāh Ahmad 494
King, D. 497, 509n. 35
к λ íøा乌 (inclination) 377
Kūfa 502, 507
Kulliyyāt (of Ibn Sīnā's Qānün) 6
Kūshyār 394, 498
diameters of luminaries 460
Kusuba, T. 57n. 7
Kutubī. See Ṣafadī
Langermann, T. 378n.3, 502
Lañkã 469
latitude, definition of II.3[7]
latitude, circle of II.3[7]
latitude, local II.3[13]
latitude, local ecliptic II.3[16]
latitude of the epicycle center (${ }^{c}$ ard markaz al-tadwir) 424
latitude, parallels of II.3[5]
latitude theory $52-53,54,57,67,68-70$, II.10, II.11[14]

Levy, Reuben 18n. 13
lightning, lightning bolts II.2[5]
limmi (reasoned fact proof) $39,42,382$, 383, II.1[8]
lines 432-433; definition of I.1[1]; line, straight, definition of I.1[2]
Livingston, J. 85, 385
longitude, definition of II.3[8]
lower planets. See Mercury; Venus
lunar month III.10[2]
lunar year III.10[3]
lune 511, IV.1[1]
madrasa (school) and teaching of Ancient Sciences 8-9
Maghrib III.1[5]

- al-Maghribī, Muhyyī al-Dīn 14, 493
al-Māhānĩ 401n. 39
Maḥmūd b. Muḥammad b. al-Qāḍī Taqī alDīn 76
Maimonides 389
Makdisi, G. 9n. 30
al-Makkī, Muḥammad ibn ćAlī 506
Malikshāh 494
Mamlūks and science 19-20
Ma'mūn, Caliph 501, 507
expeditions to measure Earth 501-510
scientists $54,55,394,396,404,406$, IV.1[2]
manqūlāt (transmitted) sciences 8
manshūrāt ($\pi \rho i ́ \sigma \mu \alpha \tau \alpha$, sawed-off
sections) $28,33,40,51 \mathrm{n} .20$, II.11[16]
mansions of the moon II.4[11]
al-Manṣūr, Caliph 508n. 32
$m a^{c} q u \bar{u} \bar{a} t$ (rational) sciences 8
Marägha $13,56,71,72,73,86,87$
Marāgha observatory 14-15, 64, 71n. 19
observations 14-15, 426, 493
waqf funds used for 9,14
Marāgha "school" 55-56, 58, 85, 429
Marāgha (α) version of Tadhkira. See Tadhkira
Mars II.2[4], II. 9
anomalies II.9[15]
circles II.9[17]
diameter IV.6[2]
distance
farthest IV.6[1]
mean IV.6[2]
nearest IV.6[1]
eccentricity II.9[9], IV.6[1]
epicycle, size of II.9[13-14], IV.6[1]
equant center and orb II.9[9]
inclined orb II.9[6]
irregular Ptolemaic motion (difficulties)
II.9[15], II.10[6]
latitude II. 10[1,3,4]
mean apex II.9[11]
mean motion II. $9[10$]
motion of center II.9[8]
motions II.9[7-11]
observations for II.9[1]
orbs II.9[3-5]; thickness II.9[14], IV.6[3]
parameters 457
retrograde motion II.9[12]
Țūsi's model for longitude II.11[10]; for latitude II.11[19]; differences with Ptolemy's model 446-448
visibility II.14[2]
volume IV.6[2]
Marw al-Rūdh (in Khurāsān) 502n. 10
al-Masālik wa-l-mamālik geographical placebooks III.1[5]
Māshā'allāh, De scientia motus orbis 29
al-Mas ${ }^{\text {cūdī }} 502$
mayl (inclination/deviation) 424
mean distance II.5[3]
measurement, units of 508
Mecca III.12[3-4]
Mediterranean Sea III.1[5]
Menelaus, Spherics 13, 53, 455n.55, 479-480. See also Țūsī, works, Recension of Spherics
Mercury $52,57,68 \mathrm{nn} .9,11,69 \mathrm{n} .12$, II.2[4], II. 8
anomalies II. $8[15-17,19]$
anomaly of the farthest and nearest distances II.8[16]
circles II.8[21]
deferent orb for deferent orb's center II.8[9]
diameter IV.5[7,8]
dirigent II.8[4]
distance
farthest IV.5[4,6]
mean IV.5[8]
nearest IV.5[4]
eccentricity IV.5[4]
epicycle radius IV.5[4]
equant center and orb II.8[14]
equation of the center and of the proper motion II.8[17]
inclined orb II.8[4]
irregular Ptolemaic motion (difficulties) II.8[19], II.10[2,6]

latitude II.10[1-5]
mean motion II.8[12]
motions II.8[8-14]
nodes II.8[4]
orbs II.8[2-7]; thickness IV.5[6]
second equation II.8[15]
transit 391
ines 421, II.8[11]
H11[11] ded for II. 11[19-20]
visibility II.14[2]
volume IV.5[8]
meridian circle II.3[13]
meridian line, finding III.12[1-2]
meteors (nayäzik) II.2[5]
IV. 12$]$

Millás Vallicrosa 402n.40, 408n. 62
Minorsky, V. 466
Mīrū 469
mixed science 38
model of the big and the small 57. See Tūsisī couple
models, astronomical 405-406, II. 5
fference between epicycle and eccentric II.5[6] II.5[5]
planetary models
homocentric 46-47. See also Eudoxus II.7[25], II.8[19], II.9[15], II. 10[2,6], II.11[1]
terminology 48n. 10
Tū̄i’’s II.11[1-11,17-23]
See also under individual planets
II.6[1], II.10[6]
diameters of luminaries 460
tropical year 493
Möngke 14

Mongols
incursions into Middle East 6, 11-13
months 491
month III.10[2]; true solar or conventional III.10[3]
moon II.2[4], II. 7
anomalies II.7[16-23]
anomaly of nearest distance II.7[17]
apparent proper anomaly II.7[29]
argument of latitude (hissat ${ }^{c}$ ardihi)
II. 7 [29]
center of the moon (double elongation)
II.7[29]
circles II.7[28]
diameter
absolute (true) IV.3[3]
apparent 53n.1, 460, II.7[1], II.13[8], IV.3[1-2]
distance from Earth IV.2[2-4], IV.7[5]
eclipse. See under eclipse
equation of the proper (motion) II.7[18]
illusion 382, II.1[1]
inclined orb II.7[4]
independent equation II.7[16]
irregular Ptolemaic motion (difficulties)
67-68, II.7[25], II.11[1]
lunar apogee II.7[29]
lunar markings II.7[23]
mean II.7[29]
mean motion II.7[11]
mean proper anomaly (khäṣsa) II.7[29]
model 58
Țūsi's for longitude 409, II.11[5-9]; for alignment II. 11 [21]; differences with Ptolemy's II.11[8-9]
motion of the apogee II.7[9]
motion of the center (double elongation)
II.7[10]
motions II.7[8-14]
nodal mean II.7[29]
nodes (jawzahr) 409, II.7[7]
node's true position (taqwïm) II.7[29]
observations for II.7[1]
orbs II.7[3-6]
parallax II.1[5], II.12[7], IV.2[2]. See
also under parallax
parameters 457
phases II.13[1], II.14[2]

moon (continued) point of alignment (prosneusis) 54, 69, 70, 419, 445n.39, II.7[18]; effect on epicycle III.11[12-13] proper motion II.7[13]	Muhammad ibn Mūsā. See Banū Mūsā $\mathrm{Mu} \mathrm{C}_{\mathrm{in}}$ al-Dīn (son of Nāṣir al-Dīn Muḥtasham) 10n.1, 12, 17, 65 $\mathrm{Mu}^{\mathrm{c}}{ }^{\mathrm{in}}$ al-Dīn Sālim b. Badrān al-Miṣịī $6-7,7 \mathrm{n} .23,8,11$
Ptolemy's crank mechanism 440, 443 size variation 460, II.7[1], II.13[8] speed, variability in II.7[14] true position (taqwim) II.7[29] volume IV.4[2]	$M u^{c}{ }^{\text {ini }}$ yya, Risālah-i. See Țūsī, works muqaddama (lemma) 501 al-Murtaḍã, ${ }^{\text {c }}$ Alam al-Hudā 4 muṣādarät (preliminary propositions) 501 al-Mustanṣir, Imām 10
Morelon, R. 48n. 11 morning endpoint II.10[5]	al-Mustacṣim, Caliph 12 muswadda (draft) 71
Mosul 7n.23, 8, 9, 502, 509	${ }^{\text {al- }} \mathrm{Mu}^{\mathrm{c}}$ tadid bi-Allăh, Caliph 494
motion 44-46, I.2[2-4] accidental 44, 410, I.2[2] animal I.2[2]	Mu^{C} tazilites 5 n .2 relationship with Shī ${ }^{-}$ites 7 n .20
composed 431-433, I. 2	nadir III.4[5]
compulsion, by 383, I.2[2]	Nallino, C. 401, 466n.6, 501n.5, 502
direct 59 displacing 410, I.2[3] due to nature 45-46, I. 2	Nāṣir al-Dīn Muḥtasham, ${ }^{\text {C }}$ Abd al-Raḥīm b. abī Manṣūr 9, 10n.1, 11, 11n.11, 12, 15, 16, 21
due to soul $45,409-410$, I.2[2] essential 410	natural philosophy $39,41,42,46,53,55$, 383, 385, I.Intr.[4]. See also
investigated 46	principles of astronomy
clination of bodies 419, II.1[7] place 381,410	nature ($t a b^{c}$ or $t a b i{ }^{c} a$) of body 39,44 , I.2[2]
gular, apparent II	Nayanasukha 57
primary motions	al-Nayrīzī 376,377,512
attribution to All 389-390, II	Nazm al-ciqd 407, 408
principle of 44, I.2[2-3], II.5[10]	nearest distance II.5[3-4]
Proclus's 431-433 retrograde 59, 75, 411, II.5[4,8-9]. See also under individual planets	Neugebauer, O. 58, 85, 88, 397-398, 406n. $57,430,431,455 n .54,462$, 483n.4, 519
second (meaning proper motio	night, arc of III.10[1]
nets) 477n.2, 478-479. See als	Nile, the III.1[4]
precessional motion	Nīsābūr, in Khurāsān 5, 6, 9, 11, 461
self-moved I.2[2]	al-Nissäbürī, Nizāàm al-Dīn 393, 465, 46
simple (monoform)	484, 492, 509
straight-line (rectilinear) 43, 44-45,	Earth's motion 383-385
I. 2 [3-4]	inner equators 435-436
uniform circular 43, 44-45, 46,	orbs 379, 381, 421
47n.2, I. 2[3-4], II.5[1]	plane, definition of 377
speed 417-419, II.5[9] vegetative I.2[2]	Tawdïh "al-Tadhkira" 57, 60, 61, 62,
See also dynamics, celestial; Earth	textual revisions 395-396, 489, 511
mountains of the moon III.1[4]	trepidation 397
Mu'ayyad al-Din al-čurdī. See al-curdị	Nizaāmiyya College 76, 77, 86
Muḥammad ibn ${ }^{\text {cAlī al-Makkī }} 506$	Nizārīs. See Ismā ${ }^{\text {cillis }}$

north/south points II.3[14]
Nūr al-Dīn ${ }^{\text {c }}$ Alī̄ b. Muhammad al-Shī ${ }^{C} \overline{1}$ (T̛ūī’s maternal uncle) 5
nychthemeron
definition of III.8[1]
equation of (=equation of time) III.8[8]
variability III.8[2]
due to sun's variable speed III.8[[3]
due to co-ascension III.8[4-5]
oblique horizons
general characteristics of III. 3
latitude less than obliquity III.4[2]
latitude equal to obliquity III.4[3]
latitude greater than obliquity and less than complement III.4[4]
latitude equal to complement of obliquity III.4[5]
latitude greater than colatitude of obliquity III. 5
obliquity, total 469, II.3[3], II.4[1];
change in II.4[2-3,5]; Țūsi's model for II.11[22]
observations (arṣād) 506
listing of 389
for obliquity II.3[4]
and theory $59,383-385,427,445$
occasive amplitude 474, 475, III.2[1]
occultation II.2[4]
Ocean, the (Encompassing Sea) 466
optics, science of IV.4[1]
orb
definition of I.1[15]
embedding of orbs 42-43, 48,51, II.5[10], IV.5[2,5]
entails motion 379
motion of orbs II.4[6-7]
orbs, solid (aflāk) 30-31, 51, II.5[10]
planetary orbs II. $2[3,4]$
total number of orbs II.9[18]
used to mean circle 458, II.3[2]
orb of orbs II.2[4]
orbs, table of 52
orb, truncated. See manshürāt
ortive amplitude 474, 475, III.2[1], III.3[2]

Palmyra-Raqqa expedition 502-507
Pappus 462
parallax II.12; definition of II.12[1]
parallel, definition of I.1[7]
parasang II.1[2], IV.1[2]
parecliptic orb 409, II.6[3]
Pedersen, O. 88, 421, 439n. 34
perigee II.5[11]; epicyclic II.7[18]
Persian calendar 494
Persian Gulf III.1[5]
phases 463. See also visibility
Pingree, D. 29-30, 57
place, proper I.2[1]
planet, embedding of II.5[10]
planetary motion II.2[3]; possibility of rising in west or setting in east III.5[7]. See also under individual planets
Plato 409n.66, 427, 430, 432
point, definition of I.1[1]
Polaris II.4[8]
pole, definition of I.1[12]
poles, characteristics at III. 6
poles of first motion II.3[2]
populated quarter 510, III.1[2], IV.1[3]
postulates 501
prayer times 485-486
precessional motion 404-406, 409,
II.2[2], II.4[4,7-8], II.7[8]. See also trepidation
prime vertical II.3[14]
principles of astronomy I.Intr.[2], II.5[10]
mathematical principles $41,42,53$
metaphysical principles $41,45-46,53$
physical principles 41-48, 59, 405; and mathematics $47,58,431-432$,
433-434; and metaphysics 45-46; and observations 45, 47n. 2
$\pi \rho i ́ \sigma \mu \alpha \tau \alpha$. See manshūrāt
Proclus 389, 430-433, 520
proof of fact/reasoned fact. See innï; limmī
propter quid (δ tótt) See limmĩ
Prowe, L. 431
Ptolemies of Egypt 501
Ptolemy 55
astrolabe 509 n .35
climes 471
criticisms of $17 \mathrm{n} .8,32,40,41,42,45$, 48-51, 67-70, 383-385, 404, 406, 420, II.7[25], II.8[19], II.9[15], II. 10[2,6], II.11[15]

Ptolemy (continued)	as summary 375 ; celestial
Earth size 501	dynamics 385, 409
eclipse limits 461-463	Planisphaerium 398n. 20
equation of time 483, 485	See also Țūsī, works, Recension of
fixed stars, sizes/distances of 526-530	Almagest; models; under individual
latitudes of cities and climes 470,506	planets
latitude theory $52-53,54,68-69,405$, II.10, II. 11 [14,16]	al-Qabīși, Shukük fi "al-Majisti" 48
lower planets, sizes/distances of IV. 5	Qāḍīzāde al-Rümi 38n.15, 62
maximum daylight 470,472	commentary on Jaghminī's
moon	Al-Mulakhkhas 63, 500n.
diameter 460, IV.3[1-3]	Qā'in 9
distance IV.2[2-4]	Qānün. See Ibn Sīnā
eclipse IV.3[1]	al-Qazwīnī, Aḥmad b. Maḥmūd 76
obliquity $394,405,406,469$	qibla (direction of Mecca) $20 \mathrm{n} .25,34,37$,
optics proof 516	III.12[3-4]
physical bodies 28, 31	arc of deviation of the qibla 497
physical principles 47-48	arc of the qibla bearing 497
planetary models 46-48, II.5[6],	qibla bearing III.12[3]
II.6-II. 10	qibla bearing line 497
precession 396, 405, 406	qibla bearing point 497
relation of Almagest and Planetary	Qühistăn 9, 10, 11, 12, 65
Hypotheses 27-29, 520-521	quia (七ò ớrı) See innī
retrograde motion 413, 414	Qur'än 19,491
seasons 478	${ }^{\text {al-Qūshjī, }}{ }^{\text {c }}$ Alī (defense of astronomy) 18
sun	Quṭb al-Dīn al-Miṣrī 5-6, 8,9
apogee 478, II.6[1]	
diameter 460, IV.3[2], IV.4[1]	Räfida 7n. 20
distance from Earth IV.3[4], IV.5[1]	Rājasthāna 57
model II.6[2-3]	Ramaḍān 491
parameters 517, II.6[4], IV.5[1]	Raqqa. See Palmyra-Raqqa expedition
trepidation 397-398	Rawdat al-Taslìm 18n. 15
tropical year 493	al-Räzī, Fakhr al-Din 6
truncated orbs 28, 33, 40, 51n. 20	Redhouse, J. W. 487
upper planets, sizes/distances of IV. 6	Red Sea (Red Gulf) III.1[5]
visibility 463,464	reference points for motion 398, 399, 402,
works	403, 434, 436, 441, 442, 443
Almagest 13, 24-25, 27, 32, 37, 38,	regular order (mustawiya) III.5[1]
40, 47, 48, 49, 51, 53-55, 405, 454,	religious endowment. See waqf
I.Intr.[3], II.5[10]; cosmographical proofs 382 ; latitude theory 425 ,	retrograde motion. See motion, retrograde reverse order ($m a^{c} k u \bar{s} a$) III.5[1]
449-450, II.10[5]; prosneusis 419	Rheticus 431
Geography 465, 467, 468	Richter-Bernburg, L. 407n. 61
Handy Tables 398	Riḍawī, Muḥammad Mudarris
Al-Madkhal ilā al-sinā ${ }^{\text {c a a al-kuriyya }}$	12nn.15-16, 15n. 1
398	right orb 472
Optics 49	Rigil Centaurus II.4[8]
Planetary Hypotheses 27-28, 32-33,	ring of light II.13[8]
36, 40, 47, 49, 51, 53n.1, 54, 452,	Risālah-i Mu ${ }^{\text {ciniyya. }}$ See Ṭūsī, works

Risālah-i sayr wa-sulūk. See Ṭūsī, works rising, degree of III.11[2-3]
Roberts, V. 85
Roman calendar 494
Rosen, E. 378n.3, 431
Rukn al-Din Khurshāh 9-10, 13
Ruwenzori 465

Ṣäbian calendar 494
Sabra, A. I. $17 \mathrm{n} .8,20 \mathrm{n} .25,382,439 \mathrm{n} .31$, 450
Sachau, E. 397n. 18
al-Ṣafadī, Khalīl b. Aybak 18n.17, 56, 72n. 24
the Wäfi and Kutubi's Fawāt 7n. 18
safiha 496; safihat al-irtifáa ${ }^{\text {c }} 504$
$S \overline{a ̄}^{C}$ id al-Andalusī 397, 402n.40, 407-408
Saliba, G. 69n. 15, 429n.8, 453n. 53
samā'al-ru'ya 393
Al-Samā' wa-l-cālam. See Aristotle, De caelo
Samarqand 59, 62, 394
Samarqand observatory 63
Samarqandī, Muḥammad b. Muḥammad 80
Sāmarrā 502
Sanad ibn ${ }^{\text {c Alī }} 503,507,512$
Saturn II.2[4], II. 9
anomalies II.9[15]
circles II.9[17]
diameter IV.6[7]
distance
farthest IV.6[6]
mean IV.6[7]
nearest IV.6[6]
eccentricity II.9[9], IV.6[6]
epicycle, size of II.9[13], IV.6[6]
equant center and orb II.9[9]
inclined orb II.9[6]
irregular Ptolemaic motion (difficulties) II.9[15], II.10[6]
latitude II.10[1,3,4]
mean apex II.9[11]
mean motion II.9[10]
motion of center II.9[8]
motions II.9[7-11]
observations for 1I.9[1]
orbs II.9[3-5]
parameters 457
retrograde motion II.9[12]
TTūsi’s model for longitude II.11[10]; for latitude II.11[19]; differences with Ptolemy's model 446-448
visibility II.14[2]
volume IV.6[7]
saving the phenomena $26,26 n .4,427$
schools, religious. See madrasa
science, structure of a I.1[1]
sea, the III.1[4]
seas, listing of III.1[5]
seasons III.2[1], III.4[2,3], III.10[3]
sector 37, II.14[1]
sequential, defined for epicycle 420
setting, degree of III.11[2-3]

shadow
apex, distances from 515-516, IV.3[5]
Earth's II.13[3], IV.5[6]
radius IV.3[1,3]
shadow circle II.13[4]
shadow cone II.13[4], III.9[1], IV.3[3,5]
al-Shahrastānī, Tāj al-Dīn 5, 16
Kitāb al-Muṣārac ${ }^{c} a$, his 16 n. 6
al-Shams (son of Mu'ayyad al-Dīn al- ${ }^{-}$Urḍī) 7n. 23
Shihāb al-Dīn Muḥtasham 12
Shicism 5n. 1
law $6 n .17$
Räfida, known as 7n. 20
See also Mu^{C} tazilites
Shīrāz 62, 64
al-Shirāzī, Quṭb al-Dĩn 61, 88, 383, 470n., 478, 488
diameters of luminaries 460
Green Gulf 466, 469
latitude, planetary 450
lunar visibility 464
measure of Earth 509-510, 511
motion of Earth 41, 383-385
ninth orb 389-390
solar distance and habitation 467
Tadhkira, his copy of 73, 78, 86, 389
textual revisions $72-73,75,86,87$, 389-390, 422, 446, 511, 515-516
transits 391
Ṭūsī couple and sublunar physics 432-433

Shīrāzī (continued)
Țūsī, in service of 389
works
Fa'calta fa-lā talum 60, 73, 389-390, 428
Nihäyat al-idrāk 56, 57, 59
Al-Tuhfa al-shāhiyya 56, 57, 59, 64
al-Shīrāzī, Ṣadr al-Dīn 64
al-Shīrwānī, Fatḥ Allāh
Sharh al-Tadhkira 59, 62-63,72
al-Shūshtarī, Nūr Allāh al-Marcashī 11n. 12
Simplicius 39
Sinān ibn Thābit 404
Sindhind 407, 469
sine, definition of I.1[9]
law of sines 513,514
Sinjār Plain, expedition to IV.1[2]
sizes and distances $29,54,439,500$, Bk. IV
approach to 520-521
listing of 529-530
order of bodies IV.7[4]
relative vs. absolute IV.2[1]
sky, sphericity of II.1[1]
S-lā (=Sulu archipelago?) 469
slant (inhiräf) 425, 449, II. 10[5]
slanted (hamā'ilī) motion 472, III.3[1]
slope (wirāb) II.10[5]
smoke, rising (dukhān) II. 2 [5]
solar year, true or conventional III.10[3]
solid, definition of I.1[1]
solstitial colure II.3[4]
Sosigenes 47n.2, 461
South China Sea 466
southern sea III.1[5]
Spain 407
Spanish Aristotelians 47, 48. See also
Biṭrujī; Ibn Rushd; Maimonides
speed. See motion
sphaera recta 472
sphere, definition of I.1[9]. See also orb
measure of IV.1[1]
spinning (rahawî) motion 472, III.6[1]
stade 501
stars, shooting (shuhub) II.2[5]
station, planetary II.5[8]
sun II. 6
anomaly II.6[4]
apogee II.6[5], III.6[2]; motion of 48, 404, 409, II.6[1], III.1[6], III.8[7]
center II.6[5]
declination III.3[2]

diameter

absolute (true) II.13[3], IV.4[1]
apparent 460, II.6[1], II.13[8], III.1[6], IV.3[2]
distance from Earth 467, II.2[4], IV.3[4], IV.5[1]
consistent with Venus/Mercury placement II.2[4], IV.5[5]
eccentricity 53 n .1
eclipse. See under eclipse
mean II.6[5]
mean distance II.6[5]
medial orb II.2[4]
models for II.6[2-3]
motion of center II.6[2]
observations for II.6[1]
parallax II.12[8]
"sphere" 525
true position (taqwïm) II.6[5]
volume IV.4[2]
Sunnism 5n. 1
surface, definition of L.1[1]
surface, plane, definition of I.1[2]; used to establish Tadhkira revisions 73, 376-377
al-Suyūṭī 20
Swerdlow, N. 58, 431, 461, 519n.8, $52 \ln .18,527 \mathrm{n} .5,528$
Syria 10, 19, 501, 502-503, III.1[5]
Syriac 501
"Syrian" calendar 494
$t a b^{c}, t a b i i^{c} a$ (a nature) 380. See also nature
al-Tabari, Abū JaCfar Muḥammad ibn 416; Mufrad zï 464
al-Tabari, cAlī ibn Rabban 506
Tabaristān, Sea of (Caspian Sea) IIII1[5]
Tabrīzī, c Abd al-Kāfī 78-79
al-Tabrīī, Tāj al-Dīn, Kitäb al-Nuzha al-CAlā'iyya 56
Tadhkira
Baghdad (β) version 15, 71-75, 86-88, 377, 379-380, 395, 412-414, 422,
437, 438, 440-441, 446, 486,
$487-488,490,510,516$

Tadhkira (continued)
Baghdad (β) version called al-ișlāh
al-jadid 86; called al-nuskha al-jadīda 395
commentaries on 58-64, 88
concordance of manuscripts 82-85
dating of 65-75, 395-396, 429
establishment of text 85-88, 376-377, 422, 471
genre of (hay'a basitta) 33-41, 376; specific features 36-41: four-part structure 36 ; lacks geometrical proofs 36-37, II.5[10], IV.1[4]; nonspecialist summary $37-38,495$, 499, II.4[12]; simple bodies as subject 38 ; external aspects only 38-41
glosses due to Țūsī 74
influence of 55-58, 384-385
list of manuscripts 76-81
Marāgha (α) version 70-71, 72, 86-88,
377, 379-380, 395-396, 412-414,
422, 437-438, 439, 440-441, 486,
487-488, 511; called al-nuskha al-qadïma 395
meaning of 24,375
planetary models in 12, 51-53, 55-56,
57. See also models and under individual planets
Ptolemy's Planetary Hypotheses 27-29, 36
purpose as summary of Almagest 24 , 426, I.Intr.[3]
relationship with Aristotle's
Metaphysics 27
relationship with Ibn al-Haytham's Hay'at al-c ālam 30-33, 36
relationship with $M u^{c}$ iniyya and its Hall 22, 65-66, 67-70, 428n.4, 429, 434, 450, 451, 453-454, 508-509, 510, 511
relationship with Ptolemy's Planetary
Hypotheses 27-29
revisions from Marāgha to Baghdad 74-75
sources 53-55
strange matters II.1[7], II.9[14],
III.1[1], III.5[7], IV.6[3]
tradition of
ancient 25-29
Islamic 29-33
as emphasizing physical component 25, 27, 28-29, 56
as summary $24-25,28,56,88$, I.Pref.[2], I.Intr.[3]
as coherent account $25,27,29,500$
See also Țüsĭ (criticism of Ptolemy, physical principles, planetary theory); hay'a
al-Tahānawí, Muḥammad A^{c} lā $35,39,46$, 56, 375
taksīr (area) IV.1[1]
talismans, practitioners of II.4[4]
Talmud 501
Tannery, P. 85
taqiyya (dissimulation) 18-19
taqwim (longitude/true position) II.3[8]
tarkib al-aflāk (arrangement of the orbs) 34, 36
Taṣawwurāt. See Rawḍat al-Taslìm
tashabbuth (attachment) 410
Tāashkubrīzāde, Ahmad b. Mustạāā 35, 56
testing (i^{c} tibār) 383, 488
Thābit ibn Qurra 48n.11, 394, 401n.39, 404, 408, 508n. 27
Fi sanat al-shams (On the Solar Year) by ps.-Thābit 48, 415
On the Motion of the Eighth Sphere by ps.-Thābit 400-403, 405-408, 450, 451
Planetary Hypotheses 27 n .7
Thackston, W. 66
Theodosius 53, 377-378
Theon of Alexandria, Small Commentary to the Handy Tables 397-398, 399-400, 406n. 55
thunder II.2[5]
time measured by motion II.3[2]
time, rising without 476, III.7[5]
Timur 62
Toledan Tables 407-408
Toomer, G. 88, 419, 424, 465, 513, 514
transit, degree of 391, III.11[1]
transits 391
traveling scholars 9
trepidation $54,394,427,450,451$,
II.4[4-5]; Țūsi's model II.11[22]
trial and error 488

Tūnī, Muhammad Riḍā 81
Turkish calendar 494
Ṭūs 3n.2,10, 11
Țūsī couple 57, 58, 450
curvilinear version $52,69,70,406$, 448-449, 453, II.11[18-19]; history of 453-454
rectilinear version $52,65,70$, II.11[2-4]; history of 427-433, 453-454; proof of 434-435
al-Ţūsī, Naşīr al-Dīn 3ff
astrology 468
biography 3-20
chronology of life 23
Alamüt, period in 11-13, 21
Qühistằn, period in 9-12, 21
Marägha, period in 13-15, 21-22
death in Baghdad 15, 72, 86
criticism of Ptolemy 41, 42, 45, 48-51, 383-385, 420, II.7[25], II.8[19], II.9[15], II.10[2,6], II.11[15]
education 4-9
early family education in Ṭüs 4-5 later education beyond Țūs 5-8,9 study of astronomy and mathematics 5,7 ; study of medicine and philosophy 6, 16
teaching certification in $\mathrm{Shï}^{\mathrm{c}}{ }^{\text {ite }}$ law 6
travel for study to Iraq 6-8, 9, 11
Hellenism 4, 8, 15, 16, 17, 20
Ismā ${ }^{\text {cilis }}$, relationship with $9-13$, 15-19, 22
Marāgha observatory, directorship of 14, 445
Mongols, relationship with $13-15,18$
obliquity 394
physical principles 41-46, 434, II.5[10]
planetary theory $12,17,21,51-53,406$;
as reform 439. See also under
Tadhkira; models; and under individual planets
religious beliefs $15-20$
science and religion 17-18, 20, 468
works 20-22
Akhlāq-i Nāsirī̀ (Nāsirean Ethics)
10-11, 10n.1, 12, 16, 18n.14, 21
Asās al-iqtibās 12,21, 22, 70
Hall mushkilāt "al-Ishärāt" 12, 21, 380

Ḥall-i mushkilāt-i Muciniyya 12, 17, 18n. 14, 21, 33, 37n.13, 54, 65, 66, 67, 69-70, 429n. 8, 450, 451, 453-454
İlkhänī Zī 10, 14, 394, 396, 498
Masāric al-musāric 16n. 6
Recension (Tahrir) of Almagest 13, 21, 70-71, 414, 453-454
Recension (Tahrir) of Elements 13, 21, 377; ps.-Țūsi's 400n. 34
Recension (Tahrir) of "Middle Books" 13n.18, 21, 78
Recension (Tahrir) of Spherics of Menelaus 13
Risälah-i Muciniyya 10n.1, 18n.14, 21, 33, 36, 37n.13, 65-66, 67-70, 72, 428n.4, 429, 434, 453, 471, 508, 509, 510, 511
Risālah-i sayr wa-sulūk $10,12,15$
Tadhkira. See separate listing
Tajríd al-caqā'id 19, 21
Tajrid al-mantiq 22,70
Zubdah-i hay'a 56, 66n.5, 67, 70
Zubdat al-idrāk fi al-hay'a 22, 56, 65, 66-67
al-Ṭūsī, Naṣīr al-Dīn c ${ }^{\text {Abdallāh b. Hamza }}$
(father's maternal uncle) 5, 16
al-Țūsī, Wajīh al-Dīn Muḥammad b.
al-Hasan (father) 4, 16
Twelver (Imämī) Shīcites 5 n .1
twist (iltiwā') II.10[5]
al-c Ubaydī, Faḍl Allāh 61-62, 71, 412, 446, 510
Ujjain 469
Ulugh-beg 394; Astronomical Tables 63, up, definition of II.1[7]
upper planets. See Mars; Jupiter; Saturn al-$^{\text {º Urdī. Mu'ayyad al-Dĩn } 7 \mathrm{n} .23,14,56, ~}$ 429, 520n.14, 521, 527
vapors (bukhār) 392, II.1[1]
Varangians 466
Vatican Gr. MS 21158
Venus II.2[4], II. 9
anomalies II.9[15]
circles II.9[17]
diameter IV.5[7]
distance (see next page)

Venus (continued)
farthest distance IV.5[3]
mean distance IV.5[7]
nearest distance IV.5[3,6]
eccentricity II.9[9], IV.5[3]
epicycle, size of II.9[13-14], IV.5[3]
equant center and orb III.9[9]
inclined orb II.9[6]
irregular Ptolemaic motion (difficulties) II.9[15], II. $10[2,6]$
latitude II.10[1-5]
mean apex II.9[11]
mean motion II.9[10]
motion of center II.9[8]
motions II.9[7-11]
observations for II.9[1]
orbs II.9[3-5]; thickness IV.5[6]
parameters 457
retrograde motion II.9[12]
transits of sun 391
Țūsí's model for longitude II.11[10];
for latitude II.11[19-20];
differences with Ptolemy's model
446-448
visibility II.14[2]
volume IV.5[7]
vernal equinox, convention of II.3[8]
versed sine, definition of I.1[9]
Veselovsky, I. N. 430-431
visibility/invisibility II.14[2]
vision, theory of 459
void 42, 434, I.2[1], IV.5[2]
wad ${ }^{c}$ iyya (in place [motion]) 381,410
waqf(religious endowment) 9, 14
Warank, Sea of (Baltic Sea) III.1[5]
water, sphericity of II.1[3]; level of
II.2[5]; bodies of III.1[5]
water-wheel (dūlābī) motion 472, III.2[1]
winding (iltifăf) II.10[5]
wolf's tail 487
Wright, L. 26
Wright, R. R. 465.
Yahyā ibn Abī Manṣūr 399-400
$\mathrm{Ya}^{\mathrm{C} q u ̄ b}$ ibn Țãriq, Tarkīb al-aflāk 29
Yavanas 57
year III.10[3]
conventional years, listing of 494
tropical years, listing of 493
variable length of 404, 406n. 57

Zanzibar (al-Zanj) III.1[3], III.2[4]
al-Zarqāallu 402n.40, 406-407, 415
Zayd b. ${ }^{\text {CAli }} 7 \mathrm{n} .20$
zenith II.3[12]
$z i j$ (astronomical handbook) 15, 34, 35, 394, 463, 484-485, 492, II.6[4], II.10[3]

Al-Zīj al-jāmic 498
Al-Zij al-mumtahan 394, 396n.9, 400n. 29
al-Zinjānī, ${ }^{\text {CIzz }}$ al-Dīn 71, 375
zodiacal light 487
zodiacal signs 390 , II. $3[5,9]$
orb of middle of II.3[9]
zone (qit ${ }^{\text {c }} a$) 511
Zysow, A. 6n. 17

B. Parameter Index

Ordering is by increasing numerical value. Neugebauer's sexagesimal notation has been adopted whereby $3 ; 06^{\circ}$ is 3 degrees, 6 minutes. Parameters in the tables and charts on pages $425,448,457,460,470,472,493,508,513,528$, and 529 have not been duplicated below.

$1: 153$	IV.5[8]	$1 / 5$ of $1 / 7$	II.1[2], IV.1[5]
$1^{\circ} / 100$ yrs.	II.4[4]	$0 ; 02^{\circ}$	II.9[8]
$8 \% / 640$ yrs.	II.4[4]	$0 ; 03^{\circ}$	II.7[8], II.12[8]
$1^{\circ} / 70$ yrs.	II.4[4]	$11: 200$	IV.5[4]
$1^{\circ} / 66$ yrs.	II.4[4]	$1: 18 \frac{1}{6}$	IV.5[7]

IV.2[2] 177;33 e.r. 520n.
II. 9[13], IV.6[1] ($203+1 / 2+1 / 3$) e.r. IV.3[5], IV.5[6]
IV.2[3] 348 e.r. IV.5[6]

513667 e.r. IV.5[7]
II.10[3] 986 e.r. IV.5[6]
IV.2[2] 1079 e.r. 530
IV.2[4] 1190 e.r. 520
II.9[13], IV.5[3] 1210 e.r. IV.3[4]
III.5[2] 1273 parasangs IV.1[2]
IV.6[4] 1380 e.r. 521
II. 5 [2] 1476 parasangs IV.1[3]
II.9[1] 2520 e.r. IV.6[3]

512n.1` 2545 $1 / 3$ parasangs 510
$512 \quad 2545\left\{\frac{1}{2}\right\}$ parasangs IV.1[2]
IV.6[6] 4000 black cubits 502

5124000 parasangs IV.1[3]
518 5040 e.r. IV.6[2]
502,508 n. $27 \quad 6644(2 / 3)$ lunar volumes IV.4[2]
502n. 11 7560 e.r. IV.6[3]
5087636 miles 510
5038000 parasangs IV.1[2]
IV.1[3] 11,504 е.r. 525

501, 504 11,540 e.r. IV.6[5]
III.12[3] 14,189 e.r. 525n.

506 17,026 e.r. 526
IV.6[6] 17,111 e.r. IV.6[7]
II.10[3] 20,000 e.r. 530
IV.6[4] 24,000 miles 501
III.12[3] 41,436 parasangs IV.7[5]
IV.6[5] 42,709 parasangs IV.7[5]
III.5[4] 180,000 stades 501

504252,000 stades 501
IV.5[4] 3,756,231 $1 / 2$ sq. parasangs 511
$530 \quad$ 3,756,420 sq. parasangs IV.1[3]
IV.5[3] 3,756,912 sq. parasangs 511
IV. $6[1]$ 3,765,420 sq. parasangs IV.1[3]
II.10[3] 4,665,712 $1 / 30$ sq. parasangs 511
IV.5[8] 20,360,000 sq. parasangs IV.1[3]
II. 10[3] $20,362,666^{2} / 3$ sq. parasangs . 510

517 25,412,899 parasangs IV.7[5]
$51733,812,208$ sq. miles 511
$530 \quad 183,264,000$ sq. miles 510

[^0]: ${ }^{1}$ Ahwāl, p. 3.
 ${ }^{2}$ Naṣir al-Din gives his place of origin as Tūs in the introduction to the $\bar{I} l k h a \bar{a} \bar{i} \bar{Z} j$; see Boyle [1963], pp. 246-247. Tūs may indicate either the district or city in Khurāsān; the city itself, near modern Mashhad, was destroyed in 1389 A.D. ("Ṭūs," $E I^{1}, 4: 974$).
 ${ }^{3}$ Lu'lu'at al-Bahrayn, p. $2 \overline{46}$.
 ${ }^{4}$ Bar Hebraeus (1226-1286), who knew Naṣir al-Din at Marāgha, calls him "Khwāja Nasìir" (Chronography, 1:451).
 ${ }^{5}$ Riḍawī, Ahwāl, p. 3.

[^1]: ${ }^{6}$ This term was coined by Sabra [1987a].
 7 This should be obvious; however the insistence by numerous modern commentators that Islamic scientists could never rise to the Greek view that knowledge was to be pursued for its own sake compels one to state the obvious.

[^2]: ${ }^{1} \mathrm{Shi}^{-} \mathrm{c}_{\mathbf{a}}$ is the designation of a large minority group in Islam (the majority being called Sunnis) that are united in their belief in the legitimacy of the claim of ${ }^{\mathrm{C}}$ Alī, the son-in-law of the prophet Muhammad, and his family to the caliphate. Though there were (and are) several sects that can be called $\mathrm{Shi}^{-\mathrm{C}}$ ite, the two we shall be concerned with in this chapter are the Imāmīs (or Twelvers) and the Ismā ${ }^{C} \overline{i l i} \bar{i}$ (or Seveners), the two disagreeing on the identity (whether twelfth or seventh) of the last, and at present hidden, Imām. Today the Imāmīs, by virtue of their majority status in Iran, are the largest $\mathrm{Shi}^{\mathrm{c}} \mathrm{c}_{\mathrm{ite}}$ sect. The Ismā̄ ${ }_{\bar{i}} 1 \bar{i} \bar{s}$, who are now led by the $\bar{A} g h a ̄$ Khān, are a relatively small group that is no longer the major political force it was during the Middle Ages.
 ${ }^{2}$ The Mu^{c} tazilites were rationalist theologians who held a predominant position during the early centuries of ${ }^{\mathrm{C}}$ Abbāsid rule.
 ${ }^{3}$ Brockelmann, "al-Murtaḍā," $E I^{1}$, 3: 736.
 ${ }^{4}$ Ibn al-Fuwaṭī, vol. V (in Oriental College Magazine, suppl. 1939), p. 177; Riḍawī, Ahwāl, pp. 158-161.
 ${ }^{5}$ Tūsī, Sayr, p. 38.
 ${ }^{6}$ Madelung [1985], pp. 87-89.
 ${ }^{7}$ Ṭūsī, Sayr, p. 38.

[^3]: ${ }^{8}$ Riḍawī, Ahwāl, pp. 167-169.
 ${ }^{9}$ Ibn abī Ușaybic ${ }^{\text {ca, }}{ }^{c}$ Uyūn, 2: 30.
 ${ }^{10}$ Ibn al-Fuwatī, vol. IV (Damascus, 1962-65), 3: 458-459 and 466.
 ${ }^{11}$ Shūshtarī gives the names of four intermediaries (Majālis, 2: 203 [7th Majlis]).
 ${ }^{12}$ Apparently Zand has claimed that Țūsī studied Ibn Sinnā's Al-Ishārāt wa-'l-tanbīhāt with Farid al-Dīn. I do not have access to Zand's article and have been unable to confirm this independently; I here depend on Siddiqi [1963], 1: 564-565.
 ${ }^{13}$ Ibn abī Ușaybic ${ }^{\text {a }}$, ${ }^{c}$ Uyūn, 2: 30; Juwaynī, History, 1: 176-178.
 ${ }^{14}$ On this early trip to Iraq (Baghdad and/or Mosul), see Siddiqi [1963], p. 565 (quoting Zand) and Riḍawī, Aḥwāl, p. 179. In the Sayr (p. 41), Ṭūsī refers to a trip from Iraq to Khurāsān.
 ${ }^{15} \mathrm{I}$ am basing $\mathrm{Mu}^{\mathrm{c}} \mathrm{c}_{\mathrm{in}}$ al-Dīn's residence in Baghdad on the citation by Siddiqi of the Zand article.
 ${ }^{16}$ Ibn Khallikãn, Wafayāt, 5: 311-313 (English trans. 3: 467-468); see also Ibn abī Ușaybi ${ }^{\mathrm{c}}{ }^{\text {a }}{ }{ }^{\text {U }}$ Uyün, 1: 306-308.
 ${ }^{17}$ This was for Tūsi's successful completion of the study of the third part and most of the second of a work on Shi^{-}ite law by ${ }^{\mathrm{C}}$ Izz al-Dinn Hamza b. Zuhra, who had been $\mathrm{Mu}^{\mathrm{c}}{ }^{\mathrm{in}}$ n al-Dīn's teacher. Ibn Zuhra himself was apparently a mainstream Twelver Shīcite. (I am indebted to A. Zysow for this information.) We also know that Naṣir al-Din collated the third part of this work, completing it in 624/1227 (Riḍawi, Ahwāl, pp. 163-166).

[^4]: ${ }^{18}$ Safadī, Wäfi, 1: 179; Kutubī, Fawāt, 3: 246. The biography of Ṭūsī given in these two works is virtually identical; Iḥsān ${ }^{\mathrm{C}}$ Abbās in the introduction to his edition of Kutubī would seem to explain this not uncommon occurrence by asserting that Kutubī copied much of his work from Safadī (1:4-5). Though both men were contemporaries and indeed died in the same year (764/1363), Ṣafadi seems to have completed his work first.
 ${ }^{19}$ There is a possibility that al-Muctazilī may be a misreading of al-Māzinū, which is given by $\mathrm{Mu}^{\mathrm{c}} \mathrm{i} \mathrm{n}$ al-Dīn in the $\bar{u} \bar{j} \bar{z} a$ referred to above. However, we should note that al-Mu ${ }^{c_{t a z i l i t ~}^{l}}$ is also recorded by Ibn Kathirr.
 ${ }^{20}$ During this period, the Imämī $\mathrm{Shi}^{\mathrm{I}} \mathrm{C}$ ites had accepted some of the doctrines of the Mu^{c} tazilites; thus it is not surprising that one person could be considered to be a member of both groups despite the earlier animosity between them. (This is a rather complicated issue; for some indication of the relationship between Mu^{c} tazilism and $\mathrm{Shi}^{\mathrm{C}} \mathrm{C}$ ism, see Madelung [1970] and Momen [1985], pp. 76-82.) Al-Rāfidī may identify him as belonging to a certain Shīcite sect that formed in opposition to Zayd b. ${ }^{\text {cAlī's (d. 122/740) }}$ refusal to allow the denunciation of the Companions of the Prophet, or, more probably, it may simply identify him as a $\mathrm{Shi}^{-}{ }^{\mathrm{c}}$ ite. (For this latter use of Räfida by the opponents of $\mathrm{Shi}^{-1} \mathrm{C}$ ism, see Madelung [1970], p. 3; for the former usage, see Ahmad Amin, Duhā, 3: 136 and Lane, Lexicon, 3: 1121.)
 ${ }^{21}$ Ibn Kathīr, Bidāya, 13: 267-268.
 22 The Hanbalīs were hostile to speculative theology as well as to legal approaches that did not adhere to a strict reading of the Qur'ān and the traditions of the Prophet.
 ${ }^{23}$ Because of his great fame-at least among his contemporaries-one would have expected that many of Nașir al-Din's biographers would have recorded that he studied with the great scholar of Mosul. Surprisingly, we find this information only in Şafadi/Kutubī, who rely on the authority of al-Shams, the son of Mu'ayyad al-Din al- ${ }^{-}$Urdī (Ṣafadī, Wäfí, 1: 181; Kutubī, Fawāt, 3: 249.) Since 'Urḍī was one of Naṣīr al-Dīn's associates at the Marāgha observatory, one can probably accept this report as reliable, especially in that al-Shams correctly cites $\mathrm{Mu}^{\mathrm{c} i n}$ al-Dīn b. Badrān as another of Ṭūsi’s teachers.

[^5]: ${ }^{24}$ Ibn Khallikān, Wafayāt, 5: 311-312 (English trans., 3: 467-468); Ibn abī Ușaybic ${ }^{\mathrm{a}}$, c Uyün, 1: 306.
 25 The complexity of medieval Islam should always lead one to be tentative when making such assertions, however. It may not be irrelevant to note here that Kamāl al-Din is reported by Ibn Khallikān (Wafayät, 5: 312; English trans., 3: 468) to have taught both the Torah and New Testament to Christian and Jewish students (ahl al-dhimma).
 ${ }^{26}$ Kamāl al-Dīn was associated with a number of schools in Mosul [Ibn al-Fuwațī, vol. V (in Oriental College Magazine, suppl. 1940), p. 293; Ibn Khallikān, Wafayāt, 5: 311, 313, 316 (English trans., 3: 467, 469, 472); Ibn abï Ușaybi ${ }^{c}$ a, $\left.{ }^{c} U y u ̈ n, 1: 306\right]$ and would seem to have spent most of his time there except for several years of study at the Nizāmiyya College in Baghdad in the early 570's/ca. 1175 [Ibn Khallikän, Wafayāt, 5: 311 (English trans., 3: 467)].
 ${ }^{27}$ Cf. Sabra [1987a], pp. 236-238.
 28 For another example, see Makdisi's [1981] account of ${ }^{\text {c }}$ Abd al-Latịif al-Baghdādī (d. 629/1231), pp. 84-91.
 ${ }^{29}$ We should not conclude, however, that all the educated felt compelled to study philosophy or mathematics. Ibn Khallikản relates the story of a certain religious personage, Ibn al-Ṣalāh, who wished to study logic-in secret-with Kamāl al-Dīn b. Yūnus. After some time and little progress, Kamāl al-Dīn advised him to give up the study which was not going to do him any good on the one hand and might besmirch his reputation on the other. Kamāl al-Dīn himself was accused of suspect religious beliefs because of his assiduous devotion to the rational sciences. But it is important to note that Ibn Khallikān, himself a Shāfic $C_{\overline{1}}$ jurist and sometime $Q \bar{a} d \bar{d} \bar{c}$ al-Qudāt (Chief Justice) in Damascus, is apologetic for bringing up such matters; in general, he cannot restrain his admiration for Kamäl al-Dīn's erudition in all of the sciences.

[^6]: ${ }^{30}$ Makdisi in various places (e.g. [1981]), pp. 77-80) has emphasized that the foreign sciences were formally excluded from the madrasa; as he puts it, "neither the madrasa nor its cognate institutions harbored any but the religious sciences and their ancillary subjects." But even a superficial perusal of the situation, including Makdisi's own examples of actual curricula (pp. 81-91), is enough to convince one that the individualistic nature of the teaching in the madrasa allowed the "forbidden" subjects to be brought in, especially in the later Middle Ages. Makdisi's discussion takes this into account but without acknowledging the puzzle that he has foisted on his reader. For a rather more balanced approach and a critique of Makdisi, see Sabra [1987a], pp. 232-235.
 specifically to study music with Kamăl al-Dīn, who was happy to be able to teach this rarely requested subject.

[^7]: ${ }^{1} 632 / 1235$ is the date for the completion of the Risālah-i Muciniyya, which Țūsī dedicated to $\mathrm{Mu}^{\mathrm{c}} \mathrm{in}_{\mathrm{n}}$ al-Dīn, the son of Nāṣir al-Dīn Muḥtasham. The Akhlāq-i Nāsirī, which he dedicated to Nāṣir al-Din himself, was probably completed about 633/1235-36 (see Nasirean Ethics, pp. 9, 178 and Riḍawī, Ahwāl, p. 454).
 ${ }^{2}$ The Fattimids were an Ismā̄ ${ }^{\text {cilin }}$ dynasty that ruled in parts of North Africa (and eventually Egypt) from 297/909 until 567/1171.
 ${ }^{3}$ The fundamental work on the Nizārī Ismā ${ }_{\mathrm{c}}^{\mathrm{I} l i ̄}$ is is Marshall Hodgson [1955], The Order of Assassins: The Struggle of the Early Nizārī Ismā̃ ${ }^{c}$ īlis against the Islamic World.
 ${ }^{4}$ See pp. 15-17 for a discussion of this "conversion."
 ${ }^{5}$ Translated by Arberry [1958], pp. 259-260.

[^8]: ${ }^{6}$ Țüsī, Näṣirean Ethics, p. 24.
 ${ }^{7}$ This is obliquely, but clearly, referred to in Țūsi's Sayr, p. 41.
 8 Juwayni, History, 1: 145-146, 171-172, 176-178.
 ${ }^{9}$ Ibid., 1: 96-97.
 ${ }^{10}$ Ibid., 1: 500-501.
 ${ }^{11}$ See pp. 6-7 and footnotes $14-15$. The date 619/1222 is coincidentally that given by Riḍawī for the beginning of Nāṣir al-Dīn Muḥtasham's rule in Qūhistān (Ahwāl, p. 9).
 ${ }^{12}$ Shūshtarī, Majālis, 2: 203; cf. Riḍawī, Ahwāl, pp. 9-10. Shüshtarī seems to imply that TTūsì may not have been overly enthusiastic about going to Qūhistān since he had to be induced by an enticing offer (latā’if al-hiyal).
 ${ }^{13}$ Ṭūsī, Nāṣirean Ethics, p. 124.

[^9]: 14 Thus the account in Shūshtari, Majālis, 2: 203 and Khwändmir, Habïb al-siyar, 3: 105-106.
 ${ }^{15}$ In the accounts of Khwāndmir and of Wașṣā al-Ḥadra in Tazjizat al-amṣār, Nāṣir al-Dīn Muhtasham discovers this by way of Ibn al-Alqamì himself; see Riḍawī, Ahwāl, pp. 11-12. But as Riḍawi points out, this is unlikely in view of the good relations between Țūsì and Ibn al-c ${ }^{\text {Alquamī in }}$ ine aftermath of the fall of Baghdad in $656 / 1258$ (p. 143).
 ${ }^{16}$ See Riḍawī, introduction to the Sayr, page w.
 ${ }^{17}$ See pp. 65-70 of this volume for details of the relationship between the Tadhkira and its earlier Persian version.

[^10]: ${ }^{18}$ For a convenient listing of Țūsi's recensions, see Krause [1936], pp. 499-505. Most of these, the so-called "Middle Books," which were to be studied between the Elements and the Almagest, have been published in Țūsī, Majmū́c al-rasä'il (2 vols.). Ṭūsi's Elements and Almagest, however, have yet to be edited, though the former has been printed several times. A work purporting to be his Tahrïr of the Elements was published in 1594 in Rome, but Sabra [1969] has noted that this is a false attribution (p. 18).
 ${ }^{19}$ Rashīd al-Din, Jämic al-tawärïkh, pp. 210-213.
 ${ }^{20}$ Hodgson [1955], pp. 267-268.
 ${ }^{1}$ See Boyle [1961], pp. 145-161; this contains a translation of the appendix of Naṣir al-Din to the Ta'rīkh-i jahän-gushā of Juwaynī. See also Wickens [1962], pp. 23-35.
 ${ }^{2}$ Rashīd al-Dīn, Jämic al-tawārïkh, pp. 260-263.

[^11]: ${ }^{3}$ Safadī, Wäfi, 1: 182; Kutubī, Fawāt, 3: 250.
 ${ }^{4}$ In what follows I merely summarize the account in Sayili [1960], pp. 187-223, whose full and excellent treatment need not be repeated here.
 ${ }^{5}$ The report by Şafadi/Kutubī of a library of 400,000 volumes seems to be an exaggeration. Recent excavations at the sight reveal a library structure that could not hold anything near that number [Vardjavand [1366 H. Sh.], p. 12 (French section), pp. 233-234 (Persian section)].
 ${ }^{6}$ Boyle [1963], pp. 251-252.

[^12]: ${ }^{7}$ One obvious example is Shams al-Munajjim al-Wäbiknawi's Al-Zij al-Muhaqqaq al-Sultānī ${ }^{\text {cala }}$ aṣūl al-raṣad al-Ïlkhānī (the verified Sulṭānĩ züj based upon the Îlkhānī observations); see Kennedy, Survey, p. 130 (no. 35). Cf. Sayili [1960], pp. 214-215. For recent discussions of this problem with particular reference to the work of al-Maghribi, one of the principals at Marägha, see Saliba [1983], [1985], and [1986].
 ${ }^{8}$ Ṣafadī, Wäfi, 1: 183; Kutubī, Fawāt, 3: 252.
 ${ }^{1}$ Even the title of this controversial work is in dispute; Riḍawī states in his introduction to it (p. h) that it was not the title given it by the author but was made up at the time it was first printed.

[^13]: ${ }^{2}$ Although I at one time ([1982], 1: 12-17) agreed with Riḍawī that Țūsī was never an Ismā${ }^{c}{ }^{\mathrm{i}} \mathrm{i} \bar{i}$ and thus was somewhat sceptical of the attribution of this work to Tūsī, and in any event very dubious about Tūsi's sincerity if he were indeed the author (cf. Majmū ${ }^{\mathcal{C}} a$, pages $h-w$ and Ridawi, p. 591), I have now come to accept at least his authorship in large part because of the large number of statements about his life in the work that can be independently verified. Note that Poonawala [1977], p. 261 and Madelung [1985], pp. 88-89 accept the authenticity of the work and both see it as representing a sincerely held stage in his intellectual development.
 ${ }^{3}$ Sayr, p. 38.
 ${ }^{4}$ Sayr, p. 40.
 ${ }^{5}$ Sayr, p. 41.
 ${ }^{6}$ Tāj al-Din's book was called Kitäb al-Musära ${ }^{c} a$ (The Wrestling Match), while Țūsi’s work was called Masāaric al-muṣāric (The Downfalls of the Wrestler). For a cogent discussion of these works see Madelung [1985], pp. 87-88 and Madelung [1976].
 ${ }^{7}$ Ṭūsī, Nāṣirean Ethics, p. 24; cf. Madelung [1985], pp. 87, 100.

[^14]: ${ }^{12}$ See Ragep [1982], 1: 141-145 for a translation of this passage as quoted by Tahānawī, Dictionary, 1: 48-49.
 ${ }^{13}$ Some would use a different characterization; see, for example, Reuben Levy [1923], p. 64: "The verdict of history on Nasíru '1 Dín is a most unfavourable one. It might have been expected that the conduct of a man of his undoubted mental qualities would have been regulated by some standard higher than that of personal advantage. Yet he appears not only to have betrayed his Ismácilí master to Húlágú, but to have been instrumental in bringing the last Caliph treacherously to his death at the hands of the Mongols."
 ${ }^{14}$ This included his ethical work, the Akhlāq-i Näsirī, and two astronomical works, the Risālah-i Mu'ciniyya and the Hall-i mushkilatt-i Mu ${ }^{c}$ īniyya.
 ${ }^{15}$ Taṣawwurāt, pp. 134, 126. Though Madelung [1985] and Poonawala [1977], p. 262 seem to accept that Țūsī is the author, there is, as far as I know, little substantial evidence. Even Ivanow, who more or less convinced himself that Ṭūsī was a lifelong Ismācīilì, grudgingly acknowledged the insufficiency of the claims on Țūsi’s authorship; nevertheless, he wished to "conventionally accept Ṭūsi's authorship...till...an incidental find may answer our quest decisively" (Tasawwurāt, p. xxvi).
 ${ }^{16}$ Ṣafadī, Wäfi, 1: 182; Kutubī, Fawāt, 3: 250.
 ${ }^{17}$ See Ṣafadī, Wāfi, 1: 179-180. Şafadi is poking fun at the gullibility of the foreign conquerors, but it should be remembered that he is living safely in the following century.

[^15]: 18 Juwaynī, History, 2: 719.
 ${ }^{19}$ See his Al-Bidāya wa-'l-nihāya, 13: 267-268.
 ${ }^{20}$ Ibn Qayyim, Ighāthat al-lahfān min masāyid al-shaytān, 2: 267; this is quoted by Zirikli, $A^{c}{ }^{c} \bar{a} m, 7: 258$. Later authors of the same persuasion as Ibn Qayyim have also used this passage in their works; see, e.g. Ibn al- ${ }^{\text {CImād al-Ḥanbalī, Shadharät al-dhahab, }}$ 5: 339-340.

[^16]: ${ }^{21}$ See p. 16, footnote 7.
 ${ }^{22}$ Cf. Madelung [1985], pp. 100-101.
 ${ }^{23}$ Cf. Sabra [1987a] and Peters [1968], pp. 193-202.
 ${ }^{24}$ Heinen [1982], p. vii.
 ${ }^{25}$ Here I would disagree strongly with Sabra's [1987a] implication that this coexistence in the later centuries of medieval Islam meant that science, and astronomy in particular, was afflicted with a kind of instrumentalism in the service of religion that "confines scientific research to very narrow, and essentially unprogressive areas" that did not generally include observational and theoretical astronomy (pp. 241-242). These "narrow, unprogressive" areas did include spherical astronomy, which was useful for such religious purposes as finding the qibla (direction of Mecca). While this might have been true in Mamlūk Egypt and Syria (cf. King [1983], pp. 537-539), where Ṭūsī was reviled, it was most emphatically not true in Persia and Central Asia where theoretical and observational astronomy flourished for many centuries after the Marägha episode. My hope is that the following pages will be a modest contribution toward proving this contention.
 ${ }^{1}$ Riḍawī lists, apart from his poetry, some 190 works. But as a number of these are clearly misattributions and duplicates, Ivanow's estimate of something over 150 seems closer to the mark (Tasawwurāt, p. xxvi).

[^17]: ${ }^{2}$ See, for example, Siddiqi [1963], pp. 566, 580.

[^18]: ${ }^{3}$ See p. 18.

[^19]: * The first number is the hijra date; the second is the corresponding Christian date.

[^20]: ${ }^{1}$ Unfortunately the book in which "the details are expounded and proofs of the validity of most of them are furnished" has yet to be written.
 ${ }^{2}$ Several medieval Islamic commentators did not even think it was implicit. Ibn al-Akfānī (d. 1348), for example, claims that "the ancients were always constricting themselves to abstract circles for the configuration of the orbs, until Ibn al-Haytham openly declared their [the orbs'] corporeality...the later [scholars] have followed him with regard to this" [cited and translated by Langermann [1990], p. 13]. Țāshkubrizāde (1495-1561), Miftäh, 1: 373 repeats this: "The ancients confined themselves (iqtasarū) in the configuration of the orbs to abstract circles."

[^21]: ${ }^{3}$ For the individual parts, see II. 2 (overview) and II.6-II. 10 (details for each planet). For the dynamics of celestial motion, see II. 4 [6-7]. And for the problem of planetary sizes and distances, Ṭūsĩ devotes the entirety of Book IV.
 ${ }^{4}$ The classic statement of this is by Duhem [1908], pp. 3-5 (Engl. trans. pp. 5-7). Heath [1913] states that "we have seen that that system [of Eudoxus and Callippus] was purely geometrical and theoretical; there was nothing mechanical about it...Aristotle, as we shall see, transformed the purely abstract and geometrical theory into a mechanical system of spheres" (p. 217). For other examples, see Wright [1973], p. 165. For a review of this viewpoint, see Lloyd [1978], pp. 202-204.
 ${ }^{5}$ This point was made forcefully by Wright [1973]; cf. Lloyd [1978], p. 219, who recants an earlier commitment to the conventional view.

[^22]: ${ }^{6}$ Wright [1973], pp. 171-172. We need not follow him down the slippery slope of analogy with Kepler and Newton to accept his fundamental point.
 ${ }^{7}$ Only the first part of Book I is extant in Greek. Both books are available in an anonymous Arabic translation "corrected" by Thābit ibn Qurra. There is also a Hebrew translation from the Arabic. The Greek text of Book I (lacking the part on sizes and distances) with a French translation is in Halma [1820], pp. 41-56; the Greek text is also in Heiberg [1907], which in addition contains a German translation begun by L. Nix and completed by F. Buhl and P. Heegaard of the Arabic. Somehow the three translators missed the second part of Book I; this has been rectified by an English translation due to B. Goldstein [1967], who also included a commentary, a facsimile reproduction of one of the two extant Arabic manuscripts, namely British Museum MS Arab. 426 (hereafter referred to as BM 426) and variant readings of the other manuscript.
 ${ }^{8}$ Heiberg [1907], p. 70, line 12; BM 426, f. 81b, line 10 (Goldstein [1967], p. 13).
 ${ }^{9}$ Swerdlow/Neugebauer [1984] see this as basically an equatorium (p. 40).

[^23]: ${ }^{10}$ BM 426, f. 93a, lines 3-6 (Goldstein [1967], p. 36).
 ${ }^{11}$ Ptolemy's basic purpose in this part of Book II (BM 426, ff. 93a-95b; Goldstein [1967], pp. 36-41) would seem to be the defense of his proposal to do away with "complete spheres." He suggests using only those parts of the spheres where the planet is seen to move, leaving the so-called tambourines (adfäf) or sawed-off sections (manshūrāt) (BM 426, ff. 94b-95a). Ptolemy at no time, however, accepts a vacuum as some modern commentators would have us believe (e.g. Schramm [1963], pp. 19-20 and Neugebauer, HAMA, 2: 923). He instead suggests that an aether fills the gaps left after detaching the truncated orbs (BM 426, f. 95b, lines 8-13). Although the exact details of how the motion of the orb might occur in the aether remain obscure, Ptolemy's reason for adopting this somewhat radical position is explicit, namely that there is nothing useless in nature. As justification for this, he cites the fact that the orbs of Venus and Mercury fill almost exactly the space between the moon and sun (BM 426, f. 95a, lines 1-8).
 ${ }^{12}$ BM 426, ff. 96a-102b (Goldstein [1967], pp. 42-55).
 ${ }^{13}$ For an extensive discussion of this with regard to Ibn al-Haytham's Hay'at al-cälam, see Langermann [1990], pp. 11-25.
 ${ }^{14}$ See, for example, the Tadhkira, II. 11 [16].

[^24]: ${ }^{1}$ Pingree [1973] provides a penetrating account of this period. For a taste of the muddled sources that must be used to reconstruct this period, see Häshimì, ${ }^{\prime}$ llal, who may simply be reflecting the eclectic nature of astronomy during the 9th century.
 ${ }^{2}$ Pingree [1968], pp. 105-109.
 ${ }^{3}$ Langermann [1990], p. 29.
 ${ }^{4}$ Pingree [1975] has summarized the contents, pp. 9-12. See also Sezgin, GAS, 6: 129.
 ${ }^{5}$ As Pingree [1975], p. 10 states: "Clearly this is Peripateticism for the astrologer."

[^25]: ${ }^{6}$ Pingree [1975], pp. 10-12.
 ${ }^{7}$ Cf. Sabra [1972], p. 197.
 ${ }^{8}$ Langermann [1990], p. 5 (Arabic numeration), lines 7 and 10-11. I have changed Langermann's translation (no. [1], p. 53) somewhat in order to emphasize what I take to be Ibn al-Haytham's rhetorical use of jalil (general or gross) and daqiq (precise or detailed) to contrast two types of astronomical work.
 ${ }^{9}$ Langermann [1990], p. 5 (Arabic numeration), lines 19-23; cf. Langermann's translation and commentary, no. [3], pp. 53-54 and pp. 2-4.
 ${ }^{10}$ Langermann [1990], p. 5 (Arabic numeration), lines 12-18; cf. Langermann's translation, nos. [2-3], pp. 53-54.

[^26]: ${ }^{11}$ Langermann [1990], p. 5 (Arabic numeration), lines 18-19; cf. Langermann's translation, no. [3], p. 54.
 ${ }^{12}$ Langermann [1990], p. 6 (Arabic numeration), lines 1-3; cf. Langermann's translation, no. [5], p. 54.
 ${ }^{13}$ Langermann [1990], p. 5 (Arabic numeration), lines 13-17; cf. Langermann's translation, no. [2], p. 53.
 ${ }^{14}$ Langermann [1990], p. 6 (Arabic numeration), lines 14-15; cf. Langermann's translation, no. [8], p. 55.
 ${ }^{15}$ That the solid orbs were implicit in the work of ancient astronomers was not a unanimously held opinion; see footnote 2, p. 25.
 ${ }^{16}$ Here the context makes it clear that Ptolemy took these circles and points to be detached for the purposes of his proofs.
 ${ }^{17}$ Langermann [1990], p. 6 (Arabic numeration), lines 10-12; cf. Langermann's translation, no. [6], p. 54.

[^27]: ${ }^{18}$ Langermann [1990], pp. 6-7 (Arabic numeration), lines 27-1; cf. Langermann's translation, no. [12], p. 55.
 ${ }^{19}$ Langermann [1990], p. 6 (Arabic numeration), lines 19-22; cf. Langermann's translation, no. [10], p. 55. Țūsī, as well as Ibn al-Haytham himself later in his life, would come to see this as an overly optimistic view. The point I wish to emphasize here, though, is simply that Ibn al-Haytham is explicitly acknowledging this as part of the work he is undertaking.
 ${ }^{20}$ Shukūk, pp. 42-64.

[^28]: ${ }^{21}$ Shukūk, pp. 47-58, especially p. 50.
 ${ }^{22}$ This is a widespread disenchantment; see Bïrūnī, Qānūn, 2: 635, lines 3-17 and Ṭūsī, Tadhkira, II. 11 [16].
 ${ }^{23}$ For a discussion of this with particular reference to Battānī and Farghānī, see Langermann [1990], pp. 25-30. Whether Farghäni's Elements of Astronomy should be considered to be in line with Ibn al-Haytham's Hay'a is an interesting question deserving of serious study; I would merely point out here that Ibn al-Haytham certainly did not think so.
 ${ }^{24}$ See Saliba [1980].
 ${ }^{25}$ Shams al-Dīn abū Bakr Muḥammad b. Aḥmad al-Khiraqī, Muntahā, Tehran, Majlis-i Shūrā-i Millī MS (uncatalogued), ff. 2b-3a; idem, Tabsira, Istanbul, Ayasofya(?) MS 3398, f. 2a. A German translation of the introductions to both works is due to Wiedemann and Kohl [1926-27]; reprinted in Wiedemann [1970], 2: 628-643.
 ${ }^{26}$ Hall, p. 16, line 1.

[^29]: ${ }^{1}$ This distinct category was first pointed to by Livingston [1973].
 ${ }^{2}$ Fārābī, Ihṣā', pp. 84-86; Khwārazmĩ, Mafätīh, Bk. II, Ch. 6, esp. p. 215; Ikhwān al-ṣafā', Rasā̀il, 1: 73.
 ${ }^{3}$ Färābī calls this cilm al-nujūm al-tac ${ }^{c}$ limī .
 ${ }^{4}$ For Khwārazmī, I base this on the fact that Ch. 6 of Bk. II, entitled "Fícilm al-nujüm," has a section devoted to astrology.
 ${ }^{5}$ Khwārazmī, Mafātīh, p. 215.
 ${ }^{6}$ Ibn Sīnā, Aqsām, p. 112.
 ${ }^{7}$ Astrology is here a subdivision of physics (al-hikna al-tabíciyya); ibid., p. 110.

[^30]: ${ }^{8}$ Tāshkubrīzāde, Miftāh, 1: 371; Tahānawī, Dictionary, 1: 41.
 ${ }^{9}$ The reason for this will be explored on p. 38.
 ${ }^{10}$ Țāshkubrīzāde, Miftāḥ, 1:372.
 ${ }^{11}$ For Jaghminni's dependence on the Tadhkira, see commentary to III.1 [8]. There is a great deal of conflicting evidence concerning the date of this author, whose full name is Maḥmūd b. Muḥammad b. ${ }^{\text {CUmar }}$ al-Jaghmīnī. Suter [1900], p. 164 held that this Jaghmini was the same person who wrote a work on medicine called Qānünča and who died in 745/1344-45; however a copy of the Mulakhkhas, Istanbul MS Lâleli 2141, is purportedly dated 644/1246-47 (Krause [1936], p. 510), and King states that Hājjī Khalīfa, in a manuscript copy of the Kashf al-zunün, gives the date of composition as 618/1221-22 (EI $I^{2}, 5$: xvii). Cf. GAL, 1: 473 and S1: 865, King [1986], p. 150 and Suter and Vernet, $E I^{2}, 2: 378$. If Krause and King are correct, then Jaghmini would obviously not be dependent on the Tadhkira; however, at this point I find the evidence from III. 1 [8] compelling. Clearly, though, further investigation of the manuscript evidence is needed to resolve the matter.

[^31]: ${ }^{12}$ He deals with it somewhat in III.10, but, perhaps with the Muntahä in mind, he insists that the details of chronology do not have a place in a work such as the Tadhkira; see III. 10 [3]10-11.

[^32]: ${ }^{13}$ One difficulty with this is the presentation of non-Ptolemaic models in II.11, which would certainly seem to be written with the specialist in mind; evidently Tūsì himself recognizes this when he apologizes for going into detail "even though it was not our intention to provide geometrical proofs in this compendium" (II,11 [3]). Twenty-five years earlier this consideration had led him to delay publishing his newly discovered models in the Risālah-i Mu ${ }^{\text {ciniyya}}$, the Persian prototype of the Tadhkira, since their "presentation in this compendium would not be appropriate"; instead he put them in his appendix to that work, the Hall-i mushkilät-i Muciniyya. (There are other cases in the Muciniyya where Ṭūsī speaks of the inappropriateness of going into the details of complicated matters; see Section J, p. 68 of this volume.) Perhaps by the time of writing the Tadhkira, Tuisi felt that these "new" developments in the field had come to be an integral part of hay'a and were something the student or even general reader should be aware of despite their difficulty.

[^33]: 14 See II.1.
 ${ }^{15}$ See, for example, Qādīzāde al-Rūmī’s (ca. 1364-ca. 1436) commentary to Jaghmīni’'s Mulakhkhas, f. 3a, lines 9-10.

[^34]: ${ }^{16}$ Tahānawī, Dictionary, 1: 47-48; actually Tahānawī is here quoting Bïrjandī's supercommentary on Qādīzāde's Sharh al-Mulakhkhas. See also Nallino [1911], p. 32.
 ${ }^{17}$ This would also be the reason to exclude astrology from the purview of hay'a; cf. pp. 34-35.
 ${ }^{18}$ For an elaboration, see the commentary to II. 1 [8].
 ${ }^{19}$ On dating Geminus, see HAMA, 2: 579-581.

[^35]: ${ }^{20}$ Heath [1913], p. 276; cf. Lloyd [1978], pp. 212-214.
 ${ }^{21}$ Alm., p. 36 (H6-H7).
 ${ }^{22}$ Bīrūn̄̄, Qānūn, 1: 27; see also 1: 49. Cf. Pines [1963], p. 199.
 ${ }^{23}$ Bīrūnī, Qānūn, 2: 634-635.

[^36]: ${ }^{24}$ See the commentary to II. 1 [6].
 ${ }^{25}$ For a preliminary viewpoint on these matters, see Ragep [1982], 1: 129-189.
 ${ }^{1}$ Other geometrical propositions are stated in IV. 1 [1].
 ${ }^{2}$ I am not certain whether this is intentional.
 ${ }^{3}$ See, for example, Kennedy [1966], pp. 366-367; Neugebauer, HAMA, 1: 1 and 2: 572, 942; Hartner [1975], p. 9; and Goldstein [1980], p. 142. For different viewpoints, see Sabra [1984], especially note 3, pp. 145-146 and Ragep [1987], pp. 330-331. On Duhem's role in fostering this attitude, see Ragep [1990], especially p. 210.

[^37]: ${ }^{4}$ As we have noted earlier (p. 41), this reluctance in the case of the basic cosmography was due to Țūsi's contention that the Earth's state of rest could not be proven from observations; he maintained that he needed to "borrow" a principle from natural philosophy. As for those physical principles themselves, he may have also felt that in order to be established they needed arguments that were neither mathematical nor observational. Needless to say, we can hardly be definitive without investigating Ṭüsi's other writings on the relationship between the various sciences. It is worth noting here that there were some Islamic astronomers who held that their science could be established without recourse to metaphysics or natural philosophy; for an example, see Ragep [1982], pp. 141-145.
 ${ }^{5}$ Langermann [1990], p. 7.
 ${ }^{6}$ This chapter, which is Bk. I, Ch. 1, is entitled Fī bayān aqsām al-ajsām ${ }^{\text {Calāal al-ijmāl (A }}$ General Exposition on the Parts of the Bodies). In his Muntahä, Khiraqī places this material in his Bk. I, Ch. 2, which he calls Fī sharh ma ${ }^{n} n \bar{a}$ ism al-cālam wa-taqsìm ajzāihi al-awwal (An Explanation of the Meaning of the Term "World" and a Preliminary Division of Its Parts). In general, these chapters correspond to the last part of II. 2 of the Tadhkira.
 ${ }^{7}$ Aristotle develops his views against the void in Book IV, Chapters 6-9 of the Physics.

[^38]: ${ }^{8}$ De caelo, Bk. I, Ch. 5, 272b30-273a4.
 ${ }^{9}$ Although a body may be potentially divided ad infinitum, an actual infinitely small body cannot exist (Aristotle, Physics, Bk. III, Chs. 5-7; Bk. VI, Ch. 2).
 ${ }^{10}$ Cf. Elders [1965], p. 86, where one may find references to the relevant passages.
 ${ }^{11}$ Aristotle, De caelo, Bk. I, Ch. 2, esp. 268b17-269a2.
 ${ }^{12}$ See I. 2 [3].
 ${ }^{13}$ We shall return to this problem; see pp. 46-47 of this volume.
 ${ }^{14}$ See p. 38.

[^39]: ${ }^{15}$ Țūsī considers another type of accidental motion, namely that in which "the mover is the place for [the mobile] naturally to be" (I.2 [2]11). The commentators tell us that an example of this is the "enclosing orb" of II. 11 [4]. See the commentary to I. 2 [2]10-11, II. 4 [6-7] and II. 11 [4].
 ${ }^{16}$ I. 2 [2]7-9.
 ${ }^{17}$ Literally this means "in a single way." Because it includes the accelerated motion of falling bodies, "uniform" would not be an appropriate translation, and I have therefore resorted to the neologism "monoform." Cf. commentary to I. 2 [1]21.

[^40]: 18 This was not universally held by Țüsi’s Islamic successors; see the commentary to II. 1 [6].
 ${ }^{19}$ See the commentary to I. 2 [4].
 ${ }^{20}$ Cf. De caelo, Bk. I, Ch. 2, 268b27-269a2 where Aristotle virtually states as an axiom that "by simple bodies I mean those which possess a principle of movement in their own nature...necessarily, then, movements also will be...simple in the case of the simple bodies."
 ${ }^{21}$ I. 2 [2]8-9.

[^41]: ${ }^{22}$ Tahänawī, Dictionary, 1: 47.
 ${ }^{23}$ I hope to expand on these remarks in a forthcoming publication; for the present, see Ragep [1982], 1: 164-174 as well as notes 67-76, pp. 183-187.
 ${ }^{1}$ Alm., III.4, p. 153 (H232).

[^42]: ${ }^{2}$ Neugebauer, HAMA, 1: 263. An explicit rejection of homocentrism was made by Sosigenes (2nd c. A.D.), the teacher of Alexander of Aphrodisias, as reported by Simplicius in his commentary on Aristotle's De caelo. He proposed that each body moved about its own center in the heavens while the heavens taken as a whole revolved about the center of the World, a position not dissimilar to what one finds in Ptolemy's Planetary Hypotheses as well as in a number of Arabic sources (see our commentary to II. 4 [6-7]). Sosigenes gives the varying brightness of the planets and the changing size of the sun and moon as revealed by an annular solar eclipse as observational reasons for rejecting a homocentric cosmology. See Schramm [1963], pp. 56-57.
 ${ }^{3}$ See Sabra [1984], esp. p. 133. The influence of Bitrüji's homocentric cosmology in the Latin West should not blind us to its confined and episodic quality in the Islamic context.
 ${ }^{4}$ See, for example, Ibn Khaldūn, The Muqaddimah, Ch. VI, Section 21, 3: 134-135 (Quatremère's Arabic text, 3: 106); cf. Nallino [1911], p. 33, who also gives the Arabic text.
 ${ }^{5}$ See, for example, Duhem [1908], pp. 16-20 (English trans. [1969], pp. 16-18). Various Islamic writers would have agreed with Duhem; see p. 25 , footnote 2 of this volume.
 ${ }^{6}$ See Lloyd [1978], pp. 215-217 and Ragep [1990]. In the latter, I pointed out that Duhem himself in his Système du monde partially recanted his earlier view and recognized that Ptolemy, by the time of writing the Planetary Hypotheses, took his models to be physical; in Duhem's inimitable style, he had become "a slave of the imagination."
 ${ }^{7}$ Alm., p. 36; see also p. 40 of this volume.
 ${ }^{8}$ Alm., p. 40 (H13-14).
 ${ }^{9}$ For example in the Almagest, p. 141 (H216-217).

[^43]: ${ }^{10}$ On the term hypothesis, see Toomer, Alm., p. 23-24. For this Tūsī uses the Arabic word $a s l(\mathrm{pl} . u s \bar{u} \bar{l})$, which literally means source or basis. I have rendered it into English as model.
 ${ }^{11}$ Morelon [1987], p. 61; the author is not Thābit as has usually been thought but possibly, according to Morelon, one or more of the Banū Mūsā.
 ${ }^{12}$ For an overview and further bibliography, see Sabra [1984].
 ${ }^{13}$ Qabị̄̄̂, Risāla fí imtihāān al-munajijimīn, Damascus, Ẓāhiriyya MS 4871, f. 67a, lines 21-24.

[^44]: ${ }^{14}$ Saliba [1980]. Jūzjānī's solution was little appreciated; see our commentary to II. 11 [1].
 ${ }^{15}$ An edition is due to A. I. Sabra and N. Shehaby [1971]; a discussion of the text with an English translation of the objections to the prosneusis point of the Ptolemaic lunar model and to the equant is in Sabra [1978]. An English translation of the entire Shukük has been done as part of a University of Chicago doctoral dissertation by D. Voss [1985].
 ${ }^{16}$ See the commentary to II. 11 [1].
 ${ }^{17}$ Bīrūnī, for example, alludes to the difficulties raised by the moon's prosneusis point as well as the equant in the Qānūn, 2: 838.
 ${ }^{18}$ See, for example, Khafri's commentary to the Tadhkira, II.11, ff. 189b-190a.

[^45]: ${ }^{19}$ See II. 5 [10] and Fig. T4.
 ${ }^{20}$ In the absence of a careful study, or for that matter even an edition, of Book II of the Hypotheses, it is difficult at present to specify those differences in exhaustive detail. We can say, though, that Ptolemy himself has not eased our task since he at various places gives $41,34,29$, and 22 as the count for his orbs. In part this results from his ambivalence about the need for 7 spheres to account for the daily motions of the planets; in part it comes about due to his initial presentation of the models in terms of spherical orbs and then his subsequent advocacy of truncated orbs (manshūrāt). Cf. Neugebauer, HAMA, 2 : 922-926.
 ${ }^{21}$ See II. 8 [21] and II. 9 [17].

[^46]: ${ }^{22}$ This is because Mercury eludes him and because, as he notes, there are inadequacies associated with the curvilinear version of his couple; see II.11 [11], [19] and [21].
 ${ }^{23}$ For details, see the commentary to II. 11 and Ragep [1987].
 ${ }^{24}$ See II. 11 [14-15].

[^47]: ${ }^{25}$ See the commentary to II. 11 [16].
 ${ }^{1}$ For example: he uses Ptolemy's eccentricity for the sun in IV. 5 [1] rather than those of the moderns in calculating the nearest and farthest distances of the sun; in IV. 3 [2] he gives the Almagest value for the moon's apparent diameter rather than the value from the Planetary Hypotheses or even his own stated values in II. 13 [8]2-4.
 ${ }^{2}$ See the commentary for references.
 ${ }^{3}$ For these, see pp. 44-46 and the commentary to I.2.
 ${ }^{4}$ See our commentary for a brief discussion.

[^48]: ${ }^{5}$ This in connection with measuring the Earth by the "dip of the horizon" method in IV. 1 [4].
 ${ }^{6}$ See the commentary to II. 4 [5] and IV. 1 [2].
 ${ }^{7}$ See p. 33.
 ${ }^{8}$ For references, see the introductory remarks to the commentary of IV.5.
 ${ }^{9}$ See the commentary to II. 11 [1].
 ${ }^{10}$ See the commentary to II. 1 [1]21-1 and II. 13 [1]16.

[^49]: ${ }^{1}$ See Saliba [1979].
 ${ }^{2}$ Tāshkubrïzäde (901-68/1495-1561), for example, names the Tadhkira first as an epitome (mukhtasar) of hay'a basìta and then lists 'Urdī's Hay'a and then Shīrāzī's Tuhfa and Nihäya as more elaborated works of the genre. The Mulakhkhas is then given as a "well-known" (or perhaps "much disseminated") epitome (min al-mukhtaṣar al-mashhür) (Miftăh, 1: 372-373).
 ${ }^{3}$ Şafadī, Al-Ghayth al-musjam fi sharh lämiyyat al- ${ }^{\text {cajam, 2: } 257 .}$
 ${ }^{4}$ The former seems never to have gained much popularity; the latter, in Persian and in Arabic translation, enjoyed somewhat greater success; see Section J.1, pp. 66-67.
 ${ }^{5}$ For the evidence, see p. 35, footnote 11 and the commentary to III. 1 [8].

[^50]: ${ }^{6}$ I depend here on the very informative article by Pingree [1987]. See also King [1980].
 ${ }^{7}$ Pingree [1987], p. 325. The Sanskrit translation has been studied and translated into English by T. Kusuba, who presented it as a Master's thesis to the History of Mathematics Department, Brown University.
 ${ }^{8}$ Dreyer [1906], p. 269. He knew of the Tadhkira from Carra de Vaux's [1893] translation.
 ${ }^{9}$ This research, as well as that of others, was exquisitely summarized by Swerdlow and Neugebauer [1984], 1: 41-48, where the reader may find extensive references to the relevant literature.

[^51]: ${ }^{10}$ Swerdlow and Neugebauer [1984], 1: 47-48 and Figs. 5-6, 2: 567-568.
 ${ }^{11}$ See our commentary to II. 11 [2].
 ${ }^{12}$ Swerdlow and Neugebauer [1984], 1: 47.
 ${ }^{13}$ This was emphasized by Swerdlow [1976], who was responding to Rosen's [1975] ahistorical approach to the problem.

[^52]: 1 This is the date given in the colophon of Tehran, Dānishgāh (Kitābkhānah-i markazĩ), $\bar{A} q a ̄$ Mishikāt MS 1014 (1), which is transcribed by Dānish-Pizhūh on p. z of his introductory remarks to the facsimile reproduction of another manuscript of the Muciniyya. (There is an indication that the former copy may be an autograph.) The date of composition is also confirmed by Riḍawī, Ahwäl, p. 388, based on another manuscript source.

[^53]: ${ }^{2}$ Tehran: Intishārāt Dānishgāh Tahrān (no. 300 in the series), 1335 H. Sh.
 ${ }^{3}$ For example, Chapter Nine deals with the rather mundane topic of using the Indian circle for finding directions whereas Chapter Five deals with the difficult subject of Ibn al-Haytham's latitude theory. In Chapter Three, he presents the Țūsī couple for the first time and his alternative models for the deferents of the moon and planets.
 ${ }^{4}$ Tehran: Intishārāt Dānishgāh Tahrān (no. 304 in the series), 1335 H. Sh.
 ${ }^{5}$ It should not be confused with the Persian work Zubdah-i hay'a (Essentials of hay'a), which was Arabized on several occasions; the Princeton translation has the title Al-Zubda fi al-hay'a. Though this work overlaps the Zubdat al-idräk in numerous ways, it does not have the characteristic 4-part division of a hay'a basitta work but is instead divided into 30 chapters. It is thus comparable to Farghān̄̄'s Elements of Astronomy. For further information on this work, see GAL SI, p. 931 (no. 44a); Krause [1936], p. 497 (no. 13); Storey, Persian Literature, p. 60 (no. 15); Riḍawī, Ahwäl, pp. 390-391 (no. 32)); and Mach, Catalogue (Princeton), p. 421.

[^54]: ${ }^{6}$ Zubdat al-idräk, Istanbul, Topkapı Saray, Ahmet III MS 3430 (5), f. 76a-b. It is interesting that Tuusiì states that neither Ptolemy's nor Ibn al-Haytham's proposals are "free from defect (khalal)," which is reminiscent of what we find in the Muciniyya (see p. 68 of this volume).

[^55]: ${ }^{7} \mathrm{Mu}{ }^{c}$ iniyya, p. 31, lines 7-12.
 ${ }^{8}$ This corresponds to II. 9 of the Tadhkira.
 ${ }^{9} \mathrm{Mu}{ }^{\text {cininiyya, p. }} 37$, lines $6-11$. Țūsì points to the same problem for Mercury on p. 42, lines 7-9.
 ${ }^{10} \mathrm{Mu}^{\text {cininiyga, p. } 44 \text {, line } 20-\text { p. } 45 \text {, line 2. For a discussion of Ibn al-Haytham's model, }}$ see our commentary to II. 11 [16].
 ${ }^{11}$ Muciniyya, p. 45, lines 2-3. Other references to Ibn al-Haytham's treatise occur on p. 46, lines 8-9, where Tuüī repeats that this is not the place to go into details, and on p. 47, lines 11-14, where he gives the Ibn al-Haytham's additional orbs needed for the latitude of Venus and Mercury.

[^56]: ${ }^{12}$ At this stage in his investigations, Țūsī seems to have assumed that Mercury could be dealt with in the same manner as the moon and other planets; see $M u^{c}$ iniyya, $\mathrm{p} \cdot 42$, lines 7-9. In the Hall Țūsī does not mention Mercury explicitly but it seems to be included when he states that "the difficulty encountered in the other planets may also be resolved [with the couple] if the equant takes the place of the inclined orb and the deferent that of the eccentric" (Hall, p. 12, lines 3-4). In the Tadhkira, he realizes that Mercury is a special case defying an easy solution; see II. 11 [11].
 ${ }^{13}$ These have to do with the irregular motion of the epicycle apex on the small circle and the disruption of the position in longitude. See also pp. 50-51.
 ${ }^{14}$ See the commentary to II. 11 [13].
 15 The recent attempt by Saliba [1987a] to whisk the Hall "closer to the date of the Tadhkira (1260/1261) [sic], which it resembles much more closely" does not take into account crucial historical and intellectual developments of the 13th c. For Saliba's dating would force us to assume that Naṣir al-Dīn was still dedicating books to the Ismā ${ }_{\mathrm{c}}^{\mathrm{i}} \mathrm{ili} \mathrm{s}$ after they had been completely decimated by the Mongols and after he had joined the Mongol entourage. For other reasons to reject Saliba's dating, see the commentary to II. 11 [18].

[^57]: ${ }^{16}$ This is clear in the way the $M u^{c}{ }^{\text {iniyya}}$ is referred to in the Hall, namely simply by chapter and section. For example, Chapter Three begins: "In the 5th Chapter of Section II dealing with the arrangement of the orbs of the moon, this problem occurs." Sometimes Țusì speaks as if the reader has the $M u^{c}$ iniyya in hand as when in the sentence immediately following the above he states: "as already mentioned [i.e. in the Muciniyya], the same problem also occurs in the orbs of the other planets..." The intimate connection between the Mu'iniyya and the Hall may be the reason that it apparently lacks a date of composition in the extant manuscripts.
 ${ }^{17}$ See the commentary to II. 11 [18] for details.
 ${ }^{18}$ Princeton, Mach MS 4884 (4066), f. 2b.

[^58]: ${ }^{19}$ This information reliably comes from Ibn al-Fuwaṭị, (Talkhīs, Vol. IV, 1: 234-235), who was the librarian at the Marägha observatory.
 ${ }^{20}$ Cf. commentary to I.Pref. [2]5.
 ${ }^{21}$ Virtually the same statement occurs in a copy of Jurjāni’s commentary (Istanbul, Köprïlü MS 927 (2), f. 218a). Riḍawi, Ahwāl, p. 400 gives this same information but without indicating his source.

[^59]: ${ }^{22}$ Suter [1902], p. 175, depending on Nallino, who in turn depended on Jurjānī, originally pointed out that there were two versions of the Tadhkira. Note that Nallino mistakenly thought that the incomplete copy of Jurjānī's Sharh contained in Biblioteca Medicea Laurenziana or. MS 271 was by Mūsā Qạ̣̄īzāde.
 ${ }^{23}{ }^{M} u^{\text {cininiyya, }}$ Section II, Ch. 2, pp. 15-16. There is a brief mention of the possibility of the motion of the ecliptic but little in the way of the extensive treatment in the Tadhkira.
 ${ }^{24}$ See p. 15. Şafadī indicates that he was only in Baghdad a few months before his death, which occurred on 18 Dhü al-Hijjja 672 H. 25 June 1274 A.D. I have inferred from this that the trip to Baghdad, and hence the Baghdad version of the Tadhkira, should be dated sometime between January and June 1274.
 ${ }^{25}$ Istanbul, Süleymaniye Kütüphanesi, Lâleli MS 2116 . For the colophon that establishes this, see p. 78.
 ${ }^{26}$ Walbridge [1983], pp. 17-18. A date closer to $667 / 1268$ seems the most likely.

[^60]: ${ }^{27}$ For this and all subsequent examples, the reader is referred to the commentary where a detailed discussion occurs.
 ${ }^{28}$ For a listing of manuscripts, see pp. 76-81.
 ${ }^{29}$ See our commentary to II. 2 [3]21-23 for additional details.
 ${ }^{30}$ It is interesting that Shīrāzī made sure to be informed of continuing changes to the Tadhkira even after leaving Marāgha.
 ${ }^{31}$ MS T places "kh asahh" after the variant indicating that it is from a corrected manuscript.

[^61]: ${ }^{32}$ The copyist of MS T often indicates that the revisions are corrections with the abbreviation kh asahh.
 ${ }^{33}$ There is also evidence that Țūsī provided glosses for certain words and phrases, which he did not intend to be incorporated into the text. The one example I know is a hāshiya (gloss) in the margin of MS M, f. 48b (II. 13 [3]2) for the word makth: "What is intended by makth is the amount (masäfa) occurring on the moon from its being cut; this has been copied from the handwriting of the author, may God be pleased with him."
 ${ }^{34}$ Mudarrisì, Sar-gudhasht, p. 114.
 ${ }^{35}$ But even in such a case, additional corrections might be put in the margins by a diligent copyist as we have seen.

[^62]: ${ }^{1}$ Occasionally there are references in the apparatus or the commentary to one of the other manuscripts.

[^63]: ${ }^{2}$ See the commentary for more details.
 ${ }^{3}$ The last is particularly significant; see our commentary for details.

[^64]: $/ 10 / \ldots$] $\beta, \mathrm{M}=$ Every science has: [a] a subject whose essential attributes are investigated in it] α.

[^65]: $/ 13 /$ each] $\beta=-\alpha,-\mathrm{M} . / 19 /$ or small one in the sphere] $\beta=-\alpha,-\mathrm{M} . / 21 /$ circles] $\beta=-\alpha,-$ M. $/ 22-23 /$ that passes through the center] $\beta=-\alpha,-M$.

[^66]: *Henceforth al-dā'ira al-mārra bi-'l-aqtāb al-arbac a (the circle passing through the four poles) will be translated "the solstitial colure."

[^67]: /23/ whereby...that motion] $\beta=$ to move the ecliptic orb with that motion] α, M.

[^68]: $/ 2 /$ every] $\beta=-\alpha,-\mathrm{M}$.

[^69]: $/ 1 /$ similarly $]=$ because of that $], \mathrm{M}$.

[^70]: $/ 8 /$ motion $] \beta=-\alpha,-M$.

[^71]:

[^72]: /5/ second] $\beta=-\alpha,-\mathrm{M}$.

[^73]: /9/ beyond it] $\beta, \mathrm{M}=$ before it] $\alpha . / 14 /$ distance] $\beta, \mathrm{M}=-\alpha$.

[^74]: /12/ a great circle whose center is the center of the World] $\beta=$ a great circle] $\mathrm{M}=\mathrm{a}$ great one] α. /17/ in the two nodes] $\beta, \mathrm{M}=$ the two nodes] $\alpha . / 21 /$ epicycle's] $\beta=$ planet's] α, M.

[^75]: /12/ Most Exalted] $\beta, \mathrm{M}=-\alpha$.

[^76]: $/ 6 /$ yields] $\beta=$ yields for it] α, M.

[^77]: /11/ a solar eclipse is] $\beta=$ the possibility of a solar eclipse is] $\alpha, \mathrm{M} . / 15 /$ the endpoints of] $\beta=-\alpha,-\mathbf{M} . / 19-20 /$ that which [can] become eclipsed...occulting [body]] $\beta=$ the occulting [body] as well as that which [can] become eclipsed] α, M.

[^78]: /2-3/ On Sectors...Invisibility] $\beta=$ On Sectors and Conjunctions and the Situation of Visibility and Invisibility and Conjunctions] $\mathbf{M}=$ On Sectors, the Situation of Visibility and Invisibility; and Conjunctions] α. $/ 21 /$ while retrograding] $\beta=$ while undergoing direct motion] α, M.

[^79]: $/ 18 /$ observer] $\beta, \mathrm{M}=$ observers] α.

[^80]: $/ 19 /$ that is] $\beta, M=-\alpha$.

[^81]: /23/ One learns] $\beta=$ Let one learn] α, M.

[^82]: $/ 1 /$ whose elongation $\beta=-\alpha,-M$.

[^83]: $/ 12 / 1 / 6$ of $1 / 2] \beta, M=1 / 2$ of $1 / 6] \alpha$.

[^84]: $/ 11 /$ Earth] $\beta, M=$ horizon] α.

[^85]: $15 /$ degrees $] ~ \beta=-\alpha,-\mathrm{M}$.

[^86]: /19/ He took] $\beta=$ He thus took] α, M. $/ 24 / 3 / 5$ times its radius] $\beta=3 / 5$ times its diameter] α, M.

[^87]: $/ 13 /$ If $] \beta=$ When $], \mathrm{M}$.

[^88]: ${ }^{1}$ Tahānawī, Dictionary, 1:47. For the most part he depends on late astronomers for his information and interpretations, especially commentators on the Tadhkira.

[^89]: ${ }^{2}$ Bīrūnī, Qānūn, 1: 54-55; cf. idem, Tafhīm, p. 43.
 ${ }^{3}$ See Langermann [1982], pp. 112-113. One should note that Langermann's very careful remarks deal with terminological issues. It is inappropriate--indeed dangerous-to infer from conventional usages of falak anything about the cosmological status of the solid orbs. This unhappy line of reasoning occurs in Rosen [1983], p. 168.

[^90]: ${ }^{1}$ Ibn Sīnā, Ishärā̆t, 2: 56 (Tehran edition).

[^91]: ${ }^{2}$ Khafrī and Bīrjandì make it clear that growth and diminishment (numuw and dhabl) refer to a gain or loss in the number parts of a body, whereas expansion and contraction (takhalkhul and takāthuf) refer to an increase or decrease in the same number of parts such as occurs in the expansion or compression of a cotton ball.

[^92]: ${ }^{1}$ Sabra [1972], p. 196.

[^93]: ${ }^{2}$ Note, though, that Habash uses it in the sense of fire in his Book of Bodies and Distances; see Langermann [1985], p. 111.
 ${ }^{3}$ Livingston [1973], p. 274.

[^94]: ${ }^{4}$ Technically speaking, the derived forms should be innayya (as one finds in MS M) and limayya, but it is hard to imagine such things flowing from the lips of Arabic speakers (as distinct from Orientalists whose insistence on "purity" is legendary). Goichon in her Lexique does give the latter but for some reason that escapes me has iniyya for the former (p. 22). I use the adjectival forms inni and limmi mostly for their euphonic quality, but these forms are also explicitly given in Harvard's copy of Bīrjandi's commentary (Houghton MS Arabic 4285) and limmī can also be found in MS D.
 ${ }^{5}$ This is the quia / propter quid distinction of the Latin scholastics.
 ${ }^{6}$ Posterior Analytics, Bk. I, Ch. 13, 78a34-35.
 ${ }^{7}$ Ibid., 79a3-4.

[^95]: ${ }^{8}$ Ibid., 79a3-4.
 ${ }^{9}$ Ibid., 79a7-8.
 ${ }^{10}$ This is the formulation in Ghazālī's Maqāsid al-falāsifa, Bk. I (Al-Mantiq), Ch. 5 (Fi Lawāhiq al-qiyās), Part 2, pp. 120-121; his source is Ibn Sinnā's Al-Ishārāt wa-'l-tanbïhāt, Bk. I, Ch. 9, Sec. 5 (1:534-538 of the S. Dunyā edition). Note that Țūsi's wording in this paragraph is a bit different; inni proofs "assert existence" (tufid al-wuqūu${ }^{c}$), while limmī proofs "demonstrate the necessity of existence" (tufid wujūb al-wuqū ${ }^{c}$).
 ${ }^{11}$ This is also generally the case in the Almagest, Bk. I, Chs. 3-6.

[^96]: ${ }^{1}$ Al-Samā' wa-'l-cālam, Ch. 6, p. 46.
 ${ }^{2}$ HAMA, 2: 584.
 ${ }^{3}$ Nallino [1911], pp. 257-259.
 ${ }^{4}$ Maimonides, Guide, Bk. II, Ch. 11 (p. 274 of Pines's translation, p. 167 of Friedländer's translation).

[^97]: ${ }^{5}$ In all probability, this is the work attributed to Muhammad's brother Ahmad by Ibn al-Nadīm and entitled Kitāb Buyyina fîhi bi-țarīq taclīmī wa-madhhab handasī annahu laysa fi-khārij kurat al-kawākib al-thābita kura tāsi ${ }^{C} a$ (book in which it is proven by mathematical means and a geometrical approach that there is no ninth sphere beyond the sphere of the fixed stars) (Flügel's edition, p. 271; note that Sezgin, GAS VI, p. 148 has bi-khārij). This work, which seems otherwise to be nonextant, deserves careful study inasmuch as it indicates a very early interest in cosmological issues.

[^98]: ${ }^{6}$ For a discussion of these terms and Käshi’s use of local ecliptic latitude in his parallax theory, see Kennedy [1956], pp. 37-38.
 ${ }^{7}$ Note: Kennedy, Survey, finds the latter to be ${ }^{{ }^{\prime}}$ ard iqlim li'r-rū'ya [sic], which he calls the "latitude of the visible climate" (p. 145). I cannot, frankly, understand this translation and, in view of the above commentators, I think that it should be rejected.

[^99]: ${ }^{1}$ Almagest, p. 63 (H67-68).
 ${ }^{2}$ Kennedy, Survey, pp. 145, 151.
 ${ }^{3}$ Kennedy, Survey, pp. 151, 153, 154, 156, 158, 159.
 ${ }^{4}$ Ibn Sīnā, 'cIlm al-hay'a (s.v. Shifa'), p. 652
 ${ }^{5}$ Kennedy, Survey, pp. 161, 163, 164.
 ${ }^{6}$ Following Shīrwānī and not the editor who has the incomprehensible fa-nisbatuhu.
 ${ }^{7}$ Ibn Sīnā, ${ }^{c}$ Ilm al hay'a (s.v. Shifá'), p. 652.

[^100]: ${ }^{8}$ Almagest, p. 328 (H15-16).
 ${ }^{9}$ This seems to be the rate given in the "purported" Al-Zīj al-mumtahan and in the Istanbul copy of the $Z \overline{i j}$ of Habash; see Kennedy, Survey, pp. 146, 153.
 ${ }^{10}$ Battānī, Zīj, 3: 187-188.
 ${ }^{11}$ Kennedy, Survey, pp. 161, 163, 165.

[^101]: ${ }^{12}$ Nissābūrì, Tawdīh, Najaf MS 649, f. 26b, lines 17-18.
 ${ }^{13}$ Battāñ̄, Zī̀, 3: 190; Bīrūn̄̄, Tafhim, p. 101.
 ${ }^{14}$ Ibid.; Ṣācid, Tabaqāt, pp. 40, 54 (= Fr. trans., pp. 86, 110).
 ${ }^{15}$ Tihon [1978], p. 236.
 ${ }^{16}$ See, for example, Neugebauer, HAMA, 2: 632 (n.7) and Dreyer [1953], p. 204.
 ${ }^{17}$ One should, however, note the obvious similarity of ahl al-talismāt and $\dot{\alpha} \pi о є \varepsilon \lambda \varepsilon \sigma \mu \alpha \pi$ коoí, which could lead to such confusion. But this leaves open the question of when $\dot{\alpha} \pi \sigma \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \pi \kappa \alpha ́ \alpha$, which means "astrological influences," (and is, not incidentally, another name for Ptolemy's Tetrabiblos) went from being used for prognostication to having the connotation of astral magic. For some interesting insight and speculation on this problem, see Pingree [1980].
 ${ }^{18}$ Battānī, Zīj, p. 190 (Latin trans., 1: 126-127); Bīrūn̄̄, Āthär, pp. 325-326 (Engl. trans. p. 322). One might contend that the report from Ptolemy in the Äthär concerns only the information regarding the Greeks; the following statement about the "Chaldeans" in which the account of trepidation occurs would then be a separate report. Indeed, Sachau vowels the crucial word hukiya (it is reported) rather than hakāa (he, i.e. Ptolemy, reported). But in the table on page 327 (Engl. trans., p. 323), the matter would seem settled since the information concerning the "Chaldeans" is attributed to Ptolemy.

[^102]: ${ }^{19}$ HAMA, 2: 631 (n. 4).
 ${ }^{20}$ Äthär, p. 325, line 23 (Engl. trans., p. 322, line 16); cf. Sezgin, GAS, 6: 96. The Handy Tables were known in Arabic as Kitāb al-Qānün fi cilm al-nujūm wa-hisābihā wa-qismat $a j z \bar{a}^{\prime} i h \bar{a}$ wa-ta ${ }^{c} d \bar{l} l i h a \bar{a}$; cf. Sezgin, GAS, 6: 95. As for the actual identity of this work, I am at a loss. Ptolemy's Planisphaerium, usually called Risāla fi Tastīh al-kura, does not seem a likely candidate. Theon's purported work on the armillary sphere, extant only in Arabic translation, is a possibility; in any event it would be well worth investigating for a mention of trepidation; cf. Sezgin, GAS, 6: 101-102. On the attribution in Arabic sources of Theon's works to Ptolemy, see Neugebauer [1949], pp. 242-243.
 ${ }^{21}$ HAMA, 2: 598, 633 (n. 11).
 ${ }^{22}$ For details concerning the early history of trepidation, see HAMA, 1: 297-298, 2: 631-634. The account as presented in our commentaries is, of course, from the point of view of a cosmology of solid orbs.
 ${ }^{23}$ Cf. the commentary to II. 3 [5] 13 .
 ${ }^{24}$ Cf. Neugebauer, HAMA, 2: 632-633.
 ${ }^{25}$ This should have taken place in 483 A.D.

[^103]: ${ }^{26}$ In this case by Birjandī. See also the commentary to II. 11 [3].
 ${ }^{27}$ Hāshimĩ, p. 225.
 ${ }^{28}$ Hāshimī, f. 97r, lines 1-3.

[^104]: ${ }^{29}$ It is significant that Ibrāhïm ibn Sinān (908-46 A.D.), who has a great deal to say about Yahyā's Zīj al-Mumtahan in his Kitäb fíHarakāt al-shams, does not allude to any trepidation theory contained therein even though he sets forth his own theory of trepidation. Also there is apparently no mention of trepidation in the extant parts of the Zij al-Mumtahan (see Kennedy, Survey, pp. 145-147).
 ${ }^{30}$ Tabaqät, p. 54 (Fr. trans., pp. 109-110); virtually the same report occurs in Qiftī, Ta'rīkh, p. 170. I do not know if any of the extant sections from the "zījes" of Habash correspond to this early one; cf. Kennedy, Survey, pp. 126-127.
 ${ }^{31}$ Delambre [1819], pp. 73 ff and pp. 264ff; however, cf. p. 175.
 ${ }^{32}$ The text has been published several times, in particular by Millás Vallicrosa [1950], pp. 496-509 and by Carmody [1960], pp. 102-113 (2 versions).
 ${ }^{33}$ See Carmody [1960], p. 102 and the variants in MSS CSU, p. 107.
 ${ }^{34}$ One important example was the misattribution to Nasirir al-Din of the commentary on Euclid's Elements that was printed in Rome in 1594; see Sabra [1969], p. 18.

[^105]: ${ }^{35}$ A similar argument was made by Duhem, Système, 2: 246ff.
 ${ }^{36}$ Neugebauer [1962a], p. 294; Carmody [1960], p. 104 (no. 21 of Version M) and p. 111 (no. 21 of Version N). Cf. Carmody's translation, p. 89.
 ${ }^{37}$ Nallino, "Praefatio" to Battān̄̄, Zīj, 1: xxxii.
 ${ }^{38}$ Ibid. Hartner ("al-Battān̄̄," $D S B, 1: 508$) follows Nallino. The evidence for two versions (nusakh) comes from Ibn al-Nadīm's Fihrist, p. 279 (repeated by Qifṭī, p. 281).
 ${ }^{39}$ If Thäbit did write On the Motion, Ibrāhïm's ignorance or neglect of it would be especially surprising. Neither in the Harakāt al-shams (Motions of the Sun) nor in his description of it in his account of his works written at age 25 (ca. 933 A.D.) (Fi wasf al$\left.m a^{c} \bar{a} n \bar{i} . ..\right)$ does he mention his grandfather. We should contrast this with his citation of Thäbit's work on the mensuration of the parabola in his own On the Area of the Parabola (p. 57); indeed, he betrays a bit of family chauvinism when in Fī wasf al-macānī he writes regarding this treatise that he "would not like al-Mähānī having written a work superior to that of my grandfather, and there not being among us [i.e. the Ibn Qurra family] someone who could surpass what he had done" (p. 29).

[^106]: ${ }^{40}$ Note that Duhem [1914], pp. 257-258, had already pointed to this problem in dating and used it to question Thäbit's authorship and to advocate al-Zarqällu's. Millás [1943-1950], pp. 487-494, countered Duhem by adducing Ṣācid's testimony, which we shall discuss presently. While showing that Duhem was clearly wrong in attributing On the Motion to al-Zarqāllu, Millás did not really deal with Duhem's more substantial arguments against Thābit's authorship.
 ${ }^{41}$ Though it is rather schematic and not in perspective or to scale, it will serve our purposes here; it also gives an idea how complex spherical diagrams were presented in the manuscripts.

[^107]: ${ }^{42}$ Figure C 2 is adapted from Goldstein [1964], p. 233.
 ${ }^{43}$ Neugebauer [1962a], pp. 292-293.

[^108]: ${ }^{44}$ Khafrī, Takmila, Damascus, Z̛āhiriyya MS 6727, f. 90b, lines 8-9. "Ibrāhīm b. Sayyār b. Thābit b. Qurra" occurs in Anon., Istanbul, Ahmet III MS 3316, f. 29a and in Shīrwānī, Ahmet III MS 3314, f. 102a.
 ${ }^{45}$ Bīrūn̄̄, Āthär, p. 326. Cf. idem, Tahdī̀d, p. 101 (= Engl. trans. p. 70).
 ${ }^{46}$ The new edition, due to A.S. Saidan, supplants the incomplete, corrupt, and scattered Hyderabad printing.
 ${ }^{47}$ Ibrāhīm ibn Sinān, Ḥarakāt, pp. 282-283.
 ${ }^{48}$ The motion of the solar apogee in Islamic astronomy has been dealt with by Toomer [1969].
 ${ }^{49}$ Ibrāhīm ibn Sinān, Harakāt, pp. 282-284.
 ${ }^{50}$ Ibid., pp. 275-276.

[^109]: ${ }^{51}$ Ibid., p. 276.
 ${ }^{52}$ Shīrāzī, Nihā̀ya (maqāla II, bāb 4); Tuhfa (bāb II, faṣl 7).
 ${ }^{53}$ Almagest, Bk. XIII, Ch. 2.
 ${ }^{54}$ See II. 10 [4] and the commentary to II. 11 [14].

[^110]: ${ }^{55}$ Even though this work is not extant, we know a fair amount about its contents; see Sabra [1979] as well as the commentary below to II.11 [16]. It is interesting that even as early as Battānï the cosmological issue plays a role in evaluating models. With regard to the ancient model of trepidation described by Theon, Battāni not only criticizes it as being contrary to observation but also as lacking a physical structure (la yatahayya'u) (Zij, 3: 190).
 ${ }^{56}$ For more details, see our commentary to II. 11 [14-19].
 ${ }^{57}$ Admittedly, this dogmatic presentation of my investigation of the model must here be taken on faith since a full exposition would take us far afield. Neugebauer [1962a], Goldstein [1964], and Mercier [1976-1977] have been the most recent commentators on trepidation, and they all make valuable contributions. However, their ignorance of the sources mentioned above as well as their somewhat disparaging attitude toward this theory, especially in the case of Mercier, have blinded them to the truly ingenious ability of the author of On the Motion of the Eighth Sphere to construct a model that fits the data at hand to a remarkable degree. In the case of Neugebauer, his disdain of anything to do with cosmology forces him to dismiss the very critical relationship between trepidation and the variability of the tropical year (see especially pp. 293-294) and thus miss the important observational data that is crucial for evaluating the theory. We should recall here that such an understanding of the relationship of the tropical year and trepidation is taken as a given in the Arabic sources; for example, this is one of the main points made by Battānī in his discussion of trepidation.

[^111]: ${ }^{58}$ See Goldstein [1964], pp. 238-244.
 ${ }^{59}$ See Toomer [1968], pp. 118-122.
 ${ }^{60}$ Tabaqāt, pp. 57-58 (French trans., p. 114).
 ${ }^{61}$ On this question, see now the masterful treatment by Richter-Bernburg [1987], pp. 385-390. I regret not having had the benefit of this article before embarking on my own, much more limited, investigations of $S_{\bar{a}}{ }^{c} \mathrm{id}$. Although I am in substantial agreement with Richter-Bernburg, I am uneasy with his hypothesis that $\widehat{S}_{\bar{a}}{ }^{c} \mathrm{id}$ began compiling the Toledan Tables in the last two years of his life. I would like to leave open the possibility that the work referred to by $S_{\bar{a}} \mathrm{C}_{\mathrm{id}}$ as $F \bar{i}$ iṣlāh harakāt al-nujūm, which he calls kitäbi al-mu'allaf (my compilation?), is substantially similar to the Toledan Tables themselves.

[^112]: ${ }^{62}$ This was the opinion of Millás [1943-1950], pp. 27, 492-494, who originally pointed out the significance of this passage for understanding the history of trepidation.
 ${ }^{63}$ It was known to Ibn Yūnus (pp. 126-128), but it is not mentioned in the Fihrist (p. 280). Qifṭī (pp. 270-271, 282) derives his information from Ṣācid. Cf. Sezgin, GAS, 6 : 179-180 and Kennedy, Survey, p. 127.
 64 An explanation whereby someone dropped "Ibrāhīm ibn Sinān" leaving "Thābit ibn Qurra" is appealing but clearly incomplete given the numerous Latin manuscripts that not only give Thābit's name but additionally his correct filionymic of Abū al-Hasan (patris Asen) (see p. 400 and footnote 33). The latter, we should note, would have been reasonably well-known in Spain (for example, $S \bar{a}^{c}{ }^{\text {cid }}$ gives it); it does not overly strain our credulity to imagine a process whereby the filionymic is added along the way.
 ${ }^{65} S \bar{a}^{\mathrm{a}}$ id does not mention Ibrähïm ibn Sinān in his Tabaqāt even though he is aware of other members of the Ibn Qurra family (p. 37=Fr. trans., pp. 81-82).

[^113]: ${ }^{66}$ For Ibn Rushd, see Talkhīs, p. 133. For Ptolemy, see his Planetary Hypotheses, British Museum MS Arab. 426, f. 93a, lines 22-23 (reproduced in Goldstein [1967], p. 36); German translation by L. Nix in Heiberg [1907], p. 112. Cf. Plato, Timaeus, 32d.
 ${ }^{67}$ See II. 6 [3] and II. 7 [8].
 ${ }^{68}$ See the commentary to II. 11 [4].

[^114]: 69 Jurjānī, Shärh, Damascus, Ẓāhiriyya MS 3117, ff. 36b-37a.

[^115]: ${ }^{1}$ Alm., Bk. XII, Ch. 1; for extended discussions of this aspect of Ptolemaic astronomy, see Pedersen [1974], pp. 329-349, HAMA, 1: 190-206, and Neugebauer [1959].

[^116]: ${ }^{2}$ On my justification for following the Baghdad version even when it is "wrong," see the introduction, §2.M2, p. 87.
 ${ }^{3}$ Haäshiya, Najaf MS 649, f. 111a.

[^117]: ${ }^{4}$ Alm., p. 556 (H453).
 ${ }^{5}$ On the significance of using a single figure to illustrate the possibility of transforming one model into the other, see Neugebauer [1959], pp. 8-9.
 ${ }^{6}$ Alm., p. 558 (H455). For a reasonably clear explanation of this, see Pedersen [1974], pp. 339-340 (especially Fig. 11.5). Cf. Neugebauer [1959], pp. 6-8.
 ${ }^{7}$ Its use here to mean equal rather than uniform is confirmed by the commentators.

[^118]: ${ }^{8}$ This includes Shīrāz̄̄ in the Tuhfa (II.8, Mosul MS 287, f. 57b) but curiously not in the Nihāya (see II.5, Istanbul, Ahmet III MS 3333, f. 62b).
 ${ }^{9}$ Tūsī̀, Tahrī̀r al-Majistịi, XII.1, Damascus, Zִāhiriyya MS 7790, f. 150b.
 ${ }^{10} \mathrm{Cf}$. Alm., p. 559 (H458).

[^119]: ${ }^{1}$ Qānün, Bk. VI, Chs. 7-8 (2: 650-685).
 ${ }^{2}$ Cf. the commentary to $I .4$ [6-7].
 ${ }^{3}$ See the commentary to I. 1 [15].

[^120]: ${ }^{1}$ Qānün, Bk. VI, Chs. 7-8 (2: 650-685).
 ${ }^{2}$ Cf. the commentary to II. 4 [6-7].
 ${ }^{3}$ See the commentary to I.1 [15].

[^121]: ${ }^{4}$ One should compare this with the moon in which a concentric parecliptic surrounds a concentric inclined orb. But the lunar and solar cases may have not been considered strictly comparable since the lunar parecliptic must account for the motion of the nodes, which is a combination of a proper motion and the motion of the fixed stars; see II. 7 [8].
 ${ }^{5}$ Khafri suggests a similar solution to the problem of the "enclosing sphere" in II. 11 [5].
 ${ }^{6}$ Battānī, Zīj, Ch. 28, 3: 73 (Latin trans., 1:48).
 ${ }^{7}$ Kennedy and Hamadanizadeh [1965], p. 444.
 ${ }^{8}$ Kennedy and Muruwwa [1958], p. 115.
 ${ }^{9}$ Kennedy [1960], p. 170; as-Saleh [1970], p. 143.

[^122]: ${ }^{1}$ Compare Toomer's remarks concerning the analogous problem of translating $\alpha^{\prime} v \omega \mu \alpha \lambda \lambda^{\prime} \alpha$ in the Alm., p. 21.
 ${ }^{2}$ The return is not to the exact same speed since the epicycle center will be at a different distance from the Earth after a return in anomaly; see commentary to II. 7 [14]15, p. 418.

[^123]: ${ }^{3}$ See Sabra [1977].
 ${ }^{4}$ E.g. Bīrūnī, Tafhïm, p. 94 and Kennedy [1960], p. 91.

[^124]: ${ }^{1}$ See the introduction, §2.J3, pp. 71-75.

[^125]: ${ }^{1}$ Cf. Alm., pp. 602 (H536-7), 604-605 (H540, H542), 626-627 (H573, H575), 629-630 (H577-9), and 632-634 (H582-6).

[^126]: ${ }^{2}$ For the justification of this method, see Pedersen [1974], pp. 362-363. From the table (Alm., p. 633), one can derive 52^{\prime} for a_{mn} and 56^{\prime} for $\mathrm{a}_{\mathrm{ms}}\left(1^{\circ}-0 ; 8^{\circ}\right.$ and $1^{\circ}-0 ; 4^{\circ}$, respectively).

[^127]: ${ }^{1}$ This is reported by Simplicius in his commentary on Aristotle's De caelo; see Duhem [1908], p. 3 (Engl. trans. [1969], pp. 5-6).
 ${ }^{2}$ Khafri, Takmila, f. 189a-b. See also the introduction, §2.F2, pp. 48-51.

[^128]: ${ }^{3}$ Cf. the introduction, §2.F2. Țūsi himself mentions in II. 11 [12] an anonymous writer who had dealt with the moon's prosneusis.
 ${ }^{4}$ This statement and the statement in II. 7 [25] closely echoes his assertions in the $M u^{\text {cininiyya; see the introduction, }}$ §2.J1, especially p. 68.
 ${ }^{5}$ There seem to be few citations of the Shukük in the astronomical literature; interestingly, the Spanish philosopher Ibn Bājja (d. 1138-39) does know-and even criticizes-the work. See Langermann [1990], p. 32.
 ${ }^{6}$ See the introduction, §2.F2.
 ${ }^{7}$ See Shīrāzī's statement in Book II, Chapter Seven of $F a^{c}$ alta: "The model of Abū
 "Ubayd is unsound (fäsid) ... and nothing can be resolved with it at all" (ff. 145b-146a).

[^129]: ${ }^{8}$ For a discussion of the relationship of the Tadhkira to its original Persian version (consisting of the $M u^{c_{\text {iniyy }}}$ and the appendix to it, the Hall-i mushkilät-i Mu $c_{\text {iniyya), see the }}$ introduction, §2.J1, pp. 65-70. For another view of this matter, one which does not take into account Țūsi's earlier work on the ishkälät, see Saliba [1979], pp. 571-576.
 ${ }^{9}$ Hartner [1971], p. 631; Veselovsky [1973], p. 129.

[^130]: ${ }^{10}$ Veselovsky [1973], pp. 129-130.
 ${ }^{11}$ This statement is based on the absence of any listing by Sezgin, GAS, 5: 104.
 ${ }^{12}$ Proclus, Commentary, p. 86.
 ${ }^{13}$ Veselovsky [1973], pp. 129-130.
 ${ }^{14}$ Neugebauer, HAMA, 2: 1035.
 ${ }^{15}$ Copernicus, De rev., V.25, p. 164v (Rosen trans., p. 279).

[^131]: ${ }^{16}$ Rosen, Commentary to On the Revolutions by Nicholas Copernicus, pp. 369, 429; Swerdlow [1975], pp. 146 (n. 5), 155 (n. 8). Swerdlow's arguments, including his observation that the marginal reference to Proclus was penned later than the other marginal notes on that page, are quite compelling.
 ${ }^{17}$ Swerdlow [1973], p. 431.
 18 Rosen, "Commentary," pp. 384-385. Swerdlow [1972] deals with Giovanni Battista Amico's use of the Tūsi couple in a treatise published in 1536.
 ${ }^{19}$ On the Revolutions (Rosen trans.), p. 126.

[^132]: ${ }^{20}$ Proclus, Commentary, p. 85.
 ${ }^{21}$ Proclus, Commentary, p. 86.
 ${ }^{22}$ The argument as presented by Proclus is not very clear; my conclusion, which follows Morrow, p. 86 ($\mathrm{n}, 40$), is a suggested interpretation.
 ${ }^{23}$ Cf. Morrow's note to Proclus, Commentary, p. 90 (n. 54); Tannery [1912-1950], 2: 37.
 ${ }^{24}$ Proclus, Commentary, p. 86.
 ${ }^{25}$ Hartner [1969], p. 289; cf. Rosen, Commentary to On the Revolutions, p. 385.
 ${ }^{26}$ Shïrāzī, Tuhfa, Bk. II, Ch. Eight, f. 66b, lines 12-14. Khafrì additionally quotes Shïrāzī as saying: "Thus Aristotle's statement that there must be rest between the two straight motions of rising and falling is invalidated" (Khafrī, Takmila, f. 191a).

[^133]: ${ }^{27}$ Khafrī, Takmila, f. 191a, lines 14-18.

[^134]: ${ }^{28}$ Kennedy [1966], pp. 368-370.

[^135]: ${ }^{29}$ Nīsābūrī, Tawdī̄h, Najaf MS 649, 57a (BM MS Add. 7472, f. 65b).

[^136]: ${ }^{30}$ Unfortunately, this was not so obvious to Carra de Vaux, who was misled by a poor diagram in MS B to assume that the given and the enclosing spheres were tangent at a point (Carra de Vaux [1893], p. 361).

[^137]: ${ }^{31}$ I am indebted to A. I. Sabra for having posed these important questions.
 ${ }^{32}$ Hartner [1969], pp. 288-293 passim and p. 302.
 ${ }^{33}$ Ibid., p. 291.
 ${ }^{34}$ See further the interesting remarks of Pedersen [1974], p. 394.

[^138]: ${ }^{35}$ Cf. Fig. T14. Note that its lettering, which only occurs in a few manuscripts, has not been used for Fig. C16 in order to avoid potential confusion. Following the manuscripts, with the possible exception of MS D, we have made ATYH a circle in Fig. T14. On the other hand, we have attempted to give the corresponding circuit AMBN in Fig. C16 an appropriate bulge.
 ${ }^{36}$ Actually, this is an "inner equator" of the solid concentric deferent.

[^139]: ${ }^{37}$ Takmila, f. 197b.
 ${ }^{38}$ In Pedersen [1974], p. 194, R is the radius of the deferent, which accounts for the difference in the formulas; cf. Hartner [1969], p. 298.

[^140]: ${ }^{39}$ Though the effect of the prosneusis point reaches a maximum near the octants, it is clear that Tūsi wishes us to ignore it for the time being. As we shall see in II.11 [21], he will propose a method to replace the prosneusis point that will approximate its effect upon the position of the moon. Thus up until now, we have been dealing with what has been designated as Ptolemy's "Second Lunar Model" rather than his "Third" and final version.

[^141]: ${ }^{40}$ Pedersen [1974], p. 280.
 ${ }^{41}$ The actual values near the first quadrature, which are dependent on the eccentricity, are: Venus, 90°; Mars, $89 ; 53^{\circ}$; Jupiter, $89 ; 59^{\circ}$; and Saturn, $89 ; 59^{\circ}$. Rounding off to 90° will have an insignificant effect on the accuracy of δ to the nearest minute.

[^142]: ${ }^{42}$ Hartner [1969], p. 299; he was probably misled by Carra de Vaux's translation, p. 353.

[^143]: ${ }^{43}$ This has been translated by Sabra [1978], pp. 124-127.
 ${ }^{44}$ Alm., V. 5.
 ${ }^{45}$ Alm., pp. 599-600 (H530-531).

[^144]: ${ }^{46}$ This appendix, and the judgment on it, occurs in the Nihäya, Istanbul, Ahmet III MS 3333 (2), ff. 94b-95a; cf. Kennedy [1966], pp. 377-378 and Sezgin, GAS, 6: 34.
 ${ }^{47}$ Ibn al-Haytham, Iltifaff, p. $410(=$ p. 195 Arabic numeration), especially lines 6-7.

[^145]: 48 The classic discussion of Eudoxus's planetary models and the hippopede is Schiaparelli II, 5-112. Lucid accounts in English are in Heath [1913], pp. 190-211, Dreyer [1906], pp. 87-107 and Neugebauer [1953].

[^146]: ${ }^{49}$ See, for example, Goldstein [1964] and Kennedy [1973].
 ${ }^{50}$ Goldstein [1967], pp. 38-39 (BM 94a-94b) [German trans., pp. 115-117].

[^147]: ${ }^{51}$ See the introduction, pp. 67-70 of Volume One.
 ${ }^{52}$ We should note, though, that even as early as the Muciniyya Tū̄ī was not satisfied with Ibn al-Haytham's "solution" and refers to several remaining "defects"; see p. 68. But he had solution of his own to offer, which may account for his lack of criticism of Ibn al-Haytham in the Hall.
 ${ }^{53}$ To his credit, Saliba has brought attention to these passages in his [1987a]. Unfortunately his attempt to use them to advocate the chronological priority of the Tahrir over the H all is misguided; cf. p. 69, footnote 15. To repeat, the Hall has no trace of the second (curvilinear) version of the Țūsī couple. Furthermore, the connection Țūsì draws in the Tahrir between the problem of the moon's prosneusis point and that of the latitude theory, as well as Objection 3 to the latitude theory, are all missing in the Hall but, of course, are repeated in the Tadhkira. It would be highly unlikely that Nasīr al-Dīn would have omitted these crucial aspects of his planetary theory from the Hall if he had written it after discussing them in the Tahrir. Saliba insists, however, that "the identity of the solution for the prosneusis point and that of latitude, and the possibility of explaining such a motion, was proposed in the Hall' (p. 11) but significantly gives no reference.

[^148]: ${ }^{54}$ This was originally pointed out to me by E. S. Kennedy. Otto Neugebauer further noted that the figure could not be a hippopede since it has a vertical rather than horizontal tangent at $\theta=\mathrm{n} \cdot 90^{\circ}$ inasmuch as the area of triangle $\mathrm{EA}_{2} \mathrm{H}$ will approach 0 at these points. Thus the figure will not be a smooth curve but rather one with pinched cusps.
 55 This was recognized by Khafrì in his commentary, ff. 214b-215a, who cites Proposition 11, Book I of Menelaus's Spherics.
 ${ }^{56}$ Even in the case of the greatest oscillation, the 24.538° in either direction resulting from the moon's prosneusis, the maximum deviation from arc AG will only be 0.214°, which is about 0.87%. This will approximately occur when $\theta=\mathrm{n} \cdot 180^{\circ} \pm 35^{\circ}, \mathrm{n}$ any integer. For smaller arcs of oscillation, the percentage deviation will be even smaller.
 ${ }^{57}$ See paragraph [15].
 58 We here ignore the deviation from the great circle arc.

[^149]: \dagger Motion in the sequence (s)/counter-sequence (cs) of the signs is determined by the motion of the orb's apogee point; $R=$ radius of Ptolemaic deferent; $e=$ eccentricity; $\mathrm{NA}=$ not applicable.

[^150]: ${ }^{1}$ Sabra [1972], pp. 190-197, especially 190-192, 196; see also Lindberg [1976], pp. 11-17, 58-67, 71-80.

[^151]: ${ }^{2}$ See Schramm [1963], pp. 24-27 for a discussion of Sosigenes and the significance of his observation for establishing the impossibility of a homocentric cosmology.
 ${ }^{3}$ Note that these are true not mean values.
 ${ }^{4}$ For an explanation and justification of what follows, see HAMA, 1: 126-129.

[^152]: ${ }^{5}$ Adjusted lunar parallax is the difference between the lunar and solar parallaxes. See Kennedy [1956], p. 35.
 ${ }^{6} 1$ have substituted $0 ; 35^{\circ}$ for the radii of the two luminaries in place of Ptolemy's $0 ; 33,20^{\circ}$.
 ${ }^{7}$ Though at first glance it may seem contradictory to place the moon at the epicyclic perigee when we wish to minimize the effect of the latitude component, this small factor is more than compensated for by the maximization of the limit that results from the additional amount of the radii of the two luminaries at perigee and of the longitude component of the parallax.
 ${ }^{8}$ See HAMA, 1: 127-129.

[^153]: ${ }^{1}$ On the constant depression criterion, see Hogendijk [1988], pp. 29-30; cf. Bruin's [1977] "arc of descent," p. 333.

[^154]: ${ }^{1}$ Müller ed., IV, 8, 2 [2: 789].
 ${ }^{2}$ Cf. Mountjoy and Embleton [1967], pp. 100-101.

[^155]: ${ }^{3}$ Ibn Khaldūn, Muqaddimah, 1: 96.
 ${ }^{4}$ Bīrūñ̄, Qānūn, 2: 547-549, 552.
 ${ }^{5}$ Abū al-Fidä', p. 22 (Arabic text), p. 27 (French trans.).
 ${ }^{6}$ See Khwārizmī, S ūra, p. 75 and cf. Nallino, Racc., 5: 478, n. 3, who suggests that it be identified with the Erythraean Sea of the Ancients. See also Shïrāzī, Nihäya, III.1, f. 120a (German trans. by Wiedemann [1970], p. 802 and French trans. by Ferrand [1913-14], 2: 613).
 ${ }^{7}$ Cf. Kennedy and Kennedy [1987], p. 180.
 ${ }^{8}$ Tuhfa, III. 1 (ff. 210a, 211b).
 ${ }^{9}$ Cf. Bīrūnīs Tahdīd, p. 142 (Engl. trans. p. 107); Kennedy, Tahdīd Comm., p. 81.

[^156]: ${ }^{10}$ Tahdīd, pp. 59-60 (trans. pp. 29-31); cf. Kennedy, Tahdīd Comm., pp. 11-15.
 ${ }^{11}$ Muntahä, II.4, f. 10a-b.
 ${ }^{12}$ Nihäya, III.1, ff. 120b-121b.
 ${ }^{13}$ Cf. Kennedy, Tahdīd Comm., p. 12.
 14 "Fall" (also known as "dejection" or "depression") is an astrological concept that is the opposite of "exaltation" (sharaf); see Bīrūn̄̄, Tafhim, p. 258 and Ptolemy, Tetrabiblos, I. 19.
 ${ }^{15}$ Cf. Geog., I. 23 (p. 56) and IV.7-8, passim; cf. Bīrūn̄̄, Tafhïm, p. 317 and Pingree, Dorotheus, V, 5, 8 and V, 20, 6.

[^157]: ${ }^{16}$ Muntahā, II.4, f. 10a-b.
 ${ }^{17}$ Kennedy and Kennedy [1987], p. xi; Nallino, Racc., 5: 490-491.
 ${ }^{18}$ Tahdī̀d, pp. 156-157 (trans. pp. 120-121); cf. Kennedy, Tahdīd Comm., p. 91.

[^158]: ${ }^{19}$ Nallino [1911], pp. 187-188 (Racc., 5: 234); Kennedy and van der Waerden [1963], p. 319.
 ${ }^{20}$ Kennedy and Kennedy [1987], pp. xi, xxi.
 ${ }^{21}$ Cf. Bīrūnī, Tafhïm, p. 140; Tahdīd, pp. 206 (trans. p. 172), 293 (trans. p. 263); Kennedy, Tahdid Comm., p. 126.

[^159]: ${ }^{22}$ See Mu ${ }^{\text {ciniyy }}$ a, pp. 61-63; although some of the numbers are garbled, the Ptolemaic character is clear.
 ${ }^{23}$ Cf. the introduction, p. 35, footnote 11.
 ${ }^{24}$ Cf. Dallal [1984], pp. 3-4.
 ${ }^{25}$ Qānūn, 1: 373-377; for the method, see Toomer, Alm., p. 649.
 ${ }^{26}$ Batt., 3: 24-25 (trans. 1: 16).

[^160]: ${ }^{1}$ Cf. III. 3 [1] and III. 6 [1], and Nallino [1911], pp. 261-263 (Racc., pp. 281-282).
 ${ }^{2}$ Cf. Toomer, Alm., pp. 18-19.

[^161]: ${ }^{3}$ Bk. I, Pt. 2, Thesis 2a, Ch. 8 (Rome ed., pp. 43-44; Būlāq ed., p. 88 [Engl. trans., p. 197]); cf. Alm., p. 83 (H103).
 ${ }^{4}$ GAL, 1: 457 and S1: 824.
 ${ }^{1}$ Cf. Kennedy, Tahdid Comm., p. 71 and Alm., Fig. 2.1, p. 76.

[^162]: ${ }^{2}$ On ortive and occasive amplitude, see HAMA, 1: 37-39 and Bīrūnī, Tafhïm, p. 129.
 ${ }^{3}$ Not (D - 12) as in Kennedy, Survey, p. 141 -correct formula in Kennedy, Tahdid Comm., p. 70 and Bīrūnī, Shadows, 2: 98; cf. Bī̄ūnī, Tafhìm, p. 131.
 ${ }^{4}$ HAMA, 1: 38, 142.

[^163]: ${ }^{1}$ Kennedy, Tahdìd Comm., p. 71.
 ${ }^{2}$ Bīrūnī, Shadows, 2: 99-101.

[^164]: ${ }^{1}$ Qänün, 1:376; cf. Alm., p. 72 (H80-81) where the latitude would be $69 ; 29,51^{\circ}$.
 ${ }^{2}$ The "second motion" (al-haraka al-thäniya) usually refers to the motion of the ecliptic orb (the precessional motion), but that would make little sense in this context. Ṭūsī does occasionally use it to mean the proper motion of the wandering stars; see commentary to III. 6 [2]13-14.

[^165]: ${ }^{1}$ See III. 2 [1]23 and III. 3 [1]16; cf. Bīrūnī, Tafhīm, p. 140 and Lane, Lexicon, 3: 1057.
 ${ }^{2}$ Alm., pp. 153-154 (H233-234).
 ${ }^{3}$ This is not an unreasonable assumption given what Ṭūsī says in this paragraph; cf. Kennedy [1960], p. 168.
 ${ }^{4}$ See II. 6 [4].

[^166]: ${ }^{5}$ This is also my interpretation of the usage in the next paragraph.

[^167]: ${ }^{6}$ Bīrjandi is aware of his thoroughness; he states self-assuredly that one will hardly find a comparable discussion elsewhere.
 ${ }^{7}$ One can also see that Ṭūsī is incorrect by examining the accumulated time-degrees for Leo 20° to Virgo 30° in Ptolemy's rising time table for the Avalite Gulf (Alm., II.8, p. 100).

[^168]: ${ }^{8}$ From III. 7 [4]17-19.

[^169]: ${ }^{9}$ Recall from III. 5 [2] that Gemini and Cancer are here permanently visible, while Sagittarius and Capricornus are permanently invisible.
 ${ }^{1}$ Discounting, of course, variability due to co-ascension.

[^170]: ${ }^{2}$ Cf. HAMA, 3: 1222 (Fig. 57).
 ${ }^{3}$ Alm., p. 170 (H260).
 ${ }^{4}$ HAMA, 1: 66. Note that Neugebauer [1962b], p. 94, has instead what amounts to $\Delta t-\Delta \bar{t}=-\Delta \mathrm{E}$. From a modern viewpoint, in which $\Delta \mathrm{E}$ ranges over positive and negative values, either equation, of course, is appropriate. However in dealing with the ancient and medieval situation, one needs to be careful since $\Delta \mathrm{E}$ was always taken to be nonnegative; thus to avoid confusion, one should consider the first equation to indicate that $\Delta \mathrm{E}$ is to be subtracted from true days to convert them to mean days, whereas the second indicates it is to be added. For further elaboration, see p. 484 and cf. $H A M A, 2: 984-985$.

[^171]: ${ }^{5}$ See the very helpful graph in HAMA, 3: 1222 (Fig. 57); the discrepancy with Ptolemy will be dealt with below.
 ${ }^{6}$ HAMA, 1: 67.
 ${ }^{7}$ This is made quite explicit in Fig. T24; see also above commentary to paragraphs [3] and [5].

[^172]: ${ }^{8}$ Battāni's epoch is the Seleucid era (-311 March 1) at which the initial solar longitude is Pisces 4°, which is not terribly far from the end of Aquarius. Khwarizmī, however, uses the hijra (+622 July 15) at which the solar longitude (Cancer 24°) is quite far from Aquarius. Neugebauer [1962b], p. 65 shows how one can make a correction to Khwarizmi's epoch values for the sun and moon in order to use an always negative equation of time.
 ${ }^{9}$ See Handy Tables , 1: 148-155; cf. HAMA, 2: 984-985 and Rome [1939], who provides a full discussion.
 ${ }^{10}$ See II. 6 [1].
 ${ }^{11}$ Khwārizmī, Zïj, Table 68, p. 182.
 ${ }^{12}$ Battānī, $Z \bar{i}$ j, 2: 61, 64; in his discussion (3: 74 [trans. 1: 49]), he gives "two-thirds of Aquarius" and "the beginning of Scorpius."
 ${ }^{13}$ Alm., p. 169 (H258, lines 14-15).
 ${ }^{14}$ Toomer, Alm., pp. 21-22.
 ${ }^{15}$ HAMA, 1: 61 (n. 2).

[^173]: ${ }^{1}$ Cf. Kennedy [1975].
 ${ }^{2}$ See King [1973], pp. 370-371.
 ${ }^{3}$ Goldstein [1985], p. 117.
 ${ }^{4}$ Actually false dawn is, more or less, in the plane of the ecliptic; see commentary to III. 9 [1]13.

[^174]: ${ }^{5}$ Cf. Wiedemann [1912] and Wiedemann and Frank [1926], pp. 31-32.
 ${ }^{6}$ Estimates for the height of the atmosphere were made in Islamic astronomy, but I have been unable to ascertain whether anyone related it to the problem of false dawn; cf. Saliba [1987b].
 ${ }^{7}$ See pp. 74-75 and 87-88 of Volume One.
 ${ }^{8}$ The β version of the Tadhkira, though, is not always an improvement; see for example II. 5 [8]6-8 and II.11 [5]19-20.
 ${ }^{9}$ This may be due simply to problems related to drafting the diagram. Birjandi states explicitly on his figure that the apex is in the orbs of Venus and yet it is drawn on the sun's orb by the copyist of Houghton Arabic MS 4285.

[^175]: ${ }^{10} \mathrm{Cf}$. Sabra [1968]; also cf. commentary to II. 14 [2]10-14.

[^176]: ${ }^{1}$ For northern latitudes, q is positive for $180^{\circ}>\lambda_{\text {Sun }}>0^{\circ}$ and negative for $360^{\circ}>\lambda_{\text {Sun }}>180^{\circ}$; see Fig. C28.
 ${ }^{2}$ Țūsi mistakenly has co-ascension in the text.
 ${ }^{3}$ Khafrī simply repeats Jurjānī.
 ${ }^{4}$ Najaf, Āyatallāh al-Ḥakìm MS 649, f. 93a.
 ${ }^{5}$ See III. 5 [1].
 ${ }^{6}$ In the northern hemisphere, this is the six signs bisected by the autumnal equinox.

[^177]: ${ }^{7}$ Toomer, Alm., p. 23; HAMA, 3: 1069.
 ${ }^{8}$ In saying that the degrees/equal hour is invariable one ignores the equation of time. One should also note that in assuming 15% equal hour, one will end up with a solar day longer than 24 hours (but a sidereal day of exactly 24 hours). For simplicity we shall ignore these differences in the sequel.

[^178]: ${ }^{9}$ Qur'ān, ix. 35-36 (Azhar edition numbering).
 ${ }^{10}$ A two-day ambiguity is not uncommon; for a discussion of the problem in a modern context, see Ilyas [1984], especially pp. 58-78, 133-140.
 ${ }^{11}$ For what follows, see the excellent discussion by Ginzel, Handbuch, 1: 254-256; cf. Hartner, "Zamän," $E I^{1}$, p. 1211 for a synopsis.

[^179]: ${ }^{12}$ This is quite a good approximation scheme since it implies a lunar synodic month of $29 ; 31,50$ days. (The standard Babylonian/Ptolemaic value is $29 ; 31,50,8,20$ days.) A somewhat less accurate 8 -year cycle with 3 leap years was reportedly used by some ancient Greeks (Bickerman [1968], p. 31) as also, for a time, by the Ottomans (Ginzel, Handbuch, 1: 255-256.)
 ${ }^{13}$ This choice of leap years is the one used in the tables of Wüstenfeld-Mahler.
 ${ }^{14}$ Birjandī mentions a similar calendar, attributing it to a certain Abū al-Mahāmid al-Ghaznawi [Birinini?], and also finds the same difficulty.
 ${ }^{15}$ Äthār, especially pp. 29, 64, 66 (Chron., pp. 34, 76, 78).

[^180]: ${ }^{16}$ Alm., pp. 137, 139-140.
 ${ }^{17}$ Neugebauer (HAMA, 1: 307) derives a value of $365 ; 13,7,30^{d}$ based on Battāni’s approximate values for the lengths of the seasons; but the tropical year given here is Battānī's explicit value and is confirmed in at least two places in his zïj (3: 63-64 and 191 [trans., 1: 42 and 127]).

[^181]: *The Persians, unlike the Egyptians, did try to reconcile their calendar somewhat with the seasons by adding an extra month every 120 years.

[^182]: ${ }^{1}$ Cf. Bīrūnī, Tahdìd, pp. 199-200 [trans., p. 165]; Kennedy Tahdīd Comm., pp. 122-123; and Bīrūnī, Transits, pp. 3, 123-124. Note that Ṭūsī never really gets around to defining "degree of transit."
 ${ }^{2}$ On longitude, see II. 3 [8]. When "degree" is used alone, it means "degree of longitude."
 ${ }^{3}$ For the case where the southern ecliptic pole is visible, the same result will follow if one is careful, as Tūsī is, to refer to stars as being in the direction (or opposite the direction) of the visible ecliptic pole rather than notth or south of the ecliptic.

[^183]: ${ }^{1}$ Cf. Alm., p. 62 (n. 72).
 ${ }^{2}$ See Tafhïm, p. 137 and Jaghmīnī, II. 3 (trans., p. 271); this is also confirmed in the commentaries.
 ${ }^{3}$ King ["Kibla," p. 83 (col. 2)], however, differentiates between the samt al-qibla, which he takes to be equivalent to the arc along the horizon measured from the east (or west) point to the qibla bearing point, and the inhirāf al-qibla, which for him is the arc along the horizon measured from the north (or south) point to the qibla bearing point. (Note that King's formulations are in terms of angles, not arcs.) It may be that these technical terms were not fixed for all times and places; as we shall see below, there is indeed ambiguity in the terminology.

[^184]: ${ }^{4}$ King ["Kibla," p. 84 (col. 1)] notes that it is the basis for "several kibla methods."
 ${ }^{5}$ The ecliptic positions given by Țūsī, "degree 8 of Gemini" and "degree 23 of Cancer," do not at first sight seem symmetrical about the summer solstice. This is due to a peculiarity of this method of reporting coordinates. To be "in degree 8 of Gemini" actually means to be between Gemini 7° and 8°. Jaghminir gives the positions as Gemini $7 ; 21^{\circ}$ and Cancer $22 ; 39^{\circ}$, which are correct for $\varepsilon=23 ; 35^{\circ}$ and $\phi_{M}=21 ; 40^{\circ}$.

[^185]: ${ }^{6}$ This would more than likely be a false assumption insofar as the Middle Ages is concerned; see King, "Kibla," pp. 87-88.

[^186]: ${ }^{1}$ A notable exception is Jaghmini's Al-Mulakhkhas fi al-hay'a al-basitta. (For this work, see pp. 35, 56 of Volume One.) In his commentary (sharh) on the Mulakhkhas, Qādizzāde al-Rümī (ca. 1364-ca. 1436) explains that the lack of any treatment of sizes and distances was due to the difficulty ($s u^{c} \tilde{u} b a$) of this subject and presumably was inappropriate for such an elementary textbook (f. 4b, lines 14-15). As it turns out, Jaghmini wrote a separate treatise on sizes and distance, the apparently unique manuscript being Cairo, Dār al-kutub MS $\mathrm{T}_{\mathrm{al}}{ }^{\text {Cat majāmic }} 429$ (2), f. $4 \mathrm{a}-4 \mathrm{~b}$.

[^187]: ${ }^{2}$ Sabra [1969], pp. 1-2.
 ${ }^{3}$ Plan. Hyp., BM 90b, line 3 (trans., p. 7); Geog., VII. 5 (Nobbe, 2: 179, par. 12, line 24).
 ${ }^{4}$ HAMA, 2: 652-654.
 ${ }^{5}$ See Nallino [1911], p. 279 (Racc. V, pp. 293-294); I am greatly indebted to his research for much of what follows.
 ${ }^{6}$ Langermann [1985], pp. 115, 122; this passage is cited by Bīrūnī, Tahdìd, p. 213 (trans., p. 178).

[^188]: 7 Nallino [1893] (Racc. V, pp. 408-457) and [1911], pp. 276-289 (Racc. V, pp. 291-302).
 ${ }^{8}$ Zăhiriyya MS 4489 is the only known exemplar and it is incomplete with only 12 extant folios (not 137 ff . as in GAS VI, p. 147).
 ${ }^{9}$ Langermann [1985], pp. 115, 122.
 ${ }^{10}$ According to Nallino, this is the nisba of Marw al-Rūdh, a town in Khurāsān ([1911], p. 282 (n. 1) (Racc. V, p. 295 (n. 3)).
 ${ }^{11}$ Mas ${ }^{\mathrm{c}}{ }^{\mathrm{u} d i ̄}$, Murūj al-dhahab, 1: 100-101 (French trans., 1: 76) (Barani [1951], pp. 7-8). The passage from Ibn Yūnus's $\operatorname{Ha} \bar{a} k i m i ̄ Z i j j$ (French trans. only in [1804], pp. 95-96 (n. 2)) is in Nallino [1911], pp. 281-284 (Racc. V, pp. 295-298) (copied by Barani, pp. 8-10); the value in Ibn Yūnus's text is $561 / 4$ rather than 56 miles, but I am inclined to see this as a mistake of unknown origin. For Bīrūnī, see especially Tahdïd, pp. 213-214 (trans., pp. 178-180) as well as Tafhim, pp. 118-119 and Qānün, 1: 51-52, 2: 528-530 (Barani, pp. 17-22).
 ${ }^{12}$ Tahdīd, pp. 212-213 (trans., pp. 177-178); cf. Kennedy, Tahdìd Comm., pp. 132-133.
 ${ }^{13}$ Nallino [1911], p. 286 (Racc. V, pp. 299-300). For the original reports, see Mas ${ }^{\text {cu}}{ }^{\text {üdī }}$, Tanbïh, pp. 26-27 (French trans., p. 44) and Ibn Khallikān, Wafayāt, 5: 163 (trans., 3: 316); cf. Barani, p. 31.

[^189]: ${ }^{14}$ It is not entirely clear that both groups went to the same region, but this is the most natural reading. Sanad states that he went to the area "between Raqqa [Wama in the text] and Palmyra," whereas the other group went "in another direction" (or perhaps "to another region": ilā nāhiya ukhrā).
 ${ }^{15}$ See footnote 11 for the references.
 ${ }^{16}$ Ibn Yūnus states that he got his information for the Sinjār expedition from 'the book in which [Habash] mentions the mumtahan observations in Damascus... ." These are described in the Book of Bodies and Distances; cf. Langermann [1985], pp. 120-121 and pp. 125-127. Ibn Yünus does not quote Habash directly but instead gives a rather loose paraphrase.
 ${ }^{17}$ Most later accounts, though, seem ultimately to derive from Habash.
 ${ }^{18}$ Tahdid, p. 220 (trans., pp. 185-186).
 ${ }^{19}$ Zähiriyya 4489 , f. 12a-b; because this text is unique, I have attempted to reproduce the manuscript as closely as possible within the limits imposed by my printer.

[^190]: ${ }^{20}$ Cf. Kennedy, Tahdid Comm., p. 131.
 ${ }^{21}$ Țabarī, Firdaws, p. 547; repeated by Mas ${ }^{\text {cūdī, Murüj al-dhahab, 1: } 104 \text { (French trans., }}$ p. 79); cf. Barani, pp. 6-7 for the text and a translation but ignore the commentary.
 ${ }^{22}$ Kennedy and Kennedy [1987], pp. 252, 281-282.

[^191]: ${ }^{23}$ Cf. Nallino [1911], p. 286 (Racc. V, p. 299).
 ${ }^{24}$ But, as I have said above, one cannot completely dismiss Ibn Yūnus's account of Sanad being connected with a serious expedition to the Palmyra-Raqqa region that involved the same principals and arrived at approximately the same value as the Sinjär episode. It is curious, though, that no one besides Ibn Yūnus seems to have any inkling of it.
 ${ }^{25}$ Langermann [1985], pp. 120-121, 125-126.
 ${ }^{26}$ Ibn Khallikān, Wafayāt, 5: 161-163 (Engl. trans., 3: 315-317); cf. Barani pp. 23-27 and Nallino [1911], pp. 284-286 (Racc. V, pp. 298-300).

[^192]: ${ }^{27}$ Thäbit ibn Qurra (d. 901), for example, accepts 56 miles/degree; we know this from Saghānī's Maqāla fi al-abcād wa-'l-ajrām (Zähiriyya MS 4871, f. 78b for which see Ragep and Kennedy [1981], pp. 97-98). It is confirmed by Bīrūnī (who bases himself on Saghānī) in the Tahdīd, p. 214 (trans., p. 179). Farghãnī (fl. 833-61), however, uses 56²/3 (ibid.).
 ${ }^{28}$ This is rather puzzling in that his own measurement as reported in the Tahdid, p. 223 (trans., p. 189) and the Qänün, 2: 531 is much closer to 56; cf. Kennedy, Tahdīd Comm., p. 143. The way in which Bïrūnī deals with these conflicting values deserves a much more thorough analysis than is possible here.
 ${ }^{29}$ Muntahä, II.17(1), ff. 35b-37a.
 ${ }^{30}$ Cf. Hinz [1955], pp. 54-55, 63.
 ${ }^{31} \mathrm{Mu}{ }^{c^{\text {inniyya }}}$, pp. 82-83; Kennedy [1984], pp. 114-115.
 ${ }^{32} 1$ cubit $=24$ digits and 1 cubit $=30$ digits are attested in Babylonian sources (HAMA, 2: 591). The former was standard throughout the Islamic Middle Ages (Hinz [1955], p. 54). One does, though, find a Hāshimi cubit that is equal to 32 digits and it may date from the time of the Caliph al-Manṣūr (reigned 754-75) (ibid., p. 58). If so, it could be the cubit that was originally used to convert Ptolemy's stades into known units and is thus retained as the "Ptolemaic" cubit. At any rate it is clear that Țūsī, unlike Khiraqī, intends the Ptolemaic and the Ma'münī miles to be equivalent since each consists of 96,000 digits. Ṭüsì's version is confirmed by Shīrāzī (Nihäya, IV.2, f. 149b and Tuhfa, IV.1(2), f. 272a), ${ }^{\text {c Ubaydī, Khafrī, and Bīrjandĩ. }}$

[^193]: 33 That it was is the perfectly reasonable, but I believe incorrect, conjecture of Abü al-Fadl C Allāmī in his \bar{A} 'inn-i-Akbarī (quoted by Barani, pp. 28-29).
 34 "Ibn Khallikān," $E I^{2}, 3: 832$.
 ${ }^{35}$ King [1981], p. 55 proposes but quickly (perhaps too quickly?) dismisses Ibn Yūnus as the source of the story found in Ibn Khallikān that Ptolemy's horse was the "inventor" of the astrolabe since he squashed a celestial sphere dropped by his master.
 ${ }^{36}$ See the biography of Tūsī in the introduction, pp. 7-8.
 37 The passage in the Tuhfa is much more extensive and clearly derives from Habash, perhaps via Bīrūnĩ.

[^194]: ${ }^{38} \mathrm{Mu}^{c}$ iniyya, p. 83; cf. Kennedy [1984], p. 114.

[^195]: ${ }^{39}$ Nihāya, IV.2; Tuhfa, IV.1(2). The error was also noted by Kennedy [1984], pp. 114-115, who calls Țūsi's rule "grossly inaccurate."
 ${ }^{40} \mathrm{Mu}{ }^{c}$ iniyya, p. 83; Kennedy [1984], pp. 114-115.
 ${ }^{41} \mathrm{He}$ does not have a specific word for zone but uses the all-purpose $q i{ }^{c} c^{c} a$ (segment).
 ${ }^{42}$ For the surface area of a segment, Shīrāzì depends on Archimedes, Sphere and Cylinder I, Prop. 42 (= Prop. 44 in Țūsi's Tahrīr, p. 74). Bïrjandï uses this rule as well as the more familiar area of a zone $=2 \pi$ rh where r is the radius of the sphere and h the altitude of the zone. Neither Shirāzī nor Birrjandī calculates the actual area directly, which is that of a zone of two bases; they seem to restrict themselves to zones of one base.
 ${ }^{43}$ This is the case for Mosul, Jāmic al-Bāshā MS 287, f. 273a; BM MS Add. 7477, however, has the incorrect value. Birjandī in quoting the Tuhfa gives the incorrect value as well.
 ${ }^{44}$ Bīrūnī also mentioned the method in his Risāla (or Kitāb) fî al-asturlāb [Epistle (or Book) on the Astrolabe], but he had not yet done the necessary observation; see Nallino [1911], pp. 289-291 (Racc. V, pp. 302-304) and Barani, pp. 32-33.

[^196]: ${ }^{45}$ Hinz [1955], p. 62.
 ${ }^{1}$ For the moon only, the eccentric deferent radius is taken to be 49;41 parts and it is the "inclined" radius that is set at 60; see II. 7 [4] and [5], Pedersen [1974], pp. 184-186, and HAMA, 1: 88.

[^197]: ${ }^{1} 0 ; 17,32$ would be more accurate.

[^198]: ${ }^{1}$ The manuscript has XI. 36.
 ${ }^{2} \mathrm{He}$ also gives VIII. 12 to use as an alternative.

[^199]: ${ }^{3}$ Planetary Hypotheses, BM 91b (trans., p. 9).
 ${ }^{1}$ Planetary Hypotheses, BM 89b (trans., p. 7).
 ${ }^{2}$ For how this would work, see Goldstein's notes to Plan. Hyp., pp. 10-11; cf. Van Helden [1985], pp. 22-23.
 ${ }^{3}$ See commentary to IV. 5 [4-5].

[^200]: ${ }^{4}$ That is, they are found both in the Almagest and the Planetary Hypotheses; see HAMA, 2: 908.
 ${ }^{5}$ Alm., p. 460 (H282), p. 546 (H431).

[^201]: ${ }^{6}$ HAMA, 2: 917; cf. Hartner's [1964], p. 274 "really astounding accident."
 ${ }^{7}$ Heiberg [1907], pp. 86, 88 (Greek) 87, 89 (German) (= Plan. Hyp., BM 84b, lines 7-12, 23-24); cf. Goldstein [1967], pp. 9-10 and Hartner [1964], pp. 266-267.
 ${ }^{8}$ Or else, as Goldstein and Swerdlow [1970], p. 140 surmise, Ptolemy used the parameters from the Planetary Hypotheses to find a new minimum value for the Earth-epicycle center distance that resulted in a least distance of $33 ; 49$; he then correctly rounded up. If so, the care and effort taken by Polemy to obtain this difficult quantity makes his mistake in deriving the much easier to calculate greatest distance even more perplexing (see following discussion).
 ${ }^{9}$ Goldstein [1967], p. 10.
 ${ }^{10}$ Although this may seem implausible, it is at least easier to swallow than Hartner's number juggling that would require Ptolemy to have derived the incorrect $34: 88$ ratio after having first used the correct ratio of $33 ; 4: 91 ; 30$ with an incorrect maximum lunar distance of 60 to obtain the incorrect maximum distance for Mercury of 166. Ptolemy may not have been perfect but I think we may safely exclude such a procedure from his modus operandi. In fairness to Hartner, he does not attribute this mathematical wizardry to Ptolemy himself (since he did not know of the relevant section of the Hypotheses when he wrote the article) but instead postulates a series of discrete events leading to the final result ([1964], pp. 268-269).

[^202]: ${ }^{11}$ In IV. 5 [6], he takes 1160 e.r. as given and then finds Mercury's nearest distance to be 174 e.r. Compare Proclus's more accurate 177;33 e.r. in the Hypotyposes, which is based on the exact ratio (HAMA, 2: 920).
 12 It is interesting that Proclus did not feel it necessary to modify the sun's nearest distance of 1160 e.r.; see HAMA, 2: 920.
 ${ }^{13}$ The values from the Almagest would give $1: 6.7$.
 ${ }^{14}$ But cf. ${ }^{\text {c }}$ Urdī, who seems to have been the first to do so (see Goldstein and Swerdlow [1970], especially pp. 143-145 and 148-151).
 ${ }^{15}$ This gives rise to the motion of the nodes of the moon; see II. 7 [3] and [7].
 ${ }^{16}$ Bīrjandī is here considering only the classical Ptolemaic models; for the non-Ptolemaic models of the 13th c . and later, one also has such things as the enclosing sphere (muhita). See II. 11 [4] and [5] and especially my commentary to II.11 [5]16-17.

[^203]: ${ }^{17}$ This, of course, is based on the parameters of the Almagest; from those of the Planetary Hypotheses we would have $293 / 4^{\mathrm{P}}$.
 ${ }^{18}$ This applies to modern historians as well. Even Goldstein and Swerdlow [1970], pp. 139, 156; who have done so much in recent years to unravel the mysteries of sizes and distances, failed to understand why ${ }^{\text {c Urdī }}$ used $281 / 2$ for Mercury's nearest distance and considered it an "error" that is "especially surprising since...the author presented an extensive and reasonably correct description of Mercury's model and its effect on relative distance." But of course calculating the nearest distance of the planet Mercury from the Earth is a completely different problem from finding the amount of space occupied by Mercury's orbs. We may be excused for saying that Swerdlow's error is especially surprising in view of his later analysis (both extensive and more than reasonably correct) of the importance of the nesting principle for Copernicus (see especially his [1973] and [1976]).
 19 The relevant parts of the work are translated and commented on by Goldstein and Swerdlow [1970], pp. 147-149, 156-159; the identification of the author as ${ }^{\text {c Urdī in }}$ is due to Saliba [1979].
 ${ }^{20}$ Because of slightly modified parameters, Goldstein and Swerdlow [1970], p. 159 have a reconstructed value of 1387 e.r.; Shīrāzī in the Nihäya IV.9, who presumably depends on ${ }^{\text {CU }}$ Urdī for his discussion of the problem, has 1388 e.r.
 ${ }^{21}$ See II. 2 [4].
 ${ }^{22}$ In his final comment on this chapter, Bīrjandï criticizes Shïrāzī for oversimplifying the problem and, relying on Kāshī's Sullam al-samä', shows how one can still fit Mercury and Venus between the sun and moon by using Kāshi's improved parameters for the distances of the two luminaries.

[^204]: ${ }^{23}$ A more exact calculation starting from the moon and using the actual space occupied by Mercury's orbs (see pp. 520-521) results in 683 e.r.
 ${ }^{24}$ Birjandī suggests that this has something to do with Țūsi's awareness of the problem of the discrepancy between Mercury's (i.e. the planet's) nearest distance and the nearest distance to its orbs (see previous commentary); I remain unconvinced.

[^205]: ${ }^{25}$ Values from the Plan. Hyp. occur on BM 90b-91b (trans., p. 8-9).
 ${ }^{26}$ Plan. Hyp.: 6221/2 e.r.
 ${ }^{27}$ The Planetary Hypotheses gives Venus's diameter as $(1 / 4+1 / 20)$ of the Earth's, which results in a ratio of $1: 3 \frac{1}{3}$. A ratio more in conformity with Ptolemy's own parameters, however, should be closer to $1: 3 \frac{1}{2}$, which is equivalent to Venus's diameter being $(1 / 4+1 / 30)$ of the Earth's; cf. Goldstein's commentary to Plan. Hyp., p. 12.
 ${ }^{28}$ Ptolemy has $1: 44$, which would be the result of using $(1 / 4+1 / 30)$ instead of $(1 / 4+1 / 20)$; this was pointed out by Goldstein (see previous footnote).

[^206]: ${ }^{29}$ Plan. Hyp., BM 91 (trans., p. 8) has (64 e.r. +166 e.r.) $\div 2=115$ e.r.
 ${ }^{30}$ Plan. Hyp., BM 91b (trans., p. 8) has $1: 27$.
 ${ }^{31}$ Plan. Hyp., BM 91b (trans., p. 9) has $1^{3}: 27^{3}=1: 19,683$.
 ${ }^{1}$ Plan. Hyp., BM 91b (trans., p. 8) has $11 / 7$ Earth diameters.
 ${ }^{2}$ Plan. Hyp., BM 91b (trans., p. 9) has $11 / 2$.

[^207]: ${ }^{7}$ Plan. Hyp., BM 90a (trans., p. 7); Ptolemy gives it as the ratio of $7: 5$.
 ${ }^{8}$ Plan. Hyp., BM 90a (trans., p. 7); this is no doubt based on a farthest distance for Jupiter of 14,189 rather than the 14,187 of the text; cf. footnote 4.
 ${ }^{9}$ Ptolemy has $(41 / 4+1 / 20)$ e.d. (Plan. Hyp., BM 91b [trans., p. 8]).
 ${ }^{10}$ Actual value based on Ṭūsi's diameter for Jupiter: 76.77; Plan. Hyp. has 791⁄2.
 ${ }^{1}$ Plan. Hyp., BM 91b (trans., p. 9) has "at least $41 / 2+1 / 20$ " $(=4 ; 33)$.
 ${ }^{2}$ Plan. Hyp., BM 91b (trans., p. 9) has "at least $941 / 6+1 / 8$."

[^208]: ${ }^{3}$ These values agree with those of Bīrjandī.
 ${ }^{4}$ Elements, ch. 22, pp. 84-85; cf. Swerdlow [1968], pp. 173, 175.
 ${ }^{5}$ Swerdlow [1968], pp. 189-190 only finds this scheme in Bar Hebraeus (d. 1286) and suggests that he may have been responsible for $i t$; $i t$ is more reasonable to assume that he got it from Naṣir al-Dīn.
 ${ }^{6}$ The defining relationship for the modern logarithmic stellar magnitude scale, whereby a brightness ratio of 100 is made to correlate exactly with a Hipparchan magnitude difference of 5, dates only from the last century; see Pannekoek [1961], pp. 444-447.
 ${ }^{7}$ Plan. Hyp., BM 90b-91a (trans., p. 8).
 ${ }^{8}$ Swerdlow [1968], pp. 209-210; the attribution of the text to ${ }^{\text {c U }}$ Urdi is due to Saliba [1979].
 ${ }^{9}$ Qänün, 3: 1312; on al-Khäzin's nonextant work, see GAS, 5: 299 and 6: 190.
 ${ }^{10}$ The same scale can be found in the Tafhim, p. 115, except that Bïrüni there uses Ptolemy's $1 / 20$ for first magnitude stars. In the Tafhim he does not mention al-Khāzin in connection with the scale and rather carelessly seems to be attributing it to Ptolemy's Manshürāt (Planetary Hypotheses); the sloppiness is corrected in the later Qänün.

[^209]: ${ }^{11}$ Swerdlow [1968], p. 183.
 ${ }^{12}$ See footnotes 27 and 28 to commentary IV. 5 [7-8].

