1. A Continuation of New Experiments phyprico Mechanical of e spring and weight of air. part.I.
2. Of y^{\prime} Atmospheres of consistent bodies.
3. I Continuation of Asper. physico = Mechan. He part. 2.

A
 CONTINVATION OF
 Nevv Experiments
 Pby/ico-Mechanical,

Touching the Spring and VVeight of the AI R, and their Effects.

$$
T H E I . P A R T .
$$

Written by way of Letter, to the Right Honourable the Lord Clifford and Dungarvan.

VVhereto is annext a flort Difcourfe
Of the Atmospheres of Cons. fítent Bodies.

By the Honourable ROBERT BOYLE, Fellow of the Royal Society.
OXFORD,

Printed by Henry Hall Printer to the Univerfity, for Richard Davis, in the Year 1669.

(in)

The PREFACE.

HAving at the beginning of the Treatife, where: of This is a Continuation, acquainted my Readers with feveral things that belong in common as well to the following Experiments, as to thore There publifh'd; it will nor be neceffary for me to trouble the Reader with a repetition of what he may have met with there already; nor to acquaint him in this Addrefs with any Other particulars then Thofe that concern the Experiments I am now about to prefent him.

I doubenot butit will beremembred by fome, that I feem'd in the above mentioned Book to have promis'd a Second part of it, or a large Appendix to it: but Intio mations of that kind do many times refpect onely the Thing it felf, leaving the Giver of them free in point of Time: and I wanted not fufficient inducements to delay a while to perform my Promife, if I made any. Ihad indeed, partly before the Book already referr'd to came from the Prefs, and partly fometime after, made divers other Tryals in order to a Supplement of it: but being oblig'd to make fome Journeys and Removes, which allowed me no Opportunity to profecute the Experiments, it had made no very great Progres
180956

The Preface.

in my Defign, before the convening of an illuffrious Affembly of V irtuof f, which has fince made it felf fufficiently known under the Title of the Royal Society? And having then thought fit to make a Prefent, to perfons fo like to imploy it well, of the great Engine, I had till then made ufe of in the Phyfico Mechanical Experiments about the Air; and being unable afterwards to procure another fogood, I applied my Stua dies to other Subjects, and gave over for a great while the care of making more Experiments of that kind:and the rather, becaulethat finding by the very favourable reception Thofe I had publiffid had met with among the Curious in feveral parts of Europe, that they were like to be Confidered and Perufed; I thought I might fafely leave the Profecution of them to Others, who would probably come more Frefli and untired to fuch an Exercife oftheir Curiofity.

But obferving, that the great Difficulties men met with in making an Engine, that vyould exhauft and keep out a Body fo fubtle as the Air, and fo ponderous as the Atmofphere, (befides perhaps fome other im. pediments) vvere fuch, that in five or fix year I could hear but of one or two Engines that vvere brought to be fit to Work, and of but one or two Nevv Experiments, that had been added by the Ingenious O wners of Them; 1 began to liften to the Perfiwafions of Thofe that fuggefled, That unleffe I refum'd this work

The Preface.

my felf, there would fcarce be much done in it. And therefore having (by the help of Other work-men then Thofe I had unfuccesfully imploy'd before) procured a new Engine leffe than the Other, and differing in fome Circumftances from it, we did (hough not withourtrouble enough) bring it to work as well as the Other, and, as to fome purpofes, better. And having once got This, I made haft to try with itthofe Experiments, that belonged to the defign'd Continuation, and do now make up this Book.

1 hope, that to luch Readers as the following Papers are principally intended for, I fhall not need to make an Apology either for the Plaineneffe of my Style, (wherein I aim'd at Perficuity, not Eloquence,) or for my not having adorn'd or fufft this Treatife with Authorities or Sentences of Claffick Authors, which I had neither the leifure toleek, nor thought 1 had any great need to imploy, though it had been far more eafie then perhaps it would have proved, to borrow from them things that would have been very proper to a Treatife where my main Defign was, to make out by practicable Experiments divers things among other that have not hitherto been advantaged by that way of Probation, nor perchance thought very capable of ir; fo that I fhall have obtained a great part of what I aim'd at, if I have fhewn, that thofe very Phanomena, which the School-Philofophers, and their party urge, and

The Preface.

and fometimes triumph in, as clear Proofs of Natures abhorrency of a Vacuum, may be not onely explicated, buractually exhibited, fome by che Graroity, and fome alfo by the bare Spring of the Air. Which Latter I now mention as a diftinct thing from the other, not that I think $i t$ is actually feparated in thefe Tryals, (fince the Weight of the upper parts of the Air does, if I may fo fpeak, bend the Springs of the lower,) but becaufe that having in the already publifhed Experiments, andeven in fome of Thefe, manifefted the Efficacy of the Airs gravitation on Bodies, I thought fit to make it my Task in many of Thefe, to thew, that moft of the fame chings that are done by the Preffure of all the fuperincumbent Atmofphere acting as a V Veight, may belikewife performed by the Preflure of a fmall portion of Air, included indeed (but without any new Compreflion) acting as a Spring.

The prefent firft part of our Continuation might I confeffe have been not inconveniently divided into two parts. For firft it contains fome Experiments that are already related in the Pristed book, though they be here fo repeated, as to be confirmed, illuftrated, or improved, by being reiterated either with better \ln ftruments, or with better Succeffe than when they were made in my large Receiver, which holding (if I mir, remember not) about eight Gallons, could not eafily be fo well exhaufted as thole fmall Receivers I often

The Preface.

fince imployed. And Jecondly, the other and far more numerous fort of Experiments, related in this Firft part, are new and fuperadded. And yet I forbearto affign each of thefe two forts a place by it felf, becaure I could not conveniently fet down my Tryals other. wile then as they came to hand among my Notes; and I confidered, that in divers places the New ones and the Old ones being mentioned together, might ferve by their neighbourhood to illuftrate or confirm each other. And however at another Edition of our Continuation it will be a very eafie task, if it appear to be a requifite one, to give the improvements of the former Experiments, and the fuperadded new ones, giftinct Titles and Places.
As for the Mechanical contrivances I imployed in making the following Experiments, though moft of them have had the good fortune to meet with an approbation, and fome of them with more than that, from nomean Virtuof and Mathematicians; yet as I expect that Critical Readers will judg, that in fome Experiments more artificial Inftruments might have been made ufe of, fol hope that they will not look upon thofe I was reduced to imploy, as alwayes the beft that ever I could have directed, fince it fufficiently appears by diverfe paffages of the following Expeo siments, that they were not made at London, but in places where the want of a Glafs.houfe and other ac-

The Preface.

accommodations reduced me to make my Tryals not after the beft manner I could devife, but in the beft way 1 could then and there put in practice. And let me add on this occafion to what have elfewhere faid to the like purpofe, that tis both a great difcouragementto many ingenious men, and no fmall hinderance to the advancement of Natural Philofophy, that lome nice Criticksare fo cenforious in exacting from Attempters the very beft Contrivances, and many that would be attempters ftand too much in awe of fuch mens judgments; for though in very nice Experiments the exactneffe of inftruments is not onely defireable and ufeful, but in fome cafes neceffary; yet in many others, where the production of a new Pbanomenon is thething aimed at, they are to be looked upon as Be : nefactors to the Hiftory of Nature, that performe the fubftantial part of a Difcovery, though they do it not by the mof eafie and compendious wayes devifeable, or attain not to the utmoft precifenefs that might be wifhed, and is poffible. For fuch performances, notwithftanding their being fhort of perfection, make difcoveries to the World of new and ufeful things; which though others, that are more lucky at Contrivances, and have better accommodations, may compaffe by more compendious wayes, or with greater precileneffe; yet fill the World is beholding to the firft Dicovery for che improvements of it, as we are to Ar .

The Preface.

chimedes for the firft devifing a way, to find by weigh ing Bodies in Water, how much Gold or how much Silver a mixture of thofe Metals does contain, though (if Hiftorians have not injured that great man in the relation) he went a more laborious and leffe accurate way to work than modern Hydroftatians, who (as I elfewhere fhew) may perform the fame thing by a far better way, which yer probably we fhould not have thought of, if that attributed to Archimedes had not preceded, and afforded us a fundamental Notion. And that the not being fo dexterous at coneriving the wayes to effect a thing, is no fure argument that a man has not a true and folid knowledge of it, we may eafily learn from Enclid, vvhom our Geometricio ans generally and juftly acknowledge to be their Mafter, and to have enriched the World with many ufe. ful Truths, and folidiy demonftrated all his Propofitions, though divers of his modern Commentators have found out more compendious wayes for effecting feveral of his Problems, as vvell as of demonftrating divers of his Theorems, efpecially fince the excellent invention of/pecious Algebra, by whofe help that accurate Mathematician Dr. Wallis has, befides other Specimens upon intricate Propofitions, clearly demonftrated the ten firft and for the moft part perplexing Theorems of the fecond Element, in litle more than as few lines. In fumme, in Experimente

The Preface.

that are very nice, accurate Contrivances and inftruments are induftrioufly to be fought, and highly to be valued, and even in fuch other Experiments as are frequently to be reiterated the moft commodious and eafie ways of performing them are very defireable, but thofe practical Compendiums, though very welcome to them that would repeat Tryals, are not fo important to the generality of Readers, as being but ufeful to fave pains, not neceffary to difcover Truths; to vwhich men may oftentimes do good fervice, with. out any peculiar gift at Mechanical Contrivances, fince in moft cales They may be lookt upon as promoters of Natural Philofophy, who devife Experiments fit to difcover a new Truth if the attempt furceeds, and propofe wayes of bringing it to Trial, which though perhaps not the moft skilful or expeditious, are yet fufficient and practicable, the increale of Phyficalknowledg being the product of the things themfelves that are difcovered, whatever were the inftruments men imploied about mak ing the Difcoveries.

As for the Cuts, I endeavoured to make their Relations, and Defrriptions of moft of the Experiments, fo full and plain, as to need as few Schemes as might be to illuftrate them: but though I hope, that they who either were verft in fuch kind of Studies, or haveany peculiar facility of imagining, would well enough conceive my meaning onely by words; yet left my
own

The Preface.

own âcuftomance to devile fuch Trials, and to fee thele made, flould make me think them more eafily incelligible than moft Readers will find them, I advifed with a Learned friend or two, fit to be confulted on fuch an occafion, what Experiments were requifite to be illuftrated with Diagrams, and to fuch I took care they fhould be annexed. Onely I forbore to adde to the Figure of each Inftrument Alphabetical explications of its parts, as judging that troublefome work leffe eafie for me, than it would be for fuch Readers as this Tract is defigned for, co underftand what is delivered by the help of a lide Attention in conferring the Schemes of the Inftruments with the Verbal accounts of the Experiments they relate to. But there is one Particular about the Curs may require both to be given notice of and excufed: which is, that having occafion to alter the method of my Experiments, when I began to forefee that I Thould be obliged to referve divers things for another opportunity; aud being my felfabfent from the Graver for a good part of the time he was at work, fome of the Cuts were misplaced, and not graven in the Plates, in which, according to the prefent feries of Experiments, they might moft properly have been put.

But perhaps 1 may (for 1 am not fure of it) more need the Readers pardon for (unknowingly) troubling him in this Continuation with fome paflages,

$$
\not * x 2 \text { that }
$$

The Preface.
that he may have already met with in the Bock it re* fers to: which though I had not read over for fome years before, I chanced not to have at hand, when dio vers of the following Papers were writen; and though afterwards I recovered it, yet the indilpofition of my Eyes made me think it unfit rather to tire them by reading over the whole Book, than to truft to the Readers good Nature (in cale I fhould need it) for the pardon of a few unintended Repetitions.

I doube not, many Readers will be inquifitive to know, why this Treatife is ftlled the Firft part of a Continuation: To give thefe fome account of the Title, I mult putthem in mind, that in the already publihed Experiments I intimated, that two lorts of Tryals might be made by the help of our Engine: the one, fuch as needed but a fhort ablence of the Air, and the other fuch as required that the Air fhould not onely be withdrawn for a vybile, but kept out for a confiderable time, from the Bodies vvhereupon the trial is made. Of the former fort of Experiments are thefe this prefenc Book does (as vvell as that heretofore publifhed did) confift of, And though I have been fo much called upon, and troubled for certain Writings, where of I had made fuch mention in thofe that paft the Preffe, as fome Readers interpreted to be an engagement, that it made methink fit, when I ratisfied their demands, to be thence forward very fhy

The Preface.

of making the Publick any promife; yet I was indu。 ced not to aler the Ticle of this Treatife, parcly becaufe it may intimate to the Curious, that there are yet a great many things to be performed by our Engine, befides the productions of it! have hitherto prefented them, and partly becaufe, though 1 fill perfift in my former averfineffe to make promifes to the World; yet tis very poffible, that if God grant me life and healih, I may in due time prefent my Friends with what may ferve for a Second part of our Continuation, confifting of Experiments that require a longer abfence of the Air from the bodies to be wrought upon: and I fhall think, if this Firft part prove not unaccepta. ble to the Curious, that the Latter will be not unwel. come to them, as being defigned to confift of Sets of Experiments, which by their being moft of them New, and fome of them odd enough, may perchance afford fome not defpicable hints to the Speculative. Butche very nature of thele Experiments, requiring that fome of them fhould be long in making, my Friends could not reafonably expect a quick difpatch of a work of this kind, though I Thould not meet for the future with fuch intervening impediments, as have hitherto difturbed it, (as want of inftruments, of health, of leifure, and of the liberty, which is fo requifite in this cafe, of flaying long enough in one place:) notwithftanding all which difficulties I have by

The Preface.

fratches been able through God's bleffing to make forty or fifty of defigned Tryals, being fuch as require the leaft of time to be performed in, though I now think not fitto mention any of them, as well for o. ther reafons, as becaule though they be made by the help of our Engine, yet they require a peculiar appa. ratus of loftruments, very differing from tho e e we have hitherto mentioned, and not to be intelligibly defcribed without many words and divers figures. In the mean time, left the induftrious ihould be difcouraged by a furmile, that there is nothing left for them to do by the help of our Engine, at leaft as to the firft fort of Experiments, I hallinform them, that 1 had thoughts to have added divers others of that kind to thefe that now come forch, and particularly two Clufters of Pneumatical trials, the one about Refpiration, and the other about Fire and Flame; but feveral of my Notes and Obfervations being at prefent out of the way, my having neicher liealth nor leifure to repair thefe inconveniences, and profecute Tryals of that fort with any affiduity, makes me chufe rather to referve them for an Appendix, than to make thofe that now come abroad fay forthem. Which will not (I Prefume) be the more dilliked, becaufe by taking this courfel may, in delivering of the phanomena of Nature, imitate $\mathrm{Na}_{\text {a- }}$

Seneca
 ture her felf, of whom tis the Roman Philofophers faying, Rerum Natura Jacra Jua non fimul tradit.

Some Advertifements toucbing the Engine it felf.

THough the Engine already publifbed, and that which I imployed in the following Tryals, have the fame Ules, \& agree both in the ground and the main part of their Conftruction, yet they differ in fome particulars fit to be taken notice of: for after I had prefented the great Engine I formerly made ufe of to the Royal Society, partly the difficulty of procuring fuch another of that Size and Make, and partly the defire of making fome improvements invited me to make fome alterations in the Structure; fome of them fuggefted by others, (erpecially by the Ingenious M : Hook, and fome of them that I added my felf, as finding that without them I could not do my work. Wherefore it will not be amifs to point at the chief differences between the former and the latter Engine, and to intimate fome of the conveniences and: inconveniences that attend them.

As for the Conftruction of the fecond Engine it felf, fince tis prefumed, that the Readers of this Book have already perufed That of which this is a Continuation, and underftood the contrivance of the Inftrument that belongs to it, it was prefumed fufficient to exhibit in the firt Plate the delineation of the entire Engine ready to be fet at work; and in the fecond, the figures of the feveral Metalline parts that compore it, before they are fet together. For though thefe have not verbal and Alphabetical explications annexed to them, yet the fight of them may fuffice to make thofe that have an imagination fitted to conceive Me chanical contrivances, andare acquainted-with the former Engine, comprehend the ftructure of this; which, Alphabetical explications would fcarce make fuch Readers do, as are not fo qualified: onely two things there are, which being of fome difficulty, as well as of importance to be conceived, I fhall here particularly

Some Advertifements touching the Engine it Jelf.

larly tak notice of. The firft of which is, that in regard the Suck er is to be alwayes under water, and the perforation $p q$, that paffes perpendicularly quite through it, and ferves together with the fickr s for a Valve, is to be ftopt at the bottom of the Cy. linder, as at $n o$, when tis full of water, twas requifite to make the fick $r p$ of a confiderable length, as two or three foot: The other and chief thing is that in the fecond Plate, the Pipe $A B$, whofe end B bends upward, is made to lie in a gruve or gutcer purpofely made in the flat wooden Board $c d e f$, on which the Receivers are to reft; which fquare board I caufed to be overlaid with very good Cement, on which I took care to apply a ftrong plate of iron, of the bignefs and fhape of the Board, leaving one ly a fmall hole for the erected part of the Pipe to come out at, which I added, not onely to keep the wooden Board the better from warping, but becaufe I knew (what will perhaps be thought Atrange), that the preffure of the Atmofphere on one fide of the Boord, when there is no preffure or but very litle on the other fide, will enable many Aerial particles to ftrain chrough the very wood, though of a good thicknefs, and imbued with oyl to choak the Pores; to this iron-plate we fometimes fit a Lip turning up about it, to hinder the Water that on fome occafions will come from the Receiver from falling on the Room; (and to add that upon the by) though the Stop.cock $g h i k$, that belongs to the hitherto mentioned Pipe, may be inferted at I, into the Barrel or Cylinder Imno by the help of Soder, yet we chofe as a much better way to have the Branch I. of the Stop-cock madelike a Screw, which being once firmly fcrewed in to the Barrel, is not apt to be broken off, and may be more eafily mended if any thing happen to be out of order, which the Engine is che mott liable to be in or about the Pipe, partly becaufe it may fall out, (though but very rarely if due care be but taken, that the Air will infinuate it felf between the wooden Board and the iron-plate, and fo get up (where the Pipe bends upwards) into the cavity of the Receiver, and partly becaule the Pipe being for a jutt reafon made
mide but fleader, and the part of it that looks upwards very fhort, it happens not very unfrequently, that when we imploy Receivers with narrow Orifices, where the Cement muft lie clofe to the opening of the Pipe, it happens, I fay, that the Cement, efpecially if it be much foftned by heat, is fuckt (as they fpeak) into the Pipe, and fochoaks it up; or elfe chat fome part of the body included in the Receiver is drawn to the orifice of the Pipe, and lying upon ic as a Cover hinders the free paffage of the Air into the Barrel, againft which inconvenience, to add that upon the by, we ufe among to orher Expedients to place juft about the Orifice of the Pipe a finall cover of Tin, Qike that of a litie Box, which covers it at the top to hinder any thing from lying immediately upon the Pipe, and has a fmall opening or two in the fide, to give the Air of the Receiver free accefs to the Pipe,

The fquare and hollow wooden part of this Engine, difcernable in the firt plate, is fo made, that it may contain not onely the Cylinder, but fo much water, as will alwaies keep the Cylinder quite cover'd with that liquor; by which means the Sucker, lying \& playing alwaies under water, is kept fill turgid and plump, and the water being ready at hand to fill up any litle interval or chink, that may happen to be between the Sucker and the infide of the Barrel, does together with the newly mentioned plumpnefs of the Sucker very much conduce to the exact keeping out of the Air. But this advantage is not without fome inconvenience, for divers times, if great care be not taken in turning the Stop-cock, the water will be impell'd into the Receiver, and much prejudice fundry Experiments, when the included bodies are fuch that may be fooiled or impaired (at leaft for the prefent) by that liquor. The fmalnefs of our Cylinder is a convenience in regard of the facility it affords to make and difpatch thofe many Experiments that may be performed in finall Receivers, though it make thofe more troublefome and tedious, that require the Exhaultion of large and capacious ones.

The flat Plate (mentioned a litleabove) has this great conveA mency

Some Advertifements touching the Engine it felf.

 niency in many Experiments, that the Receiver needs no Stop. cock of its own; for fuch a veffel being made $3 l l$ of an entire piece of Gla s, and whelmed on upon the Plate well covered with Ce ment, can better keep out the Air, than if chere were a fop-cock, at which the Air does but too frequently get in: but befides that in divers Experments fuch Receivers do ufally require to be wide mouthed, whereby a greater compals is to be fenced againit the ingrefs of the Air, feveral Experiments cannot fo convenientIy be tryed in this fort of Receivers.But becaufe, that though this fecond form of our Engine hath as to feveral purpofes its $\beta_{\text {eculiar conveniences and advantages, }}$ yet fome Virtuofi may be furnifhed with the other already, and fome may conceive it the more clearly of the two, or may judg it preferable for their particular defigns; I fhall here intimate, that for moft of the Experiments, if not all, that follow, in this Treatife, they may make ufe of, or at leaft make a fhift with the fir! Engine, with a very few alterations; whereof the chief is to be this, That to the upper part of the great Cylinder, on the fide oppofice to the iron-rack, there is to be faftned fuch a fquare Board, and fuitable iron plate, as is uled in the fecond Engine, betwixt which Board and Plate is to be lodged fuch a Pipe as was lately deforibed, being either a continuation of the outward branch of the Stop cock, or elfe firmly faftned to it by fodering or fcrewing: for by this means, when the Sucker is depreft, the Air will through the Cavity of this Pipe, and the Stop-cock whereto it is annexed, pafs freely by virtue of its own Spring out of the Receiver into the exhaufted Cylinder; though this, and the Sucker that moves in it, being not kept as in the fecond form of the Engine under water, the greater care will be needed to keep the Air from infnuating it felf between them. A good Cement, to faften the Receivers to the often mentioned Plate of Iron, is a thing of no fmall moment in making the following Experiments, of which we imploy differing Compofitions for differing purpofes, fome of which are not neceffary to be mentio-

Some Advertifements touching the Engine it felf.

 ned in that part of this work that now comes forth; but that which in almoft all the following Tryals we chiefly make ufe of, is a well wrought mixture of (yellow) Bees wax and Turpentine, which compofition as it ferves better than moft others to keep out the Air, fo it has the conveniency, which is no fmall one, of feldome needing to be heated, and feldomer to be much fo; efpecially if we imploy a litle more Turpentine in Winter than in Summer, in the former of which feafons, as much, or very near as much of that ingredient as of the Wax does well, for as in Summer a mixture of chree parts of Wax to about two of Tarpentine is more proper.

Errata.

By an overfight a Bort Paragraph was omitted in the 14. page, importing, ibat the fecond figure of the 4th. Plate was defignd onely to make fome reprefentation of the difference that would appear, if inftead of making the 4. Experiment with Water, as in the foregoing figure, the Tryal was made with Quick.filver.

Solikemife in pag. 104 .lin. 4 . and 8 . for 14 of the 12 Book read 14 of the 11 . pag.i6.1, 9. read Cylinders of equal heights are to one another as their Bates.

The Reader is defired to perfect with his Pen the marginal Notes referring to the Plates as being defective, and alfo to infert fuch others as were wholly omitted, according to the following Directions; which could not otherwite be conveniently fupplied, without putting a ftop to the Prefs.

In the Margent of Page the \qquad
3d. read See Plate the 111. Figure the 1.
14. I. See plate the 1 V . figure the 2.
30. r. See plate the 111. figzure the 2 .
33. 1. plate the 1II. fig. the 2.
34. See plate the 111, figure the 3.
43. . See plate the V. figure the 1 .
54. r. See plate the 111. figure the 4.
73. againft the 16 . line, infert - See the rbole Barofcope detineated Plate the V.fis the 2.
87. againft the laft line but two, infert-See plate the V. figure the 3.

88, againtt the 6 . line infert-See plate the V. figure the 4 .
107. againft the 28. line, infert Seeplate the V1. figure the !.
111. againft the 20. line, infert See plate the V1.fig. the 2.
113. r. Sce the 2. figure of the 7. plate: (adding thereto) which though made primarity
for the 39. Experiment, may facilitate the conceiving of This.
120. againt the 17. line, infert See plate the VI. figure the 3.
122. againt the 9 . line, infert See plate the V1. figure the 4.
123. againft the 19 . line, infert Eee plate the WI. figure the 5 .
125. againft the 14. line, infert See plate the $V 1$. figure the 6 .
130. read See plate the VI. fig. the 7.
132. r. See plate the V11. figo the 1 .
136. againft the 8. line, infert See plate the V1T. figure the 3.
139. read See plate the VII. Fgure the 4.
144. r. See plate the V1II. fig. the 1.

I55. r. See plate the $1 V$. fig. the 3 .
$\mathbf{1 6 1 . ~ r . ~ S e e ~ p l a t e ~ t h e ~ V I I I . ~ F i g . ~ t h e ~ 2 . ~ a n d ~} 4$.
165. againt the 21 . line, infert See plate the VIII. fig.the 4.
and againft the laft line fave one, infert See plate the VIII. fig. the 3.
166. r. See plate the VIII. fig. the 5 .
174. Within 3 lines of the bottom, infert See plate the IV. figure the 4 .

年

 A

 A

 CONTINVATION

 CONTINVATION OF OF Nevv Experiments Phyfico-Mechanical, Touching the Spring and VVeight of the $A I R$, and their Effects.
 THE I. PART.

Written by way of Letter, to the Right Honourable the Lord Clifford and Dungarvan.TAVK1T: KOO zomomingex vyot/

\qquad

My Dear Lord,

SInce I have already in proper places of the Pby ico. Mechanical Experiments about the Air, which I ford merly prefented your Lordfhip, giv'n you a fuffis cient account of feveral things touching the Scope, Occafion, \&c. of my Attempt; it will not be neceffary to make a folemn Preface to the enfuing Experiments: And cherefore prefuming upon an acceptance, which the favourable Entertainment, which your Lordfhip, as well as the Publick, was pleas'd to give my firft Tryals of this kind, encourages me to expect, 1 fhall, without troubling you with any further Preface, immediately fall upon a Continuation; efpecially fince Your Lordfhip will perhaps wonder, that you have not receiv'd it much fooner, as, indeed, you fhould have done, if I had been befriended with Accom. modations and Leifure.

2 A Continuation of New Experiments

EXPERIMENTI.

Abont the raifing of Mercury to agreat beight in an open Iube, by the fpring of a little included Air.

DIvers ways have been propofed to thew both the Preffure of the Air, as the Atmofphere is a heavy Body, and that the Air, efpecially when comprefs ${ }^{2} \mathrm{~d}$ by outward force, has a Spring that enables it to fultain or reffet a preffore equal to that of as much of the Atmofphere, as can come to bear againft it, and alfo to fhew, that fuch Air as we live in, and is not condens ${ }^{3} d$ by any humane or adventitious force, has notonely a refifting Spring, but an active Spring (if I may fo (peak) in fome meafure, as when it diftends a flaccid or breaks a full-blown Bladder in our exhaufted Receiver.

But obferving that there feems to want a vifible Experiment to convince thofe that are not fo eafily fatisfy ${ }^{\text {d }}$ with Reafons, though drawn by juft confequence from Phyfical or Mechanical. Truths, or even from other Experiments, taking notice, I fay, hereof, I made the following Experiments; not fo much to prevent or remove a fruple no better grounded, as to have a new way of making an Eftimate by fome known and determinate meafure of the force of the bare Spring of the Air, both in its na? tural ftate, (as tis faid to be when not comprefs'd nor rarify'd, more then the free Air we breath, and according to its feveral degrees of Expanfion.

Wetook then a Viol, with a neck not very large, and having fill'd about a fourth part of it with Quick-filver, we fo erected and faftned a long and flender Pipe of Glafs, open at both ends in the neck of the Viol, with hard fealing wax, that the lower end seach'dalmoft to the botcom of the Quick-filver, and the upper

Towching the pring and weight of the Air.

more then a yard above the viol. Then having biown in a little air, to try whether the Infrumeut did not leak, (which tis very difficult to keep fuch inftruments from doing,) we conveigh'd it into a long and flender Receiver, fit for fuch an ufe, and having see plate withdrawn the Air as well as we could, we found according to our expectation, that the Spring of the Air, included in the viol, im- Figure pell'dup the Quick- filver into the erected Pipe, to the height of 27 . inches, and having fuffer'd the External air co return into the Receiver, the Quick-filver fubfided in the Tube, fometimes almoft, and fomerimes quite as low as the ftagnant Quick-filver in the viol.

For the better illuftration of this Experiment, thus fummarily related, but with the like fuccefs, as to the main, fevs ral times repeated, we will fubjoyn the following Obfervations and Notes.
I. That we try'd this Experiment feveral times, and the laft time in the prefence of the famous Savilian Geometer, Dr wallis, who law the Quick-filver in the Pipe impelld up 1027 . inches, being one himfelf of the meafurers; and though at other times we found it to be much about the fame heighs with the laft, yet once it feem'd plainly to be a pretty deal higher; which yet we fpecifid not, becaufe a mifchance took off the mark, which we had made to meafure she height by.
II. Having once, to try the ftanchneffe of the viol, blown in fo much Air, (without taking out any thing as we ule to do in the like cafe) that the Air in the cavity of the viol raif'd and kept the Quickfilver 3 -inches high in che Pipe, when we went on with the reft of the Experiment, according to the way above defcrib'd, we found, by empeying the Receiver of ait, that we were able to raife the Ouickfilver in the Caneizo.inches, on fomewhat more above that in the viol.
III. Somecimes it may happen, that the Mercury, when taken very foon out of the Receiver, will not appear to have lubfided to its firt lowneffe, which perhaps 'twill not fink to in fome While after: which is not to be wondred at, fince in fuch a Recei-

A Continuation of Neto Experiments

ver, which contains but little air, the heat of the Cement and the iron, imploy'd to melt it quite round the Receiver, may impart a litcle warmth to the air in the viol, which will after return to its former Temper. But this Accident is neither conftant nor neceflary to the Experiment.
IV. Tis very remarkable, that if the Receiver be ficly ftopt, and flender enough; upon the turning of the Stop-cock, to let out the air at the firft exaction, the Mercury will be impell'd up by the foring of the Air in the viol, fuddenly flying abroad or Aretching it felf, fo that it will be raif' d feveral inches above the height it will reft at afterwards, and will make feveral vibrations up and down before it come to fettle, juit as the Mercury does in the Torvicellian Experiment, (the bare preffure of the little air doing here to the Mercury, what the weight of the Atmofphere does there,) and (uch motions of the Mercury will be made four or five fubfequent Exuctions, upon the withdrawing of the air in the Receiver. But as thefe grow leffer and leffer, as the Spring of the included Air grows fainter, fo none of them is any thing near fo confiderable as the vibrations made upon the firf Suck.
V. Agreeablehereunio we obferv'd, that at the firft ExuEtion, when the Spring of the included Air was yet ftrong, the Mercury would be raif'd by our Eftimate above half, if not ${ }_{3}^{2}$ of the whole height, whereto 'twill at length be brought, (though that mutt be according to the bignes of the Receiver, and other circumftances,) and the fublequent Exuctions do ftill adde lefs and lefs proportions of height to the Mercurial Cylinder, and chat for two Reafons: the one, becaule the more there is of Mercury impell'd into the Tube, the greater weight of Mercury preffes upon the included air: and the other, becaufe the air has fo much the more room in the viol to expand it felf, whereby its fpring muft be proportionably weakned.

Laftly, when we made mott of thefe Tryals, I had the curiofity to obferve the height of the Mercury in a good Barometer, and thereby found, that the Air was then but light; its greateft

Toucbing the fpring and wieight of the Air.

\square height reaching but to 29 inches, and $\frac{3}{}$, and its height foon after theTryal, whereof D^{\star} Wallis was a witneffe, amounting but to 29, inches.
To make an eftimate of the Quancity of Air, that had raifd the Quickfilver to 27 inches, we took the viol that was imploy'd about this Experiments, and having counterpois'd it, whilf it was empty, we afterward fill'd it with water, and found the Liquor to weigh 5. Ounces, 2. Drachms, and about 20. Grains; and then having pour'd out the watert, till it was funk to a mark' which we had made on the outfide of the Glafs, to take notice how high the Quick-filver reach'd that we pour'd in: and laftly, weighing the remaining water, equal in bulk to the Quick-filver, we tound it to amount to i. Ounce, 2. Drachms, 14. Grains, fo that the air, that had rais'd d pt the Mercury, pofferef'd (betore its Expanfion) in the viol the place but of 4 . ounces, and a few odde grains, $3 . e$. of about ; of a Pint of water. And as for the Pipe alfo, imploy'd about the fame Experiment, we found its Cavity to have about $\frac{1}{8}$ part of an Inch in Diameter.
It was one of the Ufes I hop'd to make of this Experiment, that by comparing the feveral degrees of Expanfion of air included in the viol, with the refpective and increafing heights of the Mercury that was impell'd up into the Pipe, fome eftimate might be made of the force of the Spring of the Air weaken'd by feveral degrees of Dilaration; buif for want of conveniences I forbore to venter upon fuch nice Obfervations, efpecially becaufe the Preffure of the dilated air, that remains in the Receiver, and is exter. nal to the air included in the viol, muft alfo be taken into confididration.
Anocher Ufe of our Experiment may be this: That it moy fupply us with a confiderable Argument againft fome Learned men, wha attribute the fufpenfion of the Quick.filver in the Torricellian Experiment to a certain rarify'd matter, which fome call a Funiculus, and whereto others give other names; which rarify'dfubfance they fuppofe to draw up and futtain the Quick-fil- ver, in compliance of Natures abhorrency of a Vacuum: For in the Experiment under confideration, the Quick filver being not onely futtain'd at the height of 27 inches in the Tube, but elevated thither; if the caufe of This be demanded, it will be anfwer' d, according to their hypothefis, that the air in the Receiver, external to that of the Viol, being, by reafon of the fucking out of fome of it by the Pump, more rarified than that in the viol, it draws up to it the Quick-filver in the Cane, and the more it is rad rify'd, the higher it is enabl'd to draw it. But then I demand, wheace it comes to pafs, thar though we can, by perfevering to pump, more and more rarifie the little remaining air, or the Aëreal fubefance in the Receiver, That in the viol not appearing to be alfo rarified, yet the air in the Receiver does not by virtue of its fuperadded rarefaction, whereby it exceeds that of the air in the viol, pull up the Quick- filver to a greater beight in the Tube then 27. inches: For, that this is not the greatert height, to which Mercury may be raif'd by this rarefy'd fubftance, our Adverfaries muft not deny, who tell us, that in the Torricellian Experiment it fuffains a Mercurial Cylinder of 29. inches, and $\frac{1}{2}$, and can raife a Cylinder of 29 inches to $29 \frac{1}{2}$, or higher, in cafe that the Cylinder be made to vibrate up and down in the Tube.
Sre the lat- And as for thofe, that will in fuch cafes, as our Experiment ter part of fuggefts, have recourfe onely to that which they call the Fuga
the follow. the follum.
ing Expe
Eacui, they ing Expe. filver remains the fame, its afcenfion in the Tube will not be a-
riment. vailable for what they think to be Natures purpofe; for, whether it reach higher or lower in the Tube, it will adxquately fill no more face in one pofture, or in one figure, then in another, in what part foever of the cavity of the Receiver it be plac'd.

> Touching the fpring and weigbt of the dir.

EXPERIMENT II.

Shewing, that much included Air raifd Mercury in an open Tube, no higher than the weight of the Atmofphere may in a Barofope.

1N the former Experiment, by reafon of the fmalnefs of the viol, that was employ'd about it, there was folitcle Air included, that the Expanfion of it fo far, as was requifite to impell up the Mercury in the Pipe to the above mentioned height of 27 . inches, may be probably fufpected to have very much weaken'd its Spring, and therefore it may be thought, that (efpecially confidering the great force that leveral of our Experiments manifeft imprifon'd air to have,) if there were a greater Quanticy of air included in the veffel, fo that the Expanfion, fufficient to raife the Mercury to the former height, would not need to be confiderable, (becaufe that the capacity of the Tube being but the fame, the whole included air will be fo much the leffe expanded, by how: much the more of it there is,) it feem'd probable that the Spring of the Air, being butalittle weakned by fo fmall a dilatation, would remain ftrong enough to raife a much taller Cylinder of Mercury in the Tube, and perhaps make the Liquor run over into the Receiver.

But though this Suggeftior feem probable enough, yet when I confider'd, that the weight of the Atmofphere is able to fuftain a Cylinder of Quick-filver but of 30 inches, or thereabouts, (in perpendicular height, and confequently that the preffure of fuch a Mercurial Cylinder is equivalent to that of an Atmofpherical Cylinder of the fame bore; 'iwas not difficult to conclude, that fince the Air in a viol, before the mouth is clos'd, has a Spring but equal in ftrength to the weight of the Atmofpherical Pillar that leans upon it, (for if the Spring were too ftrong for the weight that leans on it, fome of the air would get out of the viol,) a grea. aer viol, and confequently a greater quantity of included air would

8

A Continuation of new Experiments

not be able by its fpring to elevate and fuftain a longer Cylinder of Mercury, than the weight of the Atmofphere is able so do; nor indeed altogether fo much, becaule of fome little (though but littie) Diminution of the Spring by fome (though but a fmall) expanfion, that the included Air fuffers, by fucceeding in the place of the Mercury, that is impell'd up.

To clear cherefore this matter by an Experiment, we took a ftrong glafs-bottle, capable of holding about a Quart of Liquor, and having put into it a convenient quanticy of Quick filver, we erected in it a very long and flender pipe of Glafs, open at both the ends, and reaching at the lower end beneath the furface of the ftagnant Mercury, and having faften'd this pipe in the neck of the Bottle, by choaking up that neck very accurately with good Cement, that none of the included air might be able to get out, we conveigh'd the whole into a Receiver, like that imploy'd about the I. Experiment in fhape, but much larger, that it might beable to contain fo great a veffel; and then the Engine being fet a work, we quickly rais'd the Quick-filver to a greater height than formerly, and when we faw it come to a ftand, we did by the heip of fome marks, made before hand on the pipe, and by the help of a very long and well divided Ruler, meafure, with as much care and accuratenefs as the figure of the veffels would allow us to do, the height of the Mercurial Cylinder, which we found to be 29 . inches, and about $\frac{2}{8}$, to which abating thalf an inch, which was rais'd, before the Pump was employed, by fome air that had been blow'd into the Botcle, to try whether it were ftanch; deducting, I fay, this half Inch of Quick-filver, which remain'd in the Tube after the external Air was let in, (as well as it had been there before the Receiver was exhaufted,) out of the newly mention'd number there remain'd 29. inches, and neer ${ }_{8}^{3}$, for the height of the Mercury, rais'd by the Spring of the Air, ohut up in the Bottle: and then confulting with the above mentioned Barofcope, which ftood in a window in another part of the houfe, I found, that the weight of the Atmofphere did bear a Mercurial Cylinder of about 29 . inches,

Inches and $\frac{{ }^{I}}{2}$, which was higher by ${ }_{8}^{{ }_{8}^{7}}$ than that to which the Spring had rais'd the Quick-filver in the exhaufted Receiver: and the Difference perhaps would have been greacer, if the place, where the Experiment was made, had not by its warmth added fome little matter to the Spring of the Air, and if alfo we could have kept the Mercury fo long elevated, as to give it leave to difcharge its felf of thofe fmall bubbles, which tis almoft impoffible in fuch Experiments as this to free Quick- filver from, withour fome help from time.

Laftly, though we caus'd the Pump to be ply'd, to try whether we could not, by the more diligent Exuction of the Receiver, raife the Quick-filver above the height of that which the Atmofphere kept fuftain'd in the Barofcope, yet our labour gave us but a confirmation, that the Spring of the Air would not raife the Mercury higher, then did the weight of the Atmolphere, which may not a little confirm the 2^{d} Oblervation.

N B. This was not the onely nor the firft Experiment we made of this kind, but this being carried on without mifchances, (with which divers others were attended,) and made with much care, I thought fit to fet down This in ftead of all, intimating generally about the reft, that they feem'd to agree well for the main with that, which is here recited; onely there is one thing relating to thofeother Experiments, that feems not altogether unworthy to be taken notice of, which is, that when our Tryals were made in veffels, that contain'd a confiderable quantity of Air, though upon the exhauftion of the Receiver the Spring of the included Air could not raife the Quick-filver to the top of the pipe, yet fometimes by other Effects it manifefted it felf to be very ftrong, as once or twice by the blowing out or breaking the Cork or Cement, and other matter that was imploy'd to ftop the Glafs it was fhut in; and once by an Accident too memorable to be here paft over in filence.

I had one day invited Dr wallis to fee fuch an Experiment as I have been relating, made with (not a viol, bur) a bortle of Green

$$
C_{a} \text { glafs }
$$

Glafs, (fuch as we ufe now for Wine,) and 4 or 5 pounds of Mercury. After this Learned Perfon and I had continued Spectators as long as we thought fit, we withdrew into another Room, where we had not fat long by the fire, before we were furpriz'd by a fuddain noife, which the perfon, that occafion'd it, prefently came running in to give us an account of, by which it appear'd, that this Ingenious young Man, (whom I often imploy about Pneumatical Experiments, and whom I mention'd to Your Lordhip, becaufe 1. M. has the honour to be fomewhat known to You,) being defirous in our ablence to fatisfie the Curiofity he had to know, whether the Quick-filver could not be rais'd higher in the pipe than I had foretold, plyed the Pump fo obftinately, that at length, the Bottle being not, it feems, every where equally ftrong, the imprifon'd air found it more difficult to make the Quick-filver run over at the top of the pipe, than to break the Bottle in the weakeft place, and accordingly did not onely throw off a piece of the Bottle, but threw it with fuch violence againft the large and frong Receiver, as broke that alfo, and render'd it unferviceable for the future. But the Doctor and I laying together the Pipe, which happen'd to be broken into but few pieces, concluded by the place, to which we were told it reacht when this Accident happened, that it had not exceeded, nor indeed fully equall'd the height, to which she weight of the Atmofphere might have rais'd it.

EXPERIMENT III.

Shewing that the spring of the included Lir will raife asercury to almoft equal heights in very unequal Tubes.

HAving fhown in the two former Experiments, that the Active ftrength of the Airs S pring is very confiderable, I thought good alfo to examine, whether or no to the other refemblances
in operation between the iweight of the free Air, and the preffure of the included Air, this alfo may be added, that as the gravitao tion of the Atmofphere is able (as we fhall hereafter prove) to fuftain the Mercury at the fame height in leffer and greater Tubes, feal'd at the top; fo the Preffure of the included Air may be able to fuftain the Mercury at the fame height in flenderer and in larger Tubes, though in the latter it muft fuftain a far greater weight of Mercury than in the former; provided allowance be made for the weakning, which the Spring of the included Air muft be fubject to, by reafon that, to fucceed in the place of a large Cylinder of Mercury impell'd up into the greater Tube, it muft expand it felfmore, and confequently have its Spring more weakned, than if the Tube were flender.

To profecure this Experiment, I thought on a peculiar fhape of veffiels, which, if I had been where there is a Glafs-houfe, I would have caul'd to be blown for the more convenient trying of two Pipes of different bores at the fame time. But though I wanted this Accommodation, I thought I might well enough fhow what I intended by imploying fucceffively two Tubes of very differing fizes, provided the veffel for the including of the Air were the fame.

Wherefore taking the Glafs bottle, made ufe of to try the former Experiment, and erecting in it after che manner above defrribed a Cylindrical pipe of Glafs, a good deal larger than the former, (if not as large agen,) we profecuted the Experiment as we had made it, with the flender Tube above mentioned, and found that we were able, by the Spring of the Air in the bottle, to raife the Quick-filver to a confiderable height, which, meafuring as well as the veflel would allow us, was, by the leaft eftimate that was made of it, (which was mine) 28. inches, and ${ }_{89}^{1}$, by which it appear'd to want fomewhat above an Inch of the height of the Mercurial Cylinder, which the weight of the Atmofphere could have fuftain'd, as appear'd by the Barometer, wherein the Quickfilver at that time was about 29 , inches, and $\frac{1}{4}$ high; which diffe-

12

A Continuation of Nens Experiments

rence was no more then I expected, confidering that, whereas the weight of the Acmofphere is ftill the fame when the Mercury is at its full height (and that whether the Pipe be great or fmall) in a feal'd Tube; the Spring of our included Air muft needs be weakned the larger the Tube is, and the higher the liquid Metal is impell'd in it, io that it feem'd a confiderable Phanomenon, that the Spring of fo little Air fhould be able toraife the Mercury as high within an Inch or thereabouts in a wider as in a flenderer Tube, fince the Diameter of the Cavity of the former being by our eftimate double to that of the latter, (into which the flender Pipe could eafily be put as into a Cafe too big for it:) The greater Mercurial Cylinder may be fuppof'd to bave weighed near four times as much as the leffer; I fay, near, becaufe tbere was an Inch difference in their heights: but in cafe thefe had been equal, then the Solidities of the Cylinders would have been to one ano. ther as their Bales; and fince thefe, being Circular, are in duplicate proportion to their Diameters, that is, as the Squares of their Diameters; its plain, that if the Diameters be as one to two, the Squares of them muft be as one to feur; and thefe Cylinders con* fifting of the fame Mercury, their Weights will have the fame Proportions with their Solidities, and confequently would be as one to fous, making the abatement formerly intimated for the Inch and a little moreof Mercuty, by which the larger Cylinder came fhort of the height of the former.

NB. 1. This and the two former Experiments tryed by us with Quick-filver, may be alfo tryed with Water; but befides that we could hardly procure Tubes long enough for fuch Tryals, we were not very follicitous about it: for if we attentively enough confider, what has been already deliver'd, and the Proportion in fecifick gravity betwixt Water and Quick-filver, (whereof the latter is near 14 . times as heavy, bulk for bulk, as the former,) "twill not be difficult to forefee the Event of fuch Experiments, which he, that has a mind to make, fhould be furniftid not onely with long Tubes, but with capacious Veffels to shut up the Air in.

Touching the fpring and weight of the Air.

Elfethe Air will be fo far expanded before the Water has at* tain'd nearthe height, to which the weight of the Atmofphere may raifeit, that the Experiments will not feem to fucceed near fo well with Water, as ours did with Quick- filver.
2. We thought it worth trying, whether, when the included Air had rais'd the great Cylinder of Mercury to the utmof height, it could elevate it to, by the Spring it thenhad; it would not be brought to raife the Quick-filver yet higher, if, notwith fanding the Expanfion it had already, there were an agitation made by the heated Corpufcles of the fame Air. And in purfuance of this Curiofity having caus'd an hot Iron and a Shovel of kindled Coals to be held near the oppofite parts of the Receiver, we perceiv'd after a while, that the Mercury afcended ${ }_{8}^{2}$ of an inch or better above the greateft height it had reach'd before. But conjecturing that it would have rifen higher, were it not that whilft the application of the hot bodies was making, fome Particles of Air had unperceivably ftolen into the Receiver, I cauf'd the Pump to be ply'd again to withdraw the Air, I fufpected to have got in, by which means the Mercury was quickly rais'd $\frac{5}{8}$ of an inch, (or better,) by virtue of this Adventitious Spring, (if I may fo call it , which the included Air acquir'd by heat, and I made no doubt, that it might have been rais ${ }^{s} \mathrm{~d}$ much higher, but I was unwilling by appiying a lefs moder*ie heat to hazard the breaking of my Glaffes, in the place I then was in, where fuch a mifchance could fcarce have been repair d.

EXPERIMENT IV.

About a new Hydranlo pneumatical Fountain, made by the spring of uncomprefsd Air.

Shall now add fuch an application of the Principle whereon the former Experiment was grounded, as I fhould fcarce think

14

 A Continuation of Nein Experimentsworth mentioning in this place, were it not that befides that divers virtuof i feenı not a little delighted with it, it may for ought I know prove to be of fome Philofophical ufe (to be pointed at hereafter.)
We took a Glaffe-bottle with a convenient quantity of Water in it, and fitted this Bottle with a flender glafs-pipe open at both ends, aud about three foot long , which was fo plac'd, that the lower Orifice was a good way beneath the Surface of the Water, and the Pipe it felf paffed perpendicularly upwards through the Neck of the Bottle, which Neck was, by the Pipe and by good hard Cement imploy'd to fill the fpace betwixt the Pipe and the infide, fo well and firmly clos'd, that no Water or Air could get See plate out of the bottle, nor no externall Aire could get into it, but by paffing through the Pipe. This Inftrument was convey'd into a large Receiver thap'd like a Pear, of which a good part of the bluntend, and a fmall part of the fharp end are cut off by Sections parallel to the Horizon, and confequendy to one another. And becaufe this Receiver was not (nor ought to be) long enough to receive the whole Pipe, there was Cemented on to the upper part of it a fmaller Receiver of white Glafs, of fuch a length and bigners, that the upper end of the Pipe might reach to the middle of its Cavity, or thereabouts, and that the motions of the fringing water night have a convenient Scope, and fo be the better taken norice of.

This double Receiver being cemented on to the Engine, a little of the Air was by one Suck of the Pump drawn out from it, by which the Preffure of the remaining Air being weakned, it was neceffary, that fince the Air included in the Bottle had not its Spring likewife weakned, it fhould expand it felf, and confequently impell up the water in the fame Bottle through the Pipe, which is did fo vigoroufly, as to make it Atrike briskly at firft againft that part of the top of the fmaller Receiver, which was jult over the Orifice of the Pipe. But after it had a while made the Water thus ihsot up in a perpendicular line, as the Spring of the Air in the Bottle grew by that Airs dilatation to be weaken'd, the Water.

Touching the Ipring and weight of the Air.
would be impell'd up lefs frongly and lefs directly, till the Air in the Botrle being as much expanded as that in the Receiver, the Aicent of the Water would quite ceafe, unlefs by Pumping a litthe more Aire out of the Receiver werenew'd it again.
About the making of this Experiment thefe Particulars may be noted.

1. Tis convenient, that the upper part of the Pipe be made (as it eafily may be at the flame of a Lamp) very flender, that the Water having buta very fmall Orifice to iffue out at, may be fpent but flowly, and thereby make the Experiment laft fo much the longer.
2. You may, if you pleafe, in ftead of making the upper part of the Pipe flender, as was juft now direeted, Cement on to ita Top either of Glafs or Brafs, confifting of three or more very flender Pipes, with a Pin hole at the end of each, that one of thefe pointing direeclly upwards, and the others to the right band and to the left, the Water may fpin out feveral ways at once, by which kind of branched Pipes we have fometimes imitated the fets $d^{\prime \prime}$ eau (as the French call them) and Artificial fountains of Gardens and Groto's.
3. In regard that fo fhort a Cylinder of Water, as exceeded not the length of our Glafs pipe,could not make any confiderable refiftance to the expanfion of the included Air, it was chought and found fate enough to imploy in ftead of a ftrong Glafs-bortle a much larger Viol, withour being follicitous about its fhape, or that it fhould be very ftrong, and by this means we could make this pleafant Spectacle lafta great while, efpecially if we alfo made ufe of the expedient to be mentioned in the following Note.
4. If you find that the included Air have by expanding it felf roomuch weaken'd its Spring, whilft there yet remains with it a goodquantity of Warer in the Bottle or Viol, you may reinforce the preffure of the Air by onely turning the Stop cock, and letting in what air you think fit to the exhaufted Receiver: for upon the admifion of this new Air, the Air in the Receiver will prefs D
upon the Water in the Pipe, and having driven it into the bottle again, will follow it thither, till the Air in the Bottle, and that in the Receiver have attain'd an equal Spring, and then by Pumping our a convenient quantity of the Air contain'd in the latter, the Air fhut up in the former will be able to impell up the Water as before, till the ftagnant Liquor be depreft to the lower Orifice of the Pipe, at which, when the Air of the bottle can get out, the courfe of the water upwards muft ceafe.

The Ules I made of this new Hydraulo pneumatical Fountain (for init Iaim not onely at a Ludicrous Experiment)were principally thefe.

The firft was to make it the more probable, that if we had had convenient Veffels, we might by the Preffure of the Air included in the Botcle have rais ${ }^{2} d$ Water about fourteentimes as high as we did Quick-filver in the former Experiment, fince upon but a little weakning of the Preffure of the Air in the double Receiver, the Air in the Bortle was able to impell the Water forcibly enough, and for a pretty while, to the top of a Pipe of about a Yard long, and a good deal higher. (But this is but a flight Llee.)

The next thing therefore we defign'd to fhew by this Experiment was, That in thofe Hydraulo-pneumacical Engines, where Water is plac'd between two parcels of Air, the W ater may be fet a moving as well by the meer dilatation of one of the parcels of the Air, as by giving a new force by heat or compreffion to the other, and whetherthis Mechanical Principle of Motion may? hereafter prove not altogether afelefs in Engines, we refer to further confideration.

Another Ule we made of this Experiment was to fhow fomewhat relating to the Spring of the Air, which may be worth confidering, though we fhall now bur barely mention it. If then, when fome of the Air had been pump'd out of the Receiver, we remov'd that double Veffel from the Bottle, the external Air would by its weight haftily deprefs the water in the Pipe, till having driven it to the very bottom, it got up in numerous Bubbles through

> Toucbing the Spring and weight of the Air.
through the water, and joyned it felf with the Air incumbent on that Liquor: but that which was here obfervable was, that all the external Air that was able to get into the Bottle, did not do it fuddenly, but after the firf irruption we could perceive, that from time to time there would new portions of Air leafarely infinuate themfelves through the Pipe into the Bottle, and emerge through the ftagnant Water in Bubbles, that fucceeded one another fo flowly, as to beget fome wonder, as if the Spring of the included Air having been once put out of its wonted conftitution by its late expanfion, could not be reduc'd to it but by degrees by the weight of the Atmofphere, which was ftill the fame: or, rather, as if between the Spring of the included and the Preffure of the external Air counterballancing each other, there happen'd fome fuch thing as is obferv'd in an ordinary pair of Scales, of which one is too much deprefs'd, where the motion (which was fwift enough at firft) becomes fo much the fluwer, by how much the Weights come nearer to the e Equilibrium, which their equality difpofes them to reft in.

But the chief Ufe defign'd in this Experiment was, to obferve, whether the Lines, made by the water in its effluxions, would be of the fame figure, notwithftanding the rarifaction of the Air in the upper part of the Receiver, as if the Air had not been at all rarified: and for this purpofe it is beft to make ones Obfervatio ons towards the latter end of the Experiment, becaufe then the Receiver being moft exhaufted, and confequently having the leaft of Air left in it, the difference made by the change of the denfity of the medium, in which the Beams of Water (if I may fo call them) move, is like (in cafe there be any) to be beft difcern'd. And this convenience we had by our way of Experimenting, that we could take notice of the Lines defrrib'd by the Satient water, as the ejaculation of that Liquor grew fill fainter and fainter. But though I afterwarós invited Dr. Wallis to favour me with his Opinion about the Curve Lines of the Salient water, yet for want of an upper Receiver large enough, even he protefs'd himfelf (as
$18 \quad A$ Continuation of $\mathcal{N e w}$ Experiments
I had done) not fatisfied about them. Onely He fometimes (as I alfodid) obferv'd the Salient water to defrribe part of a line perfectly enough Parabolical, with which fort of Curves he has been particularly converfant.

This made me refolve for further fatis faction to attempt by another contrivance, (of whofe fuccefs, if I can procure the Implements I need, Your Lordfhip may expect an account,) what the Figures will be not onely of Salient water, but Mercary, and other Liquors; and that when the Receiver is much better exhaufted, then it was neceffary it fhould be in the foregoing Experiment.

EXPERIMENT V.

About a way of Speedily breaking Flat Glafses, by the weight of the Atmojphere.

FOr the more eafie underftanding of fome of the fubfequent
Tryals, it will be requifite in this place to mention among Experiments about the Spring of the Air the following Phenomencn belonging to its Weight.

This is one of thofe that is the moft ufually fhown to Strangers, as a plain and eafie proof both that the Weight of the incumbent Air is confiderable, and that the round figure of a Receiver doth much more conduce to make an exhaufted Glafs fupport that weight, than if the upper part of the Receiver were flat.

Tomake this Experiment we provided a Hoop or Ring of Brafs of a confiderable thicknefs, whofe height was $2 \frac{2}{2}$, or 3 Inches, and the Diameter of whofe Cavity as well at the upper as lower Oufice (fhould have been juft 3. Inches, but through the errour of the workman) was 3 . inches and ${ }^{2}$.0. To this Hoop we fucceffively faften'd with Cement divers round pieces of Glafs, fach as is ufed by Glafiers (to whofe Shops we fent for it) to make Panes for Windows, and thereby made the Brafs-ring with its
Toucbing the fpring and veiglot of the Air.

Glafs-cover a kind of Receiver, whofe open Orifice we carefully cemented on to the Engine; and then we found, as we had conjeCtured, that ufually at the firft Exuction (though fometimes not till the fecond) the Glafs-plate would be broken inwards with fuch violence, as to be fhatter'd into a great multitude of fmall fragments, and (which was remarkable) the irruption of the external Air driving the Glafs inwards did conftantly make a loud Clap, almoft like the Report of a Piftol. Which Phanomenon, whether it may help us to difcover the caufe of that great noife, that is made upon the difcharging of Guns, (for the Recoyl feems to depend upon the Dilatation and Impulfe of the Powder, I muft not ftay to confider.

EXPERIMENT VI.

Sbewing, that the breaking of Glass-plates in the foregoing Experiment, seed not to be afcrib'd to the Fuga Vacui.

THough I long fince inform'd you, that in the Experiments I then prefented Your Lordfhip, it was not my purpofe to deliver my own Opinion whether there be a Vacuum, or no, and though I do not in this Tract intend to declare my felf either way; yet, that I may on this occafion alfo fhow, that the Preffure of the Air may fuffice to account for divers Phanomena, which according to the valgar Philofophers muft be refert'd to Natures abhorrency of a \vec{V} acuum, I will illuftrate the foregoing Experiment by another, the fubftance whereot is this.

That if, inftead of the above mentioned brals Hoop, both whofe Orifices are of equal breadth, you imploy a hollow (but taller) piece of Brafs, or (which is more eafily made) of Lation, thap'd like a Conus truncatus, or a Sugar-loat, whofe upper part is taken off parallel to the bottom; and it you make the two Orifices of a breadth fufficiently unequal, as if the larger being made

A Continuation of new Experiments

 as wide as that of our Brafs.hoop, the ffraiter were lefs than an Inch in Diameter, You will find, that if this piece of Metal be made ufe of, as the other was in the foregoing Experiment, the flat Glafs cemented on to the Orifice, will be eafily broken, as formerly when tis faftned to the wider Orifice; but if the ftraiter Orifice be turn'd upward, the Glafs that covers it, if it be of a due thicknefs, (though no thicker than the former,) will remain entire, notwithtanding the withdrawing of the Air from beneath it: Which feems fufficiently to argue, that tis not precifely Na tures abhorrency of a vacuum, that is the caufe why Glaffes are ufually broken in fuch Experiments, fince whether the wider or the narrower Orifice be uppermoft, and cover' d , (the Metalline part of the veffel being the lame, and onely varying its pofture,) the capacity of the exhaulted veffel will be equal; and therefore Nature ought to break the Glafs as well in one cafe as the other, which yet the Experiment fhows fhe does not.Wherefore this Diverfity feems much better explicable by faying, that when the wider Orifice is uppermoft, the Glais that covers it muft ferve for the Bafis of a large Atmofpherical Pillar, which by its great weight may eafily force the refiftance of the Glafs: whereas when the fmaller Orifice is uppermoft, there leans upon its Cover but fo llender a Pillar of the Armofphere, that the natural tenacity or mutual cohxefion of parts in the Glafs is not to be furmounted by a weight that is no greater.

EXPERIMENT VII.

About a convenient way of breaktng blown Bladders by the Spring of the Air included in them:

THe foregoing Experiments having fufficiently manifefted the Atrength of the Airs Spring upon fluid Bodies, I next thought fic to try, whether the force of a litele included Air would
alfo upon confiftent and even Solid bodies emulate the Operations of the weight of the Atmofphere. In the profecution of which Enquiry we thought fit to make two forts of Tryals: the one, where the Air is included in the Bodies, on which its Spring does work; and the other, where tis External to them. Of the firt fort are this $7^{\text {th }}$, and the two following Experiments; and of the fecond fort are fome other Tryals, to be comprehended under the $10^{\text {th }}$ Experiment.

Having formerly mention'd to Your Lordfhip, that we were feveral times able (though fometimes not without much difficulty) to make a blown Bladder break with the Spring of its own. Air, I fhould not think it worth while to fay any thing here about the fame Phenomenon, but that (befides that it feems odd enough, and is not unpleafant to many Spectators, It may deferve not to be wholly neglected, becaufe a Good way to break Bladders in the much Exhaufted Receiver, may fometimes prove an ufeful Expedient, efpecially in fuch cafes where the Experimenter (who fometimes either is not skilful enough, or well enough farnifh'd with accommodations to regulate the ingrefs of the Air) would very fuddainly fupply the Receiver with trefh Air, when it has been much emptied, without danger of letting in too much Air from without. Not to mention, that the Air, included in the Bladder to be broken, may be fo mingled with fteams, or imbu'd with divers qualities, as to be much fitter than common Air for fome particular Purpofes.

We fhall then for the affinities fake between this Tryal and the former, fubjayn now the way, by which we feldom fail'd of breaking Bladders in our empried Receivers. For this purpofe, the blown Bladder that was to be burf, having the neck very clofely and frongly tyed, was kept a pretty while in the Receiver, whilf the Air was pumping out, and then taken out again, that, now the fibres were ftretcht and relax'd, the Capacity being leffen'd by a new ligature that I order'd to be ftrongly made near the Neck, the Bladder might be leffen'd though the Air were but the

1 Continuation of New Experiments?

 the fame, and the Membrane being not fo capable of yielding as before, upon the fecondexhauftion of the Receiver the Bladder in it would break, far more eafily then otherwife, and perhaps be oddly enough lacerated.We fometimes alfo varied this way of difpofing Bladders to be burft, by omitting the preparatory pucting in of the Bladder into the Receiver, and onely taking it in a little near the Neck, that, the Bladder having not been blown very full at firf, the tenfion of the included Air might be greater. But this laft way is to be made ufe of, when the thing we defire is, that the Bladder by breaking at a certain cime may part with its Air, and not when tis onely to give an inftance of the force of the Spring of uncompreff'd Air againft the fides of the Veffiel that containit.

EXPERIMENT VIII.

About the lifting up a confider able weight by the bare Spring of a little Air included in a Bladder.

YOu will eafily believe, that the Force imploy'd (in the foregoing Experiment) by the Air, to break the well blown Bladders tis included in, is confiderable, if 1 here adde, that a fmall quantity of Air, which will not fill $\frac{\div}{\ddagger}$ of a Bladder, will not onely ferve to blow it quite up, but will manifefly fwell it, thoughthat Effect be oppof'd not onely by the refiftance of the Bladder it feif, but by a confiderable weight tied to the bottom of it, as in the following Experiment.

We took a middle fiz'd Bladder (of a Hog or Sheep,) and haz ving prefs'd out the Air, till there remain'd but about a fourth or fifth part (by guefs, we caufd the Neck to be very ftrongly tyed up again: alfo round about the oppofite part of the Bladder, withat in about an inch of the bottom, we fo ftrongly tyed another String, that it would not be made to flip off by a not inconfide-
Toucbing the fpring and weight of the Air.
rable weight we hung at it. Then faftning the Neck of the Bladder to the turning Key, we convey'd the Bladder and the Weight hanging at it into 2 large Receiver, in which when it began to be pretty well exhauted, the Air within the Bladder being freed from the wonted Preflure of the Air without it, did by its own Spring manifeftly fwell, and thereby notably fhorten the Bladder that contain'd it , and by confequence vifibly lifted up the Weight, (that refifted that change of figure, which exceeded 15 pound of 16 . ounces to the Pound.

After that we took a larger Bladder, and having let out fo much Air, that it was left lank enough, we faften'd the two ends of it to the upper part of the Receiver, (for whichelfe it would have been too long,) and tyed a Weight (but not the fame) fo as that it hung down from the middle of the Bladder; then exhaufting the Receiver as before, though the Bladder, and this new Weight which fretcht it, reach'd fo low, as that for a while we could fcarce fee whether it hung in the Air or no, yet at length we perceiv'd the Bladder to fwell, and concluded that it had lifted up its Clog about an Inch; which was confirm'd by the return we permitted of the Air into the Receiver, upon which the Bladder became more wrinkled than before, and the Weight defcended, which being taken off, and weighed in a Statera, amounted to abovt 28 Pounds. We would have reiterated the Experiment, but foheavy a Weight having broken the Bladder, we were difcouraged from proceeding any farther, efpecially in regard of the difficulty of bringing by this contrivance the ftrength of the Airs Spring to any exact computation, though it fufficiently thews what I defign'd it ihould, namely that the Spring of a little included Air may be able even in fo flight a contrivance to raife a great Weight.

Whether this Experiment may any way illultrate the motion of Mufcles, made by Inflation, Contraction, \&2 C , it belongs not to chis place to confider.

A Continuation of $2 \boldsymbol{\tau}$ th Experiments

EXPERIMENT IX.

About the breaking of Hermetically feal'd Bubbles of Glafs by the bare Spring of their own Air.

I Shall premife to the following Tryals an Experiment, wherein Uncomprefs'd Air is made by its own bare Spring to break the folid body it felf tis shut up in. And this I the rather fet down before the fublequent Tryals, becaufe in our already publifh'd dry. Papers, that have been newly writ upon with Inck. The Reafon why the Bubble broke fo flowly I cannot now fay to propofe, no more then to examine whether the difficulty of breaking veffels of Glafs, no thicker then thefe Bubbles, proceed from fome weakning of the Spring of imprifoned Air, by its Atretching a little the including Glafs, (for in another cafe we have obferv'd this Glafs to be ftretchable by the preffure of Air;) or from hence, that 'twas very hard, as I have elfewhere mention'd, to avoid rarifying the Air a little, and confequently weakning its Spring, by the heat that was neceffary to be imploy'd about the fealing up the Bubble.

EXPERIMENT X.

Containing two or three Iryals of the force of the Spring of our Air uncomprefs'dupon fable and even folid Bodies, (whereto tis extersal.)
IN profecution of the Enquiry propos'd in the Title, we made (among others) the following Tryals.

> The I. TRYAL.

1. WE took the Brals hoop, mention'd in the $5^{\text {th }}$ Experiment, (whofe Diameter is fomewhat above 3. Inches,) and having caufd a Glazier to cut fome Plates of Glafs, fuch as are ufed for making the Quarrels of Windows, till he had broughe them to a Size, \& a roundrefs fit to ferve for Covers to that brafs. hoop, we carefully taftend one of them with Cement to the upper Orifice of the Hoop or Ring, and then cementing the lower Orifice to the Engine, fo that the Veffel, compos'd of the Metal and Glafs, ferv'd for a fmall Receiver; we whelm'd over it a large and ftrong Receiver, which we alfo faften'd on to the Engine with Cement after the ufual manner. By which Contrivance it was neceflary, that when the Pump was fet on work, the included Receiver (of Brafs and Glafs) Mould have its Air withdrawn, and yet the Air in the larger Receiver Mopuld not be

$$
\mathrm{E}_{2} \text { pumpd }
$$

A Continuation of New Experiments

pump'd out but by breaking through the Glafs, fo that the internal Air of the Metalline Receiver (as we may call it for diftinctions (ake) being pump'dout, the Glafs Plate, that made part of that Receiver, muft lye expos'd to the preffure of the Ambient Air fhut up in the other Receiver, without having the former affiftance of the now withdrawn Air to refift the Preffure; wherefore, as we expected, at the firft or fecond Exuction of the Air, included in the fmall metalline Receiver, the Glafs. plate was, by the Preffare of the incumbent Air, concain'd in the great Receiver, broken into an 100 pieces, which were beaten inwards into the Cavity of the Hoop.
The II. Tryal.
2. This done, to flew that chere needed not the Spring of fo great a quantity of included Air to break fuch Glaffes, we took im nother Roundifh one, which, though wide enough at the Orifice to cover the Brafs Ring \& the new Glals-plate that we had cemented on it, was yet fo low, that we eftimated it to hold but a $6^{\text {th }}$ part of what the large Receiver, formerly imploy'd, is able to contain; and having whelm'd this fmaller veffel, which was fhap'd like thofe Cups they call Tumblers, over the Metalline Receiver, and well fatten'd it to the Engine with Cement, we found that though this External Receiver had a great part of its Cavity fill'd by the included one, yet when this Internal one was exhaufted by an Exuction or two, the Spring of the little Air that remin'd, was able to break the Plate into a multitude of fragments.

The III. Tryal.

3. Becaufe the Glafs-Plates hitherto mention'd feem'd not fo thick, but that the Preffure of the included Air might be able to give confiderabler Inftances of its Force, in ftead of the Metalline Receivers hitherto employed, we took a fquare Botrle of Glafs, which we judg'd to be able to contain about a Pint (or Pound) of Water, and which had been provided to keep fubtle Chymical Liquors in, for which ufe we are not wont to choofe weak ones.

Touching the fpring and weight of the Air.
This we inverted, and apply'd to the Engine as a Receiver, over which we whelm'd the large Receiver formerly mention'd; and having cementedit on, as in the foregoing Experiments, we fet the Pump on work to empty the internal Receiver, (or fquare Bottle, by which means the withdrawing of the Air, and the figure of the veffel (which was inconvenient for refiiting) fuffer'd the Preflure of the Air included in the external Receiver to crufh the viol into a great number of pieces.

And to vary this Experiment, as we did that of breaking the metalline Receivers, we took another Glafs of the fhape and about the bignefs of the former, and having apply'd it to the Engine as before, and cover'd it with a Receiver that was little higher than it felf, we found, that upon the exhauftion of the Air the fecond fquare Glafs was likewife broken into many fragments, fome of which were of fo great a thicknefs, as mov'd fome wonder; that the bare Preffure of the Air was able to break fuch a veffel, though probably the Cracks, that reacht to them, were begunin much weaker parts of the Glafs.

NB. I. The bottoms and the necks of both thefe fquare Bottles were entire enough; by which it Teem'd probable, that the veffels had been broken by the Preffure of the Air againft the Sides, which were not onely thinner than the parts above named, but expos'd a larger Superficies to the lateral Preffure of the Air, than to the perpendicular.
2. We obferv'd in one of the two laft Experiments, that the Veffel did not break prefently upon the laft Exuction that was made of the included Air, but a confiderable time atter, which is feems was requifite to allow the compreft parts of the Glafs time to change their places; and this Phanomenon I therefore mention, becaufe the fame thing that here happen'd in the breaking a Glafs inwards by the Spring of the Air, I elfewhere obferv'd to have happen'd in breaking a Glafs outwards by the fame Spring.
3. To confirm, that it is the Spring of the External Receivers Air that is the Agent in thofe Fractures of Glafles, and to prevent

28 A Continuation of new Experiments

 or remove fome fruples, we thought fit to make this variation in the Experiment. We applyed a Plate of Glais, jutt like thofe formerly mentioned, to the Brals-hoop; but in the cementing of it on, we plac'd in the thicknefs of the Cement a fmall Pipe of Glafs of about an Inch long, whofe Cavity was not fo big as that of a Straw, and which being left open at both the ends might ferve for a little Channel, through which the Air might pafs from the External Receiver to the Internal; over This we whelm'd one of the fmall Receivers above mentioned, \& then, though we fet the Pump on work much longer then would have needed if this litle Pipe had not been made ufe of, we found, as we expected, that the Internal Receiver continued entire, becaufe the Air, whofe Spring fhould have broken it, having liberty to pals through the Pipe, and confequently to expand it felf into the place deferted by the Air pump'd out, did by that Expanfion weaken its Spring too much, to retain ftrength enough to break the Metalline (or Inter. nal) Receiver.Buthere tis to be noted, that either the Pipe mutt be made bigger than that lately mencioned, or the Exuction of the Air muft not be made by the Pump as nimbly as we can, or otherwife the Plate of Glais may be broken notwithftanding the Pipe; becaufe the Air contain'd in the External Receiver, having a force much greater than is neceffary to break fuch a Plate, it may well happen (as I have fometimes found it do) that if the Air be haftily drawn out of the Internal Receiver, that Air, which fhould fucceed in its room, cannot get faft enough out of that external Receiver through fo fmall a Pipe, and the Air remaining in that external Receiver will yet retain a Spring ftrong enough to break the Glafs. To illuftrate which, I hall propofe this Experiment, That fometimes, when I have at the flame of a Lamp caus'd Glafs Bubbles to be blown with exceeding flender Stems, if they were nimbly remov'd out of the flame whilft they were ignited, they would according to my conjecture be either broken, if they cool'd too fait; or comprefs'd inward, if they long enough retain'd the

Toucbing the Spring and VVeight of the Air.
Softnefs they had given them by Fufion. For the Air in the Bubble being exceedingly rarified and expanded, whilft the Glafs is kept in the flame, and coming to cool haftily when remov'd from thence, loofes upon refrigeration the Spring the heat had given it, and fo, if the External Air cannot prefs in faft enough through the too flender Pipe, there will not get in Air enough to refift the Prefure of the Atmofphere, and therefore if this Prefo fure find the Bubble yet foft, it will prefs it a litele inwards, and either flatten it, or make a dimple in it, though the Orifice of the Pipe be left open.

EXPERIMENT XI.

Shewing, that Mercury will in Tubes be raifed by suction no higher then the weight of the Atmofphere is able to impell it up.

TIs fufficiently known, that the common opinion of Philofo phers, and efpecially of thole which follovv \mathcal{A} riftote, has long been, and fill is, that the caufe of the Afcenfion of Water upon Suction, and particularly in thofe Pumps, where the Water feems of its own accord to follow the rifing Sucker, is Natures abhorrency of a V acmum. Againft this receiv'd Opinion divers of the Modern Philofophers have oppof'd themílves. Bur as fome of them were Vacuifts, and others Plenifts, they have explicated the Afcenfion of Water in Sucking-pumps upon very different grounds; fo that many Ingenious men continue yet irrefolv'd in this noble Controverfie. Wherefore though I have formerly made, and now renew a folemn Profeffion, that I do not in this Treatife intend ta declare either for or againtt the being of a Vacusm; and though I have * elfewhere occafionally acknowledg'd my Self not to acquiefce fully in what either the ancient or the modern Philofophers have taught about the adequate caufe of Suction ; (in the
*The place bere meand is a paflage in the Au. thor's Examen of Mr . Hobbs his Dialogug about the Air.
aflie:

30

A Continuation of New Experiments

affigning of which, I think, I have fhown them to have been fomewhat deficient, yet fince I think fome Experiments, of importance to this Controverfie, may be better made by the help of our Engine, than they have been by any Inftrument I have yet heard of, I hall now adde the Tryals I made, to thew both that whether there be or may be a Vacuum or not, there is no need to have recourfe to a fuga vacui to explicate Suction; and alfo that whatever other Caules have by Gaffendus and Cartefius been ingenioufly propofd to explicate Suction, it feerns to depend clearly upon the Weight of the Atmofphere, or in fome cafes upon the Spring of the Air; though I deny not, that other Caufes may contribute to that Preffure of the Air, which I take to be the grand and immediate Agent in there Pbanomena.

We took a Brafs. Pipe bended like a Siphon, and fitted at the bigger end with a Stop-cock \& c , as is delineated in the See Plate the Fiz.
the
:and the An Figure, (which Inftrument for brevities fake I often call an the :and the Aho. Figure, (which Initrument for brevitien to the flender end
notations attibe lofeof Exhaufting (or Sucking) Siphon, and to this Experiment. Of this we faftned with good Cement the upper end of a Cylindrical Pipe of Glafs, of about fify inches long, and open at both ends, and having the lower end open into a Glals of ftagnant Quick-filver, whofe upper Superficies reacht a pretty deal higher chan the immerft Orifice of the Glafs Cane. Thefe things being thus prepared, we caufd the Pump to be fet on work, whereby the Air being by degrees drawn out of the Exhaufting Siphon, and confequently of the Glais Cane that open'd into it; the fagnant Mercury was proportionably impell'd up into the Glafs-pipe, till it had attain'd to its due height, which exceeded not 30 . inches. And then, though there remain'd in the upper part of the Pipe above 20 inches unfill'd with Quick filver, yet we could not by further pumping raife that fluid Metal any higher.

By which it feems manifeft enough, that whatever many Learned men have taught, or others do yet believe about the unlimited power that Nature would exercife, to prevent what they call
a vacuum; yet this power has its bouads, and thofe depend not fo much upon the Exigency of that Principle, which the Schoolmen call a fug a vacui, as upon the fpecifick Gravity of the Liquor to be rais'd by Suction. For confirmation of which, we fubftituted in ftead of the ftagnant Mercury a bafon of Water, and though inftead of the many Sucks we had fruitlefly imploy'd to raife the Quick-filver above the lately mentioned height, we now imploy'd but one Exfuction, (or lefs then a full one,) which did but in part empty the Exhaufting Siphon: yet the Water upon the opening of the Stop-cock was not onely impell'd to the very top of the Gla/s-Cane, but likewife continued running for agood while through the Exhaulting Siphon, and thence fell upa on the plate of the Engine; fo that it feem'd an odd fpectacle to thofe that knew not the reafon of it, to fee the Water running very briskly of its own accord as they imagined out of the fhorter leg of a Siphon; efpecially that leg being perhaps not above a a quarter folong as the other. And here I muft not omit this confiderable circumftance, that though fometimes in the Torricelbian Experiment I have obferv'd the Mercury to ftand at thirty inches, and now and then above it, yet the height of the Mercury elevated in our Glafs. Cane appear'd not, when meafured, to reach fully 29. inches and aquarter, which I thought it was not difficult to render a reafon of, from the varying weight of the Atmofphere; and accordingly confulting the Barofcope, (that ftood in another room,) I found the Atmofphere to be at that time fomewhat light, the Quick-filver in it being in height but 29. inches and an eighth, which probably would have been the very height of the Quick-filver rair'd by the Engine, if it had had time by flanding to free it felf from Bubbles.

From whence we may conclude, that Suction will elevate liquors in Pumps no higher then the weight of the Atmofphere is able to raife them, fince the clofenets requifite in the Pump of our Engine to be fanch makes it very unlikely, that by any ordisary Pump a more accurate Suction can be effected.

3^{2}

A Continuation of λ Notb Experiments

I have nothing to adde about the related Experiment but this one, that it may afford us a notable confirmation of the argument we formerly propos'd agaioft them, that afcrib'd the elevation and fuftentation of the Quick filver in the Torricellian Experiment to a certain rarified Air, which the more highly it is rarified, the greater power it acquires to attract Quick.filver, and other contiguous Bodies; for in our Experiment though by continuing to pump we can rarifie or diftend more and more the Air in the Exhaufting Siphon, yet we were not able to raife the Mercury above 30 inches, (which exceeds not the beight to which the Atmof phere is able to elevate it,) and this, though, the ftagnano Mercury being expofed to the free Air, it cannor be pretended (as in fome other cafes it may, though not facisfactiorily, be done) that the Mercury cannot be railed higher, without offering violence to the body incumbent on the ftagnant Mercury: for inthe Experiment we are confidering if Nature fhould raife the Quick-filver higher and higber in the Pipe, to fucceed in the room of the Air that is withdrawn; the formerly Stagnant Mercury, that would on this occafion be rais'd, might be immediately fucceeded by the free and undilated Air, fo that Nature would be put to offer violence to the Quick filver onely, which if fhe were fcrupulous to do, what ayl'd her to raife it (as fhe did in our Tryal) againft the inclinations of fo ponderous a body, to above 29. Inches high?

Annotation.

Though the Exhautting Siphon, mentioned at the beginning of this Experiment, may be eafily enough conceiv'd by an attentive infpection of the Figure, yet becaufe I frequently make ufe of it in Pneumatical Experiments, twill not be amifs to intimate here once for all thefe three particulars about it. 1. That though the bending Pipe its felf may be for fomeufes more conveniently made of Glafs than of Metal, becauferthe Tranfparency of the former may inable us to difcover what paffes in it; yet for

Toucbing the fpring and woight of the Air. 33

 the moft part we choofe to imploy Pipes of the latter fort, becaufe the others are fo very rubject to break. 2. That tis convenient to make the longer leg of the Siphon a little larger at the bottom than thereft of the Pipe ufually needs to be, that it may the more commodioufly admit the fhank of a Stop-cock, which is to be very carefully inferted with Cement; by feafonably turning and returning of which Stop-cock, the paffage (for the Air) between the Engine and the Veffel to be exhauted is to be opened and fhut. 3. That though we fometimes content our felves to apply immediately the brafs Siphon its felf to the Engine, by faftning with Cement the external fhank of the Stop-cock to the Orifice of the little Pipe, through which the Exuction of the Air is made; yet the bended Pipe alone, if it be not almof conftantly held, is fo apt to be loofendd by the motion of the Engine, and the turning of che Stopcock, (which frequently occafions Leaks, and difturbs the Operation, / that for the moft pare we make ufe of a Siphon confifting ofa brafs Pipe, and Stop-cock, and a Glafs of see plate 6,8, or ro Inches in height, and of fome fuch flape (for it need not the be the very fame) as that reprefented in the Figure: for by this Figwe means, though the Exhauftion is becaufe of this additional Glafs, fomewhat longer in making, yet it is more fecurely and uninterruptedly carried on by reafon of the ftability, which the breadth of the lower Orifice of the Glafs gives to the whole Inftrument. Befides which, we have thefe other conveniences, that not onely the Siphon is hereby mach lengthned, which in divers Tryals is very fit; but alfo that we may commodioufly place in the Glaffe part of this compounded Syphon a Gage, whereby to difcern from time to time how much the Air is drawn out of the Veffel to be exhaufted.
34

\mathcal{A} Continuation of New Experiments

EXPERIMENT XII.

About the differing Heights whereto Liquors will be elevated by Suction, according to their ferueral specifick Gravities.

IF, when I was making the foregoing Experiment, I had been able to procure a Pipe long enough, I had tried to what height I could raife Water by Suction, though I would have done it rae ther to Catisfie Others then my felf, who fcarce doubted, but that as Water is (bulk for bulk) about i4 times lighter than Quick. filver: fo it would have been rais'd by Suction to about four or five and thirty foot, (which is 14 times as high as we were able to elevate the Quick (flver,) and no higher. But being not furnifhed for the Tryal I would have made, I thought fit to fubftitute another, which would carry the former Experiment fomewhat further. For whereas, in That, we fhew'd how high the Atmofphere was able by its whole Gravitation to raife Quick-filver; and whereas likewife that, which appears in Monfieur PafchalsExperiment, is, at what height the whole weight of the Atmofphere can fuftain a Cylinder of Water: by the way that I thought on, it would appear, (which hath not yet (that I know of) been hewn,) how a part of the Preffure of the Air would in perpendicular Pipes raifenot onely the two mentioned Liquors, but others alfo to Heights anfwerable to the degree of Preffure, and proportionable to the fpecifick Gravities of the refpective Liquors.

To make this Tryal the more clear and free from exceptions; I caus'd to be made and inferted to the fhorter Leg of the above mentioned Exhaufting Siphon a fhort Pipe; which branche it felf equally to the right hand and the left, as the adjoyning Figure declares. In which contrivance Iaim'd at thefe two conveniences: one that I might exhauft two Glais. Canes at the fame time; and the other, to prevent its being furmis'd that the Engine was not equally applied to both the Glaises to be exhaufted. This
additional Brals-pipe being carefully cemented into the Sucking Syphon, we did to each of its two branches take care to have well fafned with the fame Cement a Cylindrical Glafs of about 42 Inches in length, (that being fomewhat near the height of our exhaufting Syphon above the floor,) the lower Orifice of one of thefe two Glafses being immerft in a veffel of fagnant Mercury, and that of the other in a veffel of Water, where care was taken by thofe I imploy'd, that as the Tubes were chofen near of a bignefs, (which yet was not necefflary,) fo the furfaces of the two different Liquors fhould be near of a height. This being done, we began to pump warily and flowly, till the Water in one of the Pipes was elevated to about 42 inches, and then meafuring the height of the Quick- filver in the other Pipe above the furface of the Stagnant Quick filver, we found it to be almoft 3 Inches; fo that the Water was about 14 times as highas the Quick-filver. And to profecute the Experimenta little further, we very warily let in a little Air to the Exhaufting Syphon, and had the pleafure to fee the two Liquors proportionably defcend, till turning the Stopcock when the Water was about i4 inches high, we thereby kept them from finking any lower, till we had meafured the height of the Quick filver, which we found to be about one inch.

We tried alfo the proportion of thefe two Liquors at other heights, but could not eafily meafure thé fo well as we did as thofe. newly mentioned; and therefore though there feem'd to be fome flight variation, yet we lookt upon it but as what might be well imputed to the difficulty of making fuch Experiments exactly;. and this difpleas'd me not in thefe Tryals, that whereas it was ob? ferv'd, and fomewhat wondred at, that the Quick-filver for the moft part feem'd to be fomewhat (though but a very little) high er then the proportion of it to 14 required, I had long before by particular Tryals found, that though 14 and 1 be the neareft of fmall integer numbers that exprefs the proportion between the Specifick Gravities of Quickfilver and Water, yet the former of shofe Eluids (or at leaft that which I made my Iryals with) is noo quite:
36. A Continuation of nev Experiments quite fo heavy as this proportion luppofes, though I fhall not here flay to determine precifely the difference, having done it in another Tract, where the method I imployed in the inveftigation of it is alfo fec down.

The above mentioned Experiment, made by the help of our Engine, as to Quick-filver and Water being confirmable by Tryals (to be by and by mentioned) made in other Liquo:s, affords our Hypotbefis two confiderable advantages above the vulgar doCtrine of the Schools, (for I do not apply what follows to all the Plenifts,) who afcribe the afcenfion of Liquors by Suetion toa Traction made of fugam vacui, as they are wont to fpeak.

For firt it is manifeftly agreeable to our Doctrine, that, fince the Air, according to It, is a Fluid that is not void of Weight, it thouldraife thofe Liquors that are lighter, as Water, higher then thofe that are ponderous, as Quick-filver; and that anfwerably to the difparity of their Weights- And fecondly, there is no reafon why, if the Air be withdrawn by Suction from Quick filver and Water, there fhould be lefs left a vacuum above the one then above the other, in cafe either of them fucceed not in the place de-ferted by the Air, and confequently when the Air is withdrawn out of both the forementioned Glafs pipes, if there would be no vacuum in cafe no liquor fhould fucceed it, why does Nature needlefly to prevent a vacuum make the Water that is an heavy body afcend contrary to its own nature, according to which it tends towards the Center of the Earth? And if the fucceeding of a liquor be neceffary to prevent a vacnum, how chance that Nature does not elevate the Quick-filver as well as the Water, efpecially fince tis manifeft by the foregoing Experiment that fhe is able to raife that ponderous Liquor above 26 inches higher than fhe did in the Experiment we are now difcourfing of.

Perhaps it would not be amifs to take notice, on this occafion, that among other applications of this Experiment it may be made fomewhat afeful to eftimate the differing Gravities of liquors, to
Touching the Spring and VVeight of the Air.
$W^{\text {ch }}$ purpole I caus'd to be put under the botrom of the forementionedCrlafs pipes two veffels, the one with frefhwater, \& the other with the like water impregnated with a good proportion of Seafale that I had caus'd to be diffolv'din it, for want of Sea-water, which I wouldrather have imploy'd. And I found, that when the frefh water was rais'd to about 42 inches, the Saline folution had not fully reacht to 40 .

Buc chaugh this difference were double to that which the proportion and Gravity betwixt our Sea-water and frefh water would have required, yet to make the difparity more evident, and alfo becaure I would be able the better to guefs at the proportion of the diffolv'd Salt by making it as great as I could, I caus'd an unufual Brine to be made, by fuffering Sea-falt to deliquate in the moift Air. And having applyed this Liquor and frefh water to the two already mentioned Pipes, and proceeded after the former manner, we found that when the pure water was elevated to near 42 Inches, the liquor of Sea fale wanted about 7 . Inches and a quarter of that height; and when the water was made to fubfide to the middle of its Pipe, or thereabouts, the Saline liquor in the other Pipe was between 3 and 4 inches lower then it.

I would have tryed the difference between thefe Liquors and Oyl, but the Coldnefs of the Weather was unfavourable to fuch a Tryal: but co fhew a far greater Difparity then That would have done betwixt the height of Liquors of unequal Gravities, I took fair Water, and a liquor made of the Salt of Pot-afhes fuffered to run in a Sellar per deliquium, (this being one of the ponderoufert Liquors I have prepar'd, ${ }_{3}$) and having proceeded as in the former Tryals, I found that whenche common Water was about 42 inches high, the newly mention'd Solution wanted fomewhat of 30 inches; and when the Water was made to fubfide to the middle of its Pipe, or thereabouts, the deliquated Liquor was between 6 and 7 inches lower then it.

I had fome thoughts, when I applied my felf to make thefe Tryals, to examine how well we could by this new way compare

3 A Continuation of New Experiments

 the Saltnefs of the waters of feveral Seas, and thofe alfo of Salte [prings; and likewife whether, and (if any thing near) how far we might by this Method determine the proportion of the more fimple Liquors that may be mingled in compounded ones, as in the mixture of Water and Wine, Vinegar and Water, \&c. but being not provided with Inftruments fit for fuch nice Tryals, and a mifchance having impair'd the Glaffes lately mentioned before the laft Tryals were quite ended, and having foon after broken one of them, I laid afide thofe Thoughts.
EXPERIMENT XIII.

A bout the Heights to which Water and Mercury may be rais'd, propertiowably to their (pecifick Gravities, by the Spring of the Air.

IN profecution of the Parallel formerly begun, betwixt the Eff fects of the Weight of the Atmofphere, and the Spring of included Air, we thought fit after the foregoing to make the followe ing Experiment.

We took a ftrong Glafs-bottle, capable to hold above a Pint of Water, and having in the bottom of it lodg a convenient quantity of Mercury, we pour'd on it a greater quancity of Water, (becaufe this Liquor was to be impell'd up many times higher than the other,) and having provided two flender Glafs pipes, each open at both ends, we fo plac'd and fafted them, by means of the Cement wherewith we choak'd the upper part of the neck of the Bottle, that the fhorter of the Pipes had its lower Orifice immerf beneath the furface of the Quick filver, and the longer Pipe reache not quite fo low as that Surface, and fo was immerft but in the Water, by which contrivance we avoided the neceffity of having two diffinct veffels for our two ftagnant Liquors, which would have been inconvenient in regard of the flendernefs of the sipper part of our Receiver. This done, we conveyed the Bottle into

> Touching the /pring and weight of the Air.
into a fitly fhap'd Receiver, (formerly defcrib'd at the firft Experiment,) and having begun to pump out the Air, we took notice to what heights the Quick-filver and Water were impell'd up in their refpective Tubes, on which we had before made marks from inch to inch with hard Wax, (that they might not be remov'd by wet or rubbing,) and we obferv'd, that when the Quickfilver was impell'd up to two inches, the Water was rais'd to about eight and twenty; and when the Quick-filver was about one inch high, the Water was about fourteen. I fay, about, partly becaufe fome allowances muft be made for the finking of the Superficies of the Stagnant Quickfilver, and the greater fubfidence of that of the ftagnant Water, by reafon of the Liquors impelld into the two Pipes ; partly becaufe that the breadth of the Mark of wax was confiderable, when the Quick-filver was but abour an inch high, and fo made it difficult to difcern the exact height of the Metal, when the water was fallen down to fourteen inches: efpecially in regard that the Quick-filver never afcending fo high as the neck of the Bottle, (which the water left far beneath it,) the thicknefs of the Receiver, and that of fo Atrong a Bottle made it difficuls to difcern fo clearly the ftation of the Quick-filver as I could have wifhed.

EXPERIMENT XIV.

About the Heights anfwerable to their refpective Gravities, to which Mercury and Water will fubfide, upon the witbdrawing of the spring of the Air.

FOr the further illuftration of the Doirnine propos'd in the laft and fome of the foregoing Experiments, about the raifing and fuftentation of Liquors in Pipes by the Preffure of the Air; I thought it not unfit to make the following Tryal, though it were eafie to forefee in this peculiar Experiment a peculiar difficuly.

40 A Continuation of Now Experiments

We caus'd then to be convey'd into a fitly fhap'd Receiver two Pipes of Glafs very uneven in lengch, buc each of them fealdd at one end, the thorter Tube was filld wish Mercury, and inverted into a fmall Glais Jarr, wherein a fufficient quantity of that Liquor had been before lodg'd: the longer Pipe was fill'd with common Water, and inverted into a larger Glafs, wherein likewife a fit proportion of the fame Liquor had been put.

Then the Receiver being clofely cemented on to the Engine, the Air was pump'd out for a pretty while before the Mercury began to fubfide; but when it was fo far withdrawn, that its Preffure was no longer able to keep up a Mercurial Cylinder of that height, that liquid Metal began to fink; the Water in the other Tube, though this were three times as long, Atill retaining its full height. But when the Quick-filver was fallen fo low, as to be but between three \& four inches above the furface of theStagnant Quick-filver, the Water alfo began to fubfide, but fooner then according to the laws of meer Staticks it ought to have done, becaule many Aerial Particles emerging from the body of the Warer to the upper part of the Glals, did by their Spring concurs with the Gravity of the water to deprefs this Liquor. And fo when the Quick filver was three inches above the ftagnant Mercury, the water in the other Pipe was fallen divers inches beneath 42 , and feveral inches beneath 28 when the Mercury had fubfided an inch lower. But this being no more then was to be expected, after we had caufed the Pumping to be a while continued, to free the water the better from the latitant Air, we let in the extern3l Air, and having thereby impell'd.up again both the Liquors into their Pipes, and remov'd the Receiver we took out thofe Pipes, and inverting each of them again tolet out the Air, (for even that wich held the Quick- filver had got a fmall Bubble, though inconfiderable in comparifon of the Air thar had got up out of the Water,) we fill'd each of them with a little of the reftagnant Liquor belonging to it, and inverting each Tube once more into its proper liquor, we repeated the Experiment, and found it, as it feem ${ }^{\prime} d_{2}$
feem' d , to require more pamping then before to make the Li quors begin to lubfide; fo that when the Mercury was tallen to threeinches, or two, or one, the water fubfided fo near to the heights of $4^{2}, 28$, or 14 inches, that we faw no fufficient caufe to hinder us from fuppofing, that the litle differences that appear'd between the feveral heights of the Quick-filver, and fourteen times as great heights of the Water (which fell fomewhat lower than its proportion in Gravity required) proceeded from fome Aerial Corpufcles yet remaining, in fpite of all we had done, in the water, and by their Spring, though but faint, when once they had emerg'd to the upper part of the Glafs, furthering a little the depreffion of it: not now to mention leffer Circumftances, particularly, that the furface of the ftagnant Water did not inconfiderably rife by the acceffion of the Water lately in the Pipe; where by the Cylinder of water, rais'd above that furface, became by fo much the fhorter. However Your Lordhip may, if You think fit, caule the Experiment to be reiterated, which I could not fo well do, by reafon of a mifchance that befell the Receiver.

EXPERIMENT XV.

About the greateft height to which Water can be rais'd by 1 AttraCtion or Sucking Pumps.

Since the making and the writing of the foregoing Experiments, having met with an opportunity to borrow a place fomewhat convenient to make a Tryal to what height Water may be rais'd by Pumping; I thought not fitto neglect it. For though both by the confideration of our Hypothefis, to whofe truch fo many Phanomena bear witnefs; and though particularly by the Confequences deduceable from the three laft recited Experiments I were kept from doubting what the event would be, fet I thought it worth while to make the Tryal.

$42 \quad A$ Continuation of \mathcal{N} ew Experiments

I know what is faid to have been the Complaint of fome Pump-makers. But I confefs the Phonomenon, 'twas grounded on, feem'd not to me to be certainly enough deliver'd by a Writer or two, that mention what they complain'd of, and their obw fervation feems not to have been made determinately or caretully enough for a matter of this moment. Since that which they complain of feems to have been in general, that they could not by pumping raife Water to what height they pleafe, as the common Opinion of Philofophers about Natures fuga vacui made them expect they might. And it may well have happen'd, that as they endeavoured onely to raife it to the height their occ: fions required, fo all that their Difappointment manifefted, was, that they could not raife it to that particular height: which did not determine, whether if the Pump had been a Foot or a Yard fhorter, the Water would then have been elevated to the upper parc of it or no: but that which I chiefly confider is, that thefe being but Tradefmen, that did not work according to the Dictates of, or with defign to fatisfie, a Philofophical Curiofity, we may juftly furpect, that their Pumps were not fufficiently ftanch, nor the O peration Critically enough perform'd and taken notice of.

Wherefore, partly becaufe a Tryal of fuch moment feem'd not to have yet been duely made by any; and partiy becaufe the vam rying weight of the Atmofphere was not (that appears) known, nor (conlequently) taken into confideration by the ingenious Monfieur $P a / c$ chal in his famous Experiment, which yet is but analogous to this; and partly becaufe fome very Late as well as Learned Writers have not acquiefc'd in his Experiment, but do adhere to the old Doctrine of the Schools, which would have Water raifeable in Pumps to any height, ob fugam vacui, (as they (peak,) I thought fit to make the beft fhift I could to make the Tryal, of which I now proceed to give Your Lordhip an Account.

The place I borrowed for this purpole was a flat Roof about jo foot high from che ground, and with Railes along the edges

Touching the fpring and weight of the Air.

ofit. The Tubewe made uie of ihould have been of Glafs, if we could have procured one long and ftrong enough. But that being exceeding difficult, ef pecially for me, who was not near a Glals-houfe, we were fain to caufe a Tin-man to make feveral Pipes of above an inch bore, (for of a great length'twas alleadg'd they could not be made flenderer,) and as long as he could, of Tin or Laton, as they call thin Plates of !ron Tinn'd over; and thefe being very carefully foder'd together made up one Pipe, of about one or two and thirty foot long, which being tied to a Pole we tried with Water whether it were flanch, and by the effluxions of that Liquor finding where the Leaks were, we caus'd them to be ftopt with Soder, and then for greater fecurity the whole Pipe, efpecially at the Commiffures, was diligently caf'd over with our clofe black Cement, upon which Plaifter of Paris was ftrewed to keep it from fticking to their hands or cloaths that fhould manage the Pipe. At the upper part of which was very carefully faftned with the like Cement a ftrong Pipe of Glafs, of between 2 and 3 foot in length, that we might fee what fhould happen at the top of the water- And to the upper part of this Pipe was (with Cement, and by the means of a fhort elbow of Tin) very clofely faftned another Pipe of the fame Meral, confifting of two pieces, making a right Angle with one another, whereof the upper part was parallel to the Horizon, and the other, which was parallel to the Glafs-pipe, reacht down to the Engine, which was placd on the flat Roof, and was to be with good Cement follicitoufly faftned to the lower end of this defcending part of the Pipe, whofe Horizontal leg was fupported by a piece of Wood, nail'd to the above mentioned Rails; as the Tube alfo was kept from overmuch fhaking by a board, (faften'd so the fame Rails,) and having adeep Notch cut in it, for the Tube to be inferted into.
This Appar atus being made, and the whole Tube with its Pole sce plate erected along the Wall, and faltoed with ftrings and other Figure: belps, and the deicending Pipe being carefully cemented on the

44 A Continuation of new Experiments tothe Engine, there was plac'd under the botom of the long Tube a convenient veffel, whereinto fo much Water was poured, as reach'd d great way above the orifice of the Pipe, and one was appointed to ftand by to pour in more as needhould require, that the veffel might be fill kept competently full.

After all this the Pump was fet on work, but when the water had been raifed to a great height, and confequently had a great Preffure againft the fides of the Tube, a fmall Leak or two was either difcovered or made, which without moring the Tube we caus'd to be well ftopt, by one that was fent upa Ladder to apply ftore of Cement where it was requifite.

Wherefore at length we were able after a retty number of Exactions, to raife the Water to the middle of the Glafs-pipe above mentioned, but not without great ftore of bubbles, (made by the Air formerly conceal'd in the pores of the water, and now emerging, which for a pretty while kept a kind of Foam apon the furface of it, (frefh ones continually fucceeding thofe that broke.) And finding the Engine and Tube as ftanch as could be well expected, I thought it a fit feafon to trie what was the utmoft height to which Water could by Suction beelevated; and therefore though the Pump feem'd to have been plyed enough already, yet for further fatisfaction, when the Water was within few inches of the top of the Glafs, I caus'd 20 Exutions more to be nimbly made, to be fure that the water fhould be railed as high as by our Pumpit could be poffibly. And haring taken notice where the Surface refted, and caus'd a piece of Cement to be ftuck near it, (for we could not then come to reach it exactly, and defcending to the Ground where the ftagnant water ftood, we caus'd a ftring to be let down, with a weight hanging at the end of it, which we applied to a mark, that had been purpofely made at that part of the (Metalline) Tube, which the fuperficies of the ftagnant water had refted at, when the water vas elevated to its full height: and the other end of the fring being, by him that let it down, applied to that part of the Glafs,as nerr as he could guefs,
Touching the Spring and VVeigbt of the Air.
where the upper pert of the Water reacht, the Weight was pull'd μp; and the lengtt of the Aring, and (confequently) the beight of the Cylinder of Water was meafor'd, which amounted to 33 foot, and about 6 inches. Which done, I return'd to my lodging, which was not far off, to look upon the Brofcope, to be informed of the prefent weight of the Atmofphere, which I found to be but moderate, the Quick-filver ftanding at 29 inches, and between 2 and 3 eighis of an inch. This being taken notice of, ic was not difficult to compare the fuccefs of the Experiment with our Hypothefis. Fus it we fuppofe the moft received proportion in bulk bet ween Cylinders of Quick-filver and of Water of the fame weight, namey that of 1 co 14 , the height of the water ought to have been 34 foot and about two inches, which is about 8 inches greater than wefound it. Bucthen Your Lordfinp may be pleafed to remember, that I formerly noted (beforeever I made this Experiment) that I did not allow the proportion betwixt Mercury and Water (at leaft fuch water as I made my Tryals with) to bealtogether fo great, and though in ordinary Experiments we may with very litle inconvenience make ufe of that proportion to avoid fractions, yet in fo tall a Cylinder of Water as ours was, the difference is too confiderable to be neglected. If therefore in ftead of making an Inch of Quick-filver equivalent to 14 iaches of Water, we abate but a quarter of an inch, which is but: 56 part of the height of the Water, this abatement being repeated 29 times and a quarter, will amount to 7 inches, and above a quarter, which added to the former height of the Water, namely 33 Foot and 6 inches, will make up 34 foot and above aninch; fo that the difference between the height of the Mercury fultain'd by the weight of the Atmofphere in the Barofcope, and thit of the Water rais'd and fuftain'd by the Preffure of the fame Atmofphere in the long Tube did not appear to differ more than ar Inch or two from the proportion they ought to have had, according to the difference of their fpecifick Gravities. And though in our Experiment the difference had been
greater,

A Continuation of New Experiments

greater, provided it exceeded not 8 or 10 Inches, it would not have been ftrange: partly, becaufe of the difficulty of meafuring all things fo exactly in fuch an Experiment, partly becaure as Waters are not all of the fame weight, foa little difparity of it in folong a Cylinder may be confiderable, and partly (and perhaps chiefly) becaufe the Air flying out of the bubbles, that rofe out of fo great a quantity of water, and breaking at the top of it, and fo near that of the Tube, might by its Spring (chough but very weak) affifting the weight of fo much water, fomewhat (chough not much) hinder the utmoft elevation of that Liquor. But our Experiment did not make it needful for me to infift on thefe confiderations, and the inconfiderable difference that was betwixt the height of the water we found, and that which might have been wifh'd, did rather countenance then at all disfavour the thing to be made out by our Experiment, fince by no Pumping we could raife the Water quite fo high (though I confers it wanted but very little) as the weight of the Ate mofphere was able to keep up a Cylinder of Mercury proportionable to it in height, and equivalent in weight: and yet I prefume, Your Lordflip will eafily grant, that there was at leaft as much care ufed in this Experiment, to keep the things imploy'd about it tight, as has been wont to be ufed by Tradefmen in their Pumps, where tis not fo eafie either to prevent a litcle infinuation of the Air, or to difcern it.

Tis not that I am fure, that even all our care would have kept the water for any long time at its full height; but, that the Air was lufficienrly exhaufted for our purpofe, when we determin'd the height of the water, I was induc'd to conclude by thele Circumftances.

1. As well the conftruction of the Engine, as the many (forn merly related) Experiments, that have been fuccefsfully tryed with it, fhew that tis not like it fhould be inferiour in clefenefs to the great Water-Pumps, made by ordinary Tradefmen: and par-

Toaching the fpring and weight of the Air. ticularly the XI. Experiment foregoing, manifefts, that by this Pump Quick- filver was rais'd to as great a height, as the Atmo(phere is able to fupport in the Torricellian Experiment.
2. The flanchners of the Pipeappear'd by the Diminution (as to number) of Bubbles, that appear'd act the top of the Water, and by their fize too, for when there was a leak, (though butfo very fimall, that the water could not get out at it in the Tube, it might ufually be taken notice of by the attentive ear of him that flood to watch upon the Ladder, erected by the fide of the Tube; and the Air that got in, did eafily difcover it felf to the Eye by large Bubbles, manifeftly differing trom thole that came from the Aerial particles belonging to the water, and if the leak were not fo very fmall, the Air that got in would fuddenly life up the water above it, and perthaps fill wich it the defcending Pipe.
3. Though there had been fome imperceptible Leak, yet that would not have hindred the fuccels of the Experiment for the main. For in leaks that have been but fmall, though manifeft enough, we have offen, by caufing the Pump to be ply'd lefs nimbly then it now was, been able to profecute our Tryals; becaufe the Pump carried off ftill more Air than could get in at aleak thai was no greater.
4. And that litle or no (intruding) Air was left in the upper part of our Tube, was evident by thole marks, whereby it was eafie for them that are well acquanted with the Pump, to eftimate what Air is left in the veffel it fhould exhauft, and particularly towards she end of our operation I obferv'd, that when the Sucker was depreft, there came out of the Water that cover'd the Pump, Co very few bubbles, that they might be imputed to the Air afforded by the Bubbles, (pringing from the water in the Tubes; whereasit any adventitious Alir had got into that Cylinder of water, it would have appear'd in the water that cover'd the Pump.
5. Lafly, it were very ftrange, that if the water was but cafuH

43 \mathcal{A} Continuation of Neno Experiments

ally hindred by fome Leak from afcending any higher, it fhould be fo eafy to raife it to the very number of feet that our Hypothefos requires, and yet we fhould be unable by obftinate Pumping to raife it one foot higher.

Note, 1. as foon as we had made our Experiment, and thereby found, that what was requifite to it was in order; I fent to give notice of it to D^{r} wall is, and D^{r} Wren, as Perfons whofe curiofity makes them as well delighted with fuch Tryals, as their deep knowledg makes Them moft competent Judges of them. But before They could be found, and come, it being grown fomewhat late and windy, I that was not very well, and had tired my felf with going up and down, could not ftay with them folong as I intended, but leaving the reft of the Repeated Experiment to be thewn them by I. M. (who had been very induftrious in fitting and erecting the Tube) they and their Learned friend (whom they brought with them) Doctor Millington, told me a while after, that they alfo had found the greateft height, to which they could rdife the water, to be 33 foot and an half.
2. When the Water began firft to appear in the Glafs, the Bubbles would be, as I had foretold, exceeding numerous; fo as to make a froath of near a foot high, if the water were newly brought, and had never been rais'd in the Tube before. But if the Pumping were long continued, the number and height (or at leaft one of the two) of the Aggregate of Bubbles, would (as there remain'd fewer and tewer Aerial particles in the water)be leffer and leffer; but their emerging did never that I remember wholly ceafe.
3. At the beginning alfo there would appear great vibrations of the water in the upper part of the Tube; the rifing and the falling amounting fometimes to a foot, or near half a yard: but thefe grew leffer and leffer, as thofe of the Quickfilver in the Torriceb. dian Experiment ufe to do.
4. One may ufe an ordinary Pail to hold the ftagnant water; but we rather imploy'd a veffel ot Earth made (for another pur-
Touching the pring and weight of the Air.
pofe) fomewhat flender, and of a Cylindrical hape, becaufe in a narrow veffel tis more eafie to guefs by the rifing and falling of the Liquor, how the Pump is ply'd, and to perceive even fmaller Leaks.
5. I muff not forget to take notice, that though the newly nam'd Gentlemen came to me (when they had feen the Experiment tryed) within lefs than an hour after the time I had look'd upon the Barofcope, and obferv'd the Quick filver to fland fome. what beneach 29 inches, and 3 eights, yet when prefently upon their return I confulted the fame inftrument again, the Mercary appear'd to be fenfibly rifen, being fomewhat (though but very litie) above 9 and 20 inches, and 3 eights, and 5 or 6 hours ato ter (at bed-time) I found it to be yet more confiderably riien. Which may keep Your Lordhhip from wondring at what I intimated a little above, touching Monfieur Pa/chal's Experiment, as well as touching the difappointment of the Pump-makers endeavours. For tis not onely poffible, that (as I have elfewhere noted) Water may be raifed in the fame Pump (chough we fuppofe it fill equally fanch) higher at one time than at anocher: but ${ }^{2}$ twas contingent, that, in Monfieur Pafchal's noble attempt to imitate the Torricellian Experiment with Water in ftead of Quick-filver, the proportion betwixt the heights of thofe two Liquors in their relpective Tubes anfwer'd fo well to their fpecifick Gravities. For, the varying weigbt of the Atmorphere being not thea (that appears) known, or confequently taken into confideration; if Monfieur Pa/bhal, having tryed the Torricellian Experiment, when the Air was for inftance very heavy, had tryed his own Experiment, when the Atmorfphere tad been as light as 1 have often enough oberv'd it to be, he might have found his Cylinder of Water to have been halfa Yard or two foot fhorter than the formerly meafur'dheight of the Quick filver would have required.

I have now no more to adde about this 15 th Experiment, but thatit may ferve for a fufficient confirmation of what I note in a-
$50 \quad A$ Continuation of λ ew Experiments
nother Treatife, againft thole Hydraulical \& Pneumatical Wria ters, who pretend to ceach wayes of making Water pals by inflected Pipes, and by the help of Suction, from one fide of a Mountain to the other, be the Mountain never fo high. For, if the Water be to afcend as 'twere fpontaneoufly above 35 or 36 foot, a Sucking Pump will not ordinarily, at leaft here in England, be able to raife it.

And now I Speak of Mountains, it will not be altogether im. pertinent to add, thar if it had not been for unfeafonable weather, I had thought fic to make the foregoing in $I^{\text {th }}$ Experiment (of eIevating Mercury by Suction) to betryed at the cop of an Hill, not far from the place I then was at. For by what has been already delivered, it appears, that we might have eftimated the height, to which the Water may be there elevated by Suction, without repeating the Experiment with a chirty five foot Tube, (which we could not hope for conveniency to do,) by the utmoft height to which our Engine could have rais'd Mercury: and it may be offome ufe to be able from Experiments to make fome eftimate (for it can fcarce be an accurate one) how much it may be expected, that Pumps fhall (cateris paribus) loofe of their power of elevating Water by Suction, by being imploy'd at the top of an Hill, in tead of being fo at the bottom, or on a Plain. Remembring always what I lately intimated, that even in the fame place Liquors will be brought to afcend by Suction to a greater or lefs height at one time than another, according to the varying Gravity of the Atmofphere-

EXPERIMENT XVI.

About the bending of a Springy Body in the Exbausted. Receiver.

THe caufe of the Motion of Reftitution in Bodies, and confequently of that which makes fome of them Springy, which

$$
\text { Toucbing the /pring and weight of the Air. } 51
$$

far the greater part of them are not, has been ingenioully attempred by fome Modern Corpufcularians, and efpecially Cartefians; but fince divers Learned and Judicious men do Still look upon the caufe of Elafticity, as a thing that needs to be yet farther enquired into; and becaufe I am not my felf fo well fatisfied as to blame their Curiofity, I held it not unfic to examine by the help of our Engine their Conjecture, who imagine that the Air may have a great ftroak in the making of bodies Springy; and this I the rather did, becaule I had * elfwhere fhewn, that there is no ajoun the bice need to affert, that in all Bodies, that have it, the Elaftical power fory of E : flows immediately from the Form, but that in divers of them it ${ }^{\text {laficity }}$ depends upon the Mechanical Atructure of the Body.

Tomake fome Tryal therefore, whether the Air have any great Intereft in the Motion of Reftitution, we took a piece of Whalebone of a convenient bignefs and length, and having fae ften'd one end of it in a hole made in a thick and heavy Trencher, to be placed on the Plate of the Engine, we tyed to the other end a Weight, whereby the Whalebone was moderately bent, the weight reaching down fo near to a Body plac'd in a level pofition under it, that if the Spring were but a little weaken'd, the weight muft either lean upon, or at leaft touch the Horizontal plain: or if on the other fide the Spring fhould grow fenfibly ftronger, it might be eafily perceiv'd by the diftance of the weight, which was fo near the plain, that a litle increafe of it muft be vifible.

This done, we convey'd thefe things into the Receiver, and order'd thofe that pump'd to fhake it as litle as they could, that the weight might not knock againft the Body that lay under it, or fo thake it, as to hinder us from difcerning whether or no it were deprefs'd by the bare withdrawing of the Air.

And when the Air had been well pump'd out, I watcht attentively whether any notable Change in the diftance of the weight from the almof contiguous plain would be produc'd uponits being let in againt for the weight was then at reft, and the return-
$52 \quad$ Continuation of new Experiments
ing Air flowing in much more Speedily than it could before be drawn out, I thought this the likelieft time to difcover whether the abfence of the Air had fenfibly altered the Spring of the Whalebone. But though the Experiment were made more than once, I could fatisfie my felf onely in this, that the depreffion or elevation of the Weight, that was doe to the true and meer change of the Spring, was not very confiderable, fince I did not think my felf fure, that I perceivod any at all: for though it be true, that fometimes, when the Receiver was well exhaufted, the Weight feem'd to be a litcle depreft, yet That I thought was very licle, if any thing more than what might be afcrib'd to the abfence of the Air, not confider ${ }^{2}$ as a Body that had any thing to do directly with the Spring, but as a Body that had fome(though but a litle) Weight; upon which account it made the medium, wherein the Experiment was tried, contribute to fupport the Weight that bent the Spring; which Weight, when the Air was abfent, muft (being now in a lighter medium) have its Gravitation increas'd by as much weight, as aquantity of the exhaufted Air, equal to it in bulk, could amount to. But this Experiment being tried only with V Vhalebone, and in a Receiver not very Great, may deferve to be further tryed in taller Glaffes, with Springs of other kinds, and by the motions of a V Vatch, and other more artificial Contrivances.

EXPERIMENT XVII.

About the making of Mercurial, and other Gages, whereby to C fimate how the Receiver is exhauffed.

B
Ecaufe the Air being invifible, it is not always eafie to know whether it befufficiently pump'd out of the Receiver that was to be exhaufted; we thought it would be very convenient to have fome Inftrument within the Receiver, that might ferve

Toucbing the Spring and VVeight of the Air.

 for a Gige, or Standard; whereby to judge whether or noit were fufficiencly exhaufted.To this purpofe divers Expedients were thought on, and fome of them put in pradife, which, though not equally commodious, may yet all of them be uiefully imploy'd, one on this occation, and another on that.
The Firft (ifI mifremember not) that I propol'd, was a Bladder, (which may be greater or leff, according to the Size of the Veffel it is to ferve for) to be very ftrongly tied at the neck, after having had onely fo much Air left in the folds of it, as may ferve to blow up the Bladder to its full dimenfions, when the Receiver is very well exhaufted, and not before. But though Your Lorddhip will hereafter find that I yet make ufe of fmall Bladders on certain occafions, in which they are pectliarly convenient, yet in many cafes they do, when the Glaffes are well exhautted, take up too much room in them, and hinder the Objects, included in the Receiver, from being obferv'd from all the fides of it.
Another fort of Gage was made with Quick- filver, pourd into avery fhort Pipe, which was atterwards inverted into a litle Glafs of ftagnant Quick filiver, according to the manner of the Torricellian Experiment. For this Pipe being but a very few inches long, the Mercury init would not begin to defcend, till a very Great proportion of Air wis pump 'd out of the Receiver; becaure till then, the Spring of the remaining Air would be frong enough to be able to keep up fo fhort a Cylinder of Mercury. And this kind of Gage is no bad one. But becaufe, to omit fome other litle inconveniences, it cannot eafily be furpended, (which in divers Experiments 'tis fit the Gage flould be, and the Mercury in it is apt to be too much flaken by the motion of the Engine, there was another kind of Gage by fome Ingenious man (who ever he were) fubtituted in its place, confifting of a kind of Siphon, whofe fhorter leg hath belonging to it a large Bubble of Glafs, moft commonly made ufe of at an Illultrious meeting of Virtuof $F_{;}$, where Your Lordhip having feen it, I fhall not need to defrribe it m ore paticulalarly.

A Continuation of Ners Experiments

But none of the Gages I had formerly us'd, nor even this laft; having the conveniences that fome of my Experiments require; I was fain to devife another, which is That I moft make ufe of, as having advantages, fome or other of which each of the Gages already mentioned wants; for even that with Spirit of Wine, not to mention leffer difadvantages, hath a Bubble too Great to let it be ufefol in veffels fo flender, as for fome purpofes I divers times imploy; and this fort Cylinder of folight a Liquor as fpirit of Wine, makes the fabfidence of the Liquor be indeed a good fign that the Receiver is well exhaufted, but gives us not an account what Quantity of Air may be in the Receiver, 'till it be arriv'd at that great meafure of Rarefaction; and the fame Liquor, being upon a very fmall leak (fuch as would not be prejudicial to many Experiments) impell'd up to the top of the Gage, we cannot afterwards by this Inftrument take any meafure of the Air that gets in at the Leak. But now there are divers Experiments where I defire to fee the Phanomena that will happen, not onely (or perhaps not at all) upon the uttermoft Exhauftion of the Air, but when the Preffure of it is withdrawn to fuch or fuch a meafure, and alfo when the Air is gradually readmitted.

To make the Gage we are fpeaking of, take a very flender and Cylindrical Pipe of Glafs, of $6,8,10$, or more Inches in length, and not fo big as a Goofe-quill, (but fuch as we imploy for the Stems of feal'd Weather Glaffes,) and having at the flame of a Lamp melted it, but not too near the middle, to make of it by bending it a Siphon, whofe two Legs are to be not onely parallel to one another, but as litle diftant any where from one another as conveniently may be. In one (which is ufually the longer) of thefe Legs, there is to be left at the top, either half an inch, or a whole inch, or more or lefs than either, (according to the length of the Gage, or the fcope of the Experimenter) of Air in its natural ftate, neither rarefied, nor condens'd; the reft of the longer leg, and as great a part of the fhorter as fhall be thought fit, being to befill'd with Quick-filver. This done, there may be Marks
Touching the ppring and we ight of the Air.
plac'd at the ourfide of the longer (or fealed)leg, whereby to meafure the Expanfion of the Ait included in the fame leg, and thefe marks may be either litle Glafs Knubs, about the bignefs of Pins heads, faften'd by the help of a Lamp at certain diftances to the longer leg of the Siphon, or elfe the divifions of an Inch made on a lift of Paper, and pafted on either to the Siphon it felf, or to the flender Frame, which on fome occafions we faften the Gage to.
This Inftument being convey'd into a Receiver, (which for expedition fake we choofe as fmall as will ferve the turn,) the Air is to be very diligently pump'd out, and then notice is to be taken to what part of the Gage the Mercury is depreft, that we may know, when we fhall afterwards fee the Mercury driven fo far, that the Receiver, the Gage is plac'din, is well exhaufted. And if it be much defired to know more accurately (for one may. arrive pretty near the truth by Gueis) what fations of the Mercury in the Gage are anfwerable to the degrees of the Rarefaction of the Air in the Receiver; that may be compaffed either by Calculation, (which is not fo eafie, and fuppofes fome Hypothefes,) or (though not without fome trouble) by letting in the water as often as is neceffary, into a Receiver, whofe intire capacity is filf meafured, and in which there may be Marks made to Thew when the water to be let in thall fill a fourth part, or half, or three quarters \&c. of the Cavity. For if (for inftance) when the Quickfilver in the Gage is depreft to fuch a Mark, you let in the water, and that Liquor appearsto fill a fourth part of the Receiver, you may conclude, that about a $4^{\text {th }}$ part of the Air was pump'd out, or that a $4^{\text {th }}$ part of the Spring, that the whole included Air had, was loft by the Exhauftion, when the Quick filver in the Gage wasat the Mark above mentioned; \& if the admitted water do confiderably either fall hort of, or exceed the quantity you expected, you may the next time let in the water either after the Mercury has a litle paft the former Mark,- or a litle before it is arriv'd as it. And when once you have this way obtain'd one pretcy

A Continuation of Nets Experiments

long and accurate Gage, you will not need to take fo much pains to make others, fince you may divide them by the help of that one; for this being plac'd with any other in a fmall Receiver, when the Mercury in the Scandard. Gage (if I may fo call it) is depreft to any of the determinate divifions obtain'd by oblervation, you may thence conclude how much the Air in the Receiver is rarefied, and confequently by taking notice of the place where the Mercury refts in the other Gage, you may determine what degree of Exhauftion in a Receiver is denoted by that ftation of the Mercury in this Gage.

Perhaps I need not tell your Lordhip that the Ground of this contrivance was, that whereas in divers other Gages, when the Pump came to be obftinately ply'd, the Expanfion of the included Air would be fo great, that it would either drive out the Li quor, efpecially if it were light, or in part make an efcape through it: I judg'd that in fuch an Inftrument, as that newly defcrib'd, thofe inconveniences would be avoided, becaule that the more the Air fhould come to be dilated, the greater weight of Quickfilver it would in the fhorter Leg have to raife, which would fufficiently hinder it from making that heavy liquor run over; and the fame ponderoufnefs of the Liquor, together with theflendernels of the Pipe, would likewife hinder the included Air from getting through in Bubbles.

NB. 1. For moft Experiments, where exact meafures are not required, it will not be fo neceffary to mark the Gage at any other ftation of the Quick-filver then that which tis brought to by the Exhauttion of the Receiver, for by that alone we may know when the Air is well pump'd out of the Receiver, wherein the Gage is included: and when one is a litle uf'd to fome particular Gage, one may by the fubfidence of the Mercury guefs at the de gree of the Airs rarefaction, fo near as may ferve the turn in fuch Experiments. But when this Inftrument is to be us'd abour nice Tryals, where it may be thought requifite to have it divided according to one of the ways formerly propofed, it will on divers occafions be more fecure (in cafe the maker of the Gage has skill to do it, , to put to the Divifions rather by litte Knubs of Glafs, than by Paper, becaufe this will on fuch occafions be in danger either to be rubb'd off, or wetted. And if Glafs marks be us'd, it will be convenient that every fifth, or renth, or fuch Ordinal number as hhall be iudg'd fit, be made of Glafs of a differing colour, for diftinction fake, \& the more eafie reckoning. We fometimes for a need apply, in ftead of thefe Glais-knobs, litele marks of hard fealing Wax, which will not be injur'd by moifture, as thore Papers will that are pafted on; but thefe of Wax, though in many cafes ufeful, are not comparable to the other in all, fince if they be very fmall, they are eafily rubb'd off, and iflarge, they make not the Divifion exact enough, and often hide the true place of the Quick-filver.
I fhall here about the Mercurial Gages add onely this Hint, that what I propos'd to my felf in that Contrivance, was not onely to eftimate the Air pump'd out of the Receiver, or that remaining in it; butalfo, by the help of this Inftrument (as elfewhere by anorther Experiment) to meafure (fomewhat near) the ftrength of the Spring of rarefied Air, according to its feveral degrees of Rarefation; and by this Obfervation, in concurrence with other things, I hoped we might (accor ding to what 1 have elfewhere infinuated) be affifted to eftimate, by the Cylinder of Mercary rais'd in the open leg, the Expanfion of the Air included in the realed leg: but of thefe things I defign'd din this place to give but an Intimation.
3. That leg of the Gage that includes the Air, may be feald up either at the beginning, before the Pipe be bent into a Syphon, or (which is much better) after the following manner, Before you bend the Pipe, draw out the end of it, which you mean to feal, to a fhort and very flender Thread; then having made the Pipea Siphon, poar into the leg,which is to remain open,as much Quick-filver as you fhall judg convenient, which will tife to an equal height in the other leg; out of which by gently inclining

5^{8} 1 Continuation of New Experiments

 the Siphon, you may pour out the fuperflaous Mercury, (if fhere be any,) and when you fee that there is an inch, or half an inch(or what part you defign'd to leave for Air) unfill'd with Mercury, next so the end that is to be clos'ds, and that the reft of that leg, and as much (as you think fit) of the other is full of Quick- filver, you may, by keeping the Siphon in the fame pofture, and-warily applying the flender \mathcal{U} pex above mentioned to the upper part of the flame of a Lamp, blown Horizontal, eafily feal up that \mathcal{A} pex without cracking, or prejudicing the open leg, or confiderably injuring the Air hole, that was to be feal'd up in the other. And this fealing of one leg muft (as tis evident) keep the Mercury fufpended in it, though it be higher by divers inches than that in the openleg, till the withdrawing of the external Air enable the included, by expanding it felf to deprefs the Mercury in the real'd leg, and raife it in the open.4. How the length of there Mercurial Gages is to be varied, according to the Bignefs and Shape of the flender Receivers they are to be imploy'd in, and how they may eafily be made either to ftand upright at the bottom of the Receiver, or be kept hanging in the middle, or near the top of it (as occafion may require,) and how the open end may be made to fecure the Mercury, in cafes where that is needful, belongs not fo properly to this Treatife, as to the Second part of the Continuation; where, if ever I trouble Your LordGhip with it, the Llfefulnels of this fort of Gages, and the Circumftances that may advantage them, will beft ap: pear.
5. There being fome Experiments, wherein it is not defir'd that the Receiver fhould be neer exhaufted, but rather that the degrees of the Airs rarefaction, which ought not to be very great, thould be well meafur'd; we may in fuch cafes make ufe of Gages thap'd like thofe hitherto defcrib'd, but made as long as the Receiver will well admit, and furnifh'd in Atead of Quick-filver either with fpirit of Wine coloured with Cocheneel, or elfe with the cincture of red Rofe-leaves, drawn onely with common. Water,
Toucbing the fpring and weight of the Air.
made fharp by a litle either of the Oyl , or the fpirit of Vitriol, or of common Salt. For the lightnefs of thefe Liquors in comparifon of Quick- filver will allow the Expanfions of the Air included in the Gage to be very manifeft, and notable enough, though not half, or perhaps a quarter of the Air be pump'd out of the Receiver.
6. You may alfo in fuch cafes as thefe, where the Receiver is large enough, and is not to be quite exhaufted, make ufe of a Mercurial Gage, differing from thofe above defcrib'd onely in this, that the fhorter leg need not be above aninch, or half an inch long, before it expand it felt into a Bubble of about half an inch, or an inch in Diameter; and having at the upper part a very thort and flender unfeal'd Pipe, at which the Air may get in and out: by which Contrivance you may have this Convenience, that You need not include fo much Air, as otherwife would be requifite, at the top of the longer Leg, becaufe the Mercury in the fhorter cannot, by reafon of the breadth of the Bubble, whereinto the Expanfion of the Air drives it, be confiderably rais'd:Upon which account it becomes more eafie to eftimate by the Eye the degrees of the included Airs Rarefaction, which may be done almoft as. eafily, as if there were water in ftead of Mercury: provided it be remembred, that Quick- filver by reafon of its ponderoufnefs, does far more affift the dilatation of the Air, then fo much Water would do.

EXPERIMENT XVIII.

About an eafie way to make the Prefure of the Air fenfibleto the Touch of thope that doubs of it.

THough feveral of our Experiments fufficiently manifert to the Skilful, that the Preflure of the Air is very confiderable; yet becaufe fome of them require peculiar Glaffes, and ce ther:

A Continuation of new Experiments

ther Inftruments, which are not always at hand, and betcaufe there are many that think it furer to eftimate the force of Preffure by what they immediately feel, than by any other way; I was invited for the fake of fuch to imploy an eafie Experiment, which ufu. ally proved convincing, becaufe it operated on that Senfe, whereon they chiefly rely"d.
I caus'd then to be made a hollow (but ftrong) piece of Brafs , not above two or three inches high, (that it might be in a trice exhaufted,) and open at bort ends, whoie Orifices were Circular and parallel, but not equal, (the Inftrument being made tapering, fo that it might be reprefented by an excavated conus truscatus, or a Gigg, with the lower part cut tranfverfly off.) This piece of Brafs being cemented on, as if it were a fmall Receiver to the Engine, the Perfon, that would not believe the Preffure of the Air to be near fo confiderable as was reprefented, was bidden to lay the Palm of his Hand upon the upper Orifice; and being ordered tolean a little upon it, that fo the lower part of his hand might prove a clofe Cover to the Orifice, one Exuction of the Air was made by the help of the Pump: and then upon the withdrawing of the greateft part of the Preffure of the internal Air, that before counterballanc'd that of the External, the Hand being left alone to fupport the weight of the Ambient Air, would be preffed inwards fo forceably, that though the ftronger fort of men were able (though not without much adoe) to take off their Hands, yet the weaker fort of Tryers could not do it, (efpecially if by a fecond Suck the litle Receiver were better exhaufted,) but were fain to ftay for the Return of the Air into the Receiver to affilt them.

This Experiment being defign'd rather to convince than to punifh thofe that were to make it, we took care not onely that the Brafs fhould be fo thick, and the Orifices fo fmooth, that no Sharpnefs nor Roughnefs of the Metal thould offend the Hand; but alfo that che narrower Orifice (which was the oftneft made ufe of) Ahould be but about an inch and a quarter in Diameter.

Toucbing the Spring and VVeight of the Air.

But if any were defirous of a more fenfible conviction, 'twas very eafie to give it him by making the larger Orifice the uppermoft; which was the reafon why the Inftrument was, as we formerly noted, made tapering. But yet this larger Orifice sught not to exceed 2 Inches, or 2 Inches and $\frac{1}{2}$ in widenefs, leaft the great Weight of the Air endanger the breaking or confiderably hurting the Hand of the Experimenter. Which Caution I am put in mind of giving, by remembring that Ionce much endangered my own Hand, through the miftake of him that manag'd the Pump, who unawares to mefet it on work, when, for another purpofe, I had laid my Hand upon the Orifice of an Inftrument of too great a Diameter.

THe famous Experiment of Torricellius, mentioned in the $17^{\text {th }}$ of our already publifhed Try als, is of that Nobleneffe and Importance, that though divers Learned men bave (but upos very differing principles) difcour (Jd of it in Print, which gives me the leffe mind to infift long upon it bere, yet I fhall not fcruple to fubjoin fome Notes concerning Tryals that I made, (though for want of opportunity I could not repeat them according to my cuftom, which I bad not met with in others, and which may ferve to confirm the Hypothefis made ufe of in this Continuation, and the Ireatife it belongs to.

EXPERIMENT XIX.

About the Subfidence of Mercury in the Tube of the Torricellian Experiment to the level of the ftagnant. Mercury.

ABarofcope being included in a Receiver, made of a long Bolt head with the lower part of the Ball cut Circularly oft, upon the firft Exuction of the Air, the Quick- filver that before ftood at 29 inches, (the Atmofphere appearing then by a conftant Barofcope very light, would fall fo low as to reft at 2 or 10 inches,

62

A Continuation of New Experiments

ches, (for once I meafur'd the Subfidence beneath its former E: levation,) and in about three Sucks mote it would be brought quite down to the Level of the Stagnant Quick filver, and fomewhat below, (as tis the property of Quick-filver, quite contrary to Water, ro rife lefs in a flender Pipe than in a wide.) The Air being let into the Receiver, the Quick-filver would be impelld up flowlier or fafter, as we pleas'd, to the former height of 29 in. ches, or thereabouts.

NB. I. That if the Air were fuffer'd to go haftily out of the Receiver, the Mercury would, by virtue of the accelerated motion acquir'd inits defcent, at the very firft Suck defcend till it reacht within an inch or two of the ftagnant Mercury, though it would prefently after a few rifings and tallings fettle at the height of g or 10 inches, till the next Suck brought it down lower.
2. If when the Mercury was reimpell'd up to its due height, thofe that manag ${ }^{d}$ d the Pump did, in ftead of rarifying the Air, a little comprefs it, the Quick-filver would by the comprefs'd Air be eafily made to rife an inch or more above the former ftandard of 29 inches. Which Circumftance I mention, not as a new thing, but to confirm (what fome think Atrange) a Paffage printed, page the $59^{\text {th }}$, where I mention, that if the Air in the Keceiver, in ftead of being rarify'd in the Engine, were a litle compreft by it; the Preffure of the included Air, being fomewhat increas'd by having its Spring thus bent, would fuftain the Mercury in the Torricellian Tube at a greater than the wonted Height.

And to confirm another paffage in the fame Page, where I obferv'd, that if the Preffure of the Air upon the fagnant Mercury be not fo great as tis wont to be, the Mercury will begin to fubfide ina (fill'd and inverted) Tube, which wants of the ufual height; we took a Glafs Cane, (feal'd at one end,) much fhortes than the due length, and having fill'd it with Mercury, and inverted it into a Glafs full of fagnant Mercury, we placed all in the former Receiver; where the Mercurial Cylinder for want of the requifiteetheight remain'd totally fufpended, but upon the firt or

Touching the fpring and weight of the Air.

 fecond Suck it would fubfide, and in two or three Sucks more it would fall to the levell of the ftagnant Mercury, or a little below it. Uponthe letting in of the Air it would be impell'd to the very Top of the Tube, bating an Aerial bubble, which feem'd to come from the Mercury it felf, and was folitie, as not to be at all difcernable, Cave to a very attentive Eye.This Experiment I fhould not think fit here to relate, fince I formerly acquainted Your Lordflip with the Subfidence of the Mercury upon the withdrawing of the Air from the Receiver, were it not that, in the mention of that Tryal, I remember I confefs ${ }^{\prime} \mathrm{d}$ to You, that I could not fo free the great Receiver I then us'd from Air, but that the litle that remained or leak'd in, made me unable to bring the Mercury in the Tube totally to fubfide, or fall mach nearer than within an Inch of the Surface of the ftagnant Mercury, with which in our prefent Tryals that in the Tube was brought to a Level.

EXPERIMENT XX.

Shewing that in Tubes open at bothends, when no fuga Vacui can be pretended, the weight of Water will raife 2 uick-filver no bigher in flender tban in larger Pipes.
$\mathrm{B}^{\text {Ecaufe I find it, even by Learned and very Late Writers; }}$ urg'd as a clear and cogent Argument againft thofe that afribe the Phenomena of the Torricellian Experiment to the weight of the External Air ; That tis impoffible, that the Air, though'twere granted to be a heavy Body, could fuftain the Quick-filver at the fame height in Tubes of very differing bignefs, fince the fame Air cannot equally counterpoife Mercurial Cylinders of fuch unequal weights: and becaufe this Objecton is wont very much to puzzle thofe that are not well acquainted with the Hydroftaticks, I prefume Your Lordhip will allow me,

A Continuation of λ Rets Experiments

 till I can fhew you fome Hydroftatical Papers, by which the Objection may appear to be but ill grounded upon the true Theoremes of that Art, to annex the Tranfcripts of a couple of Expe. periments, (that I once made to remove this, fuppofedly infuperable, Difficulty,) jutt as I find ţhem regiftred in my Notebooks.The J. Tryal.
Sept. the 2. 1662.

We took a very large Glafs-Tube, Hermetically feal'd at one end, and about two Foot and a half in Length. Into this we pou: red Quick filver to the height of 3 or 4 fingers. Then we took a couple of Cylindrical Pipes of very unequal fizes, (the wider being as big agen as the flenderer) and open at both Ends. The lower Ends of thefe two Pipes we thruft into the Quick-filver, and faften'd them near their upper Ends to the Tube with frings, that they might not be lifted up, nor mov'd out of their pofture, in which the convex Surface of the Mercury in both the Pipes feem'd to lie almoft in a Level, the Tube alfo it felf being plac'd upright in a Frame. This done, by the help of a Funnel we poured in Water by degrees at the top of the Tube, and obferv"d, that as the Water gravitated more and more upon the ftagnant Mercury, fo the included Mercury rofe equally in both the Pipes, till the Tube being almoft fill'd with Water, the Mercury appeared to be impell'd up to and fuftain'd at as great a height in the Big Tube, as in the Leffer, being in either raifed about two Inches above the Surface of the Stagnant Qaick-filver.

NB. 1. Having caus'd about half the Water (having no conveniency to withdraw any more) in the Tube to be fuck'd out ac the Top, we obferv'd the Quick-filver in both the Tubes to fubfide uniformly, and to reafcend alike upon the reaffufion of the Water-
2. We endeavoured to try the Experiment (for their fake who have no the Conveniency to have fuch Tubes purpofely

Touching the fpring and weight of the Air: made) in a wooden veffel, into which, when it was fill'd with water, we let down aflat Glats furnifhe with ftagnant Mercury, whereinto the Ends of the two Pipes were immerfd. But the Opaconfnefs of the Cylinder (which reduced us to fee onely from the Top the Reflection of the ftagnant Mercury,) and other Impediments, difabled us to perceive the Motions and Stations of the Mercury in the Pipes, though we once made ule of a Candle the better todifcern them.

> The 11. Tryal.

We took a very wide Tube of Glafs, of about a Foot long, andinto it poured a convenient Quantity of Quick-filver. We took alfo two Pipes of about equal length, and of that difparity in Bignefs that we newly mentioned, (thofe Pipes lately defcribed being indeed cut off from thefe we are now to (peak of, and thefe being fill'd with Quick filver (after the manner of the Torricellian Experiment) were by a certain Contrivance let down into the Tube, and unftopt under the Surface of the ftagnant Mercury, and then the Quick-filver in the Pipes falling down to its wonted Station, and refting there, we poured into the Tube about a foot height (by Guefs) of Water, whereupon the Quick-filver as it before ftood, as it were, in a Level in both the Pipes, fo it was, for ought appear'd to us, equally impell'd up beyond its wonted Station, and fuftain'd there both in the flender and in the bigger Pipe, and upon the withdrawing of fome of the Water it began to fubfide alike, as to fenfe, in them both, talling no lower in the bigger than in the flenderer. And Water being a fecond time poured down into the Tube, the Mercury did in both Pipes rife uniformly as before. By which and the former Experiment it fufficiently appeared, that a Gravitating Liquor as Air orWa ter, may impell or keep.up Mercury to the fame height in Tubes that are of very differing Capacities: And that Liquors ballance each other according to their Altitude, and not barely according to their Weight. For in this laft Experiment, the Additional Cylinder of one Inch of Mercury was manifefly rais'd and kept
up by the Water incumbent on the ftagnant Mercury, (the o: ther Caufe, whatever it were, of the Mercury's Sufpenfion, be. ing able to fuftain but a Cylinder fhorter by an Inch.) And the fame parcel of Water did counterpoife in the differing Pipes two Mercurial Cylinders, which though but of the fame Altitude, (namely about an Inch) were of very unequal Weight.

EXPERIMENT XXI.

of the Heights at which pure Mercury, and Mercury Amals gamid with Tin, will ftandin Barometers.

COnfidering with my felf, that if the Suftentation of the Quick-filver in the Torricellian Experiment at a certain heighr, depends upon the eqquilibrium, which a Liquor of that Specifick Gravity does at fuch a height attain to with the External Air, if that peculiar and determinate Gravity of the Quickfilver be altered, the height of it, requifite to an e Equilibrium with the Atmofphere, mutt be altered too*. (Confidering this I fay) I thought it might fomewhat confirm the Hypotbefis hitherto made ufe of, if a Pheromenon fo agreeable to it were actually exhibited. This I fuppofed performable two differing wayes, namely by mixing or (as Chymifts (peak) Amalgamating Mercury either with Gold, to make it a mixture more heavy, or with fome other Metal that might make it more light than Mercury alone is. Bat the former of thofe two ways I forbore to profecute being where I then was unfurnifhed with a fufficient quantity of refined Gold, (for that which is Coyn'd is generally allayed with Silver, or Copper, or both, and therefore Amalgamating Mercury with a convenient proportion of pure Tin, (or, as the Tradermen call it, Block. Tin,) that the mixture might not be too thick to be readily poured out into a Glafs . Tube, and ro fublide in it, we fill'd with this Amalgam a Cylindrical Pipe, fear-
Toucbing the /pring and weight of the Air.

Jed at one end, and of a fit length, and then inverted it into a litle Glafs furnifhed with the like mixture. Of which Tryal the Event was, that the Amalgam did not fall down to 29, nor even to 30 inches, but fopt at 3 t above the furface of the ftagnant Mixture.

Note 1. That though one may expect, that the Event of the Experiment would be the more confiderable, the Greater the Quantity is that is mingled of the light Metal, yet care muft be taken that the Amalgam be not made too thick, leaft part of it ftick here and there (as we did to our trouble find it apt to do) to the infide of the Pipe, by which means fome Aerial Corpufcles will meet with fuch convenient Receptacles, as to make it very difficult, if not almoft impoffible, to free the Tube quite from Air.
2. It may perhaps be worth while to try, whether by compat ring the height of the Amalgam, to what it ought to be upon the fcore of the fpecifick Gravities of the Mercary, and the Tin, mingled in a known Proportion in the Amalgam, any difcovery may be made whether thofe two Metals do penetrate one another after fuch a manner (for there is no ftrict Penetration of Dimenfie ons among Bodies) as Copper and Tin have, as I elfewhere note, been (by fome Chymifts) obferv'd to do, when being melted down together they make up a more clofe and ipecifically pondesous Body, than their refpective Weights feem'd to require.
3. That by comparing this 21 . Experiment with the $\pm 8^{\text {dh }}$ of thofe formerly publifhed, it may appear, that the height of the Liquor, fufpended in the Torricellian Experiment, depends fo much upon its aquilibrium with the outward Air, that it may be varied by a change of Gravity in either of the two Bodies that counterballance each other, whether the change be of weight in the Atmofphere, or of Specifick Gravity in the fufpended Liquor.

A. Dy

1. Continuation of nezs Experiments

Advertifement:

IShould bere acquaint Your Lordfhip with what I have fince tried in reference to the $18^{\text {th }}$ of the-Printed Experiments, where 1 mention, that I obferved, by long keeping the fame Inftrument with which I once made the Torricellian Experiment in the fame place, that the height of the fufpended Mercury mould vary according as the weight of the Atmofphere hapned to change. But though about the Barometer (as others bave by their imitation allowed me to call the Inftrument bitherto mentioned, put into a Frame) I made in the year 1660 feveral oblervations, that would not perhaps be imperti. nerut in this place, yet having long fonce left the with a Friend, who lives far off, and not having thens now in my power, I muft beg rour Lordbips permiffion to referve them for a part of the Appendix, which I doubt I ball be engaged to adde to this Epiftle. And in the mean time I fhall not forbear to prefent Your Lordfhip thofe other Papers that I have by me, rel ating to the Barometer; fome of which will, I prefume, (uficiently confirm my lately mentioned conjecture about the caufe of the Variation objerved in the Height of the fufpended Mercury.

EXPERIMENT XXII.

Whercin is propos' ${ }^{2}$ a way of making Barometers, that may be tranfported evers to distant Countries.

THinking it a defireable thing (as I have elfewhere intimated) to be able to compare together, by the help of Barometers, the weight of the Atmofphere at the fame time, not onely in differing parts of the fame Country, as of England, but in differing Regions of the World; I could not but forefee that 'twould be very difficulc to accomplifh my defire without alcering the form of the Barometers I had hitherro made ufe of. For as thele be unfit to be tranfported far, becaufe that fagnant Mercury would be fo apt to fpille So the procuring them to be made in the places where they are to be ufed, though it be no badexpedient, and fuch as I have divers times made ufe of, is liable to this inconvenience, that, befides that few will cake the pains, and have the skill, requifite to make Barofcopes well, though they be fufficiently furnifhed with Glaffes and Mercary for that parpofe, befides this, I ay, except men be more than ordinarily diliieent and skilful, (and perthaps though they be, 'twill be very difficult to be fare that the Barofope newly made ina remote Country, is as Good (and but as good) as that which a man makes ure of in this, in regard that at the making of the former, they are fuppofed to have no other Barofcope to compare it with; and to be fure, they have not the fame with whichit is to be compared Here.
Being by thêle confiderations invited to attempt the making of Portabie or Travailing Barofcopes, (it I may fo call them, I thought it requifite to endeavour thefe three things: The fir f, to make the veffil that flould contain both the fuftained and the fagnant Mercury all of one piece of Glafs, of a like bignefs: The next, to place this veffel, when fill'd, in fuch a Frame, as may be eafie to be traniported, and yet in a reafonable meafure defend the Glafs from external violence, no part of it ftanding quite out of the Frame, as in all other Barofcopes: And the third, fo to or. der the veffel, that it may not be fubjeet to be eafily broken by the violent motion of the Mercury contain'd in it,
The firtt of thefe will not feem practicable to thofe that imagine (without any warrannt from the Hy droftaticks) that tis as well neceefliary as ufual, that the fagnant Mercury flould have a veffel much wider than the Tube, wherein the Mercurial Cylinder is fultain' d; butco us the difficulty feem'd much lefs to make the Glars part of our Tube of one piece, and of a convenient fhape, than afterverads to fill it.
But to do both, we took a Glafs Cylinder feal'd at one end, and ot a convenient length, (as about 4 or 5 foot, and caus'd ir by

A Continuation of New Experiments

the flame of a Lamp to be fo bent, that, to thofe that did not take notice 'twas fealed at one end, it feem'd to be a Syphon of very unequal Legs, the one being 3 or 4 times longer than the other; by virtue of which Figure the fhorter Leg may ferve in ftead of the diftinet veffel ufually imployed to contain the ftagnant Mercury. To fill this, which is not eafie, one may proceed after this manner. Take a fmall Funnel of Glafs, with a long and flender Shank, fo that it may reach 3 or 4 Inches, or further, into the fhorter Leg of our Barometrical Syphon (if I may fo callit;) and by this Funnel pour into this fhorter Leg as much Mercury as may reach about 2 or 3 Inches in both Legs; then ftopping the Orifice with your finger, and flowly inclining the Tube, the Mercury in the longer Leg will gently fall to the fealed end; and the Air that was there before, will pals by it, and fo make it room: The Mercury in the fhorter Leg (which Leg ought to be held uppermo(t) will by the fame inclination of the Tube fall towards the Orifice, but, being by the finger that fops that, kept from falling out, if you do flowly reerect the Glafs, and then make it ftoop again as much as before, the Mercury will pais out of the Ihorter Leg into the longer, and joyn with that which was there before; and ifall the Mercury do not fo pafs, the Orifice is to be ftopt again with your Finger, and the Tube inclin'd as formerly. This done, the Tube is to be erected, and by the help of the Funnel more Mercury is to be poured in, and the foregoing procefs of ftopping the Orifice, inclining the Tube \&c. is to be repeated, till all the Mercury pour'd into the fhorter Leg, be brought to joyn with that in the longer; and then the open Leg is to be furnifht with frefh Mercury, obferving this, that the nearer the longer Leg comes to the being fill'd, thelefs you muft raife it from time to time, when you pour Mercury into the fhord ter; as allo, that when you fee the longer Leg quite full of Mercury, (though there be but litle in the fhorter,) you need not pour in any more, if the longer do much exceed a Yard; becaufe upon che reftoring of the Tube to an crected pofture there win fubfide
Touching the fpring and weight of the Air. fubfide from the taller leg into the other a pretty quantity of Mercury, by reafon of the fpace at the feal'd end, which will be deferted by the Mercury that was there. But becaufe tis difficule by this way, as well as by that practifed already, to fill a Tube with Mercury without leaving any vifible bubbles; to free it from fuch (if any happen to be) you muft once more ftop the Orifice with your finger, and incline, and reereet the Tube divers times, till you have thereby brought moft of the fmaller bubbles into one greater; (which you may if you pleafe increale, by letting in a litele Air:) for by making this Great bubble pafs leifurely two or three times from one end of the Tube to the other, it will in its paffage as it were lick up all the fmall Bubbles, and unite them to its felf, which may afterward's by one inclination more of the Tube be made to pafs into the fhorter Leg, and thence into the tree Air.

But there is another fort of Funnels, which if one have the skill and conveniency to make, (as I. M. eafily doth,) one may very expeditioufly fill the bended Tubes of our portable Barometers. For if you make the flender part of the Funnel not ftreight but bended, in the form of an Obtufe Angle, and of fuch a length, that the part which is to gointo the thorter Leg of our Siphon may reach to the Flexure (of the Siphon;) then you may, by fo holding the Tube that the fealed end be fomewhat lower than the other, and by pouring in Mercury at the Obtule end of the Angular Funnel, eafily makeit run over the Flexure into the longer Leg of the Siphon; provided you do now and then, as occafion requires, erect a litle and thake the Tube, to help the Mercury to get by the Air, and expell it.
By fuch wayes as thefe we have found by Experience, that tis poffible (though not eafie) to do in fuch a bended Glafs, as our purpofe requires, what, befides a very late Learned Writer, the Diligent Mer Jennus himfelf, admonifhes his Reader, that tis not a practicable thing to do in the Ordinary Glafses of the Torricellian Experiment, viz, to free the Mercury of a Araight Tube from
7^{2} A Continuation of $N e d$ Experiments
Air and Bubbles, (fo as to be able by inclining the Glais to make the Liquor afcend to the very top.)

The Firft of our 3 above mentioned Scopes being thus attained, it was not difficult to compals the Second, by the help of a folid piece of Wood, which is to be fomewhat longer than the Tube, and a good deal broader in the lower part than in the upper, thit it may receive the fhorter Leg of the Siphon. In fuch a piece of Wood, which was about an Inch thick, we caus'd to be made a Gutter or Chanael, of fuch a depch and fhape, that our Siphon might be placed in it io deep, that a flit piece of Wood (like a plain'd Lath) might be layd upon it, without at all preffing upon or fo much as touching the Glats; fo that this piece of Wood may ferve for a Cover to defend the Glafs, to be put on when the Inftument is to be tranfported, and taken off again when tis to behung up to make Obfervations with; the Channel piece of wood ferving both for a part of a Cife, and for an entice Frame; which may for fome ufes be alitle more commodious, it the Cover be joyned (as it may eafily be) to the relt of the Frame, by 2 or 3 litle Hinges and a Hafp, by whofe help che Cafe may be readily opened and fhut at pleafure.

The $3^{\text {d }}$ thing we propofed to our felves is nothing near fo eafie as the ${ }^{2}{ }^{\text {d }}$, nor have we yet had opportunity to try, whether the way we made ufe of will hold, if the Barometer be tranfported into very remote parts, though by fmaller Removes we found caule to hope that 't will fucceed in Greater.

The Grand difficulty to be obviaced was this; That though 'twere eafie to hinder the fpilling of the Mercury, by ftopping the Orifice of the fhorter Leg of our Siphon, yet that would not ferve the turn; for the uppper part of the Tube being defticute of Air, if the Mercury be by the motion of the Inftrument put to vibrate, it will be apt (for want of meeting with any Air in the upper part of the Tube to check its motions) to hit fo violently againft the Top of the Glafs as to beat it out, or to crack fome of the neighbouring parts.

To obviate this great inconvenience our way is, to incline the Tube, till the Mercury be impell'd to the very rop of it, and yet there will remain a comperent quantity in the fhorter leg of the Glais, if that be not at firtt made too fhort. This done, the remaining part of the fhorter Leg is to be quice fill'd up either with Water or Mercury, and the Orifice of it is to be very carefully and firmly ftopt, (for which purpofe we ufe our frong black Ce ment:) for by this means the Mercury in the longer Leg, having no room to play, cannot frike with violence as before, againit the top of the Glafs. But though by many times fuccefively fhaking the Barofope we did not perceive that'twas very liketo be prejudiced by che fhakes it muft neceflarily indure in Tranfportation toremote places, if due care be had of it by the way, yet cill further Tryal have been made I fhall not pretend to be certain of the Event. But thus much of conveniency we have already found in this Contrivance, that we fent it fome miles off to the top of a Hill, and had it brought home fafe again, the phenomena at the top and bottom of the Hill being anfwerable to what we might have expected if we had imployed another Barofcope.
When the Infrument is to be fent away, the height of the Mero curial Cylinder (to be meafured from the furface of the ftagnant Mercury in the fhorter Leg) being taken for that place, day, and hour, and compar'd (if it may be) with that of another good Barofcope, which is to continue in that places as much of the Gutter as is unfill'd by the Glats may be well ftufted with Cotten, or fome fuch thing, to keep the Glafs the more firm in its pofture; and that the Tube be not flaken or prefs'd againft the Wood, fome of the fame matter may be pot between the reft of the Frame and the Cover, which ought to be well bound together. And when che Infrument is arriv'd at the remote place where cis to be imployed, (for if it be to be fent but a licle way, it may be carried fafely withour ufing any advencilious Liquor,) the Water that is added, may be taken off agaio, by foaking it up with pieces of Sponge, Limnen, \&cc. but if in ftead of Water you pur in Mer-

74

A Continuation of N ew Experiments

cary, as it ought to have been put in by Weight, fo it is to be taken out, till you have juft the Weight that was put in: and tis not difficule to take out the Mercury by degrees, by the help of a fmall Glais-pipe, fince You may eicher fuck up litle by little as much as remains of the additional Mercury, when by erecting the Barometer, and warily unftopping the Orifice of the lower Leg, as much Mercury as will of irs fell flow out is efflux'd; or elfe you may take out the fuperfloous Mercury, by thrufting the lower end of the litle Pipe intu that Liquor, and when it has taken in enough, fopping the upper end clofe with your finger, to keep it from falling back again when you remove the Pipe.

NB. If it thould happen in a long voyage, that by the numerous Shakings of the Inftrument there fhould from the additional Water or Mercury in the fhorter Leg get up into the longer any licle Aerial Bubble, which feems the onely (but I hope not likely) danger in this Contrivance, he that is to ufe the Inftrument, at the end of the Voyage may, if he be skilful, free the Mercury from it by the fame way, that we lately prefcrib'd to free it from Air, when the Inftrument was firt fill'd.

I prefume I need not tell Your Lordhip, that the chief ufe of this Travailing Barofcope is, That he that ufes it in a remote part, keeping a Diary of the heights of the Mercury, by comparing thefe heights with thofe at which the Mercury ftood at the fame times in the Barometer that was not remov'd, the Agreement or Difference of the weight of the Atmofphere in diftant places may be obferved. To which this may be added, the Conveniency, which the ftructure of thefe Inftruments gives them to be fecurely let down inro deep Wels or Mines, and to be drawn up to the top of Towers and Steeples, and other elevated places: not here to confider, whether by a convenient addition, thele, as well as fome other Barometers, may not be made to difcover even very minute Alterations of the Acmofpheres Preffure.

Whether this Travailing Barofcope, being furnifh'd at its upper end with a very good Ball and Socker, and at the lower end

Touthing the /pring and weighe of the Air.

with a great weight, (which way of keeping things fteady in a Ship has been happily ufed by the Royal society on another occafion,) whether, I fay, our Inftrument may by this Contrivance, or fome other thit might be fuggefted to the fame purpole, be made any thing ferviceable at Sea, notwithftanding the differing motions of the Ship, I have had no opportunity to try: but whether it may or may not be ufeful in fpite of the rolling of the Ship, it may at leaft be made ufe of in flat Calms, (which divers times happen in long Voyages, efpecially to the Eaft Indies, and to Africk,) and then the Inftrument, which at other times may lie by without being at all cumberfom, may be made ufe of, aslong as the Calm lafts, to acquaint the Obferver with the weight of the Atmofphere in the Climate where he is, and that upon the Sea: which may give fome welcome Information to the Cu . riofity of Speculative Naturalifts, and perhaps prove either moie directly or in its confequences of fome ufe to Navigators them felves, as by enabling them by its fuddain changes to foretell the end of the Calme. Befides that, having one of thefe Inftruments ready at hand, where ever they fee foot on thore, though it be but upon a fmall Ifland, or a Rock, they can prefently and eafily take notice of the Gravity of the Acmofphere in that place; which whether or no, if compared with other Obfervations, it may in time provenot altogether ufelefs to the Gueffing whereabouts they are, and the forefeeing fome aproaching changes of Weather, I leave to future Experience, if it Shall be thought worth the making, to determine.

Befides the ordinary Barcfcope, and this Travailing one, I have imployed 2 or 3 other Inftruments of quite differing kinds, to difcover the varying Gravities of the Atmofphere; but though they have hitherto fucceeded well (for the main, yet being willing to make further Obfervations about them, I referve one of them for another opportunity, and think fit to leave the other in a Tract it belongs to.

76
 1 Continuation of new Experiments

A Poft- Cript Advertifment.

SInce the writing of the foregoing and the following Experiments about the Travailing Barolcope, baving had occafion to make one at a place about 50 miles diftant from that where I was when I writ them, I took norice, that the Mercury in the Travailing Barofoppe was not by 4 of an Inch fobigh as that in another Barofcope sade the ordinary way; andyet'twas not eafie to perceive, that the former bad been lefs carefully filld than the latter. So that I yet know not well to what caufe to impute the Difference, unle β it fhould perhaps depend upow this Circumfance, That the Pipe, whereof the Travailing Barolcope was made, was very flender, and much more fo than the Tube of the other; and I have already ellewhere obfervied, that Mercury, contr ary to what happeres in Water, is leffe apt to rife in very flender Pipes. And though I remember that, at the Place where I writ the Experiment, to which this Poffcript belongs, in the Tube 1 then imployed to make the Travailing Barofcope, the sercury afcended as high as in a noted one made the common way ${ }_{3}$ yet not being in the otber place furnifbed with a Tube long and big enough, Itbink my felf oblig'd, till I can clear the Doubt by further Tryal, to give Your Lordjbip this Advertifement, left either the Caufe alresdy fulpected, or fome other unheeded thing may in fome cafes make thefe Travailing Barofcopes fomewhat differing from 0 thers. But though they hould prove to be fo, get it would not follow that they cannot be made ferviceable: for keeping a pretty while that Inftrument, which juggefted the Scruple to me, luft by the other with which I badcompar'd it, and carefully taking notice of the re/pective bighes at which the cMercury refted in both, 1 obferv'd that when it rofe or fell on the otber Barometer, it did alfo rife and fall in the Portable one; and when it refted at its firft fation in the Former, it aid fo in the Later; and though there feem'd to be an inequality is the quansity of the Alcent, and fubfidence of the Mercury in the two Infirwments, yet that feem'd to be accountable for by fome Circum-

Toucbing the Spring and VVeight of the Air. fances, efpecially the veryunequal breadib of the veffel that containd d be flagnant Mercury in the other Barometer, and that fhorter Leg which answerd to that veßel in the Travailing Barometer. But till the formerly propofed scruple be by further obfervation removed, the fafef way will be to make the Barometer to be fent to remote places, as like as may be (in bignefs, and length of the tabe) to another Portable one keps at home; that fo mben they are once adiufted, the Collutions may be made hetwixt two infruments of the fame kind, whereof that which is kept at home may alfo, if it be thought fit, be compared, when the obfervations are made, with a Barofoope made the or dinary way.

EXPERIMENT XXIII,

Confirming, that Mercury in a Barometer will be kept fufpended higher at the top, than at the bottom of a Hill. on whicboccafion fomething is noted about the beight of Mountains, efpecially the Pic of Tenarift.

Tgive Your Lordhip fome Inftance (till I can prefent You with a Nobler one) of the Ulfe of our Travailing Barometer, I fhall now adde: That when I writ the foregoing Experiment, chancing to be within 2 or 3 miles of a Hill, which, though not high, was the leaft low in that Countrey, I thought our Inftrument might be fafely, and not altogether ueiéefly, carried on Horfe-back to the top of it, which was too remote from the bottom to be conveniently reacht by me on foot in the midit of Winter. This Tryal therefore I refolv'd to make, becaufe, though I formerly told You of a confiderable one that had been made in France by fome Eminent Virtuof of that Country, yet 1 was willing, not onely to have a Proot how fafety our Barofcope might be tranfported, but to confirm to Your Lordfhip upon our own Obfervation, made in another Region, to confiderable

And though when I came to try the Experiment, I hapned to have an Indifpofition that forbid me to do it all my Self, yet having carefully mark'd on the edge of the Frame the height to which the fufpended Quick-filver reach'd, and compar'd it with a good Barof cope made the ordinary way, I committed our Inftrument to a couple of Ser vants, that I had often imployed about Pneumatical and Mercurial Experiments, giving them particular Inftructions what to do. And the Inftrument being fuch as might be lafely carried on Horfeback, I had in two or three hours an Account brought me back, the Summe of which was: That they found the fufpended Mercury fall a litle as they afcended the Hill, at whofe Top they gave the Liquor leave to fetle, and care. fully took notice by a mark of the Place it refted at; which was; as Iafterwards found, of an Inch, or fomewhat better beneath the Mark I had made, and this notwithftanding the Hill was not high, and the Air and Wind feem'd to them to be much colder: at the top of it, than beneath. But though, as they defcended more and more, they obferv'd the Mercury to rife again higher and higher, (as being prefs'd againft by a taller column of the Atmo(phere,) and though confequently the Experiment agreed very well with our Hypothe is, and may ferve for a Confirmation of it; yet by reafon of the fmall height of the Mountain the Decrement of the height of the Mercurial Cylinder was not fo confiderable, but that I thonld perhaps have omitted the mention of this Tryal, if it did not thew that our Travailing Barofcopes may be fic to be imployed about fuch Experiments. And therefore, when I can recover fome of my fcatter²d Papers, I fhall by way of Appendix fubjoin to this fome other Obfervations, that I procur'd to be made by Ingenious men, who had the Opportunity of living near higher Mountains.

Some further Tryals I have recommended to be hereafter made by fome other inquifitive Perfons; and to make them the more inftructive, I could wifh that others would do what I fhould have done, if Opportunity had befriended me. For I defign'd to make the Experiment at the bottom, the top, and the intermediate part of the hill, at three differing conftitutions of Air, viz.when it hould appear by a good ordinary Barofcope, that the Atmofphere was very heavy, when it fhould be found to be very light, and when it thould have a moderate degree of Gravity: And I hoped, that if fagacious Experimenters fhould make thefe diverfify'd O'bervations on diftant and unequal Hils, good Hints may refult from the Collations that may be made of the varying De. crements of the Mercurial Cylinders height, according to the differing Gravities of the Atmolphere at feveral Times, and the differing heights of the Hils and Stations where the Obfervations fhould be made.

I alfo indeavoured toget a Barofcope carried down to the bottoms of deep Mines; partly, to try whether the Armofpherical pillar being longer There then at the Top, the Mercury in the Tube would not be impell'd up higher; and partly, in order to other Difcoveries. But fome Impediments in the ftructure of thofe Mines made it not very Practicable to imploy Barometers there; which yet makes me not defpair of Succeís in fome other Mines, where theShafts or Pits are funck more perpendicularly.

Perhaps I told Your Lordfhip already by word of mouth, that I have been follicitoufly endeavouring to get the Torriceliian Experiment tried upon the Pic of Teneriff, but hitherto I have had no Account of the fuccefs of my Endeavours; for which I am the more concern'd, becaure of the Eminent (if not Matchlefs) height of that Mountain, of which You may receive fome Satisfaction, by what I am going to fubjoin about it.

An Appendix about the height of Mountains.

FOrafmuch as on the one hand not onely Kepler, but divers o. ther modern Writers of Note, do endeavour to ftraiten the Atmorphere, and make it lower by half than the leaft height to which, according to our Eftimation, it fhouldreach; and to countenance their Opinion, will not allow the Clouds to be often above a Mile high, (nor even the higheft Mountains to exceed twomiles.) And forafmuch as on the other fide other Learned men feem to make the Clouds and the Mountains of a fupendous height; we, who take a middle way of eftimating the height of the one and the other, hold it not unfit to fubjoyn on this occafion fome uncommon Obfervations, in favour of our Opinion, that we have obtain'd from inquifitive Travellers.

But firft I will fabjoyn a Paffage I have fomewhere met with in Ricciolus his Almigestum novism, where he(if I well remember) relates, that the Rector Metenfis (as he calls him) of the Jefuites Colledg affirm'd to him fome years fince, that he had meafured the height of many Clouds, without having found any of them higher than 5000 paces: which argues, that he met with fome fo high, though indeed the height of Clouds muft needs bevery various, according to the Gravity or Lighenefs, Denfity or Thinnefs, Reft or Agitation of the Air, and the condition of the Vapors \& Exhalations they confift of. And if either that be true which we have formerly had occafion to mention concerning Maignan's Obfervation, or if it be true that Sublunary Comets (for I fpeak not of Celefitial ones) are Generated of Exhalations of the Terreftrial Globe, we may well conjecture that the Atmofphere, (efpecially if ies height be not uniform, and even Clouds (efpecio. ally thofe that have moft Fumes, and feweft Vapors) may reach much higher than Cardan, Kepler, and others have defin'd.

But of the beight of Clouds (which we have fometimes atsempted to take Geometrically) we may have elfewhere occafion

> Toucbing the fpring and weight of the Air.
to fpeak again; and therefore I fhall now proceed to what I have to fay concerning the Height of Mountains. Which being an Enquiry curious and difficuit enough init felf, and of fome Importance in the Difquifition about the height of the Atmofphere, (it being evident that That muft reach at leaft as high as the tops of Mountains, upon whofe tops men can live;) I hope it will not be unacceptable to Your Lordhip, if having a while fince (as I was intimating) had the opportunity to difcourfe with fome credible Perfons that have been upon the top of exceeding high mountains, particularly of the Pic of Tenariff, (and efpecially with one Gentleman, who was a few dayes betore brought to fatisfie the Curiofity of our Inquifitive and Difcerning Monarch, by giving him an Account of his Journey,) I acquaint You with ${ }^{3}$ thofe of the Particulars, which I learn'd from thence, that are the moft pertinent to our prefent purpofe. Firft then whereas divers late Mathematicians will not allow above two miles or half a German league (and fome of them not balf fo much) to the height of the higheft Mountain; the Mountain we fpeak of, in the IMand of Temariff, one of the Canaries or Fortunate Iflands, is fo high, shat, though perhaps I think thofe Travellers I have taken notice of, fpeak with the moft when they write, that the top of this Mountain is to be feen at Sea 4 degrees off, i.e. at leaft threefcore German Leagues; yet having ask'd the ingenious Gentleman lately mentioned, Mr. Sydenham, from what diftance the top of the Sugar-loaf (or higheft part of the Hill, fo called from its Figure) could be feen at Sea, according to the commor opinion of Seamen? he anfwer'd, that that Diftance was wont to be reckon'd 60 Sea-leagues, of 3 miles to a League: adding, that he himfelf had feen it about 40 leagues off, and yet it appear'd exceeding high, and like a blewifh Pyramid, manifêly a great deal higher than the Clouds. And what he related to me about the Diftance, was afterwards confirmed by the Anfwers I receiv'd from obferving men of differing Nations, who had fail'd that way; and particularly by a Noble virtuofo, skill'd in the Mathe-

82 \mathcal{A} Continuation of $\mathcal{N e w}$ Experiments

maticks, who was then Admiral of a brave Englifh Fleet: And the above mentioned Gentleman ($\mathrm{M}^{\mathrm{r}} \mathrm{S}$.) allo told me, that fometimes men could from thence fee the Inand of Madera, though diftant from it 70 leagues; and that the Great Canary, though 18 Weagues off, feem'd to be very near them that were on the top of the Sugar-loaf, as if they might leap dowa uponit: Thus far Mr Syderiham. By whole Relation it appeas, that this Pic muft be far higher than Kepler and others allowMountains to be: for elfe it could not be feen at Sea from fo great a Diftance. And the Learned Ricciolus fuppoling it to be (a) fome Navigators report it to be) difcoverable at Sea 4 degrees off, calculates its height meafur'd by a Perpendicular line, and allowing too for Refraction, to amount to Ten miles, which Altitude alfo the accurate Snellius affigns it. But I fear this Learned man may have been fomewhat misinform'd by the Navigators he relyes on, or elfe that the way of allowing for Refractions is not yet reduc'd to a fufficient Certainty. For I do not find by thofe who have purpolely gone to the top of it, that the Mountain is fo high as his Calculation makes it. And whereas thefame Eminent Writer refolutely ponounces that the Height of mount Caucafas, Deduction being made for Refraction, is 5 I Bolonian miles, (which are confiderably greater than the Roman miles,) I doubt that here likewife, though I queltion not his Supputations if You grant him the Grounds of them, he makes this Mountain far higher than indeed it is. For the Paffage of cariftotle, on which he founds his Opinion, is obfcure enough; and Ariftotle himfelf does fometimes take up Reports upon Herr- fay, without overftrictly examining their Truth or Probability; whereas all the Navigators and Travellers I have hitherto met with, (and Your Lordthip knows, that I have upon a Publick Account the opportunity of meeting of ten with fuch men, co almoft unanimoutly agree, that the Pic of Teneriff is the higheft Mountain hitherto known in the World, and yet that is fo far from being 15 leagues high, (as fome Eminent and even late Writers would perfwade us,)

$$
\text { Toucbing the fpring and weight of the Air. } \quad 8_{3}
$$

that it is fcarce a $7^{\text {h }}$ part fo high as Ricciolus computes Mount Canca/us to be. For having ask'd Mr Sydenham, and others, what was the Eftimate made by the moft knowing Perfons of the Ifland of the height of the Hill, he told me that his Guides accounted it to be one and twenty mile high from the Town called L'oretava, feated on the lower part of the Hill ; from which town to the Sea thera is 3 miles of way alwayes defcending. But in regard that the wa?, which amounted to 21 miles in length, is, as other wayes whereby fteep places are wont to beafcended; made to wind and tun for the conveniency of Travellers; I can fcarce deduct lefs than 2 thirds for the Crookednefs of the way: and accordingly having ask'd him, whether the Perpendicular height of it had beenaccurately taken by any with Mathematical Inftruments, he anfwered, that he could fay nothing to that upon his own knowledg, but that a Sea-man with great confidence affirmed himfelf to have accurately enough meafur'd it by Obfervations made in a Ship, and to have found the Perpendicular height of the Hill to be about 7 miles. Which Eftimate agrees well enough with the Calculations of Ricciolus and Snellius, if we leffen the Diftance from which the top of the Hill is to be difovered, from 60 German leagues of 4 miles to a League, to the like number of common Leagues ar 3 miles to a League.

And becaufe eminent Writers have fo confidently deliver'd prodigious things tcuching the keight of this Mountain, I will here, to confirm theEftimate already made, adde thefe Particulars, whichI took from the Gentleman's own mouth, (and which were afterwards confirm'd to me by another that went with him, and partly alfo by a $3^{\text {d }}$, who went up to the top at another time of the Year,) viz. That they begun their Journey from L'oretave on the $18^{\text {th }}$ of Augurt, about 10 of the Clock at night, and travell'd till Five in the Afternoon on the Munday following, refting two Hours by the way, and travelling about 10 miles of their way upon Mules, which afterwards they were forc'd to leave, and betake themfelves to their feet. Refting upon Munday sill

84 A Continuation of New Experiments

 midnight, they refum'd their journeying, and travell'd till about Nine the next morning, at which time they arriv'd at the top of the Sugar-loaf, or higheft Pile of the Mountain; fo that they travell'd in all but 26 hours, in which, confidering the fteepnels and ruggednefs of the ways, and that they were forc't to goe above half way on foot, to which they were unaccuftomed, tis likely enough that the length of the way did not much, if at all, exceed the Computation of the Guides.We have fince endeavour'd, but without yet knowing what will be the fuccefs, to have the height of this Mountain carefully taken by skilful men. In the interim I hall not deny, but that if what Arifotle and other Authors report of Mount Caucafus be true, there may be far higher Mountains than the Pic of T_{e} nariff, eipecially fince there is one Confideration, which perhaps You will not think defpicable, that I find not taken notice of by thofe that have written of the height of Mountains; viz, That of The like Confideration two Mountains that, meafur'd by Geometrical InftruI fince found to have ments, may appear to be of the fame height, there may been had, becfore me, by yet be a Great inequality; becaule the Meafurer meafures
the learned Riscoilus. onely from fome plain piece of Ground at the bottom of the Hill to the top, whereas it may be, that the Country, wherein one of thofe Mountains Itands, my be exceedingly much high. er than that wherein the other is plac'd: which difference of heights in the feveral Countreys, he that is to meafure onely the height of one of the Mountains, is not wont to take any Notice of; and confequently though in refpect of the Plains, adjacent to the feet of the Mountains, their Alcitudes may be equal, yet in refpect of the Level or Superficies of the Terraqueous Globe, confider'd as having no Mountains at all but thofe two, the height of the one may far exceed that of the other; and fo the Pic of Te nariff being look'd upon from the Level of the Sea, may be much lefs high than fome other Hils, but may appear much higher than fome other Hils, which yet protuberating above the level part of fome Country which is it felf generally exceeding high, may have

$$
\text { Toucbing the Spring and VVeiobt of the Air. } 85
$$ its top more remote from the Centre of the Earth, than that of the Pic, and would appear higher than it, if as well the one as the other were look'd upon from the fame Superficies of the Sea.

But to return to the height of the Atmolphere; in order to the making an Eftimate of what we have confider'd as to the height of Mountains, I fhall adie, that though by what has been already faid touching the height of the Pic, and other Hills, it appears, that the Atmofphere reaches far higher than many learned men would hitherto allow, yet we are not to think that the AtmoSphere may not reach almoft incomparably higher than the tops of Mountains. Nor do Ifuffer my felf to be concluded by what many Commentators of Arifotle and other Writers are wont to teach touching the diftinct narrow Extent they allow to that Sphere, within whofe Limits they would have the Steams of the Terreftrial Globe to produce Meteors. How far the Height of Mountains may make the Air at the tops of them inconvenient for Refpiration, fhall be (God permitting) confider'd, when I come to acquaint Your Lordfhip with my loofe Tryals about Refpiration.

EXPERIMENT XXIV.

shewing that the Preflure of the Atmof phere may be exercis'd enough to keep up the Mercury in the Torricellian Experiment, though the Air prefs upin it at a very fmall Orifice.

$B^{~}$Y a very flight variation of the foregoing $2^{2^{\text {th }}}$ Experiment we may both confirm one of the moft important and the leaft likely Truths of the Hydoftaticks, and remove an Objection, which, for want of the knowledg of this Truch, is wont to be urg'd againft our Hypothe fs even by Learned men. For divers of thefe, when they fee the fame Phonomena happen in the Torricellisn Experiment, whether it be made in the open Air, or in a Chamber,

Chamber, are forward to object, That ifit were, as we fay tis, the weight of the Air, incumbent on the ftagnant Mercury, which keeps that furpended in the Tube from falling down, the Mercary would not be foftain'd at any thing near the fame height in the open Air, where the Pillar that is fuppos'd to lean upon the fag. nant Merciry, may reach up to the top of the Atmof phere, as in a cloferoom, where they imagine that no more Air can prefs upon it, than what reaches direaly up to the Root or Sealing. And when to this tis anfwer'd, that though if a Room were indeed exaetly clos'd, the Suftentation of the Mercury ought to be afrib'd to fome other caufe than the weight of the Impriion'd Air, which other Caure I have elfewhere flewn to be its Spring;) yet in ordinary Rooms there is ftill a Communication between the internal and external Air, either by the Chimney, or, if the Room have none, by fome Crevice in the Window, or by fome Chink between the Wall and the Door, or at leaft by the Key-hole. And when to this tis objected, that the Orifice of the Keyhole is much narrower than the Superficies of the ftagnant Mercury, and confequently, chough the Acmofphere were not reduc'd to prefs obliquely on the Mercury, yet, entring at fo fmall an O. rifice, it could not prefs fufficiently upon it; when, I fay, in anfwer to this Objection I have alleadg ${ }^{\circ} d$ that Hydroftatical Theoreme, That the Preffure, in fuch cafes as ours, is to be eftimated by the heights of the Liquors and not the breadths, the Affertio on has been thought unlikely and precarious.

Toconfirm therefore this Hydroftatical Truth, one may take the bended Tube, mention ${ }^{\circ}$ in the $22^{\text {th }}$ Experiment; and inclining it till the greateft part of che Mercury pals from the fhorter Leg into the longer, the upper end of this fhorter Leg may by the flame of a Lamp be drawn out fo flender, that the Orifice of it fhall not be above an $8^{\text {th }}$ or $1^{\text {th }}$ part (not to fay a much leffe) as big as 'twas before. For this being done, and the Tube erected again, if the tall Cylinder of Mercury be of the ufual or former height, as we have found it, 'swill appear congruous to our Hypothe fis,

Toushing the Tpring and weight of the Air.

Hypothefis, that the weight of the external Air may exercife as much Preffion upon the ftagnant Mercury through a little hole, as when all the upper Superficies of that Mercury was directly exposd to it.

And if onehave not the conveniency to draw out the fhorter Leg as is prefcrib'd, one may neverthelels make the Tryal, by carefully ftopping up the Orifice with a Cork and Cement, leaving onely (or afterwards making) a very fmall hole for the Air to pals in and out. If I had not wanted a fit Inftrument, I would have tried to exemplifie the Truth of what has been delivered, by adding to the Glafles we imploy'd to make the $\mathrm{V}^{\text {th }}$. Experiment, fuch a Cover, as might be cemented on to the Edge of the Glafs, having onely a very fmall hole in the midat, at which the Armofphere would be reduc'd to exercife its Preffure; and the like Cover I would have made ufe of in the $\mathrm{X}^{\text {h }}$ Experiment, about the breaking of Glafs-plates in the unexhaufted Receiver, by the bare Spring of the Air.

EXPERIMENT XXV.

Shewing that an oblique preffure of the Atmofpbere may fuffice to keep up the Mercury at the wonted beight in the Torricellian Experiment, and that the Spring of a little included Air may do the fame.

BY adding a couple of litle Circumftances to the Tryals lately propos ${ }^{\circ} \mathrm{d}$, we may confirm two confiderable Articles of our Hypothefis. For I- if, in ftead of drawing the fhorter Leg of our Barometrical Syphon (it I may fo call it) directly upwards, or parallel to the longer Leg as in the foregoing Experiment, You make the flender part bend off fo, as that, if it were continued, it would make a right Angle with the longer Leg of the Syphon, or elfe an acute Angle tending downwards; this being done, I fay,

88

 A Continuation of Nets Experimentsif when the Tube is ereeted the Mercury reft at its wonted flation, 'twill appear, that the Preffure of the Armofphere may be exercis'd upon it as well obliquely, when the Pipe that convejes it is either Horizontal, or opens downwards.

And 2 . if in flead of bending this flender Pipe, one feal it up Hermetically, the continuance of the Mercurial Cylinder at the fame height will fhew, that the Spring of a very litle Air, fhut up with the Preflure of the Armofphere upon it, (though no more than what the Air here below is ordinarily expos'd to by the weight of the incumbent Air,) is able to fupport as talla Cy linder of Mercury as the weight of the whole Atmafphere, i.e. of as much of it, as can come to exercife its Preffure againtt the Mercury.

NB. If when the fhorter Leg of the Barofcope is feald up, you move the Inftrument up and down, the Mercury will vibrate, by reafon of the fomewhat yielding Spring of the imprifoned Air; but becaufe of the refiftance of the Spring, the motion will be diverfified after an odde and pretty manner: which may be eafily perceiv d by the Impreffion it makes upon the Hand, but not fo eaffly defcrib'd. And becaufethat, when the fhorter Leg is drawn out flender enough, atter the Inftrument is furnifh'd with Quick-filver, tis eafie to feal it up with the flame of a Candle, without the help of any Inftrument at all, I hall here take notice to Your Lordfhip, (which I could not reafonably do before,)that it may on fome nccafions be convenient to feal up the Barometer, before it be tranfported, and, in fome cafes, to incline the Tube beforehand, till the Quick-filver have quite fill'd the longer Leg; by this means the vibrations of the Quick, filver will be lefs than otherwife they would be', and 'twill be no trouble at all, when the Inftrument is brought to the defign'd place, to break off the flender Apex of the fhorter Leg, and fo expofe again the Mercury to the Preffure of the Atmof phere.

Asabout the former Experiments, fo about thefe two this Advertifement may be given; viz. That the fame Tryals, for
Touching the fpring and weight of the Air.
the main, may be made without confining ones felf to the propos'd wayes of making them.

1. For the Firft of thefe new Tryals may be made by Cementing very carefully on to the Orifice of the fhorter Leg (which need not be alter'd) a fhort Pipe of Glafs, whofe upper end may be drawn out very flender, and bent either Horizontally or downwards; which is far eafier to be done, than to draw out the fhorter Leg when the Glafs is furnifh'd with Mercury.
2. And as for the 2^{d} Tryal, that may be well enough made, by carefully ftopping tbe unalter'd Orifice of the fhorter Leg with a good Cork, and our clofe Cement, or with the later onely; and when you would afterwards ufe this Inftrument as a Barofcope, You need but heat a Pin or flender Wire red hor, and fo burn a hole through the Stoppel.

Andthis Expedient, which I could not conveniently advertife Your Lordhip of fooner, may be of Ufe when a Travailing Barofcope is to be often remov'd: becaufe having once ftope the whole Orifice well, tis far more eafie to ftop and open a Pin hole accurately, than to clofe and unftop the whole Orifice of the Tube.

Note, I endeavoured to confirm more than one of the foregoing Particulars by this one Experiment. Having caus'd a Portable Barometer to be made with the fhorter Leg of a fomewhat more than ordinary length, I afrerwards caus'd the upper part of this Leg to be drawn out very flender, (as in this $25^{\text {th }}$ Experiment;) and laftly I caus ${ }^{\circ}$ d the fame fhorter Leg to be either about or fomewhat above the middle bended downwards, fo that the fmall Orifice of the flender Apex pointed towards the Ground. This done, I was to have meafur'd the height of the fufpended Mercury, but not having a fit Ruler at hand, I then deferr'd, and afterwards forgot to do it; but I remember, that neither I, nor fome others verf' d in fuch Experiments, to whom 1. hew'dit, took any notice that the Mercury was lefs high than in ordinary Barometers; whence 'twas concluded, that the Atmo-
fphere could exercife his Preffare not onely at a very fmall Orifice, (which in our Experiment did litle, if at all, exceed a Pinhole,) but when the Air muft at this little Orifice prefs upwards to be able to prefs upon the Surface of the ftagnant Mercury:

EXPERIMENT XXVI.

About the making of a Barofcope (but of litle pratticalufe) that ferves but at certain times.

TO fhew fome Ingenious men by a Medium, that has not hitherto (that I know of) been made ufe of, That the not fubfiding of Quick-filver in an inverted Tube, that is a litle fhorter than 30 inches, or thereabouts, does not proceed from fuch a fuga Vacui as the Schools afcribe to Nature, but from the Gravity of she external Air, I devifed the following Experiment.

Having made choice of a time, when it appear'd by a good Barolcope, (which I had frequently confulted for that purpo $\left(e_{2}\right)$ that the Atmofphere was confiderably heavy, I caus'd a Glafspipe, Hermetically feal ${ }^{\circ}$ d at one end, and in length about 2 foos and a half, to be fill'd with Quick filver, fave a very litle wherein fome drops of Water were put, that we might the betcer difcern the Bubbles, if any fhould be left after the inverfion of the Tube into an open Glais with ftagnant Mercury in it. Having by this means (though not without difficulty) freed the Tube from bubbles, we fo order'd the matter, that the Quick. filver and the lite water that was about it, fill'd the Tube exactly, without leaving any interval that we could difcern at the top, and yet the Mercurial Cylinder was but very little higher than that of our Barofcope was at that time.

This done, the newly fill d Pipe was left erected in a quiet place, where the Liquors retain'd their former height for divers dayes. But chough an ordinary School-philofopher would con-
fidently have attributed this fuftentation of fo heavy a Body to Nature's fear of admitting a V a cwum, yet it feems, that either fhe is not alwayes equally fubject to that fear, or fome other caufe of the Pbanomenon muft be affign'd; for when (a pretty while after) I had oblerv'd by the Barofcope, that the Atmofphere was grown much lighter than before, repairing to my fhort Tube, I found that according to my expectation the Quick-filver was not inconfiderably fubfided, and had left a Cavity at the top, which afterwards grew leffer, according as the Atmolphere grew heavier.

NB. I. The Tube imployed about this Experiment, may be brought to the requifite fortnefs, either by wearing off a littie of the Glafs at the Orifice of it, or by increafing the height of the ftagnant Mercury, into which it hath been inverted.
2. When the Quick filver in our fhort Tube was much fub: fided, there appeared in the Water that fwam upon it a litle Bubble, about the bignefs of a fmall Pins head, but, confidering how cateful we had been to free the Tube from bubbles before we fet it coreft, it may very well be, that this fo fmall a Bubble was not produc'd till after the fubfiding of the Quick-filver, whereupon the Aerial Particles in the Water becamelefs comprefs'd than before; not to mention that the Bubble (fuch as it was) appear'd very much greater than it would have done, if the Preffure of the Atmofphere had not been kept from it by the weight of the fubjacent pillar of Mercury.

EXPERIMENT XXVII.

About the Afcenfion of Liquors in very lender Pipes in ana
Exbaufted Receiver.

VVHat I related to Your Lordfhip in the $35^{\text {th }}$ of the publifh'd Experiments, (pag. 138.) about the feemingly fpontameous Afcenfion of Water in Alender Pipes, has occafionid the

92

 A Continuation of New Experiments making of many Tryals by the Curious, whereby that Experiment has been not a lirtle diverfity'd; but becaufe among thofe I have yet heard of none have been made in our Engine, it may not be amifs to adde the following Tryal, which may be of ufe in the Examen of one or two of the chief Conjectures that have hitherto been propos'd about the caufe of that odde phanomenon.We ting'd fome fpirit of Wine with Cocheneel, which being put into the Receiver, and the Air withdrawn, did exceedingly bubble for a pretty while. Then little hollow Pipes of differing Sizes being put into it, the red Liquor afcended higher in the flenderet than the others, but upon the withdrawing of the Air there fcarce appear'd any fenfible difference in the heights of the Liquor, nor yet upon the letting it in again.

Afterwards two fuch Pipes of differing Sizes, being faften'd to: gether (at a diftance) with Cement, were let down into the fame firit of Wine when the Receiver was well exhaufted, notwithftanding which the Liquor afcended in them, for ought we could plainly fee, after the ordinary manner; onely when the Air wis let in again, there feem'd to be fome litele (and bpt very litle) rifing at leaft in one of the Pipes. In this Tryal this Phanomenon was noted: That though there appear'd no Bubbles at all in the veffel'd fpirit of Wine, (notwithftanding that we continued to pump,) yet there did for a pretty while arife bubbles in that part of the Liquor that was got into the flender Pipes; which I guefs'd to proceed from the fuftentation (in part) of the fpirit of Wine, made by the infide of the Pipe whereto it adher'd.

EXPERI-

Toubling the Spring and VVeight of the Air.

EXPERIMENT XXVIII.

About the great and feemingly fpontaneous Afcenfon of Water in a Pipe filld with a compact body, whofe Particles are thougbt incapible of imbibing it.

VPon occafion of the (feemingly) fpontaneous Afcenfion of Water in flender Pipes of Glais, I confider'd that 'twould be eafie by another way to make it rife to a far Greater height than hichertohad been done; for fince we had found by Obfervation that, cateris paribus, the flenderer the little Pipes were that weimployed, the higher the Liquor would rife in them; and fince the Hydroffaticks had taught us, that often times even in very crooked Pipes Water would be made tuafcend by the fame wayes (of raifing it) to the fame perpendicular height (or thereabouts) as in ftraight ones; I thought, that I might well fubftitute a Powder, confifting of folid Corpufcles heap'd upon one another, and included in a Glafs. Cane in ftead of the litle Pipes I had hitherto ufed. For I confider'd the litle intervals, that would neceffarily be left between thefe differingly fhap'd and confuredly placid Corpufcles, would allow paffage to the Water as did the Cavities of the little Pipes, and yet would in many places be ftraiter than the flendereft Pipes I had us'd. And though beaten Glafs, or fine Sand, \&cc. might have been imployed about this Experiment, yet I judgsdit far more convenient to make ufe of fome Mealline Caix, becaufe the Operation of the Fire, making a more exquifite Comminution of Solid bodies than our Peftles are wont to do, is fittofupply us with exceeding minute Granes, that intercept proportionable Cavities between them.

Upon this Confideration therefore (befides others to be hereafter hinted) I took a ftrait pipe of Glafs, open at both ends, and of a moderate widenefs, (for it need not be very flender,) and having tyed a Linnen rag to one end of it, that the Water mighe

.94

A Continuation of New Experiments

have free paffage in, and the Powder not be able to fall out, we carefully and as exactly as we could, fill'd the Cavity with Minium, (which is Lead calcin'd, without addition, to Rednels;) and then having erected the Tube, fo that the bottom of it refted upon that of a fomewhat fhallow and open mouth'd Glafs, containing Water enough to fwim an Inch or two above the bottom of the Tube; into whofe cavity it did, as I expected, infinuate it This was (if 1 forgelf by degrees, as appear'd by a litle change of colour in that part not) about of the Minium which it reacht, till (the open Glafs being from the later time to time fupplied with frelh liquor) it attain'd to the height of
end of the year 1662 , about ; oinches. And then, ourSociety expreffing a Curiofity to fee it, and have it plac'd among better things, I was hinder'd from making any further Obfervations with that particular Glafs.
Wherefore taking afterwards another Tube, and fome Minium carefully prepared, I profecuted the Experiment fo as to make the Water rife in the Pipe about 40 inches above the furface of the ft gnant Water; and I guefs'd it had rifen higher, but, by reafon that at the upper part of the Minium the difference of colour was fo fmall, as not to be eafily diftinguifhable with certainty, I forbore to allow a greater height to the Afcenfion of the Water: nor could 1 , where I then was, much promote the Experiment, for want of fuch Accommodations as I defir'd; but about the Experiment, as I try dit, I fhall take notice of the following particulars.

Itryed fome other Powders befides red Lead, (as beaten Glafs, pieces of fine Spunge, Putty, \&c.) but did not find any of them do fo well; which fucceis was yet perhaps but accidental, and therefore the Tryal may be repeated, efpecially with Putty, becaufe that being a Metalline Calx as well as Minium, confifts of very fmall Grains, and by reafon of its Grear whitenefs receives a Greater change of colour by wetting than Minium does; in which, efpecially it it bevery fine, the difcoloration that Water makes toward the upper part of the Tube, is fometimes not fo eafie to beclearly difcern'd.

Touching the fpring and we ight of the Air.

2. I did indeed endeavour to remedy this inconvenience, by ufing, in ftead of meer Water, tincted Liquors, as Ink, tincture of Safron, \&c. bur they feem'd not to rife near fo high as Water alone, as if the diffolv'd ingredients did by degrees choak the pores of the Minium.
3. To have the Grains of our Powder more minute and the fmaller intervals between them, I chofe not onely to ufe the fineft fort of Minium I could procure, but alfo to fift it through a very fine Searce, and to put it but by litle and litle into the Tabe, that by ramming it from time to time it might be made to lie the clofer; which Expedients fucceeded not ill.
4. It feem'd by a Tryal or two (for I am not fure the obfervation will alwayes hold, that if the Tube were very flender, (as about the bignefs of a Swans quill,) the Experiment (ucceeded not well.
5. It may be worth while to obferve in what times the W ater afcends to fuch and fuch heights; for at the beginning twill afcend much fafter then afterwards, and fometimes twill continue rifing 24 or 30 hours, and fometimes perhaps much longer.
6. One of the fcopes I propos'd to my felf in this Experiment was to difcover a miftake in the Explication that fome Learned modern Writers have given us of the caufe of Filtration; for whereas they teach that the parts of Filtre that touch the Water, being fwell'd by the ingrefs of it to their pores, are thereby made to lift up the Water, till it touch the fuperiour parts of the Filtre that are almoft contiguous to them; by which means thefe being alfo wetted, and fwell'd, raife the Water to the other neighbouring parts of the Filtre, till it have reacht to the top of it, whence its own Gravity will make it defcend. But in our cafe we have a Filtre made of folid Metalline Corpufcles, where twill be very hard to fhew that any fuch intumefcence is produc'd, as the recited Explication requires.
7. Water afcends fo few inches even in very-flender Pipes, as to feem much to favour their Judgment, who diffallow the

96

A Continuation of Neto Experiments

conjesture ately entercain'd by fome ingenious men, (particularly $\mathrm{M}^{\mathrm{r}} H$.) asout the raifing of the Sap in Trees after the like man. ner that Water is raifed in flender Pipes; but without fully ded livering ye: my thoughts of that Speculation, I may take notice, that in the latt Tryal above recited, I made Water to afcend near, if not above, 3 foot ${ }_{2}^{\frac{1}{2} ;}$ and if by fo fleight an Expedient, Water may be made to rife as high as is neceffary for the Nutrition of fome choulands of Plants, (for luch a number there is, that exceed not 3 foot ${ }_{2}^{1}$ in height, one may without abfurdity ask, why tis not poffible that Nature, or rather the moft wife Author of it, may have made fuch Contrivances in Plants, as to make Liquors afcend in them to the Tops of the talleft Trees; efpecially fince, befides divers things that we may already fufpect, (as Heat, and fomethingequivalent to well plac'd Valves,) many others, that perhaps are not yet dreamt of, may probably concur to the Effect.
8. As I formerly made, by bending the flender Pipes we have beentalking of, thort Syphons through which the Water runs, withou being at firft affifted by Suction, fo I thought fit to try, whether I could not in larger Pipes, by the help of Minium, make mudh longer Syphons. But though when the Orifices were turn'd upvards, fine Minium were ramm'd into both the Legs, and the Oifices were both of them clos'd, yet when they came to be againturn'd downwards, the weight of the Minium would fomewhere or other (and for the moft part at or near the flexure) make fome fuch chink or difcontinuation, as to hinder the farther progrefs of the Water. Which impediment, though I judg d it fuperableenough, fefpecially by making at the Flexure a little Pipe or Socket, by which both Legs might be clofely fill d) yet for want of Accommodations and leifure it was left unfurmounted. Upon which account alfo 1 did not fatisfie my felf about the fuccel; of fome former Tryals, as of the Afcenfion of Water into pieces of Wood of differing forts, the operation of the Vie cifficudes of the Suns beams, and the abfence of them upon liquors afcendingin Tubes fill'd with Minium, \&c.
9. Whether the Preffure of the outward Air be the caufe of the Afcenfion of Liquors in our Tubes furnifht with Minium, is a Probleme, in order to whofe Solution I could acquaint Your Lordhip with a Contrivance, wherewith to make fome Tryals in our Engine. But fince it can fcarce be well defrrib'd without. many words, unlefs You exprefs a particular Curiofity to know it, I fhall not trouble You with it: and the rather, becaufe the beft way I know of examining this difficulty belongs to the $2^{\text {d }}$ part of this Continuation, where mention is made of an attempt abous it, which did not, I confels, di ${ }^{\text {pleafe me. }}$

EXPERIMENT XXIX.

of the feeemingly fpontaneous Afcenfion of Salts along the fides of Glajes, with a conjecture at the Caufe of it.

TO the fame Caufe (or the like) with that of the Afcenfion of Water in flender Pipes may be probably referr'd an odde Phanomenon, which though 1 remember not to have been mentioned by any Chymical or other Writer, I have not unfrequently obferved as well by chance as in Tryals purpofely made to fatisfie my felf and others about the truth of it.

The Phanomenon, in fhort, was this. That having in wide. mouth d Glafses (which fhould not be very deep) expof.d to the Air aftrong Solution of common Sea-falt or of Vitriol, which reacht not by fome inches to the top of the Glafs; and having fuffered much of the aqueous part to exhale away very flowly, the coagulated Salt would at length appear to have lin'd the infide of the Glafs, and to have afcended much higher, not onely than the place where the furface of the renaaining Water then refted at, but than the place to which the Liquor reacht when 'twas firft poured in. And if the Experiment were continued long enough, 1 fometimes obferved this Afcenfion of the Salt to amount to

93

\mathcal{A} Continuation of $\mathcal{N e w}$ Experiments

fome inches, and that the falt did not onely line the infide of the Glafs, but, getting over the brim of it, cover'd the outfide of it with a Saline Cruf: which made them that faw how litle liquor remain'd in the Glafs, admire how it could poffibly get thither.

And though I have mentioned but the Solution of Vitriol and Sea-falt, becaufe they are much eafier than others to be procur'd, and yet the Experiment fucceeds better in Them than in fome other far lefs parable Salts; yet, they are not the onely ones by whofe Solucions the recited Phenomenon may be Exhibited.

As for the Caufe of this odd Effect, though I fhall not propofe any thing about it with Confidence, till I have further inquired intoit, andefpecially till I have tryed whether the Pbanomenon may be produced in an Exhaufted Receiver ; yet, by what I have hitherroobferved, I am inclin'd to conjecture, that it may be referr'd to fuch a caufe as that of the Afcenfion of Liquors in Pipes after fome fuch manner as this.

Firft, I ohferved, that in Water and Aqueous liquors, that part of the Surface which is next the fides of the Glafs, is (whatever the reafon of it be) fenfibly more elevated than the reft of the Superficies; and if very licle clippings of Straw or other fuch minute and light bodies, floating upon the Water, chance to ap. proach near enough to the fides of the Glafs, they will be ape (which one would not expect) to run up as twere this afcent of Water, and reft againft the fides of the Glals.

Next we may take notice with the Salt-boylers and Chymifts, that Sea-falt is ufually wont to coagulate at the top of the Water in fimall and oblong Corpufcles, fo that as co thefe tis eafie to conceive, to them that have confidered the firft Obfervation, how numbers of them may faften themfelves round about to the infide of the Glafs. And befides Sea-falt, I have found by tryal divers others, if their Solutions be fowly enough evaporated, that will, whillt yet there remains a good proportion of Liquor, afford Saline Concretions at the top of the Water. And che faftning of Saline particles to the fides of the Glais may perhaps be promo-

Toucbing the fpring and weight of the Air.

ted by the Coldnefs that may be communicated to the Corpufcles contiguous to the Glafs, by reafon of the coldnefs which the Glafs may be fufpected to have, uponshe fcore of its Denfiry, in comparifon of Water. But to proceed: I confider, that by the Evaporation of the aqueous parts of the Solution, the furface of the remaining liquor muft neceffarily fubfide, and thofe Saline particles, that were contiguous to the infide of the Glafs and the more elevated part of the Water, having no longer enough of Li quor to keep them diffolv'd, will be apt to remain fticking to the fides of the Glafs, and upon the leaft farther Evaporation of the Water will be a litle higher than the greater part of the Superficies of that Liquor, by which means it will come to pars, that, by reafon of the litle inequalities that will be on the internal furface of the adhering Corpufcles of the Salt, and perhaps alfo on the internal Superficies of the Glafs, there will be intercepted between the Salt and the Glafs litle Cavities, into which the Water contiguous to the bottom will afcend or be impell'd upon fuch an account as that, whereon tis rais'd in flender Pipes. And when the Liquor is thus got to the top of the Salt, and comes to be expofed to the Air, the Saline part may, by the evaporation of the Aqueous, be brought to coagulate there, and confequently to increafe the height of the Saline filme, (ifI may fo call it;) which by the like means may be at length brought to reach to the very top of the Glais, whence it may eafily be brought over to the outfide of the veffel, where the natural weight of the Solution will facilitate its progrefs downwards; and the skin of Salt, together with the contiguous furface of the Glafs, may (at length) conftitute a kind of Syphon.

Tothis Explication it agrees well, that I have ufually obferved the Saline filme hitherto mentioned to be with great eafe feparablefrom the Glafs in large Fleaks; which argues, that they did not ftick clofe to one another except in fome few places, but had a thin Cavity intercepted between them, through which the water might afcend.

Nor is it repugnant to this Explication, that in cafe the Wao ter afcended, it hould, as it feems, diffolve the Salc. For the Liquor being already upon the point of Concretion, is fo glutted with Salt, that it can diffolve no more. Whence we may affo render a reafon, why, when the Saline filme chances to reach to the outfide of the Glals, the Liquor (divers times) does not run down to the bottom, but is coagulated by the way. And I have alfo had a fufpicion, (though I could not feafonably take notice of it before now,) that when the Concretion is once began, the Film may be railed and propagated, not onely by the motion of the Liquor between the infide of it and the Glais, but by the fame Liquor's infinuating it felf on the outfide of the Film into the fmall Chinks and Crevifes, intercepted between the Saline Cor a pufcles, as Ink (efpecially if fomewhat thin) rifes into the Slit, and along the fides of the Nib of a Pen, though norhing but its very point be dipt in the furface of the liquor. And by this means the impregnated Solution may as it were climb up to the top of the faline Concretion, and by coagulating there adde to its height.

Some other Circumftances I have noted of our Phanomenon, that agree with the propos'd Explication, but perhaps it would not be worth while to fend more time about it. Not to examine here whether what has been related, fo as to make it probable that afcending Water may carry up wherewithall to heighten and increafe the Pipes or veffels through which it rifes, may contribute any thing more then was fuggefted in the former $28^{\text {h }} \mathrm{Ex}-$ periment, toward's the Explication of the Rifing and diffufing of the Sap in Trees.

EXPERI-

Toucbing the Spring and VVeight of the Air.

EXPERIMENT XXX.
About an attempt to meafure the Gravity of Cylinders of the Atmofphere, fo as that it may be exprest by known and common Weights.

VVHilt I was making the former Experiments, 'twas more than once my wifh, that by knowing the juft weight of a Cylinder of Quick-filver of a determinate Diameter, and of 29 or 30 inches high, which is near the height that the Air does ufually counterballance, I might the better eftimate the weight of a Cylinder of the Atmofphere of that Diameter, and confequently make the better Guefses how near the effects of the Spring of the Air (as well as of its Weight,) produc'd by the help of our Engine, approach'd to the utmoft of what might have been expected, in cafe all the inftruments imployed had been perfect, and all concurrent circumettances had been favourable: And upon this account I feveral times regretted my want of a long Infrument of Steel or hardned Iron, wherewith I many years fince made an Obfervation, that was more carefully regiftred than preferved, of the weight of a Mercurial Cylinder of a determinate height as well as Diameter; which weight I did not think it fo fafe to determine by the help of Glafs-Tubes, becaufe tis very difficult to have them uniformly Cylindrical, and to know that they are fo, in regard that they are form'd but by blowing and drawing out, and, befides the inequality that may happen to the Cavity upon other accounts, tis very difficult to make the fides of the Clafs equally thick, and to examine whether they be fo or no.

But at length lighting upon (what I had too often wanted in the foregoing Experiments) a dexterous Artificer, that chanced to come for a while to the place where I then was, I indeavour'd to repair my lofs, as well as he could help me to do it, by caufing him

102
 A Continuation of 2 New Experiments

him to turn very carefully a Cylindrical piece of Brafs, of an inch in Diameter, and 3 inches in length, and open (that it might be the better wrought) at both ends, to one of which was exaaly fitted a flat buttom of the fame Metal, faftned very clofe to it with little Screws on the outfide; this being judg'd a better way, than if it had been turn'd all of a piece.
This inftrument being ciligently counterpois'd in a trufty pair of Scales, was carefully fill'd with Mercury, which (for greater caution) we took out of a new parcel, that we had not yetimployed about other Experiments, and finding it to weigh xVII Ounces, one Dram, 45 Gr: Troy weight, (or $137 \mathrm{dr}: 45 \mathrm{gr}$) multiplying that by 10 , there will come for the weight of a Mercurial Cylinder, of one inch in Diameter, and 30 inches in height, (and fo highl have divers times feen the Mercury to be in a good Barometer, about $14,2 l$, (i.e. $14^{l,}, 2$ Ounces, and above three drams, Troy-weight; and almoft $11,8 \%$ Haberdupoife weight, (i.e. IIl, 12 Ounces, and above 6 Drams,) which is a greater weight than without fuch a Tryal one would eafily imagine that fo fhort a Cylinder of Mercury, and much lefs ehat a Cylinder of fo lighta Body as Air, being neither of them above an Inch Diameter, could amount to.

Note Fult, to examine at the fame time the weight of the Mercury, and its proportion to Water, we did, before the Mercury was pour'd into the Brafs-veffel, fill it with Water, (after which we wip'd it ory betore the Mercury was put into it;) and this liquor weighing 10 drams, and 15 gr : the proportion between the Mercury and the Water appeard to be that of 13_{4}^{18} to I: which though it feem fomewhat of the leaft, yet Your Lord thip may remember, that I formerly told You I had reveral times found the receiv'd proportion of 14 to I, between Mercury and Water, to be fomewhat too great; and befides that, in a veffel whofe orifice was noleffe than an inch in Diameter, tis exceeding difficule to be fure when tis precifely full either of Water or Mercury; becaufe the former has a Superficies confiderably con-
Touching the fpring and weight of the Air. cave, and the other one that is notably convex, and though we us'd fome litle Artifices (which would be troublefome here to mention) to eftimate the protuberance of the one liquor, and the deficience of the other, as near the truth as could be, yet I am not fure but there may have been a few Mercurial Corpufcles more than there fhould have been, and that confequentiy fome fmall abatement may have been made of the weight newly attributed to the whole Mercurial Cylinder of 30 inches.
2. I had thoughrs of making ufe of the Barrel of a Gun, of a convenient length, to find the weight of a Mercurial Cylinder of 2 foot and ${ }_{2}{ }_{2}$, but I preferr'd the Inffriument already made ufe of (efpecially not being where I could have one bored after a peculiar way,) not onely becaufe I could not meet with one whofe Diameter was a juft inch, and confequently as convenient for calculations, and becaufe that the Barrels of Guns are often bor'd a litle Tapering; but becaufe a skilful Artificer confeft to me, that they fcarce ever bore fuch Barrels, but with a four- fquare Bit, (as they call it,) which leaves the Cavity too Angular, or too imperfeetly round; whereas if an Hexahedrical Bit be imploy'dit will, as he affirm•d, make the Cavity almoft as Cylindrical as can be reafonably defired. I fay nothing here of making ufe tor our purpofe of a Trunk, as they call a hollow Cylinder of Wood, becaule I elfewhere fhew, that Wood (at leaff fuch as the Trunks to floot Pellets with are wont to be made of is not of a Texture clofe enough for fach an ufe.
3. Becaufe in Cylinders of Mercury, 30 inches is a height which the Atmofphere is feldome heavy enough to be able to counterpoife, and becaufe 29 inches is fomewhat nearer the middle between the greateft and the leaft heights, at which I have obferved the Mercury at differing times to fand in good Barometers. Your Lordhip may, if You pleafe, abate a $3^{\text {oth }}$ part of the weight affign'd above to a Mercurial Cylinder of 30 inches, (though $I_{\text {take }} 29$ and 4 , or thereabouts, to be fomew har a more wfual height of the Mercury, than precifely Nine and twenty.)
4. The Weight of a Mercurial Cylinder in an etquilibriam with the Atmofphere, and of one inch in Diameter being thus fetled, we may, by the help of the doetrine of Proportions, and a few Propolitions, efpecially the $14^{\text {th }}$ of the $12^{\text {th }}$ book of Euclides Elements, eafily enough calculate the weight of a Cylinder of Mercury of anarher Diameter, and confequently the force of the Preffure of an Atmofpherical Pillar of the fame Diameter. For fince according to the forenam'd $14^{\text {th }}$ Propofition of the $12^{\text {th }}$, Cylinders of equal Bufes are to one another as their Heights; and fince by the 2^{d} Propofition of the fame 12 . Element, Circles fuch as are the Bafes of Cylinders) are to one another, as the Squares of their Diameters; and fince laftly we fuppufe, that Mercury being a Homogeneous body, at leaft as to fenfe, the Mercuria! Cylinders will have the fame proportion to each other in Weight that they have in Bulk; fince, 1 fay, thefe things are fo, if, for inftance, we defire to know what will be the weight of a Cylinder of 30 inches high, whofe Diameter is two inches, the Rule will be this.

As the fquare of the Diameter of the Standard Cylinder, (as I call that whofe weight is already known) is to the fquare of the Diameter of the Cylinder propos' d , fo will the bulk of the former Cylinder be to that ofthe later, and the weight of that to the weight of this.

According to which Rule, the fquare of I inch (which is the Diameter of the ftandard Cylinder) being but I , (whereby Your Lordfhip may perceive how much the meafure I pitcht on facilitates Computations,) and the fquare of 2 (which is the Diameter of the propos'd Cylinder) being 4 , the bulk or folid Contents of this later Cylinder, and confequently its Weight, will be 4 times as great as thofe of the ftandard Cylinder; and fo , fince the leffer has been already fuppos'd to weigh II, $8 l$ Haberdupoife, the Mercurial Cylinder of two inches in Diameter, will weigh $47,2 l$ of the fame weight.

Touching the Spring and weight of the Air.

EXPERIMENT XXXI.

About the A tiractive virtue of the Loadfone in an Exbaufted
Receiver.

SOme Learned modern Philofophers, that have attempted to explicate the caufe and manner of Magnetical Attraction or Coition, give fuch an account of it, as fuppofes, that the Air between the two Magnetical Bodies, being driven away by their Effluviums from between them, preffes them on the parts oppofite to thofe where the Contact is to be made; and upon fome fuch fcore (for I muft not now fay to deliver their Theories Circumftantially) the Air is fuppos'd to contribute very much to the Attraction and Suftentation of the Iron by the Loadftone: wherefore partly to examine this Opinion, and partly for forme other Purpoles (not neceffary now to be mentioned) we thought fit to make the following Exptriment.

We took a fmall buc vigorous Loadftone, cap'd and fitted with a loofe plate of Steel, fo Shap ${ }^{\circ} \mathrm{d}$, that when it was fuftained by the Loadftone, we could hang at a litle Crook, that came out of the midft of it, and pointed downwards, a Scale, wherein to put what Weights we fhould think fit. Into this Scale we put fometimes more and fometimes lefs weight, and then by fhaking of the Loadftone as much as we guefs'd it would be fhaken by the motion of the Engine, we found the greateft weight, that we prefum'd it would be able to fupport, in fpite of the Agitation 'twould be expofed to, which prov'd to be, befides the Iron. plate and the Scale, vi Ounces Troy weight, to which if we added half an ounce more, the whole weight appear'd too eafie to be thaken off. This done, we hung the Loadftone, with all the weight ic fuftain'd, at a Button of Glats, which we had procur'd to be faftned on to the top of the infide of a Receiver, when'twas firt blown, and though in about 12 Exuctions we ufually emptied fuch Receivers as

106

as much as was requifite for mof Experiments; yee this time, to exhauft it the more accurately, we continued pumping till we hadexceeded twice that number of Exuctions, at the end of which time fluking the Engine fomewhat rudely, without thereby flaking off the Weight that hung at the Loaftone, the Iron feem'd to be very near as firmly fuftain'd by it as before the Air began to be pump'd out. I faid very near, rather than altogether, becaufe that the withdrawing of the Air, though it be not fuppos'd to weaken at all the Power of the Loadftone precifely confidered, yet it muft leffen its power to fuftain the Steel, becaufe this in fo thin a medium muft weigh heavier, than in the Air, by the weight of as much Air, as is equal in bulk to the appended Body.

Some other Magnetical Tryals (and alfo fome Electrical ones) I remember I attempted to make by the help of our Engine, bus not having the Notes I took of them now at hand, I fhall fufpend the mentioning them, till I can give Your Lordhip a more punctaal Account of them.

EXPERIMENT XXXII.

Shewing, that when the Pre β Bure of the External Air is taken off, tis very eafie to drasw up the Sucker of a Syringe, though the

Hole, at which the Air or Water fhouid fucceed,
be foppp'd.

HAving taken notice, that fome learned Oppofers of the Mo: dern Doatrine about the weight of the Atmofphere think themfelves more than ordinarily befriended by the difficulty we find in drawing up the Embolus or Sucker of a Syringe, when the hole, at which the Air or Water fhould fucceed, is ftopt, and by the violence, with which, as foon as tis let go, tis, as they imagine, drawn back. And fuppofing the reafon of this confidence of theirs to be, that Men have not yet been able in thefe Pheno-

Toubing the fpring and weight of the Air. 107 mena (as in fome others) to prove the intereft of the Atmofphere's Gravity by direct or confeffedly analogous Experiments; I prefum'd it will not be unwelcome to Your Lordfhip, if I here fortifie the Speculations that have been or may be propos'd to explicate thefe things according to the Hypothefis of the weight of the Air, by what we tried to that purpofe, among ochers, when we were making ufe of a Syringe in our Engine.

The I. Tryal.

We took a Syringe of Brais, (that Metal being clofer and ftronger then Pewter, of which fuch inftruments are ufually made, being in length (in the Barrel) about 6 inches, and in Diameter about I inch $\frac{3}{3}$; and having, by putting a thin Bladder about the Sucker, and by pouring a litle Oyl into the cavity of the Cylinder (or Barrel,) brought the inftrument to be ftanch enough, and yet the Sucker to move to and fro without much difficulty, we thruft this to the bottom (or Bafis) of the Barrel to exclude the Air, and having unfcrew'd and laid afide the flender Pipe of the Syringe (which in this and fome other Tryals was like to prove not onely needlefs, but inconvenient) we carefully ftopt the Orifice, to which the Pipe in thefe inftruments is wont to be fcrew' d , and then drawing up the Sucker we let it go, to judg by the violence, with which it would be driven back again, wherher the Syringe were light enough for our purpofe, and finding it to be fo, we faftned to the Barrel a ponderous piece of Iron to keep ic down, and then faftning to the handle of the Rammer (or Axletree of the Sucker; one end of a String, whofe other end was tied to the often mentioned turning-key: We conveyd this Syringe, and the weight belonging unto it, into a Receiver; and having pump'd out the Air, we then began to turn the Key, thereby to fhorten the String that tied the handle of the Syringe to it; and, as we foretold, that the Preffure of the Air, lately included in the Receiver, being withdrawn, we fhould no more find the wonted refiltance

\wedge Continuation of N ew Experiments

 refiftance in drawing up the Sucker from the bottom of the Cy . linder, fo we found upon Tryal that we could very eafily pullit up without finding any fenfible refiftance.However having thought fit to repeat the Experiment, (which we did with the like fuccefs, left it might might be objected, that this want of refiftance might proceed, as partly from our im. ploying the Turning - key to raife the Sucker, fo principally from fome unperceived Leak, at-which the Air may be fuppos'd to have got into the cavity of the Cylinder, I thought fit not onely to examine by Tryal, after the Receiver was remov'd from off the Pump, whether the Syringe were not ftanch, (upon which I found that I could not, withour fome fraining, draw up the Suck er even a litle way, and that it would be violently beaten back again,) but al/ o in one of thefe Experiments to make this variation; That when, the Receiver being eshaufted, we had drawn up the Sucker almoft to the top of the Barrel by fuch a ftring as was purpofely chofen fomewhat weak, we kept the parts of the Syring in that pofture, till we had open'd a paffage to the outward Air, upon whofe ingrefs the Sucker was (as we intended it fhould be) fo forceably depreft, that it broke the String by which it was tied to the Turning-key, and was violently driven back to the lower part of the Barrel, \& that notwithftanding thefe two difadvantageous Circumftances; one, that the fring was not fo weak, but that one, whom I imploy'd to try it before it was taftned to the Syringe, made it fuftain a lump of Iron that weighed between four and five pound, and the other, that yet this ftring was broken long before all the Air, that flowed in to fill the Receiver, had got in: fo that the preffure of all the admitted Air would doubtlefs have broken a much ftronger ftring, if we had imploy'd fuch a one to refift the depreffion of the Sucker, which will yet be more evident by a phenomenon of our Syringe, that I fhall prefently have occafion to relate.

Touching the Spring and VVeight of the Air. 109

The 11, TRTA \dot{L}.

Containing a Variation of tbe foregoing.

We took the Syringe imploy'd in the foregoing Experiments, and having found by Tryal that it was, though not pertectly, tite, (nor altogether fo much fo as before, yet enough fo for our prefent purpofe, (fince, when the Orifice of the vent in the Bafis was ftopt, if the Sucker were more forceably drawn up a litle way, and then let go, it would haftily return, or rather violently be impell'd back tawards the bottom of the Barrel,) we made it ferve us as well as we could for the following Experiment. Of this Syringe we did very carefully with a Cork and our Cement clole the vent; and then having tied to the barrel of the Syring a Weight that hapned to be at hand, (and to amount to 2 Pound, and as many Ounces, , we fufpended the Rammer of the Syringe by a ftring in a large Receiver; and then caufing the Pump to be applied, we made 11 or 12 Exuctions of the Air, without any appearance of change in the Syringe : but becaufel had judg'dthe above mentioned Weight fufficient, and fuppos'd that the little Air ftill remaining in the Receiver, had yet too ftrong a Preffure to be furmounted by it, I caus'd the Pumping to be continued, and within 2 or three Exuctions more I perceiv'd the Cylinder to begin to be drawn down (though but very flowly) by the Weight hanging at it, (affilted by its own Gravity:) and likewife tried (af. ter having purpofely ftopt a while the working of the Pump) that juft upon a frefh Suck the defcent would be manifefly accelerated. And when we had fuffer'd the Barrel and Weight to flide down as far as we thought fit, we let in the External Air, which (as was to be expected) rais'd dhem both again much fafter than they had fubfided.

NB. There would not have needed any thing near fo great a Weight to deprefs the Barrel of the Syringe, but that it is difficule
in fuch an inftrument to make the Sucker fill it accurately enough,

- without making it fomewhat uneafie to be mov'd to and fro: Upon which account twas necefliary that a Weight fhould be added, not onely to furmount the Preffure of the Air remaining in the Receiver, (which was not, nor needed to be diligently exhaufted in this Experiment,) buc to overcome that refiftance, which we juft now noted the inequalities of the infide of the Cy linder and thofe of the Sucker to give to the motion of the one in or over the other. And yet for all this tis not eafie, though it be not impoffible,to make one of thele Syringes very Tight, efpecially when the Nofe is well ftopt, and the Sucker drawn up; there being often fome litle Air that Atrains in between the Sucker and the Barrel, and fome that will be harbour'd between the Sucker (though thruft home) and the bottom of the Barrel, befides what may lurk between the fame Sucker and the Cork that ftops the orifice of the Vent. Nor were we confident, that our Syringedid not at length let fome Aerial particles infinuate themfelves into the Cavity, which the depreffion of the Barrel had made betwixt the Bales of that Barrel and the Sucker: and in fuch cafes we ought not to wonder, if upon the return of the Air the Barrel and Weight be not impell'd up all together to the fame height they refted at, when they were firft fufpended in the Receiver.

2. It agreed very well with our Doctrine, that as the Cylino der and Weight began not to fall, till a great quantity of Air had been pump'd out of the Receiver, fo they did not begin to move upwards prefently upon the freedom that was allow'd the Air to return into the Receiver. For till it had continued a pretty while flowing in, there was not enough of it entred to reftore by its preffure the Cylinder and the annexed Weight to their former fituation.
3. What has been deliver'd about our Experiment may be confirm'd by this Variation which we made of it: That having fubftituted a far heavier Weight inftead of that lately mention'd,

Touching the fpring and weight of the Air.
111 the depreffion of the Barrel of the Syringe fucceeded 2 or 3 times oneafter another much fooner than formerly, viz. about the fixth, or at moft, the feavench Exuction.

EXPERIMENT XXXIII.

\triangle bout the opening of a Syringe, whofe Pipe was Popt in the Exhawfed Receiver, and by the help of it making the Prefure of the Air lift up a conjiderable W̌e eight.

THough the Trial Iam about to relate, had not all the fuccefs I defir'd, yet perhaps it will not be impertinent to make mention of it, becaufe there is not any fort of Experiments, that is wont fo much to perfwade the Generality of Spectators, of the great force of the Preffure of the Air, as thofe, wherein they plainly fee heavy and folid Bodies made to afcend, (upon the operation of the Air on them, without feeing any other thing lift them up.

We took the often mention'd Syringe, and having clos'd up the Holeat the bottom with good Cement, we ty'd to the Barrel a hollow piece of Iron, that Cerv'd us for a Scale, into which we put divers Weights one after another, trying from time to time whether, when the Sucker was forceably crawn up, and held fteddily in its higheft ftation, the Weight tyed to the Barrel (which was held down, whilft the Sucker was drawn up, and afterwards letgo) would be confiderably rais'd. And when we perceiv'd, that the addition of halfa Pound, or a Pound more, would make the Weight too Great to be fo rais'd, we forbore to put in that increafe of weight; and having tied the Handle of the Rammer to the Turning-key, we convey'd the Syringe together with its clog into a Receiver, out of which a convenient quantity of Air being pump'd, we were thereby enabled eafily to draw up the Sucker without the Cylinder; after which having let in the Air, the by-

$12 A$ Continuation of Netw Experiments

Atanders concluded, that the weight was rais'd a litle, which yet I would not have allow'd, if we had not been able, by inclining the Engine and the Receiver, to make the Syringe and Weighta litle to fwing. But to make the effect more evident; I caus'd a two pound weight to be taken out, and then the Receiver being fomewhat exhaufted, and the Air readmitted, the Clog, when all the Air was come in, was fwiftly raifed, and as it were fnatch'd up from the midle to the upper part of the fufpended R ammer,

It is no eafie matter to meafure, with any certainty and exactnefs by a Syringe, the weight of an Acmofpherical Pillar equal to it in Diameter, efpecially if there be any imperfection in the Syringe, either becaufe the Sucker does not go clofe enough, in which cafe it can fcarce be ftanch, or becaufe by its Preffure againt the infide of the Barrel (which often happens if it be too clofe) it hinders the Sucker and Barrel from fliding without refifance by one another, and confequently there is an undue refiftance made to the endeavour of the Atinofphere, to raife the Barrel and Weight. And therefore, though our Syringe being, upon the account of fome ill accident, lefs in order than it was in fome of the foregoing Experiments, I muft not conclude that a Cylinder of the Atmofphere of the fame widenefs with it, is equipollent to no greater a weight, than that which was taken up in our Trial, yet we may fafely conclade that foflender a Pillar of the Atmofphere is able to raife by a Syringe at leaft fuch a Weight, as in our Experiment it actually lifted up, which amounted to about fixteen pound (Haberdupoife weighr,) for it exceeded fifteen pound and three quarters, befides the weight of the Syringes barrel it felf.

Touching the foring and weight of the Air:

EXPERIMENT XXXIV.

Sbewing, that the caufe of the Afcenfion of Liquors in Syringes is to be deriv.d from the Prefure of the Air.

IShall not here trouble Your Lordifip with what I have elfewhere propos'd about the explicating of Suction: but as by the lately recited Experiments (I mean the 31, 32, and 33) it has appear'd, that tis to the Preffure of the External Air that we mould alcribe the difficulty of drawing up the Sucker of a Syring, when the Pipe (or the Vent) is fopt; fo I fhall now endeavour to fhew, that the Afcenfion of Liquors, which follow the Sucker when tis drawn up, the Pipe betng open, depends alfo upon the Preffure of the Air, (incumbent on that Liquor.)

If I had been furnihhod with very rall Receivers, and fuch other Glaffes as I could have wifh'd, I had tried the following Experiments with Water, as well as Quick-filver, but for want of thofe Accommodations I was reduc'd to make my Experiment with the later onely of thofe Liquors, which yet will 1 hope fufficiently make out what was intended.

> The 1. Tryal.

We took a fmall Receiver, fhap'd almoft like a Pear, cut off Horizontally at both ends, (being the fame cap'd Glafs that is elfewhere mentioned in the accounts of other Experiments:) we alfo took the Syringe formerly defcrib’d, and having faft ned on to of the plate it with good Cement, in ftead of its own Brafs- pipe, a fmall Glafs pipe of about half a foot in length, we put this Syringe in at the narrow end of the Receiver; to whofe Orifice was (afterwards) carefully cemented on the Brafs-cap with the Turning-key, whereto was tied by a fring the handle of the Rammer. Then having conveniently plac'd upon the Engine a very thort thick Glafs fhap'd like a Sugar-loaf, (which was made ufe of for want of a better,) with a fufficient Quantity of Quick-filver in it; we

s14 A Continuation of N New Experiments

fo placed the Receiver over it, that the lower end of the Pipe of the Syringereacht almoft to the bottom of this Glafs, and confequently was immerft a pretty way beneath the furface of the Quick filver. We had alfo poured a litle Water in the upper part of the Syringe, that no Air might get in between the Sucker and the Cylinder, notwit Itanding that by fome Accident or other the Syringe was become fomewhat lefs Tite than before. And laft of all we cemented the Receiver to the Engine after the ufual manner.

That which now remained, being to try the Experiment it felf, in order to which all this had been done, the Air was pumpd ont of the Receiver, (and confequently out of the litie Glais that held the Mercury,) and then the Sucker being warily drawn up, we could not fee the Quick-filver afcend to follow it, though a litle Water, which it feems the outward Air had thruft in between the 'Sucker and the Cylinder, was either rais'd or ftopt in the Glalspipe of the Syringe, (whereof yet much the greateft part remain'd unfill'd;) of which the reafon according to our Hypothe is was ma. nifeft, namely, that the Air being pump d out of the Receiver, the litle that remain'd had not ftrength enough to prefs up fo ponderous a Liquor as the Quick-filver into the Pipe, (though even that litle unexhaufted Air might have Spring enough left to raife a litle water.) And fince it appear ${ }^{\prime}$ d by this, that without the Preffure of the Air the Quick-filver would not be elevated, we thought it feafonable to fhew, that by the Preffure of the Air it would. Whereupon the Air being let flowly into the Receiver, the Mercury was quickly impell'd up at leaft to the top of the Glafs-pipe, (though by reafon of fome unperceiv'dleak it was not long fuftain'd there.)

And for further fatisfaction, when the Experiment was to be tried over again, we order'd it to be fo made, that it might plainly be obferved, that though when, the Receiver not being yet exhaufted, the Sucker was drawn up but one inch, the Mercury would berais'd to the upper part of the Glafs pipe of the Syringe, yet after the exhaufing of the Receiver, though the Sucker was drawn up twice as high, there appear'd no afcenfion of the Mercu. ry in the Pipe, (whofe lower part onely was darkned by the litle Glafs which contain'd that fluid Metal.)

Before I difnils this Experiment, I muft, to make good a promife I made Your Lordhip, acquaint You with a Phenomenom, which does not a litle confirm our Doctrine, according to which it was eafie boch to forefee and to explain it: The phanomenon was, That if when the Air was diligently pump'd out of the Receiver, the Sucker were endeavour'd to be pull'd up, it could not be fo_{o}, withour much difficulty and refiftance, fuch as was formerly found when the Vent of the Syringe was ftopt, of which in our Hypothefis the reafon may be clearly this; That there being no common Air in the Receiver to affift by its Preffure (whether immediate or mediate) the raifing of the Sucker, this could not be raifed but by a force great enough to furmount the Weight of the external Air or Atmofpherical Pillar that lean'd upon it. So that as the other Phanomena of our Experiments manifeft, that the raifing of Liquors by a Syringe, which is commonly alcrib'd to Attraction, depends upon the Preffure of the Air; fo by this Phanomenon it appears, that the difficulty of opening a Syringe, whofe Pipe is ftopt, need not be attributed to fuch a fuga vacui as volgar Philofophers refer it to; fince in our cafe the fame difficulty was tound, though the Pipe were open, and the Liquor "twas immerft in, might have had free accefs to the place deferted by the Sucker.

The II. Tryal

Being a Profecution of the former Attempt.
To vary as well as confirm the foregoing Experiment, we caus'd the Syringe to be tied faft to a competently ponderous Body that might keep the Cylinder unmov'd, when the Sucker fhould be drawn up. We alfo cemented on to the vent or ferews

116 A Continuation of New Experiments

at she bottom of the Syringe a Pipe of glais of about two inches in length, (which fhould have been longer, but that then there would not have been room in the Receiver for the pulling up of the Sucker,) and having plac'd the heavy Body whereto the Syringe wastied upon a Pedeftal of a convenient height, that the Glafs pipe might be all feen beneath it, and a very low Viol almoft fill'd with Quick filver might be fo placed underneath the Pipe, that the ftagnant Mercury reach'd a good way above the immert orifice of the faid Pipe. Thefe things being thus provided, and the Handle of the Syringes Rammer being tied with a ftring to the Turning.key that belong'd to the Brafs-cover of the Receiver, chis veffel was cemented on to the Engine, and by it Exhaufted after the ufual manner.

When this was done, we look'd upon the Syringes Glals-pipe above mentioned, and being able to fee through it, (whereby we were certain that it was not yet full of Quick filver) we did by the ftring draw up the Sucker to a good height, but could not perceive the Pipe to be fill'd with any fucceeding Mercary. Wherefore warily letting in fome Air, we quickly faw the Mercury impell'd to the very top of the Pipe; and we concluded from the quantity of Quick-filver that was rais 'd, that a pretty deal wis alfo driven into the cavity of the Cylinder.

NB. I had once before feen the Mercury afcend into the Pipe upen the letting in of the Air into the emptied Receiver, but it feeming fomewhat difficult to me to determine whether the Sucker had been raifed, becaufe there was no mark to guide my Effimate by, I thought it might be fufpected, that in cafe the Sucker had not been rais'd, the Afcenfion of the Quick-filver might have proceeded from hence, That the Air contain'd in the Glais-pipe, breaking out through the ftagnant Mercury upon the Exhaufting of the Receiver, the Quick filver might upon the return of the Arr into the Receiver be preft up into the place deferted by the Air, that broke out of the Pipe. Wherefore we caus'd a ftring to be tied about the Rammer, as near as we could to
Toucbing the Spring and VVeight of the Air. the top of the Cylinder, by which means, when the Receiver was the next time exhaufted, we perceiv'd, that by drawing up the Sucker vve had rais ${ }^{\circ}$ d it about two inches, if not more, and yet vve could not difcern any Mercury to follow it, (the Glals-pipe ftill continaing tranf(parent,) till we had let fome Air return into the Receiver.

This Experiment joyn'd with thofe we have formerly related to have been tried with our Syringe, may teach us, that if a Syringe were made ufe of above the Atmofphere, nerther the ftopping of the Pipe vvould hinder the eafy drawing up of the Sucker, nor the drawing up of the Sucker, though the Pipe vvere not ftopt, vvould rarfe by fuction the Liquor vohich the Pipe was immertt in.
posifcript.

SInce the laft recited Experiment was made, and written, finding fome of our Inftruments to be in better order than they were when that Tryal was made, vve thought fit to endeavour by that which follows, to repair an omiffion or two, that formerly we could not well avoid.

Having then caus'd fuch a Glafs-pipe, as has been lately mentioned, to be vvell cemented on to the Syringe, (vvhofe Sucker did now move more eafily, and yet fill the Barrel more exactly, than before,) I order'd (being to be abfent for a while my felt) that the Pipe fhould be fill'd with Ipirit of Wine tincted with Cocheneel, that the liquor and its motions might be the better difcern'd, and that the Pipe being fill'd, that Air might be excluded, which vvould elfe be harboured in the Pipe, (which Caution was omitted in the foregoing Experiment.) And this the Perfon, to whom I committed it, affirm'd to have been carefully done, though when he inverted the Pipe thus fill'd into the reft of the red Liquor, that was put into a Viol, he could not poffibly do it fo well, but that a bubble of Air got into the Pipe, and took up fome (though but a litle) room there. By that time, I was call'd upon, to fee

118 A Continuation of New Experiments

 the Event of the Tryal, and could come to look uponit, the Receiver was almoft quite exhaufted; vvherefore after I had made the pumping be continued a litle longer, and perceived that the tincted fpirit was fallen down out of the Pipe, and that which lay in the Viol feem'd almoft to boyl at the top, by reafon of the emerfion of numerous Bubbles, I caus'd the Sucker to be, by the help of the Turning-key, drawn up (by our æAtimate) about two inches and a half, notwithftanding which vve could not perceive the fpirit of Wine to rife in the Pipe, (though the Pumping were before left off.) For vvhich reafon I order'd the Air to be let in very leifurely, upon which vve could plainly fee that the red fpirit was quickly driven up to the top of the Pipe, and that it was fo likewife into the Cavity of the Barrel, appeared, when the Rew ceiver was removed, by the fmall Quantity of Liquor that remained in the viol, and the plenty of it which came out of the Syringe.NB. That if 1 had not vvanted dexterous Artificers, to work according to a Contrivance I had defign'd, I had attempted to imitate, by the help of the bare Spring of the Air, fuch Experiments, as in the lately recited Tryals vvere made to fucceed, by the help of the Preffure exercis ${ }^{3} d$ by the Air upon the account of its Weight.

EXPERIMENT XXXV.

Shewing, that upon the Prefure of the Air depends the ficking of Cupping Glaffes to the feflhy parts they are apply'd to.

TIs fufficiently known, that if the Air within a Cupping Glals be rarified by the flame of Tow, Flax, or the like, (burn'd for a litle while in it,) and the Glais be prefently clapt upon fome flefhy part of a Mans body, there will quickly enfue a painful and vifible swelling of the part cover'd by the Cupping Glafs:

Tis alfo known, that this Experiment is wont to be urg'd by the Schools as a clear proof of that abhorrence of a Vacuism they afcribe to Nature; for, fay they, the reaton of this phenomenons is plainly, that the internal Air of the Cupping Glafs, præternaturally rarified by heat when the Inftrument is applied, That heat after a while ceafing, the fucceeding Cold muft gain neceffarily condenfe the Air; and ro this contracted Air being no longer able to fill the whole fpace it replenifhed before, there would enfue a vacuum, it the flefh covered by the Cupping Glals, or adjoyning to it, did not fwell into the Cavity of it, to fill the place deferted by the Air.

Thofe Moderns that affert the Weight of the Atmofphere, do thence ingenioufly endeavour to deduce the phanomenon. And indeed if to their Hypotbe fis about the Airs Weighe, the confideration of its Spring be added, 'twill be eafie enough to explicate the phanomenon, by faying, That when the Cupping Glafs is firft fet on, though much of the Air it formerly contain'd were a litle before expell'd by the heat, yet the fame heat, increafing the preffure of the remaining Air, is the caule that the abfence of the Air driven out of the Glafs, does not immediately occafion fo fenfible a pain: but, when that adventitious agitation of the included Air ceafes, that Air having now, becaufe of the paucity of its Corpufcles, but a weak Spring, can no longer prefs upon the part covered by the Cupping Glafs neer fo ftrongly, as the outward Air does by its Weight prefs upon all the neighbouring parts of the flefh: by which means (according to what we have more than once explicated already) fome of the yielding flefh (or other body covered by the skin) muft be forceably thruft into the cavity of the Cupping Glafs, where there is lefs Preffure, then at the outfide of it. And the fibres and membranous parts being thus violently ftretcht, there muft needs follow a fenfible Pain as well as Tumour. Which Tumour yet does not fill up the Cupping Glafs, not onely becaufe of the refiftance of the skin to be fo for diftended, butalfo, if theincluded Air have not been much ravi-

120 A Continuation of Nen Experiments

fied becaufe of the Spring of the imprifoned Air, (which grows fo much the ftronger, by how much the fweiling flefh reduces the Air into lefs room, as I have fometimes tried, by applying a Cupping Glafs to Quick-filver, or even to Water, which will rife in it but to a certain height.

But though by this, or fome fuch Explication, the Argument urged by the Schools in favour of the fuga vacui may be fufficiently enervated; yet it fuited better with the defign of this Treatife to propofe fome new Experiment, to illuftrate our Hypothefis, and though it feem'd to be far more difficulc to do it in reference to Cupping Glaffes, than to other fubjects, yet I pircht upon two different wayes of Experimenting; whofe fuccefs not difappointing me, I hall now give Your Lordfhip an account of them,

We took a Glais of about one Inch and a half in Diameter, but a good deal longer, than an ordinarily fhap'd Cupping Glals of that breadth would have been, that there might be the more room for the flame to burn in it, and rarifie the Air. We alfo provided a Receiver fhap'dalmof like a Pear, this Receiver was open at both ends; at the fharper whereof there was but a fmall 0 rifice, but at the obtufe end there rofe up a fhort neck, whofe O rifice was wide enough to admit with eafe the newly mentioned Cupping Glafs without touching the fides of it, and we were not willing it fhould be much larger, left it fhould not be fo exaitly cover'd by the Palm of the hand that fhould be laid upon it, and left alfo the hand floold be broken or hurt by the too great weight of the Atmolphere, when the included Air fhoold be withdrawn from under it.

Thefe things being thus prepared, and the fmaller Orifice of the Receiver being taftned with Cement to the Engine, I caufed the Cupping Glais to be faftned, with the mouth upwards, to the Palm of the hand of a Youth, (whom your Lordhip may remember to have feen with me,) whofe hand feem'd fram'd by Nature for this Experiment, being broad, ftrong, and very plump. And
having pull'd the Glafs, to try whether it ftuck well on, I caus'd him to put it into the Receiver, and lay his hand fo upon the O rifice lately mentioned, that it might ferve for a Cover toit, and hinder any Air from getting in between them.

That which we pretended was, that the Receiver being but fmall, (that it might bequickly exhaufted, and fo not put the Youth to a long pain,) upon an Exuction or two made with the Pump, of the Air about the Cupping Glafs, the remaining Air fhould have its Preffure fo far weakned, as not to be able to fupport the Cupping Glafs; efpecially fince if the Air without the Cupping Glats (but yet in the Receiver) fhould be more rarified by the removal of that which had been pump'd out, than the Air included in the Cupping Glafs was by the precedent Heat; this laft mentioned Air having a ftronger Spring (or tendency to expand it felf) than the External Air of the Receiver, the Glafs muft needs fall down, or rather be thruft off, though, in cafe there had been no Air at all left in the Cavity of the Cupping Glafs, the Air in the Receiver would by its Preffure fuftain a far Greater weight.

The Event of our Trial agreed very well with our conjecture. For upon the firt Suck the Cupping Glafs fell off, the weight of the Atmofphere preffing fo hard upon the Young mans hand, that, though he be more than ordinary ftrong, he complain'd he could very hardly take it off the Glafs it was almoft thruft into, and, a while after, that his hand was very fore. Buc this laft inconvenience became not fo quickly very fenfible, but that we had time to repeat our Experiment, by faftning the Cupping Glafs more ftrongly than before; fo that he complained that it drew in his hand very forceably, and though that part be not wont to be flefhy, yet the Tumour occafioned by the Cupping Glafs was manifeft enough to the eye: but as before, fo now, at the very firt turning of the Stop. cock, (to let out the Air of the Receia ver,) the Cupping Glafs fell off.

$$
\mathrm{R}_{2}
$$

EX

EXPERIMENT XXXVI.

> About the making, without beat, a Cupping Glafs tolift up a great Weight.

THe other Experiment I lately told Your Lordfhip we had made, to illuftrate our Doctrine about the caufe of the ftick. ing of applied Cupping Glaffes, was tried after the following manner.

We took the Brals- hoop or Ring, mentioned in the $5^{\text {th }}$ and $6^{\text {th }}$ Experiments, and cover'd it with a Bladder, (which was wetted to make it the more limber,) and was fo tied on to ir, (which was eafie to do, that the bottom of the Bladder covered the upper orifice of the Hoop, and was ftretche (though not ftrongly) upon it, almoft like the Membrane that makes the head of a Drumm; and the neck of the Bladder was tied with a ftring near the middle of the lower Orifice of the Hoop, and in this lower part of the Bladder we made two or three fmall Holes for the Air to pafs in and out at. Then having plac'd at the bottom of the often mencioned capp'd Receiver a thick piece of Wood, that had a hole in it, to receive the neck of the Bladder, we fo plac' d the cover'd Hoop upon this piece of Wood, that the upper part of the Bladder lay parallel to the Horizon. This done, we fufpended, at the Turning key belonging to the Cap of our Receiver, a blind head (as Chymifts call it) of Glafs, which for want of a true Cupping Glafs we were fain to fubftitute, and which indeed was not very unlike one either for Thape or fize; and to the upper part of this Glafs we faftned a large Ring of Metal, the better to deprefs it, and make it lean ftrongly on the Bladder.

Thefe things being thus made ready, and the Receiver cemented on to the Engine, we did by help of the Turning- key let down the Cupping Glafs, (for fo we thall hereafter call it,) till it came almoft to touch the level Superficies of the Bladder; and

Touthing the fipring and veight of the Air. 123

 when the Receiver was as far exhaufted as we thought fir, (but not near as tar as it might have been, we let down the Cupping Glars a litle lower, fo that it lean'd upon the Bladder, and touch'dit with all the parts of its orifice: fo that the Cupping Glafs with the fubjacent Bladder was become an internal Receiver fifI may fo call it,) whofe Air was confiderably expanded, and confequently weakned as toits Spring. All this being done, we warily let the Air into the Receiver, and thereby the Air, that did furround the Cupping Glafs, (which we juft now called the Internal Receiver,) having now a ftronger Preffure than the Air in the Cupping Glafs could refift; the Bladder, on which the Cupping Glafs refted, was as we look'd for, thruft up a pretty way into the cavity of the Glars, in which it made a confpicuous Tumor; and was made to ftick fo clofe to the orifice of it, that one would have thought that the Bladder had been violently drawn in, as the skin is wont to be in the ordinary applications of Cupping Glaffes.And becaufe we took notice, that though this Glafs were noe capacious, (for it fcarce held a Pint of Water,) yet the orifice of it was not very narrow, (being in Diameter an inch and ;,) we thought fit in repeating the Experiment to adde fomething that feem'd oddenough, and was fit to manifeft that Cupping Glaffes may, withont hear, by the bare Preflure of the external Air, be more Atrongly faftned, than for ought we know they are by the help of flame. Having then reiterated the former Experiment with this onely variation, that we exhaufted the Receiver further than before, we took out the Cupping Gla's and the Bladder, which together with the included Brals- hoop was hanging at it; and then having tied the Glafs to the Hook of a good Statera, and tied a large Scale to the neck of the Bladder, we put in by degrees Weights into the Scale, till we had loaded it enough to force off the Bladder from the Glafs; which hapned not till the whole Weight, that tended to draw down the Bladder, amounted to 35 Pound (if not better,) of fixteen ounces in the pound. Nor did

124 A Continuation of New Experiments

we doubt, but that the Preffure of the Atmofphere would in our Experiment have kept up a much greater Weight, if we had, before we let in the outward Air, diligently exhaufted the Receiver; which we had purpofely forborn to do, for fear the too difproportionate Preffure of the external Air fhould break the Bladder: which puts me in mind of adding, upon the by, That as more Weight was put into the Scale, the Bladder (ftretcht more and more by the Weight on one fide, and the Air on the other,) appear'd to fwell higher in the cavity of the Glafs.

E•XPERIMENT XXXVII.

Shewing, that Bellows, whofe Nofe is very mell fopt, will open of themfelves, when the Preffire of the external Air is taken off.

T is wont by the Peripateticks and others to be made a great 1 argument for the fuga vacui which they attribute to Nature, That if the Nofe of a pair of Bellows be well ftopt, one cannot open them by raifing the upper board from the lower. But of this anorher reafon may be eafily affigned, without determining whether there be a vacuum or no, namely the Weight and Preffure of the Air: for when the Nofe of a pair of Bellows, that are Tite enough, is well ftopt, no Air being able to infinuate it felf upon the disjoining of the boards into the Cavity made by that disjunction, Tbis cannot be effected, but by fuch a force as is almof able (I lay almoft, becaufe ordinary Bellows cannot be fo well fhut, but that there will remain fome Air in them, whofe Spring will facilitate the opening of them) to raife an Atmofpherical Pillar, whofe Bafs thall be the upper board, wvhich is commonly fo large, that a lefs force may ferve to break common Bellows, then to raife fo great a Weight: but if they vvere made ftrong enough, and there vvere applied a fufficient force to lift fo Great a vveight, as the newly mentioned Pillar of the Atmof phere, the fides might

$$
\text { Toucbing the Spring and VVeight of the Air. } 135
$$ be disjoyn'd, how clofe and fanch foever the Inftrement vvere made.

Thus far one may argue upon the bare principle of the weight of the Air, but taking in the Spring of it too, I thought one might proceed fo much further, that I venturd to forecell divers ingenious men, that if the Preffure of the ambient Air wereta. ken off, not onely it would be eafie to open the Bellows in fpite of their being carefully ftopt at the nole, but that they would fy open as it were of their own accord, without the application of any external force at all. And'twas partly to juftifie chis prediction, as well as to make a Trial, I choughe more conliderable, that we made the following Experiment.

We caused (chen) to be made a pair of Bellows, differing from ordinary ones in thefe particulars. Firt, that the Boards were circular, (and fo without handles,) and of about 6 inches in Diameter: 2. That there was no Clack or Valve: 3. That the nofe was but an inch long, or lefs, (being to be lengthned if occafion required vvith a Pipe:) 4. That the Leather (which vvas not fpar'd, that the inftrument might be the more capacious) was not horny or very ftiff, but limber. The Reafon of the firft and third diverfity was, that the Bellows might be capable to be conveyed into our Receiver; (for vvhich purpole alfo, if there had appear'd need, the nofe might have been made in the uppermoft of the two Boards:) the reafon of the 2^{d} variation was, that the inftrumert might be the more ftanch: and of the $4^{\text {th }}$, that the bafes of the Bellows might (as in Organ-bellows) be clapt clofer together, and harbour lefs Air in the wrinkles and cavity. So that when the Bellows vvere opened to their full extent, by drawing up the upper Bafis at a button purpofely made in the midft of it, the Bellows look'd like a Cylinder of 16 or I 8 inches high; upon which refemblance I take the liberty to call both the Boards (as Geometricians do both the circular parts of a Cylinder) Bafes.

But though thefe were made by an Artificer, otherwife dexterous, yet it not being his Irade to make Bellows, nor any other

126 a Continuation of New Experiments

mans in the Town I then was in, he could not make them fo Tite, but that in fpite of our oyling the Leather, and choaking the Seams with good Cement, there was fome litle and unperceived hole or cranny, whereby fome Air had paflage when the nofe was accurately ftopt: but this was not fo confiderable, but that if we drew up the upper Bafis from the lower, the external Air would on all fides prefs the Leather inwards, and fo make the Thape of the inftrument very far from being fo Cylindrical, as it would be if the nofe were left open.
Wherefore concluding, that notwithrtanding this imperfection the Bellows would ferve, though not for both the Experiments I defign'd, yet for one of them, we carefully fopt the nofe, after we had approach'd the Bafes to one another, and conveying them into a large Receiver, it quickly appear'd, when the Pump was fet on work, that at every Exfuction of the incumbent Air, the Air harbour'd in the folds of the Leather, and the reft of the litle Cavitie that could not but be left between the Bafes, made the upper of thofe Bafes manifettly rife, though its weight (becaufe of the thickne(s and folidity of the Wood) would foon after deprefs it again, either by driving out fome of the Air at fome place where the inftrument was not fufficiently Tite, or by making it as it were Atratn'd through the Leather it felf; and it the Pump were agitated iomewhat fafter than ordinary, the Expanfion of the internal Air would be greater than could be rendred quite ineffectual by fo fmall a Leak, and the upper part of the Bellows would be foon raif d to a confiderable height, as would appear more evidently if we haftily let in the external Air, upon whofe ingrefs the Bafes would be clapt together, and the upper of them a good vvay depreft. So that the imperfection of the Bellows made the Experiment rather more than lefs concluding; for fince there was no external force applied to open them, if notwithftanding that fome of the included Air could get out of thé, yet the Spring of the internal Air was Atrong enough to open the Bellows when the ambient Air was withdrawn, much more

Touching the fpring and weight of the Air. 127 would the effect have been produc $\cdot d$, it the Bellows bad been perfectly ftanch.

EXPERIMENT XXXVIII.

About an Attempt to examine the Motions and Senfibility of the Cartefian Materia fubrilis, or the Ather, with a pair of Bellows (made of a Bladder) in the exhausted Receiver.

IWill not now difculs the Controverfie betwixt fome of the Modern Atomitts, and the Cartefians; the former of whom think, that betwixt the Earch and the Stars, and betwixt thefe themfelves there are vaft Tracts of Space that are empty, fave where the beams of Light do pars through them; and the later of whom tell us, that the Intervals betwixt the Stars and Planets (among which the Earth may perhaps be reckon'd) are perfectly filld, but by a Matter far fubtiler than our Air, which fome call Celeftial, and others eEther. I hall nor, I fay, engage in this controverfie, but thus much feems evident, That if there be fuch a Celeftial Matter, it muft make up far the Greateft part of the Univerie known to us. For the Interitellar part of the world (if I may fo ftile it) bears fo very great a proportion to the Globes, and their Atmofpheres too, (if other Stars have any as well as the Eartb,) that it is almoft incomparably Greater in refpect of them, than all our Atmofphere is in refpect of the Clouds, not to make the comparifon between the Sea and the Fifhes that fivim in it.

Wherefore I thought it might very vvell deferve a heedful Enquiry, whether we can by fenfible Experiments (for I hear what has been attempted by Speculative Arguments) difcover any thing about the Exiftence, or the Qualifications of this fo valt Æther: and I hoped our Curiofity might be fomewhat affifted by our Engine, if I could manage in it fuch a pair of Bellows as I defign'd. For I propos'd to my felf to faften a convenient weight

128 \mathcal{A} Continuation of Newo Experiments

 to the upper Bafis, and clog the lower with another, great enough to keep it Horizontal and immoveable, that when by the help of the Turning key, frequentlyabove mention'd, the upper Bafis fhould be rais'd to its full height, the cavity of the Bellows might be brought to its full dimenfions. This done, I intended to exhauft the Receiver, and confequently the thus open'd Bellows with more than ordinary diligence, that fo both the Receiver and they might be carefully freed from Air. After vvhich I parpos'd to let go the upper Bafe of the Bellows, that being haftily depreft by the incumbent Weight, it might fpeedily enough fall down to the lower Bafis, and by fo much, and fo quickly leffening the Cavity, might expell thence the Matter (if any were) before contain'd in it, and that (ifit could by this way be done) at the hole of a flender Pipe, faften'd either near the bottom of the Bellows, or in the upper Bafis: againft or over the orifice of which Pipe there was to be plac'd at a convenient diftance either a Feather, or (if that hould prove too light) the Sail of a litle Windmill made of Cards, or fome other light body, and fit to be put into motion by the impulfe of any Matter that fhould be forc'd out of the Pipe.By this means it feem'd not improbable, that fome fuch difcovery might be made, as would not be altogether ufelefs in our Enquiry. For if notwithftanding the abfence of the Air, it fhould appear by the Effects that a ftream of other Matter, capable to fet vifible bodies a moving, Thould iflue out at the Pipe of the compreft Bellows; it would allo appear, that there may bea much fubriller Body than common Air, and as yet unobferv'd by the Vacuifs; or (their Adverfaries) the Schools, that may even copioufly be found in places deferted by that Air; and that ic is not fafe to conclude from the abfence of the Air in our Receivers, and in the upper part of thofe Tubes where the Torricellian Experiment is made, that there is no other body left but an abfolute Vacuicy, or (as the Atomilts call it) a vacuü coacervatü. But if on the other fide there fhould appear no motion at all to be pro-

Touching the fpring and weight of tbe Air.

 129 duc'd, fo much as in the Feather, ic feem'd that the Vacuifts might plaufibly argue, thateiether the Cavity of the Bellows was abloIurely empty, or elfe that it would be very difficult to prove by any fenfible Experiment that ic was full, and, if by any other way ot probation it be demonftrable, that it was replenifh'd with $£$ ther, we that have not yet declar'd for any party, may by our Experiment be taught to have no confident expectations of eafily making if fenfible by Mechanical Experiments ; and may alfo be inform'd, that tis really fo fubte and yieldiog a Matter, that does not either eafily impell fuch light bodies as even Feathers, or fenfibly refift as does the Air it felf the motions of other bodies throughit, and is able without refiftance to make its paffiage through the Pores of Wood, and Leather, and alfo of clofer bodies, which we find not that the Air doth in its Natural or wonted ftare penecrate.To illuftrate this laft Claufe I hall adde, that to make the Trial more accurate, I wav'd the ufe of other Bellows, (efpecially not having fuch as I defired,) \& caus'd a pair of fmall Bellows to be made with a Bladder, as a Body, which fome of our former Experiments have evinc'd to be of fo clofe a Texture, that Air will rather break it than paffe through it : and that the Bladder might no where loofe its entirenefs by Seams, we glued on the two Bafes, the one to the bottom, and the other to the oppofite part of it, fo that the Neck came out at a hole purpofely made for it, in the upper Bafis, and into the Neck it was eafie to infert what pipe we thought fit, binding the Neck very clofe to it on the outfide. We had likewife Thoughts to have another pair of Tite Bellows made with a very light Clack in the lower Bafis, that by haftily drawing up the orther Bafis, when the Receiver and Bellows were very carefully exhaufted, we might fee by the reft, as the lifting up of the Clack, whether the fubtle Matter that was expell'd by the upper Bafis in its Afcent, would, according to the Modern Doatrine of the Circle made by moving Bodies, be impell \cdot up or not.

We alfo thought of placing the litle Pipe of the Bladder bellows (if I may fo call them) beneath the furface of Water exquifitely freed from Air, that we might fee whither upon the Depreffion of the Bellows by the incumbent Weight, when the Receiver was carefully exhaufted, there would be any thing expell'd at the Pipe, that would produce Bubbles in the liquor, wherein its Orifice was immerft.

Tobring now our Conjectures to fome Trial, we put into a capp'd Receiver the Bladder accommodated as before is mentioned, and though we could have wifh'd it had been fomewhat larn ger, becaule it contain'd but between half a Pint and a Pint, yet in regard it was fine and limber, and otherwife fit for our Turn, we refolv'd to try how it would do; and to deprefs the upper Bafis of thefe litle Bellows the more eafily and uniformly, we cover'd the round piece of Paftbeard, that made the upper Bafis, with a Pewter-plate, (with a hole in it for the neck of the Bladder;) which neverthelefs upon trial prov'd not ponderous enough, whereby we were oblig'd to affit it by laying on it a Weight of Lead. And to lecure the above mentioned Feather, (which had a flender and flexible Stem, and was left broad at one end, and faftned by Cement at the other, fo as to ftand with its broad end at a convenient diftance juft over the Orifice of the Pipe,) from being blown afide to either hand, we made it to move in a perpendicular flit in a piece of Paftboard, that was faftned to one part of the upper Bafis, as that which the Feather was glued to was to another part. Thefe things being thus provided, the Pump was fet a work, and as the ambient Air was from time to time withdrawn, fo the Air in the Bladder expanded it felf fo ftrongly, as to lift up the metalline Weight, and yet in part to fally out at the litle Glafs-pipe of our Bellows, as appear'd by its blowing up the Feather, and keeping it fu fpended till the Spring of the Air in the bladder was tootar weakned to continue to do as it had done. In the mean time we did now and then, by the help of a ftring faften'd to the Turning- key, and the upper Bafis of the Bellows, let

Toucting the /pring and weight of the Air. 131 down that Bafis a litle, to obferve how upon its finking the blaft againft the Feather would decreafe, as the Receiver was further and furcher exhaufted. And when we judg'd it to be fufficiently freed from Air, we then let down the Weight, but could not perceive that by fhutting of the Bellows the Feather was at all blown up, as it had been wont to be, though the upper Bafis were more than ufually depreft. And yet it feems fomewhat odd, that when, for Curiofity, in order to a furcher Trial, the Weight was drawn up again, as the upper bafis was rais'd from the lower, the fides of the Bladder were fenfibly (though not very much) preft, or drawn inwards. The Bellows being thus opened, we let down the upper bafis again, but could not perceive that any blaft was produc'd, for though the Feather, that lay juft over and near the orifice of the litle Glafs Pipe, had fome motion, yet this feem'd plainly to be but a thaking and almoft vibrating motion (to the right and left hand,) which it was put into by che upper bafis, which the ftring kept from a fmooth and uniform defcent; bui not to proceed from any blaft iffuing out of the cavity of the Bladder. And for further fatisfaction we caus'd fome Air to be let into the Receiver, becaule there was a poffibility, that unawares to us the flender Pipe might by fome accident be choak'd: but though upon the return of the Air into the Recciver, the bafes of the Bellows were preft clofer together, yet it feem'd that, according to our Expectation, fome lisle Air got through the Pipe into the cavity of the Bladder: for when we began to vvithdraw again the Air we had let into the Receiver, the Bladder began to fwell again, and upon our letting down the Weight, to blow up and keep up the Feather, as had been done before the Receiver had been fo well exhaufted. What conjecture the opening and fhutting of our litle Bellows, more than once or twice, without producing any blaft fenfible by the raifing of the Feather, gave fome of the by-fanders, may be eafily guefs'd by the preambie of this Experiment; but whilft I was endeavouring to profecute it for my own furcher information, a mifchance that befell

132. AContinuation of New Experiments

 the Inftrument, kept me from giving my felf the defird fatisfactio OD.
EXPERIMENT XXXIX.

About a further attempt to profecute the Inquiry propos'd in the foregoing Experiment.

COnfidering with my felf, that by the help of fome contrivances not difficult, a Syringe might be made to ferve, as far as our prefent occafion required, in ftead of a pair of Bellows; I thought it would not be improper co try a differing, and, in fome regards, a better way to profecute an attempt, which feem'd to me co deferve our Curiofity.

See plate the
Figure tbe

I caus'd then to be made, for the formerly mentioned Sytinge, in ftead of its ftreight Pipe, a crooked one; whole fhorter Leg was parallel to the longer. And this Pipe was for greater clofenels, after 'twas fcrew'd on carefully, faftned with Cement to the Barrel; and becaufe the Brafs-pipe could farce be made fmallenough, we caus'd a fhort and very flender Pipe of Glass to be put into the orifice of the fhorter Leg, and diligently faften'd to it with clofe Cement. Then we caus'd the Sucker (by the help of Oyl, Water, and moving it up and down) to be made to go as fmoothly as might be, without leffening the ftanchnefs of the Syringe. After this, there was faftned to the handle of the Rammer a Weight, made in the form of a Ring, or Hoop, which by reafon of its figure might be fufpended from the newly mention'd handle of the Rammer, and hang loofe on the outfide of the Cylinder, and which both by its Figure and its Weight might evenly and iwiftly enough deprels the Sucker, when That being drawn up the Weight fhould be let go. This Syringe thus furnifhed, was faftned to a broad and heavy Pedeftal, to keep it in its vertical pofture, and to hinder it from Tottering, notwithftanding theWeight that clogg'dit. And befides all thefe things, there

Toucbing the Spring and VVeight of the Air. 133

 was taken a Feather, which was aboutewo inches long, and of which there was left at the end a piese about the breadth of a mans Thumb-naile, (the reft on either fide of the flender ftalk (if I may fo call it) being ftript off) to cover the hole of the flender Glals pipe of the Syringe; for which purpofe the other extreme of it was fo faftned with Cement to the lower part of the Syring, (or to its Pedeftal,) that the broad end of the Feacher was plac'd (as the other Feather was in the foregoing Experiment) juft over the litle orifice of the Glafs, at fuch a convenient diftance, that when the Sucker was a litle (though but very litie) drawn up and let goagain, the Weight would deprefs it fatt enough to blow up the broad part of the Feather, as higa as was permitced by the refiftance of the Stalk, (and that was a good way,) the Spring of which would prefently reftore the whole Feather to its former pofition.All thefe things being done, and the handle of the Rammer being tied to the Turning key of a capp'd Receiver, the Syringe and its Pedeftal were inclofed in a capacious Receiver, (for none but lych a one could contain them, and give fcope for the Rammers motions,) and the Pump being feton worke, we did, after fome quantity of Air was drawn out, rife the Sucker a litle by the help of the Turning-key, and then turning the fame Key the contrary way we fuffer'd the Weight todepreis the Sucker, that we might fee at what rate the Feather vould be blown up; and finding that it was impell'd forceably enough, we caus'd the pumping to be fo continued, that a pretty many paufes were made, during each of which we rais'd and depres's'd the Sucker as before, and had the opportunity to obferve, That as the Receiver was more and more exhaufted of the Air, fo the Feacher was lefs and lefs briskly driven up, till at length, when the Receiver was well emptied, the ufual elevations and depreffions of the Sucker would not blow it up at all that I could perceive, though they were far more frequently repeated than ever before; nor was I content to look heedfully my felf, but I made one whom I had

A Continuation of New Experiments

 oftenimploy'dabout Pneumatical Experiments to watch atten: sively, whillt I drew up, and let down the Sucker, but he affirm'd that he could not difcern the leaft beginning of Afcenfion in the Feather: And indeed to both of us it feem'd, that the litle and inconfiderable motion that was fometimes (not alwayes) to be difcern'd in the Feather, proceeded not from any thing that iffued out of the Pipe, but from fome litle Shake, which twas difficule not to give the Syringe and Pedeftal, by the raifing and deprefs fing of the Sucker.And that which made our Phanomenon the more confiderable, was, that the Weight that carried down the Sucker being ftill the fame, and the motions of the Turning-key being eafie to be made equal at feveral times, there feem'd no reafon to fufpect that Contingencies did much (if at all) favour the fucces; but there hapned a thing, which did manifently enough disfavour it: For I remember, that before the Syringe was put into the Receiver, when we were trying how the Weight would deprefs it, and it was thought that though the Weight were conveniently fhap'd, yet it was a litle of the leaft; I would not alter it, but foretoid, that when the Air in the Cavity of the Syringe (that now refiAted the quicknefs of its defcent, becaufe fo much Air could not eafily and nimbly get out at fo (mall a Pipe) fhould be exhaulted with the other Air of the Receiver, the elevated Sucker would fall down more eafily, which he, that was imploy'd to manage the Syringe whilft I watch'd the Feather, affirm'd himfelt atterwards to obferve very evidently. So that when the Receiver was exhaufteds if there had been in the cavity of the Syringe a matter as fit as Air to make a Wind of, the Blaft ought to have been Greater, becaufe the celerity that the Sucker was depreft with was fo.

After we had long enough tried in vain to raife the Feather, I order'd fome Air to be let into the Receiver; and though when the admitted Air was but very litle, the motions of the Sucker hadfarce if at all any fenfible operation upon the Feather, yet when the quantity of Air began to be fomewhat confiderable,

Touching the /pring and weight of tbe Air.

the Feather began to be alitle mov'd upwards, and fo by letting in Air not all at once but more and more from time to time, and by moving the Sucker up and down in the intervals of thofe times of admiffion, we had the opportunity to obferve, that as the Receiver had more Air in it, the Feather would be more briskly blown up.

But not content with a fingle Tryal of an Experiment of this confequence, we caufed the Receiver to be again exhaufted, and profecuted the Tryal with the like fuccels as before, onely this one Circumfance, that we added for confirmation, may be befit to behere taken notice of. Having, after the Receiver was exhaufted, drawn up and let fall the Sucker divers times ineffectually; though hitherto we had not ufually rais'd it any higher at a time, than we could by one turn of the hand, both becaufe we could not fo conveniently raife it higher by the Hand alone, and becaufe we thought it unneceffary, fince that height fuffic'd to make the Air briskly tofs up the Feather; yet ex abundanti we nowv took an inftrument that was pretty long and fit fo to take hold on the Turning-key, that we could eafily raife the Sucker between two and three inches (by our Æifimate) at a time, and nimbly depreis it again; and for all this, which would much have increas'd the Blaft, if there had been a Matter fit for it in the Cavity of the Syringe, we could not fenfibly blow up the Feather, cill we had let a litle Air into the Receiver.

To be able to make an wetimate of the Quancity of Air pump'd out, or let in, when the Feather vvas ftrongly or faintly, or not at all rais'd by the fall of the Sucker; vve took off the Rem ceiver, and convey ${ }^{\circ} \mathrm{d}$ a Gage into it, but though for a vohile vve made fome ufe of our Gage, yet a mifchance befalling it before the Operation was quite ended, I fhall forbear to adde any thing concerning that Tryal, and proceed to fay fomething of another Attempt, wherein though I forefaw and met with fuch difficulties, as kept me from doing altogether what I defited, yet the fuc-, cefs being almoft as good as could be expected, I fhall venture

136 A Continuation of Nets Experiments

to acquaint Your Lordhip with the Tryal, which was this.
In itead of the hitherto imploy'd Pipe of Brais, there was well tafned (with Cement) to the Syringe a Pipe of Glafs, whofe figure differ'd from that of the other in this particular, that the thorter (or remoter) Leg of our new Pipe, after it had tor a while been carried parallel to the other Leg, was bent off fo , that above an inch and a half of it tended downwards, that the orifice of it might be immerf inco Water contain'd in a fmall open Jarr. The defign of which contrivance was, that when the Receiver fhould be well exhaufted, we might (according to what I told Your Lordhip v vas at firf defign'd) try vvhether by the raffing and deprefing of the Sucker any fuch Matter would be driven out at the nofe of the Pipe, as would produce bubbles in the incumbent Water, which, Air(though highly rarefied, perthaps to fome hundreds of times beyond its wonted Dimenfions,) is capable of do: ing. And I choofe to imploy rather Water than Quick-filver, becaure though by ufing the later I might hope to be lefs troubled with bubbles, yet the ponderoufnefs and opacity of it feem'd to outweigh that convenience.

I need not tell Your Lordhip, that in other refpeits this Ex periment was made like the former, fo that I fhall mention onely its peculiarities, which were, That as the Air was pump'd out of the Receiver, that in the Glafs pipe made its way throughthe Water in Bubbles, and a litle Air having once by a fmall Leak got in, and forc'd fome of the Water out of the Jarr into the pipe, when the Receiver was again vveil emptied, both that Water ande ven the litle quantity of ftagnant Water, that was contain'd in the immerft part of the Pipe, produc'd fo many bubbles of feveral fizes, as quite difturb'd our Obfervations. Wherefore we let alone the Receiver, exhaufted as it was, for 6 or 7 hours, to give the Water time to be freed from Air, and then caufing what Air might have ftolen in to be gain pump ${ }^{\text {d }}$ d out, till we had perceiv'dby the Gage that the Receiver was well exhaufted, we caus'd the Sucker (of the Syringe) to be rais'd and depreft diverfe

Touching the fpring and weight of the Air.

times, and though even then a Bubbte vvould now ard then make our Obfervations troublefome, and lefs certain, yet it feem'd to us, that when we were not thus confounded, we fometimes obferved that the elevation and fall of the Sucker, though reiterated, did nut drive out at the Pipe any thing that made any difcernable babbles in the incumbent Water; for though there would appear now and then fome fmall bubbles on the furface of the Water, yet I could not perceive that the Matter that made them, iffued out at the Pipe; and fome of them manifefly proceeded from Aerial Particles, till then lurking in the Water, as I concluded from the place and time of their rifing. But this Non eruption of bubles at the nofe of the Pipe, vas not that which gaveme the moft of fatisfaction. For at length both I and another had the opportunity to obferve the Water in the immerft part of the Pipe, which was very flender, to be about an inch higher than the seft of the ftagnant Water, and to continue at that height or place in the Pipe, though the Sucker vvere divers cimes together rais ${ }^{s} d$ and deprefld by Guefs between 2 and three inches ata time. Which feem'd to argue, either that there was a vac num in the cavity of the Syringe, or elfe that if it were full of ather, that body vvas fo fubtle, that the impulfe it received from the falling Sucker voould not make it difplace a very litle Thread (perhaps riot exceeding a Grain in Weight) of Water that vva in the flender Pipe, though it appear ${ }^{\circ}$ d by the bubbles, that foretimes difclos'd themfelves in the Water, after the Receiver had been exhaufted, that far more Water vvould be difplac'd and carried up by a frall bubble confifting of fuch rarified Air, that according to my Æftimate the Aerial particles of it did not, before the Pump vvas begun to be fet on vvork, take up in the Water a fivehundredth part of the quantity of a Pins head.

But whilft we were confidering what to do further in our Tryal, a litle Air, that ftrain'd in at fome fmall undifcoverable Leak, drove the Water into the emptied part of the Pipe, and put an end for that time to our Tryal, which had been too toyliome to invite us then to reiterate it.

- 38 Continuation of New Experiments

I had indeed thoughts of profecuting the Enquiry, by dropping from the top of the exhaufted Receiver light Bodies convenientIy fhap'd, to be turn'd round, or otherwife put out of their fimpleft motion of Defcent, if they met with any refiftance in their fall; and by making fuch Bodies move Horizontally and otherwife in the Receiver, as vvould probably difcover whither they were affifted by the medium: and other contrivances and wayes I had in my thoughts, whereby to profecute our Enquiry, but vvanting time for other Experiments, I could not fpare fo much as was neceffary to exhauft large Receivers fo diligently, as fuch nice Trials would exact; and therefore I refolv'd to defift, till I had more leifure than I thenhad, (on have fince been Matter of.)
In the interim, thus much we feem to have already difcovered by our paft Tryals, that if when our Veffels are very diligently freed from Air, they are full of Æther, that Æther is Cuch a body, as will not be made fenfibly to move a light Feather by fuch an impulfe as would make the Air manifefly move it, not onely whilft tis no thinner than common Air, but when tis very highly rarified, (which, ifI miftake not, it was in our Experiment fo much, as to be brought to take up above an hundred times more room than before.)

And one thing more we gain'd by the Tryal made with water, namely a clear confirmation of what I deliver'd in the $34^{\text {th }}$ Experiment, about the caule of the Suction that is made by Syringes; for Your Lordhhip may remember, thar at the clofe of the Experiment we have all this while been reciting, I obferv d, that when the external Air was fo very well withdrawn, the pulling up of the Sucker would not make the ftagnant Water, that the Pipe of the Syringe was immerft in, to alcend one inch, ol: fo mụch as the tenth part of it.

Toucbing the fpring and weight of the Air.

EXPERIMENT XL.

About the falling, in the Exhurfted Receiver, of a light Body, fitted to bave its motionvifibly varied by a mall refiftance of the Air.

PArtly to try whether in the fpace deferted by the Air, drawn. out of our Receivers, there would be any thing more fic to refift the motion of other light Bodies through it, than in the former Experiment we found le to impell them into motion; and partly for another purpofe to be mention'd by and by, we made the following Tryals.

Wetook a Receiver, which, though lefs tall than we would have had, was the longeft we could procure: and that we might be able, not fo properly to let down as, to let falla Body in it, we fo faftned a fmall pair of Tobacco- Tongs to the infide of the Receivers Brals-Cover, that by moving the Turning-key, we might. by a ftring tied to one part of them, open the Tongs, which elfe their own Spring would keep But. This being done, the next thing was to provide a Body, which voould not fall down 1 kea Stone, or another dead Weight through the Air, but would in the manner of its defcent hhew, that its motion was fomewhas refifted by the Air; vvherefore that vve might have a Body thatvvould be turn'd about Horizontally (as it were) in its fall, we thought fit to joyn Crofs-wife four broad and light Feathers (each about an Inch long) at their Quils with a litle Cement, into vvhich vve alfo ftuck perpendicularly a fmall Label of Paper, about an $8^{\text {th }}$ of an inch in breadth, and fomewhat more in height, by vvhich the Tongues might take hold of our light Inftrument vvithout touching the Cement, which elfe might ftick to them,

By the help of this fmall piece of Paper, the litle Inftrument, see of vohich it made a part, vas fo taken hold of by the Tongs, Flite thoer that it hung as Horizontal as fuch a thing could well be plac'd:
and.

140 A Continuation of New Experiments

and then the Receiver being cemented on to the Engine, the Pump vvas diligently ply'd, till it appear'd by a Gage, which had been conveyed in, that the Reciver had been carefully exhaufted: Lafty, our eyes being attentively fix'd upon the connected Feathers, the Tongs were by the help of the Turning-key open'd, and the lite Iofrument let fall, which, though in the Air it had made fome turns in its defcent from the fame height it now fell from, yer now it defcended like a dead Weight, without being perceiv'd by any of us to make fo much as one Turn, or a part of it: notwithfanding which I did, for greater fecurity, caufe the Receiver to be taken off, and put on again, atter the Feathers were taken hold of by the Tongs, whence being let fall in the Receiver unexhaufted, they made fome Turns in their defcent, as they alfo did being a fecond time let fall after the fame manner.

But when after this, the Feathers being plac'd as before, we repeated the Experiment by carefully pumping out the Air, neither I nor any of the By-ftanders could perceive any thing of Tarning in the defcent of the Feathers; and yet for turther fecurity we let them fall twice more in the unexhaufted Receiver, and found them to turn in falling as before; whereas when we dida 3^{1} time let them fall in the well exhaufted Receiver, they fell after the fame manner as they had done formerly, when the Air, that vvould by its refiitance have turn'd them round, was remov'd out of their vvay.

Note I. though (as I intimated above) the Glafs, vvherein this Experiment was made, were nothing near fo tall as I would have had it, yet it was taller than any of our ordinary Receivers, it being in height about 22 inches.
2. One that had had more leifure and conveniency, might have made a more commodious Inftrument than that we made ufe of: for being accidentally vifited by that Sagacious Mathe matician D. Wren, and fpeaking to him of this matter, he was pleas'd with great dexterity as well as readinefs to make me a litde Inftrument of Paper, on which, when twas let fall, the refi.
Toucting the Spring and VVeigbt of the Air. I IT fance of the Air had fo manifeft an operation, that I hould have made ufe of it in our Experiment, had it not been cafually loft when the ingenious Maker was gone out of thefe parts.
3. Though I have but briefly related our having fo order'd the matter, that we could conveniently let fall a Body in the Receiver when very well exhaufted, yet to contrive and put in practice what was neceffiry to perform this, was not fo very eafie, and it would be difficult to defcribe it circumftantially without very many words; for which reafon I forbear an account, that would prove too tedious to us both. - 4. What has been hitherto related, was done in profecution of but one of the two Defigns I aim'd at in the foregoing Contrio vance, by which I intended, if I could have procured a Receiver tall enough, to try whether Bodies (fome very light, and fome heavier) being let fall when the Air was very diligently pump'd out, would not deicend fomewhat fafter than if the Receiver were full of Air. But though I had provided a Pendulum that: vibrated quarters of Seconds, yet the Glafs being no higher than it was, the Defcenc even of our Feathers took up fo litie time, that even this Pendulum was of no ufe; onely ir feem'd to all of us that were prefent at making the above recited Tryals, that when the Feathers were let fall at fuch times as the Air (that would have turn'd them round in their defcent) was removed, they came to the bottom fenfibly fooner than at other times. But when we Thall have opportunity to repeat the Experiment in taller Glaffes, and to make fome variation of it, I hope to be able to give Your Lordhip a fuller fatisfaction about this particular. And in the mean while I fhall forbear to examine whether the Air might fomewhat retard the defcent, of the Feathers upon fome other account, or meerly upon that of its being a medium not quite devoid of Gravity.

Annotations.

1. But here I muft be fo fincere as to inform Your Lordhip, that this $4^{\text {oth }}$ Experiment feem'd not to prove fo much as did the fore-

143

A Continuation of New Experiments

foregoing made with the Syringe: for being fufpicious that, to make the feathered body above mentioned curn in its fall, there would need a refiftance not altogether inconfiderable, I caus'd the Experiment to be repeated, when the Receiver was by our Æiftmate (which was not made at random neither) litle or nothing more tban half exhaufted, and yet the remaining Air was too far rarified to make the falling Body manifeftly turn.
2. And yet perchance it would have hapned otherwife, if the Receiver had been tall enough; which though I had not then leafure and conveniency to make it, yet it will not be amifs to let Your Lorfhip know by what means we did, that it might be fomewhat fit to make the recited Experiment and fome others, bring it to the height it had, which did confiderably exceed that of the talleft Glals we could then procure.

Tolengthen our Receiver therefore, we thought fit to try, whether we could not clofe enough faften to the bottom of it with very good Cement a Cylindrical Pipe of Laton, whole upper orifice fhould have neer the fame breadth with the bottom of the Glafs. And though this Contrivance feem'd liable to a couple of not mean difficulties; The one, that the Laton being every where bended, and in fome places neceflary to be fouder'd, it would be very hard (as indeed we found it) to avoid fome fmall cracks and leaks: And the other, that it the metalline Pipe were wide enough, fo great and heavy a pillar of the Atmofphere would come to bear againft it, as to prefs it inwards, if not alfo to break it; yet we hoped we fhould be able to obviate both of thele inconveniences. Againft the firft of which our Remedy was, to Coat over very carefully the whole Pipe with the fame cloie Ce ment, wherewith we faftned it to the Glass Receiver. And againft the Second, we provided a litle Frame, confifting of divers fmall Iron Bars faftned together; which Frame (though twere not too wide to go into the Cylinder of Laton, yet it) was wide enough to be fo neer it on the infide, that (though the weight of the Acmofphere fhould, as we feared, prefs the Laton fo as to make

Toucbing the fpring and weight of the Air. 143 it yield inward, yet) it could make it bend no further than the Iron frame would permit, which was not far enough to tpoile either the Receiver or the Experiment. And this not unpleafint phenomenon would fomewhat furprife unaccuffomed Speetators, that when after the Receiver had been very well exhautted, the external Air was permitted to return, there would be heard during fome cime, from the metalline part of the Receiver, divers Sounds brisk enough, which would make an odd Cracking noife proceeding from the Laton plate, which having been forceably, though but flowly, bent inwards by the predominanc Preflure of the Atmorphere, was now affifted by the Preffiure of the returning Air, to regain its former Figure. And as I thought not fit to omit this Circumftance, becaure it confirms the praticablenefs of the Remedy propos'd againft the 2^{4} Inconvenience; fo I thought fit to mention this way of enlarging and heightning Receivers, becaufe what we have related feems to give Grounds of hoping that this Gontrivance may be made good ufe of in divers other Tryals, and particularly in attempts to make Receivers capacious enough to contain larger Animals, and perhaps even a Boy, or a Man. In order to fome of which purpofes we indeavoured to get an improvement made of our Metalline Cylinder by additional contrivances; but could not (where we then were) get Artificers, that would perform what was directed.

EXPERIMENT XLI.

About the propagation of Sounds in the Exhaufted Receiver.

TO make fome further Oblervation than is mention'd in the ${ }_{*}$ Page the *Publifh'd Experiments, about the Production and con- $109 .{ }^{106}$. veying of Sounds in a Glafs whence the Air is drawn our, we imploy'd a Contrivance, of which (becaufe we make ufe of it in di-

See plate the

144 A Continuation of Nets Experiments vers other Experiments) it will be requifite to give Your Lordfhip here fome fhort defcription.

We caus'd to be made at the Turners a Cylinder of Box, or the like clofe and firme Wood, and of a length fuitable to that of the Receiver it was to be imploy'd in. Out of the lower Bafis of this Cylinder (vvhich might be about an inch and a half in Diameter) there came a fmaller Cylinder or Axle-tree not a quarter fo thick as the other, and lels than an inch long: this vvas Turn'd very true, that it might move to \& fro(or, as the Tradefmen call it, Ride) very fmoothly in a litle Ferrule or Ring of Brafs, that was by the fame Turner made for it in the midft of the fixc Trencher, (as we call a piece of folid Wood 'hap'd like a Milltone,) being 4 or 5 inches (more or lefs according to the widenefs of the Receiver) in breadth, and between one and two in thicknefs; and in a large and round Groove, or Gutter, purpofely made in the lower part of this Trencher, I caus'd as much Lead as vvould fill it up to be plac'd and faften'd, that it might keep the Trencher from being eafily mov'd out of its place or pofture, and in the upper part of this Trencher itvvas intended that Holes fhould be made at fuch places as fhould be thought fit, to place bodies at feveral diftances as occafion fhould require. The upper Bafis of the Cylinder had alfo coming out of the midft of it another Axletree, but wider than the former, that, into a Cavity made in it, it might receive the lower end of the Turning-key divers times already mentioned, to which twas to be faftned by a flender peg of Brafs, thruft through two correfpondent holes, the one made in the Key, and the other in the newly mentioned Socket (if I may fo callit) of the Axletree. Befides all vwhich, there were divers Horizontal Perforations bored here and there in the Pillar it lelf, to which this Axis belong'd, vohich Pillar we fhall to avoid ambiguity call the Vertical Cylinder. The general ufe of this contrivance (whofe other parts need not to be mentioned before the Experiments where they are imploy'd) is, that the end of the Turning- key being put into the Socket, and the lower Axis of

Touching the foring and weight of the Air. 145 the Vertical Cylinder into the Trencher, by the motion of the Key a Body faften'd at one of the holes to the Cylinder may be approach'd roo, or remov'd from, or made to rub or frike againft another Body faftned in a convenient pofture to the upper part of the Trencher.

To come now to our Tryal about Sounds, vve caus'd a HandBell (vvhofe Handle and Clapper were taken away) to be fo fartned to a firong Wire, chat, one end of the Wire being made faft in the Trencher, the other end, wvich vvas purpofely bent downwards, took hold of the Bell. In another hole, made in the circumference of the fame Trencher, vvas vvedg'd in (vvith a wooden Peg) a Steel-fpring, to whofe upper part was tied a Gad of Iron or Steel, lefs than an inch long, but of a pretty thicknefs. The length of this Spring was fuch, as to make the upper part of the Hammer (if I may fo call the piece of Iron) of the fame height with the Bell, and the diftance of the Spring from the Bell was fuch, that when it was forc'd back the other way, it might at its return make the Hammer ftrike briskly upon the outfide of the ferir thaf re-. Bell.
The Trencher being thus furnifft and plac'din a Capp'd Receiver, (as You know, for brevity fake, we ufe to call one that is fitted with one or other of the Brafs Covers, often mentioned already,) the Air was diligently pump'd out; and then, by the help of the Turning-key, the Vertical Cylinder was made to go round, by which means as often as eiler of couple of ftiff Wires, or Imall Pegs, that were faftned ar right Angles into holes, made not far from the bottom of the Cylinder, pafs'd (under the Bell, and) by the lately mentioned Spring; they forceably did in their paffage bend it from the Bell, by which means, as foon as the Wire was gone by, and the Spring ceas 'd to be prefs'd, it would fly back with violence, enough to make the Hammer give a foart Atroak upon the Bell. And by this means we could both continue the Experiment at difcretion, and make the percuffions more equally ftrong than it would otherwife have been eafie to do.

14 Continuation of λ New Experiments

The event of our Tryal was; That, when the Receiver was vvell empried, it fometimes feem'd doubtful, efpecially to fome of the By -ftanders, whether any Sound were produc'd or no; but to mefor the mof part it leem $\cdot d$, that after much attention I heard a Sound, that I could but juft hear; and yee, vohich is odd, me thought it had fomewhat of the nature of Shrilnefs in it, but feem'd (which is not ftrange) to come from a good way off. Whether the often turning of the Cylindrical Key kept the Receiver: from being fo ftanch as elfe it vvould have been, upon vvhich fcore fome litle Air might infinuate it felf, I fhall not pofitively determine: but to difcover vvhat intereft the Prefence or the abrence of the Air might have in the Loudnefs or Lownefs of the Sound, I caus'd the Air to be let into the Receiver, not all at once but at feveral times, with competent intervals between them; by which Expedient it was eafie to obferve, that the Vertical Cylin. der being fill made to go round, when a litle Air vvas let in, the ftroak of the Hammer uponthe Bell (that before could now and then not be heard, and for the moft part be but very farcely heard) began to be eafily heard. And when a litle more Air was let in, the Sound grew more and more audible, and fo increafed, till the Receiver was again replenifhed with Air; though even then(that we omit not That phanomenons) the Sound was oblerv'd to be much lefs loud than when the Receiver was not interpos'd between the Bell and the Ear.

And whereas in the already publifh'd Phy fico- Mechanical Experiments I acquainted Your Lordhip with what Iobferv'd about the Sound of an ordinary Watch in the Exhautted Receiver, I fhall nowadde, that That Experiment was repeated not long fince, with the addition of fufpending in the Receiver a Warch, with a good Alarum, which was purpofely fo fet, that it might, betore it fhould begin to ring, give us time to cement on the Receiver very carefully, exhauft it very diligently, and fettle our felves in a filent and artentive pofture. And to make this Experiment in fomerefpeet more accurate than the others we

Touching the fpring and weight of the Air.

 147 made ot Sounds, we fecur'd our felves againft any leaking at the Top, by imploying a Receiver that was made all of one piece of Glafs, (and confequently had no Cover cemented on to it,) being furnifh'd onely within (when twas firft blown) with a Gla fs-knob or Button, to which a ftring might be tied. And becaule it might be furpected, that if the Watch were fufpended by its own Silver Chain, the tremulous motion of its founding Bell might be propagated by that Meralline Chain to the upper part of the Glafs; to obviate this as well as we could, we hung the Watch, not by its Chain, but by a very flender Thread, whofe upper end was taftned to the newly mentioned Glafs-button.Thefe things being done, and the Air being carefully pump'd out, we filently expected the time when the Alarum fiould begin to ring, which 'twas eafie to know by the help of our other Watches; but not hearing any noife fo foon as we expected, it would perhaps have been doubred whether the Watch continued Going, if for prevention we had not order'd the matter fo, that we could dilcern it did not ftand ftill. Wherefore I deffr'd an ingenious Gentleman to hold his Ear juft over the Button, as which the Watch was fufpended, and to hold it alfo very near to the Receiver, upon which he cold us that he could perceive, and but juft perceive fomething of Sound, that feem'd to come from far; though neither we thac liftned very attentively near other parts of the Receiver, nor he, if his Ears were no more advantaged in point of pofition than Ours, were fatisfied that we heard the Watchat all. Wherefore ordering fome Air to be let in, we did by the help of attention begin to hear the Alarum; whofe Sound was odd enough, and, by returning the Stop.cock to keep any more Air from getting in, we kept the Sound thus low for a pretty while, after which a litle more Air, that was permitted to enter, made it become more andible; and when the Air was yet more fireely admitred, the by. ftanders could plainly hear the noife of the get continuing Alarum at a confiderable diftance from she 1 eceiver.

148

 A Continuation of New ExperimentsFrom what has hitherto been related we may learn what is to be thought of what is delivered by the Learned Merfennus, in that Book of his Harmonicks, where he makes this to be the firt Propofition. Sonus à Campanis, vel aliis corporibus non foluma producitur in illo vacuo (quicquid tandem illud fit,) quod fit in Twbis Hydr argyro plenis, pofteag. deplet is, fed etiam idem acumen, quod in 1 Acre libero vel claufo penitus obfervstur of auditur. For the proof of which Affertion, not long after, he fpeaks chus: Porro vda riis Tubis, quorum extremis lagene vitres adglatinantur, obfervari Campanas in illo vacuo appenfas, propriifó, malleis percuffas idem penitus acumen retinere, quod in Aere libero babent: atg', fonimagnitudinem ei fono, qui fit in Lere quem Tubus clanlus includit, nibil cedere. But though our Experiments fufficiently manifert that the prefence or abfence of the common Air is of no fmall importance as to the conveying of Sounds, and that the interpofition of Glafs may fenfibly weaken them; yet fo diligent and faithful a Writer as Mer fennus deferves to be favourably treated: and therefore I fhall reprefent on his behalf, that what he fayes may well enough have beentrue, as far as could be gathered from the Tryals he made. For Firft, tis no eafie matter, efpecially for thofe that have not peculiar and very clofe Cements, to keep the Air quite out for any confiderable time in veffels confifting of divers pieces, fuch as he appears co have made ufe of. And next, the bignefs of the Bell in reference to the capacity of the exhau: fted Glafs, and the thicknefs of the Glafs, and the manner whereby the Bell was taftned to the infide of the Glafs, and the Hammer or Clapper was made to ftrike, may much vary the Effect of the Tryal, for Reafons eafie to be gather dout of the paft Difcourfe, and therefore not needful to be here infifted on. And upon this Account we chofe to make our Experiment, with founds that fhould not be ftrong or loud, and to produce them after fuch a manner, as that as litle fhaking as could be might be given by the founding Body to the Glafs "twas included in' The Propofa' made by the fame Mer fennus, to have thofe that have induftry $:$

$$
\begin{aligned}
& \text { Touching the Spring and VVeight of the Aiv. } 149
\end{aligned}
$$ nough, try whether a Bag. pipe will be made to afford the fame Sound as in the open Air, in fuch Veffels as he ufed for his Bels, though he feems to think it would fucceed, is that which Your Lordhip will not, I prefume, follicite me to make Tryal of, if You remember what is relared in the almot immediately foregoing Experiments, fhewing, That we could make nothing come. out of the Cavity of a pair of Bellows, that had force enough to blow away a Feather, when that Cavity was freed from Air; as the Bagpipe would be by the fame operation, that empties the Glars that contains it, or elferthe Sound would not be made in fuch a Vacuum as the rcope of the Experiment requires.

If I had had Conveniency, I would have made fome Tryals by conveying a fmall Atring'd Inftrument (perhaps fome fuch as they commonly call a Kit) exactly tun'd, ioto a large Receiver, and then upon briskly frriking the String of a bigger Inftrument, (tuned, as they fpeak, to an Unifon to (or with) that of the fmaller Inffrument) I Ihould have taken notice, whether the Sound would have been fo uniformly propagated, notwithflanding the Interpofition of the Glars Receiver, as fenfibly to thake the included String; in order to the difcerning of which, a bended piece of Straw, or Feather, or fome fuch light body, was to be hors'd up. on the String to be flaken. I allo intended, in cafe the frring mere made to move, to make the like Tryal after the Receiver was diligently exhaufted. And laftly I defign'd to try, whecher two Unifon iftrings of the fame Inftruments, or of a couple to be plac'd in the fame Receiver, would, when the Air (which is the ufual medium of Sounds) was well pump'd out, yet maintain fuch a Sympathy (as tis call'd,) that upon the motion of the one, the other wouldallo be made to fir: Which Tryals may be varied, by imployiag for the external Inttrument another in ftead of a Aringed one.
And becaure Contraries (as is vulgarly noted) ferve to illuffrare each other, I thought to fabjoyn, to the Tryals above related; about the propagation of Sounds in a tbinner medium than the

$$
\mathrm{Air}_{3}
$$

$150 \quad A$ Continuation of New Experiments
Air, fome obfervations about the conveyance of them through thas thicker medium, Water; but having unluckily mislaid my Notes upon that Subject, \mathbb{I} cannot at prefent acquaint Y our Lordflip with what I intended, but muft defer the doing it, till I Inall have recovered Them.

EXPERIMENT XLII.

About the breaking of a Glafsedrop in an Exhausted Receiver.

YOu know, that among the Caufes that have been propos' d of the ftrange flying of a Glafs-drop into a mulcitude of pieces, when the flender Stem of it comes to be broken off, One of the leaft improbable was taken from the Preffure of the Air: as if that within the poreous (and as 'twere honey-comb'd) infide of the Glafs, being highly rarified when the drop of melted Glafs fell into the Water at its firft formation, it was forc'd to continue in that præternatural ftate of Expanfion by the hardnefs and clofenefs of the external Cafe of Glafs, that inclos' ${ }^{\prime}$ the Pithlike part (if I may fo call it;) fo that upon the breaking off a part of this folid Care at the Stem, the external Air gaining accefs, and finding in the Spungy part very litle refiftance from the highly rarified and confequencly weaken'd Air included there, rumes in with fuch violence, as to Chiver the Glafs-drop into a multitude of pieces.

I fhall notnow trouble Your Lordfhip with the mention of what may be alleadg'd to queftion this Hypothe fis, efpecially ifit be compared with that accurate Accounc of the Phenomena of fuch Glafs drops, which was fometime fince prefented to the Society by that great Ornament of it, Sr^{r} Robert Moray. But I hall onely fay in this place, that when I confider'd, that if the Diffilition of the Glafs would fucceed when the Air was pump'd out of

Touching the fpring and weight of tbe Air.

it, it would be hard to a fcribe that Effect to the irruption of the external Air, I thought fit to try what would happen, if a Glafs. drop were broken in our exhaufted Receiver. And accordingly did, though not without fome difficulty, fo order the matter, that the blunter part of the Glafs-drop was faftned to a fable Body (convey'd into the Receiver,) and the crooked Stem was tyed to one end of a fring, whofe other end was faftned to the Turningkey; by which means, when the Air had been diligently pump'd out, the Stem was (by fhortning the ftring) broken off, and the Glafs drop was fhatter'd into a thoufand pieces.

This Experiment was long after repeated with the like fuccefs, and having at that time no Gage to try how far the Air had been drawn out, we let the external Air impell up the Water out of the Pump into the Receiver, and thereby found, that That veffel had not been negligently exhaufted.

EXPERIMENT XLIII.

About the production of Light in the exhaufted Receiver.

IPrefume, I need not put Your Lordhip in mind, that divers attempts were made to try, whether either a Flame, or kindled Coals would be made to continue for fometime burning in our Receiver: But thofe Tryals making it evident, that it would be either impoffible, or very difficult to produce any durable Light, without the prefence of the Air, by the burning of bodies; I thought it not amifs, confidering the Noblenefs of Light, to make trial, whether it might be otherwife produc'd in our exhaufted Receiver; fince whether or no the Attempts fhould prove fuccefsful, the Event would probably be inftructive. For as tis the property of Light, when tis produc'd, to be difcoverable by it felf; fo infuch a Tryal as we intended, it would teach fomething concerning Light, to find that the abfence of the Air would or would X not

15: A Continuation of new Experiments

 not hinder it from being produc'd. In profecution of this De. fign, knowing that hard Sugar, being nimbly fcrap'd with a knife, will afford a fparkling Light, fo that now \& then one would think that Sparks of Fire fly from it; we caus'd a good lump of hard Loaf- fugar to be conveniently and firmly placed in the cavity of our capp'd Receiver, and to the vertical Cylinder formerly men. tioned we caus'd to be faftned lome pieces of a Steel- fpring, which being not very thick, might in their paffage along the Su gar, grate, or rub forceably againft it, and then the Receiver being diligently exhaufted in the Night-time, and in a dark Room, the vertical Cylinder (whofelower A xis was infertedinto the often mentioned Trencher) was made for a pretty while to move The Contrivance bere round by the help of the Turning-key, manag'd by a mentioned may be con hand feady and ftrong enough. By which means the Irons cievd, by confidering that came out of the vertical Cylinder, making in theirth: Figure belonging to the 4r, Experiment. paffage vigorous impreffions upon the Sugar that ftood fomewhat in their way, there were manifeftly producid a good number of litle flafhes, and fomerimes too, though not frequently, there feem'd to be fruck off litle fparks of Fire.

EXPERIMENT XLIV.

About the production of a kind of Halo, and Colours in the E.... baufed Receiver.

VVE took a large inverted Cucurbite for a Receiver, which being fo well wip'd both within and without as to be very clear, allow'd me to obferve, and to make others do fo too, That when the Pump began to be fet a work, if I caus'd a pretty large Candle to be held on the other fide of the Glars, upon the turning of the Stop cock to let the Air out of the Receiver into the Cylinder, the Glafs would feem to be full of Fumes, and there would appear about the Flame of the Candle, feen through them,

Touching the fpring and weight of the Air. 153

 a kind of Halo, that at firtt commonly was between Blew and Green, and after fome Sucks would be of a Reddifh or Orange colour, and both very vivid. The production of this Meteor (if I may fo call it) was, according to my conjecture, made on fome fuch fore as this. That the Cement being fomewhat foft and new (as is convenient for this Experiment) abounds with Turpentine, and having a litle (as well to faften on the Receiver, as for the other purpofe) apply'd to it a hot Iron, whereby the Ce ment was both foftred and heated, it feem'd rational to expect, That upon the withdrawing of the Air in the Receiver, the Aerial Particles in the Cement, freed from their former Preffure, would extricate themfelves, and with the loofer fteams of the Turpentine and perhaps of the Bees-wax would with a kind of Explofion expand chemfelves in the Receiver, and by their interpofition between the Light and the Eye exhibit thofe delightful Colours we had feen. To confirme which, I afcerwards found, that by watchfully obferving it I could plainly enough perceive the colouring fteams, juft upon the turning of the Stopcock, to fly up from the Cement towards the top of the Glafs; and if we continued Pumping, the Receiver would grow clearer, and the Colours more dilute, (till we had occafion to put on the Recerver, and heat the Cement afreh:) of which the reafon might be, partly that the Aerial and Volatile Particles of the upper part of the Cement did in that tract of time fpend themfelves more and more; and partly, becaute the Agitation they receiv'd from the heat communicated by the Iron did continually decay: Not to mention, that when the Receiver is more exhaufted, the want of Air makes it more difficuli for Steams to be fupported, and as ic were fwim up and down in it.But for farther Confirmation, I caus'd fome Cement to be put into a fmall Crucible, warm enough to melt it; and conveying this into a clear Receiver of a convenient fhape and fize, I caus'd the Pump to be fet a work; whereupon it appear'd manifuftly enough, That upon the opening of the Stop-cock to let out the

154 A Continuation of New Experiments Air, the Steams would copiouily be thrown about from the Cricible into the capacity of the Receiver, and would, after having a litle play'd there, fall down again. But in thefe apparitions the Vividnefs, and fometimes the Kind of the exhibited Colours feem'd much to depend upon divers circumftances, fuch as the degrees of Heat, the bignefs and flape of the Receiver, the quantity of Air that yet remain'd unpump'd out, and the nature of the Cement its felf; which laft particular I the rather mention, be caure, though I were hinder'd from doing it, I had thoughes to try a fufpicion I had, that by varying the Materials expos'd to this kind of operation; fome pretty variety might be made in the phe. nomena of the Experiment.

Whecher or no the Apparition of Whitenefs, or Light, that we fometimes hapned to take notice of divers years agoe, and have mentioned in the already * publifh'd part of our Phyfico-mechanical Experiments, may be partly (though not entirely) referr'd to fome of the Cements I then imploy'd, differing from thofe I now ule moft, and to the unheeded temper of thofe Cements, as to Warmth, and degrees of Softnefs, is a Doubt that further Obs fervation may poffibly enable us to determine.

EXPERIMENT XLV.

: About the production of Heat by Attrition in the Exhaufted Rez ceiver.

THe opinion that afcribes the Incalefcence of folid Bodies, ftruck or rubb'd hard againft one another to the attrition or vehement agitation of the intercepted Air, is famous and received enough to feem worthy of a particular Examination. But I confels to Your Lordfhip, thit twas not any thing relating to this Qpinion that chiefly induc'd me to make the Experiment I am now about to give an account of; for I thought it might be ufe -

Touching the fpring and weight of the Air.

 full to more purpores than one, to be able to produce by Attrition a fomewhst durable Heat even in our exhaufted Receiver: and therefore though 'twere eafie to forefee, that it would prove no eafie rask, yet we thought fit to attempt it in fpight of the difficulties met with at our firf Tryal. In what way and with what fuccefs we afterwards made this attempt, I now proceed to relate.Crofs the fable Trencher, formerly often mentioned, there was faftned a pretty ftrong Spring of Steel or Iron, fhap'dalmoft plyeet The like the Lathe of a Crols bow, and to the midft of this Spring Figstioo was ftrongly faftned on the outfide a round piece of Brafs hollow'd almoft like a concave Burning. glas's, or one of thofe Tools wherein they ufe to grind Eye-Glaffes for Telefcopes. To this piece of Brafs, which was not confiderably thick, nor above2 inches Diameter, was fitted a convex piece of the fame Meral, almoft like a Gage for a Tool to grind Glaffes in, which had belong. ing to it a fquare Hande, whereinto as into a Socket was inferted a fquare piece of Wood, proceeding from the Bafis of a fquare wooden Pillar, which we made ufe of on this occafion in feed of our vertical Cylinder. By the help of another piece of Wood coming from the other Bafis of the lame Pillar, the Turning key was joyned to this Pillar, which was made of fuch a length, that when the Turning.key was forceably kept down as low as the Brafs Cover, it was a part of, would permit; the convex piece of Metal lately defcrib'd did deprefs the concave piece a prietty way, notwithflanding a vigorous refiffance of the fubjacent Spring.
Befides thefe things, a litle fine powder of Emery was put be ${ }^{\circ}$ tween the convex and concave pieces of Brafs, to make them more congruous, and facilitate the motion that was to be mades ${ }^{\text {and there was faftned to the upper part of the Turning key a good }}$ Wimble, without which we prefum'd the turning of the Key. would not produce a fuficient motion: in order to the making of which, it was, after the firft Tryal, jucged requifite to have a Arong man, that was us'd to execcife his hands and armes in Mechanical

156 A Continuation of New Experiments
chanical labours, upon which account we fent for a certain Locke. fmith, that was a lutty and dexterous fellow.

All things that were thought neceflary being thus in readinels, and a Mercurial Gage being convey'd into the Receiver, we caus'd the Air to be diligently pump'dout; and then the Smith was order'd to turn the Wimble, and to continue to lean a litle on it, that he might be fure to keep the Turning. key from being at all lifted up by the formerly mentioned Spring.
Whilft this man with much nimblenefs and ftrength was moving the Wimble, I watchיd the Gage, to obferve whether the agitation of the Stop cock, and confequently the Engine, did not prejudice the Experiment; and for greater caution I caus'd the Pump to be almoft all the while kept at work, though that feem'd not fo neceffary.

When the Turner of the Wimble was almoft out of Breath, we let in for haft the Air at the Cover of the Receiver by lifting up the Turning-key, and nimbly removing the Receiver we felc the pieces of Brals, betwist whom the Attrition had been made, and, as we expected, found both of them very fenfibly warm.

But being willing to confirm the Experiment by afecond Tryal, which we hoped might, after the Experience taught us by the firft, be fomewhat berter performed, we caus'd the Smith, after he had well refrefh'd himfelf with reft and drink, to lay hold of the Wimble again, when the Gage made it appear that the Receiver was well exhaufted, fo that by further Pumping the Quickfilver feem'd not to be further depreft. And in this 2^{d} Tryal the nimble Smith plaid his part fo well, (the Pump in the mean while not being neglected, that when we did as before haftily let in the Air, and take out the Bodies that had been rubb'd againft one another, they were both of them (efpecially the uppermoft) fo hot, that I could not endure to hold my hand on either of them, and they did for a confiderable time retain a not inconfiderable degree of Warmeth.

The fame day I caus'd to be made at the Turners two bodies

Toucbing the Spring and VVeight of the Air. 157

 of Wood, for fize and flape like thofe of Brafs we had joft before imploy'd, the upper of thefe was of hard Oak, the other of Beech, (fuch a difference between Woods, to be heated by mutual Attrition, being thought to be an advantageous circumftance;) but though the Wimble was fwiftly turn'd as before, and that by the fame Perion, neyerthelefs the Wuod feem'd not to me (for all the By-ftanders were not of my opinion) to have manitefly acquired any Warmth; and yet that there had been a confiderable Attrition, appear'd by the great Polifh which part of the Wood had evidencly acquir'd, vvhich made me fulpeet, that chough the Wood feem'd dry enough, yetit might not really be fo, notwithflanding the contrary was affirm'd to me: but not being willing to fit down with a fingle Tryal, I caus'd the Experiment to be repeated with more obftinacy than before; the effeet of which was, that the Wood, elpecially the upper piece of it, vvas brought to a Warmth unqueftionably fenfible.
EXPERIMENT XLVI.

About the faking of 2uick-Lime in the Exhaufled Receiver.

THe feveral Scopes I sim'd ar in making the following Tryal are not neceflary to be here particularly taken notice of. But one of them may be guefs'd at by the fublequence of this Experiment to that immediately foregoing, and the phenomena of ic may be mentionedin this Epiftle upon the account of their being exhibited by our Engine.
We took in an Evaporating Glafs a convenient quantity of Water, and having convey'd it into a Receiver, and well drawn out the Air, we ler down into it by the Tarning key a lump of ftrong Lime; about the bignefs of Pipin; and obferv'd not that ac the firt immerfion, nor for fome while atcer, there appear'd a- hour, as I guefs'd it, the Lime began (the Pump having been and being ftill ply'd from time to time) to flack with much violence, and with bubbles wonderfully great, that appear'd at each new Exuction, fo that the infide of the Receiver (though pretty large) was at length lin'd with Lime-water, and a great part of the mixture did from time to time overflow the veflel, that had purpofely been but little fill'd; nor did any thing but our wearinefs put a period to the bubling of the mixture, whofe heat was fenfible even on the outfide of the Receiver, and which continued confiderably hot in the Evaporating Glafs for ${ }_{4}^{4}$ of anhour (as I conjeEtured) after the Receiver was removed.

Note, That the Lime imployed about this Experiment was of a very good and ftrong kind (made of hard fones,) and not fuch Lime, made of Chalk, as is commonly ufed at London, which probably would not have been ftrong enough to have afforded us the fame phanomenon.

EXPERIMENT XLVII.

About an attempt made to meafure the force of the spring of included Air, and examine a Conjecture about the difference of its Jrength - in unequally broad mouth'd V Cffels.

THough feveral of the foregoing Tryals have fufficiently maz nifefted that the Spring of the Air in its natural or wonted ftate, hath a force very confiderable, and indeed much Greater than men feem to have hitherto believed; Yet I could not hope by any of thefe Experiments to determine by any known weight, how Great that torce is, fo as to conclude that it is equivalent to fuch a Weight, as fo many Pounds, Ounces, \&c. and to no more. Wherefore among the Lifes I had defign'd to make of our Syringe, formerly often mentioned, it was One, to try if by the help

Touching the foring and we ight of tbe Air.

of fhat Inftrument, we could determine fomewhat near (for no more was to be expected) how much Weight a Cylinder of uncompreft Air included in it, and confequently of the fame Diameter vvith the cavity of the Barrel, would be able so fuftain or alfo to lift up.

In order to this Tryal, I. we provided a ftable Pedeftal, or Frame, wherein the Syringe might be kept firm, and erected. Next, vve alfo provided a Weight of Lead flap'd like our Braishoop, or Ring, *formerly defcrib'd, that by the advantage of its * Expe. the figure it might be made to tiang down by frings from the top of Vth. the Handle of the Rammer, and fo prefs evenly enough on all fides, without making the upper part of the inftrument top-heavy. 3. We took care to leave, between the bottom of the Syringe (which was firmly clos'd with ftrong Cement) and that part of it where the Sucker was, a convenient quantity of Air, to expand its felf, and life up the Weight, when the Air external to that included Air fhould be pump'd out of the Receiver: And laft ly, the Handle of the Rammer (from which the Annular weight lately (poken of depended) was fo faftned to the Turning-key of the Cover of the Receiver, that the Weight might not comprefs the Air included in the Syringe, but leave it in its natural fate or wonted Laxity, till the Air were withdrawn from the Receiver.
But notwithftanding all this, when we actually tryed the Experiment, That hapned which I feared. For though by this method the included Air would well enough lift up a Weight of 7 or 8 pound, yet when the Rammer came to be clogg'd with fo confiderable a Weight, as my fcope in making the Experiment required, the Inftrument prov'd not fo ftanch, but that it was eafier for fome particles of Air to force themfelves a paffage, and get away between the Sucker and the infide of the Barrel, than to heave up fo great a Weight. And yet I have thought fit to relate the Experiment thus particularly, becaufe, if an exact Syringe can be procured, (which I fear will be very difficulr, but do not think
think impoffible, this feems to be one of the likelieft and Ieaft exceptionable wayes I know, of meafuring the force of the Airs Spring.

But defpairing to get fuch a Syringe, as I defir'd, in the place where I then was, I bethought my felf of another way, by which I hop'd to be able (though not to arrive at an exact knotwledge of the full force of the Airs Spring, yet) at leaft to approach nearer it than I have been able to do by the help of the Syringe. For this purpofe confidering with my felf, that it a convenient quantity of Air were included in a fine fmall Bladder, the fides of it would hinder the Air from getting away, and the limbernefs of them would permit the Air to accommodate it felf and the Bladder to the Figure of a Cylindrical veffel, into which it might be put.

Wherefore with much adoe I procured to be made by a perfon exercifed in Turning a couple of hollow Cylinders, whofe fides were of a fufficient thicknefs, (that they might refift the preffure of the Air to be imprifoned in them,) and of fuch differing breadths, that the firft had but one inch in Diameter, and the 2^{d} two; their depths being alfo unequal, that the one might receive a much larger Bladder than the other.
With the leffer of thefe (which was very carefully Turned) I madea diligent Tryal, whofe Circumftances I cannot now acquaint Your Lordfhip with, the Paper, wherein they vvere amply recorded, having been vvith other Notes belonging to this Continuation unluckily loft: but the moft confiderable things in the Event were, That twas very difficult to procure a Bladder fmall and fine enough for that litle Cylinder; and that one, which at length we procured, would not continue ftanch for many Tryals, but would after a vohile part with a litle Air in the well exhaufted Receiver, when twas clog'd with the utmoft Weight it could fuftain: but whilft it continued fanch vve made one fair Tryal vvith it, from vvhence vve concluded, that a Cylinder of Air of but an inch in Diameter, andleffe than two inches in length, was

Touching the /pring and weight of the Air. 161

 able to raife vifibly (though but a litle) a Weight of above ten Pounds, (I fpeak of Averdupoiz vveights, vvhere a Pound contains 16 ounces.) The manner of making this Experiment, and the cautions us'd in judging of it, Your Lorfhip may learn by the recital of the fublequent Tryal; my Notes about which were not ro unfortunate as thofe that concern'd the former.Into a hollow Cylinder of Wood of four inches in depth, and two in Diameter, furnifhed with a broad and folid bottom or Pedeftal, to make it ftand the firmer, was put a Lambs or Sheeps bladder very ftrongly tyed at the Neck, on vvhich vvas put a Wooden Plug, markt with Ink where the Edg of the Cylinder vvas contiguous to it; this Plug being loaded with Weights, amounting to 35 pound, (the uppermoft of vvhich Weights was fafned to the Turning-key, to keep it upright, and to help to raife it at firlt,) the Receiver vvas exhaufted, till the Mark ap. peared very manifeftly above the brim of the Cylinder, and then, though the fring were by turning the Key quite flackned; yer the mark on the Plug continued very vifible: and vvhen fo much Air was let into the Receiver, as made the Weight deprefs the Plug quite beneath the Mark, upon the repumping out of the Air the Weight was without the help of any Turning-key litted up, and by degrees all the mark on the Plug was raifed about ${ }_{8}^{3}$ above the edge of the Cylinder.

Wherefore we fabftituted for a 7 pound weight one that was eftimated at 14 , (for then we had not a Ballance ftrong enough to weigh it with, and ufing the fame Bladder we repeated the Experiment, onely having a care to fupport a litle the uppermoft Weight by the Turning-key, till the Bladder had attained its expanfion; and then the Weight being gently let go, deprefs'd not the Plug fo low, but that we could yet fee the mark on it, (which yet was all we could do,) though that part of the Plug, where the mark vvas, vvere manifeftly more depreft than the other.

For the clearing up of fome particulars relating to this Tryal, we will fubjoyn the following Notes.

1: The Plug is to be fo fitted to the Cavity of the Cy : linder, as eafily to flip up and down in jt, without Grating againft the fides of it, left it needlefly increafe the refiftance of the Weight to be rais'd. And this Plug ought to be of a convenient length, as about an inch and $\frac{1}{2}$ at leaft, that it may be the fitter to help to reduce the Bladder by compreffion intoa fomewhat Cylindrical fhape, and yet that it may not be thrult in too deep by the incumbent Weight; and that the Weight might reft more firmly uponit, there was a broad and flrong Ledge made at the top ofit, by which it might lean on every fide upon the brim of the hollow Cylinder.
2. Before the Inftrument was conveyed into the Receiver; the Bladder (which ought to be of a jutt fize, and not full blown, and of a fine and limber contexture) was put into the Cylinder, and by divers gradual (but not immoderate) compreffions was reduc'd to conform its felf, as much as might be, to the Cylindrical flsape of the containing veffel. And then the Weight be ing put on, and taken offagain, there was a mark (in the form of an horizontally plac.d Arch) made with Ink, where the edge of the brim of the hollow Cylinder did almoft touch the Plug. This we thought neceffary to do, to avoid a miftake, for we muft not judg, that all the Weight, that might be rais'd by our Bladder, may pals for the Weight fought after by our Experiment; fince the Air in the Bladder is by reafon of the incumbent weight more compreft than twas before, and confequently its being able to heave up a Great weight will not infer, that our common Air is able in its natural fate (as they call it) to exert fo Great a ftrength; that Weight being onely to belookt on as rais'd or fuftain'd by the uncompreft Air, that is rais'd or fuftain'd when the Plug is lifted up to the mark, fince till then the Spring of the Air does but bring it back from its new ftate of advencirious compreffion ro its natural or wonted Laxity.
3. When, after the operation was ended, we took the Bladder out of the veffel, it had obtain'd a form Cylindrical enough,

$$
\text { Toukbing the fpring and weight of the Air. } 1 \sigma_{3}
$$

and though it could be but 2 inches in Diameter, yet it was fo litle as ro be but half an inch more long than broad.
4. The reafon why I chofe to have the two Cylinders made of the unequal Diameters above mentioned, was to examine, as far as by this way I could, a conjecture I had, that the force of the Spring of differing Cylinders of Air to lift up folid Weights, would, at the very firft raifing of the weights, be in daplicate proportion to the Diameters of their Cylinders, cthole Diameters being proportionable to the Areas of the plain Superficies, againft which the Air does immediately prefs,) without very much confidering the inequality that may be between the quantity of the fe veral parcels of Air, whofe preffures are compared. But tis to be remembred, that I Caid at the very firft raifing of the weights, becaufe prefently after That, the quantity of the parcels of Air may bevery confiderable: for, as I have fhewn in another Treatife, two very unequal quantities of Air being made by their Expanfion to poffefs two equal fpaces, the leffer quantity of Air muft be much more rarified in proportion than the greater; and confequently, (co bring this home to our prefent Argument) though both be lifted up: or ${ }_{2}^{2}$ of an inch, the Spring of a very lite Air mult be much more weakned than that of a very confiderable Quantity, and foit cannot continue to lift up its weight, as the above mentioned proportion would (if it were not for this Adver tifement) feem to require.

Taking then our conjecture in the fenfe now declared, the fuc: cefs of our Tryals is agreeable to it, inviting us to conclude, that the Air in the Bladder, which was but two inches in Diameter, was able by its Preffure to countervaile the weight of 42 pound, which is about four times the weight that we lately obferv'd the Spring of a Cylinder of Air of one inch in Diameter to be able to lift up. For though, according to what we have formerly faid of a duplicate proportion, 42 pound feems co be fomewhat more than ought to have been lifted up in the Cylinder of two inches bore, when that of one inch lifted up not much above so pound;

164 A Continuation of New Experiments

 yet this difagrees not with the Hypothefis, if we confider that the fubftance of the Bladder ftraitens the cavity of the Imaller Cylin, der in a Greater proportion than that of the bigger.5. Though we have thus (as far as the Inftruments we were a. ble to procure would affitt us) meafured the Preffure of included Air, yet I muft not forbear to advertife Your Lordhip, that confidering what I formerly obferv'd to You about the weight of an Atmofpherical Pillar of an inch in Diameter, I cannot but think, that if a Cylinder, or other convenient inftrument, exactly Tite, can be procured, the Spring of an Aerial Cylinder will appear to be Greater than we found it by the foregoing Tryals; in which I confider that, not to mention the refiftance of the Bladder its felf, the membraneous fubftance that lin'd the Cyliaders (though twere very thin and fine) could not but fomewhat ftraiten their Cavities, and confequently fomewhat (though not much) leffen the Diameters of the included Aerial Cylinders.
6. To all thefe Notes I muft adde this Advertifement, That it may be therefore the more difficult in fuch Tryals as ours to afcertain the force of the Airs Spring, becaufe, that Air its felf when tis included, being thut up with the Preffure of the Acmofphere upon it, tis probable, that fince that Preffure (as we have Hewn) is not at all times the fame, the Spring of the included Air will accordingly be varied. And, if my memory fail me not, when the lately recited Experiments were made, our Barometer declared the Atmofphere to be fomewhat light.

From what has been hitherto delivered, this may refult ; that tis likely, that the Spring of an Aerial Cylinder an inch broad, may be able to fuftain, if not raife, a pretty deal more than ten pound Weight; and that the paft Tryals, without determining that the Air can raife no more than in them it did, do, at leaft, prove that it can raife up as much Weight as we have related, fince we actually found it to do fo.

Toucbing the Spring and VVeigbt of the Air.

EXPERIMENT XLVIII.

About an eafie way of making a fmall quantity of included Air raile is the exbauffed Receiver 50 or 60 pound, or a greater weight.

1Would very willingly have further profecured the foregoing Tryals, to fee how far the lately proposd Conjecture or Hypothefis would hold, but was hindered by the want of Receivers tall and capacious enough to contain the Weights, that fuch an attempt required: but remembring that there were not any Experiments made in our Engine, that appear'd more Atrange to the Generality of Spectators, and ferv'd more to give them a high opinion of the Airs Spring, than thofe wherein they fass folid Bodies actually lifted up by it, and remembring, that I had lying by mea Brafs veffel, (which had been befpoken for another Experiment, for which the Workmen had not made it fit, I thoughe it not amifs to imploy it about making a Tryal very eafie, and yet fit to be fhewn to Strangers, to convince them, that the Spring of the Air is a much more confiderable thing than they imagined.
We took then a Brafs veffel made likea Cylinder, and having one of his Orifices exactly covered with a flat Plate very firmly faftned to it, the other Orifice being wide open. The depth of this veffel was 4 inches, and the Diameter thould have been precifely (but wantedabout a quarter of an inch of) 4 inches. To this hollow Cylinder we fitted a wooden Piug, like one of thofe defrribed in the foregoing Experiment, fave that it was not quite folong, and chat it was furnithed with a Rimme or Lip, which was purpofely made of a confiderable breadth, that it might afford a ftable Bafis to the Weight that fhould lean upon it. And then taking a midale fiz'd and limber Bladder, ftrongly tyed at the Neck, but not near full blown, we prefs'd it by the help of

$166 \quad A$ Continuation of New Experiments

the Plug into the Cylinder to make it the better accommodate it felf to the figure of it. Then taking notice by an inky mark how much of the Plug was extant above the orifice of the veffel, we laid the Weights upon the Plug, (whofe Rimme or Liphinder ${ }^{\prime}$ dit from being depreft too deep into the cavity of the vef(el;) and having convey'd them into the Receiver, we found as we expected, that if we had loaded the Plug but with a fingle Weight, (as to avoid trouble, and the danger of breaking the Glafs we ufually thought fit to do,) though that were a common half hundred weight, (which You know amounts to 56 pounds,) it would very quickly be manifeetly heav'd up by the Spring of the included Air. For confirmation of more than which, I thall fubjoyn the enfuing Tryal, as I find it recorded among my loofe Notes.

The Weight that was lifted up by the Bladder in the Cylin-: der 4 inches broad, was 75 pound; this Weight was lifted up till the wooden Plug difclos'd the Mark, that was to thew the height, at which the Air kept the faid Plug before it was compreft: difclos'd it I fay vifibly at the $5^{\text {th }}$ Exuction, and at the $7^{\text {th }}$ that mark was ${ }_{8}^{1}$, or rather ${ }_{16}^{3}$ above the Edge of the Cylinder. In the Gage where the Mercury in the open Air was wont to ftand about ${ }_{8}^{1}$ above the uppermoft Glafs-mark; it was depreft till it was : below the fecond mark. When the Air was let in, it was a pretty while before the Weight didmanifeftly begin to fubfide; the Bladder being taken out, and the place it had poffefs'd in the Cylinder being fupply'd with a Sleeve, or fome fuch thing, and the Weight laid again upon the Plug, we found that at 24 Exuctions the Mercury was depreft to the loweft Mark of the Gage; and it was the 34 or $35^{\text {th }}$ Exuction before the Receiver appear'd to be fo exhaufted, as to putan end to the finleing of the Mercury, which was then above ${ }_{8}^{2}$ beneath the loweft mark.

Your Lordhip will eafily believe, that moft of the Spectators of fuch Tryals thought it fomewhat ftrange to fee a fmall quanciry of Air_{2} which was not onely uncompreft in the Bladder, but

Touching the.fpring and weight of tbe Air.

 did not near fill it, (and left it very foft and yielding to the leaft touch,) litt up fo eafily by its bare Spring fuch Great Weights as indeavoured to opprefs it. But this not being any thing near a fufficient Tryal, how far the conjesture or Hypothefis formerly propos'd will hold, I thought fit to make the utmoft Tryals the talleft Receivers I could procure would admit: and having caus'd leaden weights to be purpofely caft flat like Cheefes, and as broad as we could conveniently put into the Receiver, that by the advantage of this thape we might be able to pile up the more of them, without much danger that any of them fhould be fhaken down; we laid divers of them one upon another, and shen the upper part of the Receiver growing too narrow to admit more of them, we added a lefs broad Weight or two; and then exhautting the Receiver, till we perceivid by the Gage that the Air was manifettly withdrawn, we found (as near as we could meafure) by the help of a Mark and a pair of Compaffes, that the Plug was fo far rais'd, as that twas concluded, that the Elevation vvould have been much Greater, if the included Air, being put upon fo Great a Conatus, bad not found it eafier to produce fome Leak at the neck of the Bladder, than to lift up ro Great a Weight, which by our Reckoning came to about 100 pound of 16 ounces to the pound. But this laft Experiment, for want of fome requifite accommodations; vve vvere hinder'd from repeating and promoting; though the above mentioned Hypotbefis made me prefume, that a far Greater weight might this way have been rais'd if the Bladder had been Itanch, and the Receiver high enough.I need not tell Your Lordhip, that if a larger Bladder be imploy'd and included in a Brafs veffel of a fufficiencly wide Orifice, a far Greater weight may be litted up by the Spring of the internal Air. But yet it will not be amifs to give Your Lordfhip on ehis occafion this Advertifement, which may be fit to be taken notice of on divers others: That care mult be had not to make Recei. vers, that ought to be well emptied, too large, and efpecially tou wide at the Orifice; for otherwayes they will be expos'd to fo Z

168

A Continuation of new Experiments

great a Preffure of the Atmofphere, that they need be of an extraordinary Atrength to refift it; and even Receivers, that feem'd thick enough proportionably to their bulk, and which held out very well till the clofe of the Operation, yet when they came to be very diligently exhaufted, they did, by reafon of the widenefs of their Orifices, begin to crack at the bottom.

EXPERIMENT XLIX.

- vix the XXXVI.

IN one of my publifhid Experiments - I long fince told Your Lordfhip, that when I endeavoured, by the help of a feal'd bob. Ble, weigh'd in an exhaufted Receiver, co compare the Gravity of Air and Water, I was hinder'd by the cafual breaking of the Glafs from compleating the Experiment. Wherefore I afterwards thought fit to repeat the Tryal; and though when I had done fo twice or thrice, having given away the large Receiver I had made ufe of about them, and not being able ever fince to procure a Good one, that was capacious enough for the tender Scales Ithought fo nice an Experiment required, I did not profecute that Attempt fo far as I intended; yet this very difficulty I met with to procure the Requifites of making the Tryal, invites me to fubjoyn the cwo following Notes, which I find among my loofe Papers.
Sapril the We weigh'd a Bubble in the Receiver, which we found to 29. 8662 weigh above halfa Grain heavier, when much of the Air was exhaufted, than when it was full. Afterwards we took out this feal'd Bubble, and weighing it found it to weigh 68 Grains and a half, then breaking off the fmall tip of it under water, we found that the heat, by which it was feal'd up, had rarifid its included Air, fo that it admitted 125 Grains of Water, for the admitted Water and Glals weighed $193 \frac{1}{2}$ Grains. Then filling it full with Water, we found it to contain in all 739 Grains of Water, for it weighed $807 \frac{1}{2}$ Grains: whence tis evident, that the difference between

Touching the pring and weight of the Air.

the weight of W ater and Air was lefs than 1228 to r.]
We weighed in the Receiver a Bubble, the Glars of which May:26; weighed 60 Grains: the Air that fill'd it weighed in vacuo ${ }^{\frac{27}{32}}$ of a ${ }^{1662,}$ Grain: the Water that fill'd it weighed 720 Grains: So that by this Experiment the proportion of the weight of Air to Water is as (one) to ($853 \frac{10}{1,0}$.)

The Tryals mentioned in there Notes, though they were too few for me to acquiefce in, yet being made in a nevv vvay, and which has fome advantages above thofe that have been hitherto imployed to weigh the Air, may yet ferve to keep us from the contrary Extremes, thar have not been avoided by fuch eminent Mathematicians as Galileo and Ricciolus; the former of which makes Water to be but about 400 times as heavy as the Air; and the later, whofe conjecture is much remoter from the Truth, 10000 times heavier.

But it is fo defireable a thing, and may prove of fuch importance, to know the proportion ir Weight betwixt Air and Water, that I fhall not fcruple to acquaint Your Lordfhip with an attempt or cwo that I made to difcover it by another way: For, shough at firft fight this Experiment may feem to be the fame with one publifh'd a pretty while ago in the learned Schottus his Mechanica Hydraulico pneumatica; yet Your Lordhip will eafily perceive this difference between them: That, whereas the induftrious Author of that Experiment contents himfelf to hew, by the diminution of the weight of a Glafs, when the Air has been drawn out of it, that the Air, before twas drawn out, was not devoid of Gravity; the following Tryal does not onely perform the fame thing, and by a fuperadded circumftance confirm the Truth to be thereby prov'd, but it indeavours alfo to thew the Proportion in Gravity bet wixt the Air and Water. The Tryals themfelves were regiltred among my 1 dverfaria as follows.

A fmall Receiver being exhaufted of Air by the Engine, and counterpois'd whilft it continued fo, the Stop-cock was turnd, and the Air readmitted, which madeit weigh 36 Grains more

$$
\mathrm{Z}_{2} \quad \text { than }
$$

170. A Continuation of Nem Experiments

 than it did before: and to prevent Jealoufies, we caus'd it to be applied the fecond time to the Engine, by which the Air being emptied once more, the Glafs was put into the other Scale of the former Ballance, and fo counterpois'd; and then the External Air being readmitted, (which rufh d in as formerly with a whiftling noife), there was found 36 Grains or better, reqquifite to reftore the Baliance to an eAquilibrium.We took a fmall Glars Receiver ficted with a Scopcock, and having exhauftedit of the Air, and counterpois'd it, and let in the outward Air, we found the vveight of the Veffel to be increafed by that admiffion 36 Grains. This done, we took the Receiver, after having well counterpois'd it, out of the Scale; and having apply'd it the fecond time to the Engine, we once more withdrew the Air, and then turning the Stop-cock to keep out the external Air, vve took care that none of the Cement, imploy'd to joyn it to the Engine, thould ftick to it, as we had diligently freed it from adherent Cement before we laft apply'd it to the Engine. Then weighing it again, we found it to weigh either 35 or 36 Grains (but rather the former) heavier than it did, when twas laft counterpois'd in the fame Ballance. This being alfo done, we immers'd the Stop-cock into a Bafon of tair Water, and let in the Liquor, that we might find how much Water would fucceed in place of the Air vve had drawn out. When no more vvater vvas impell'd in, vve turned the Stop-cock once more, to keep it from falling out, and then weighing it in the fame Scales, lafter we had wip'd the Stop-cock, that no Water might ftick to it on the outfide,) we found the water (without computing the veffel) to weigh 47 ounces, 3 drachms, and 6 Grains, which divided by 35 Grains, (which I took to be the weight of the Air, that vvas equal in Bulk to this vvater that fuc. ceeded it ,) the Q lotient was (wanting a very litle) 650 Grains, for the proportion of the vreight between Air and Water of the fame bignels, at the time when the Experiment was made: vvhich circuinftance I therefore take notice of, becaufe the Acmofphere

Toutbing the fpring and weight of the Air. In I

 appear'd by the Barofcope (wherein the Mercury ftood then at 29 inches and ${ }^{3}$) to be very heavy; which made me the lefs wonder to find this proportion not fo Great, as at other times I had obferved it to be between water and Air in point of weight: though I furpected, that becaufe this odd Experiment cannot be nimbly difpatched, fome lite Air may have got in atthe Stopcock, befides the Air that difclos'dit felf in numerous bubbles in the vvater that vvas admitted, vvhere though it lay in fuch fmall particles as not to be difcerned before; yet thefe particles, by this opportunity to expand themfelves, extricated themfelves from the vvater, and by getting together might fomewhat refift the Ingreis of more; vvhich is a difficulty, vwhere to the me:furing the proportion between V Vater and Air in a heated Eolipe is liable. But the Stealing in of any Air, before the vater vvas let in, is mentioned but as a Sufpicion.Your Lordfhip may perhaps think it fomewhat ftrange, that I fhould prefent You Tryals, whofe Events do not fo wvell agree rogether, as perchance You expected. But this very Difagrement vvas one of the motives that induc'd me to acquaint You vvith them: for all thofe compris'd in thefe Experiments being made faithfully, and not without (at the leaft) an ordinary diligence, as they feem to make it probable, that one may without any Great errour eftimate the proportion of our Engilh Air to VVater to be as (One) to fome number betwixt 600 and 1100 ; fotis not to be expected, that the Proportion, vvhatever it be that fhould be pitch'd upon, hóould be accurate and itable. For though Learned menfeem to have hitherto taken it fo: granted, that it may fuffice once for all diligently to inveftigate the proportion betwixt thofe two Bodies, yet, not onely I am apt to bed lieve that a Determinate quantity of Air (as a Pint or Quart) may be unequally heavy in diftant Countreys, and even in differing places of the fame Countrey; but what I have taken notice of intbe $17^{\text {th }}$ of the printed Experiments, and afterwards frequentIy obferv'd of the Great inequalities of she vveight of the Armo-

179 A Continuation of New Experiments fphere, inclines me to think, that in che felf fame place two Exa periments may be made with the fame Infruments, and equal diligence, and yet the weights of the Air may be found differing enough; which may keep Your Lordhip from much wondering, that in the $36^{\text {th }}$ printed Experiment, made when I had the variations of the Atmofpheres Gravity in my Eye, I found the Air to be lefs ponderous in reference to Water, than in thefe later Tryals, But of this I hope I fhall, if God permit, make further Tryals with the fame veffels, at times when I fhall perceive by the Barofcope, that the Gravity of the Atmofphere is very Great and very Small. And I wifh the Curious would make the like Tryals in other Regions. I do not forget, that not onely the School-philofophers, but moft of the Moderns deny, that Air hath any
a In the Hydrofatin cal Paradoxes. weight in Air, no more chan Water in Water; but having a elfewhere declared and explained my fenfe about this received Opinion, I fhall not here fpend any of the litle time I have remaining, to juftifie my Diffent; for which Your Lordhip may find fufficient Grounds in the newly related Experiments, efpecially if You pleafe to confider, that though the Opinion I difallow have been chiefly and generally grounded upon fome Arguments fup. bin an Ap. pofed to evince, that vvater has no vveight in vvater, 1 have pendix to belfewhere fhewn chofe Proofs not to be cogent, and taught a radoxes.
c Tbis mePractical way of weighing vvater in vvater with a pair of ordinary Scales. ${ }^{\text {c }}$
thod was omitted in the Englifh Edition of the newoly mentioned Appendix, but not in the Latin Ver fion.

EXPERIMENT L.

'About the disjoyning of two Marbles (not otherwife to be pull'd do - under wit bout a great weight) by withdrawing the pref]ure of the A ir from them.
TN our formerly publifh'd Experiments about the Air*, I did, if I mifremember not, acquaint Your Lordhip with an Attempt

[^0]
Touching the Spring and VVeighe of the Air.

I had made to make a couple of coherent Marbles fall afunder, by withdrawing the Air from them; but though I then efteem'd that their Cohxfion depended upon the Preflure of the Air, yet not being at that time furnifh'd with all the accom modations requifite to make an Experiment not eafie to be perform'd fucceed, I thought fit, when I had afterwards opportunity, to profecute what I then began, and add fome circumftances that I could not then make Tryal of, and yet whofe fuccefs will not I prefume be unwelcome, fince it fupplies us with no lefs than matters of fact; whence we may argue, that this Experiment of coherent Marbles (which not onely the Ariftotelian Plenifts have of late much triumphd in, but which fome recent Favourers of our Hypothefis have declar ${ }^{2} d$ dhemfelves to be troubled with) is not onely reconcileable to our Doĉt ine, but capable of being made a confirmation ofit ; notwithftanding what has lately been publifh'd (upon the fuppofition of a cafe, which at firft Blufh may feem fomewhat of kin to our Experiment,) by a very learned * Writer, to whofe objection againft our Hypothefis, though as weil confidently as very civilly propofed, an Anfwer may in due place, if your Lordhip defire it, be return d .
We took two flat round Marbles, each of them of two

Dr. H. M. in the 2d! chap. of the 2d, Book of the new Edition (in folio) of bis Antidote againft Atheifm, inches and about 3 quarters in Diameter, and having put a litle Oyl between them to keep out the Air, we hang at a Hook faftned to the Lowermoft a Pound weight to furmount the Cohæfon, which the tenacity of the Oyl and the imperfect Exhauftion of the Receiver might give them. Then having fufpended them in the cavity of a Receiver, at a ftick that lay (Horizontally) a crofs it; when the Engine was fill'd, and ready to work, we flook it fo ftrongly, that thofe that were wont to manage it, concluded, it would not be near fo much Shaken by the Operation. Then beginning to pump out the Air, we obferv'd the Marbles to continue joyned till it was fo far drawn out, that we began to be diffident whether they woutd feparate. But at the $16^{\text {th }}$ Suck, upors the turning of the Stop-cock, (which gave che Air a paffage out of

174

A Continuation of New Experiments

the Receiver into the Pump,) the (haking of the Engine being almoft, if not quite, over, the Marbles ipontaneoufly fell afunder, wanting that Preflure of the Air, that for merly had kept them to. gether: which Event was the more confiderable, not onely becaufe they hung parallel to the Horizon, but adher'd fo firmly together when they were put in, that having try'd to pull them afunder, and thereby obferv'd how clofe they ftuck togecher, I foretold it would coft a good deal of pains fo far to withdraw the Air, as to make them feparate: which Conjecture Your Lordhip will the lefs wonder at, it I adde, that a weight of 80 and odd pounds, faftned to the lowermoft Marble, may be drawn up together with the uppermoft, by vertue of the firmaefs of their Cohefion.
NB. This is not the onely time that this Experiment fuccee: ded with us. For fometimes, when they were not fo clofely prefs'd together before they were put in, the Disjunetion was made at the $8^{\text {th }}$ Suck, or fooner, and we feem'd to our felves to obferve, that when we bung but half a pound weight to the lower Marble, it requir'd a Greater exhauftion of the Receiver to feparate chem, than when we hung the whole Pound.

After, having proceeded thus far with the Inftruments we shen had, meeting with an Artificer that was not alcogether unskilful, we directed him to make (what we wanted before in that place) fuch a Brals plate to ferve for a Cover or Cap to the upper orifice of Receivers open at the top, as we have divers times had occafion to mention already in giving accounts of fome of the foregoing Tryals: by the help of which Contrivance we profecuted the newly related Experiment much further than we could do before, as may appear by the following account.

We faften'd to the lowermoft of the two Marbles a weight of a very few ounces, (for I remember not the precife number, and having cemented the capp'd Receiver with the Marbles init, as before, to the Pamp, we did by a fring, whereof one end was tied fo the bottom of this Turning. key, and the other to the upper-

Touching the (pring and weight of the Air.

moft Marble, and which (fring) paft through the Crank or Hook belonging to the Brafs Cover; we did, I fay, by the help of this fring, and by turning round the Key, draw op the fuperiour Marble, and by reafon of their coherence the lowermoft alfo, together with the weight that hung at it: by which means being fure, that the two Marbles Auck clofe together, we began to pumpout the Air that kept them coherent; and after a while, the Air being pretty well withdrawn, the Marbles fell afunder. But we having fo order'd the matter, that the lowerm oft could fall but a litle way beneath the other, we were able by inclining and fhaking the Engine to place them one upon another again, and then letting in the Air fomewhat haftily, that by its Spring it might prefs them hard together, we found the Expedient to fucceed fo well, that we were not onely able by turning the abovementioned Cy lindrical Key, to make the uppermoft Marble take up the other, and the annexed weight; but we were fain to make a much more Laborious and diligent Exhauttion of the Air to procure the dif. junction of the Marbles this fecond time, than was neceffrary to do it at the firft.
And for further prevention of the Objections or Scruples that I forefaw fome Prepoffeffions might fuggeft, I thought fit to make this turther Tryal, that when the Marbles were thus afunder, and the Receiver exhaufted, we did, before we let in the Air, make the Marbles fall upon one another as before, but the litle and highly expanded Aif that remained in the Receiver, having not a Spring near ftrong enough to prefs them together, by turning the Key we very eafily rais'd the uppermott Marble alone, without finding it to ftick to the other as before. Whereupon we once more joyn'd the Marbles together, and then letting in the external Air, we found them afterwards to ftick fociofe, that I could not without inconvenience frain any further, than Ifruitlefly did, to pull them fairly afander; and therefore gave them to one that was fronger than I, to try, whether he could to o it, which He alfo in vain attempled to perform.
17^{6} A Continuation of \mathcal{N} ero Experiments.
And now, my Lord, though I had thoughts of ad. ding divers other Experiments to thofe I have hitherto entertained You with; yet (upon a review) finding Thefero amountalready to fifty, I think it not amifs to make a Paule at foconvenient a Number. And the rather, becaufe an odd Quartainary Diftemper, that I flighted folong, as to give it time to take Roor, is now grown fo troublefome, that I fear it may have too much influence upon my Style; which Apprehenfion obliges me as well to avoid abufing, or diftreffing Your Lordflip's Patience, as to allow my felf fome feafonable Refrefhment, to referve the mention of the defign'd Addirions till they can with lefs trouble to us both be prefented You by

My Dear Lord

> Your Lordfhip's mof humble Servant, and Affectionate Uncle,

[^1] 8667.

ROBERT BOYLE.

N O TES \&c.

About the Atmospheres of Con-
fitent Bodies (here below.)

SHEWING,
That even Hard and Solid Bodies (and fome fuch as one would fcarce fufpect) are capable of emitting EFFLUVIA, and lo of having ATMOSPHERES.

$$
\text { A a } 2
$$

An Advertifement.

HE that Shall take the pains to perufe the following Paper, mill eafily believe me, when Itell him, that twas not. defign'd' to come abroad with the Experiments, in whofe company it now appears. But the Stationer carneftly reprefenting that divers Experiments being referved by mefor another occafion, the remaining ones alone would not give the Book a Thicknefs any thing proportionableto its Breadth; I confented, at his follicitation, to annexe to them the following obfervations, becaufe of fome affinity between the fmall Atmofpheres of leßer Bodies ${ }_{2}$ and the great Aimopphere that furrounds the Terrefrial Globe; in which the other, that do at leafo belp to compofe it, are loft and confounded, as Brooks and Rivers are in the ocean. And to fave the Reader the pains of making Gueffes to what kind of Writing the enfuing Difcourfe may belong, I fhall bere intimate, that tis difmembredfrom certain Papers about occult Qualities in general, which make part of the Notes I long fince defigned, and alfopartly publifbed, about the Origine of Qualicies, of which Notes thofe ihat concern'd Effluviums, being the moft copious, I referr'd them to four general Heads; whereof the fivp onely is treated of in the following Difcourfe, the others being withheld, as having not affinity enough with the Almolphere to accompany This? whereon they bave no fuch abfolute Dependance, but that they may well enough pare it. And I make the lefs Scruple to let it appear without them, becaufe the Inducements already mertioned are not a litle frengthned by this fuperadded Confideration, That the following Notes may give light io feverat of the Obfervations I have made

An Advertilement:

made of fome leffe beeded Phanomena of the Alierations of the Lir, incafe they be allowed to enter into the Appendix to thise Continuation.

OF

[181]

Of the Atmofpheres of Confifent Bodies.

$T \mathrm{He}$ School Philofophers, and the Vulgar, in conffidering the moreabftrufe Operations and Phanomena of Nature, are wont to run into Extremes; which, though oppofite to one another, do almoft equally contribute to keep menignorant of the true caules of thofe Effects they admire. For the Vulgar, being accuftomed to converfe with fenfible objects, and to conceive grofly of things, cannot eafily imagine any orber Agents in Nature, then thofe that they can fee, if not alfo touch, and handle, and as foon as they meet with an Effect, that they cannot afcribe to fome palpable, or at leaft fenfible Efficient, they are, and ftick not to confefs themfelves utterly at a lofs. And though the vulgar of Philofophers will not acknowledg themfelves to be pof'd by the fame phonomens with the vulgar of Men, yet in effect they are fo. But the School-philofophers on the contrary, do not onely refure to acquiefce in fenfible Agents, but to folve the more Myfterious Phanomena of Nature, nay and moft of the Familiar ones too, they fcruple not to run too far to the other fide, and have their recourfe to Agents that are not onely invifible, but inconceivable, at leaft to men that cannot admit any fave Rational and confiftent Notions: they afcribe all abftrufe Effects to certain fubftantial Forms, which however they call Material, becaufe of their dependence on M satter, they give fuch Deferiptions too, as belong but to Spiritual Beings: as if all the abftrufer Effects of Nature, if they be not perform'd by vifible Bodies, muft be fo by immaterial fubftances: whereas betwixt vifible bodies and Spiritual Beings there is a middle fort of Agents, invifible Corpufcles; by which a Great part of the difficulter phenomena of Nature are prodac'd, and by which may intelligibly be explicated

183

Of the Atmo/pheres

explicated thofe Phanomens, which 'twere abfurd to refer to the former, and precarious to attribute to the latter- Now for me thods rake I will refer the Notes, that occur to me about Effluviums, to four Heads; whereof the firft is mentioned in the Title of this Paper, and each of the other three fhall be fucceffively treated of in as many diftinct ones.

That Fluid Bodies, as Liquors, and fuch as are manifefly eio ther moift, or fott, fhould eafily fend forth Emanations, will I prefume be granted without much difficulty; efpecially confidering the fenfible Evaporation that is obvious to be obferv'd in Water, Wine, Urine, \&cc. and the loofe contexture of parts that is fuppos'd to be requifire to conftitute fott Bodies, (as Flowers, Balfomes, and the like:) but that even Hard and ponderous Bodies, notwithftanding the Solidity and ftrict cohefion of their component parts, fhould likewife ennit Steams, will to many appear improbable enough to need to be folemnly prov'd.

Whether you admit the Atomical Hypothefis, or prefer the Cartefian, I think it may be probably deduc'd from either, that very many of the Bodies we are treating of, may be fuppos'd exhaleable as to their very minute parts. For according to the DoCtrine of Lucippus, De emocritus, and Epicur us, each indivifible particle of Matter hath effentially either a conftant actual motion, or an unloofeable endeavour after it; fo that though it may be fo complicated in fome Concretions, with other minute parts, as to have its Avolation hindred for a while; yet it can fcarce otherwife be, but by thisinceffant Indeavour of all the Atomes to get loofe, fome of them thould from time to time be able to extricate themfelves, and fly away. And though the Cartefians do not allow Matter to have any innate motion, yet according to them both Vegetables, Animals, and Minerals, confift of litle parts fo contexed, that their Ports give paffiage to a Celeftial Matter; fo that this Matter continually ftreaming through them, may well be prefum•d to fhake the Corpufcles that compofe them:by which continued concuffion now fome Particles, and then others, will

Of Confifent Bodies.

be thrown and carried off into the Air, or other contiguous Body, ficted to receive them. But though by there, and perhaps other confiderations, I might indeavour to Mew à priori, as they fpeak, that tis probable Confiftent Bodies themfelves are exhaleable, yet I think it may be as fatisfactory, and more ufeful, to prove it ì pofteriori, by particular Experiments, and other Examples.

That then a dry and confiftent form does not neceffarily infer, in the Bodies that are endowed with it, an indifpofition to fend forth Steams, which are as it were litle Colonies of Particles, is evident, not onely in the leaves of Damask Rofes, whether frefh or oried; as alfo in Wormwood, Mint, Rue, \&c: bat in Ambergreece, Musk, Storax, Cinamon, Nutmegs, and other odoriferous and fpicy bodies. But more eminent Examples to our prefent purpofe may be afforded us by Camphire, and volatile Salts, fuch as are Chymically obtain'd from Harts-horn, Blood, \&c. for thefe are fofugitive, that fometimes I have had a confiderable Lump of volatile Salt (either of fermented Urine, or of Hartshorn) fly away by litle and litle out of a Glafs, that had been carefully ftopt with a Cork, without leaving fo much as a Grain of Salt behind it. And as for Camphire, though by its being uneafie to be powder'd, it feems to have fomething of Toughnefs or Tenacity in it; yet I remember, that having for tryals fake counterpois'd it in nice Scales, even a fmall lump of it would in a few hours fuffer a vifible lofs of its weight, by the avolation of ftrongly fented Corpufcles, and this, though the Experiment were made both in a North Window, and in Winter.

But I expect you fhould require Initances of the Effluviums of Bodies of a clofe or folid Texcure; wherefore I proceed to take notice, that Amber, Hard wax, and many other Ele:trical bodies do, when they are rubb'd, emit Effluviums. Fur though I will not now meddle with the feveral Opinions about the caufe and manner of Electrical Actraction, yet befides that almoft all the Modern Naturalifts, that aim at explicating things incelligibly, gifcribe the Attraction we are fueaking of to Corporeal effluxes;

184 Of the Atmofpheres

and befides that I hall ere long have occafion to fhew you, that there is no need to admit with Cartefius, That becaufe fome Eleetrical bodies are very clofe and fixt, what they emit upon rubbing is not part of their own Subflance, but fomewhat that was harbour din their Pores: befides thefe things, I lay, I have found that many Eleetrical bodies may by the very Noftrils be difcovered, when they are well rubb'd, to part with fore of Corpurcles, as I have particularly, but not without attention, been able to ob: ferve in Amber, Rofin, Brimftone, $\& z c$.

I know not whether it will be worth while to take notice of the great Evaporation I have obferv'd, even in Winter, of Fruits, as Apples, and of Bodies that feem to be better cover'd, as Eggs, which notwitftanding the clofenefs of their Shels, did daily grow manifeftly lighter and lighter; as I obferv'd in them, and divers other bodies, that I kept long in Scales, and noted their Dectements of weight: but perhaps you will be pleas'd to hear, that having a mind to flew how confiderable an Evaporation is made from Wood, I caus'da thin Cup, capable of holding about a Pint, or more, to be Turn'd of a Wood, that was cho 「en by the Turnes as folid and dry enough, though it were not of the clofeft fort of Woods, fuch as are Lignum vite, and Box. And as I caus'd the thape of a Cup to be given it, that it might have a greater Superficies expos'd to the Air, and confequently might be the fitter to emit ftore of Steams into it; fo the Succefs did not onely anfwer my Expectation, but exceed it: for though the Tryal were made fome time in Winter, there was fo quick and plentiful an Evaporation made from the Gup, th ic I found it no eafie matter to counterpoife it; for whilft Grains were putting into the oppofite Scale, to bring the tender Ballance to an efquilibrium, the copious avolation of invifible Steams from the Wood (which had fo much of Superficies contiguous to the Air) would make the Scale that held it fenfibly too light. And I remember, that for further fatisfaction, being afterwards in a City where there were both good Materials and workmen, I order'd to be made a Boule, aboul
the Came bignefs with the former, of well feafon'd wood, which being fuipended in the Chamber I lay in, (which circumftance I therefore mention, becaufe the Weather and a litle Phyfick I had taken obliged me to keep a fire chere,) it quickly began manifeftly to loofe of its weight; and though the whole Cup wanted near two Drams of 2 Ounces, yet in 12 hours, viz. from 10 a clock in the morning to the fame hour at night, it loft about 40 Grains, (for twas above 39:) but of fach Experiments, and the Cautions belonging to them, I may elfwhere \{peak farther.
It were not difficult for me to multiply Inftances of the continual Emanation of Steams from Vegetable and Animal Subftances; but I am not willing to enlarge my felf upon this Subject, becaufe I confider that there are other Bodies which feem fo much more indifpos'd to part with Effluviums, that a few inftances given in fuch, may evince what I would prove, much more then a multitude produc'd in other bodies. And fince I confider that thofe Subftances are the mof unlikely to afford Efflovia, that are either very cold, or very ponderous, or very folid and hard, or very fixt; it I can fhew you that neither of there Qualifications can keep a Body from emitting Steams, I hope I Chall have made it probable, that there is no fort of Bodies here below that may not be thought capable of affording the Corporeal Emanations we fpeak of.

And firf Iremember, that I have not onely taken Eggs, and in a very fharp Winter found them, notwithftanding the coldnefs of the Air where I kept them, to grow fenfibly lighter, in a faithful pair of Scales, in not very many hours: but becaufe Ice is thought the colde!t vifible Body we know, Ithought fit to fhew that even this Body will loofe by Evaporation; for having councerpois'd a convenient quantity of Ice in a good Ballance, and forthwith expos'd it therein to the cold Air of a Frofy night, that the Evaporations fhould be from Ice not from Water, I found the next morning, that though the Scale wherein the Ice were put was dry, which argued as well as the coldnefs of the Weather

$$
B b 2
$$

that

Of the Atmoppberes

that the expos'd Concretion bad not thaw'd; yee I found its weight to be confiderably diminifhed, and this Experiment I fuccesfully made in more than one Winter, and in more than one place. And tis now but a tew dayes fince, expofing not long before midnight, leffe than two ounces of Ice in a good Ballance to a fharply freezing Air, I fent for it before I was up in the morning, and though by the drynefs of the Scales the Ice that was in one of them appear'd not to have thaw'd, yet it hadloft about ten Grains of its former weight; fo that here, the Evaporation was made in fpite of a double Cold, of the Ice, and of the Air.

- I fhould now proceed to the mention of ponderous and folid Bodies, but before I do fo, it may be expedient to give you notice, that, to make the Proof of what I have propos'd more fatisfactory, and more applicable to our future purpofes, I hall forbear to give you any Examples of the exhalations of Bodier, where fo potent an Agent as the Fire is made to intervene.

But though I purpofely forbear to infift on fuch Examples, yet it may not be amifs to intimate, that in explicating fome occult Qualities, even fuch Exhalations as are producid by the help of the Fire may be fit to be taken into confideration, as we may hereatter have occafion to thew. And therefore we may obferve in general, that the Fire is able to put the parts of Bodies into fo vehement a motion, that except Gold, Glafs, and a very few more, there are not any Bodies fo fixt and folid, that tis not thought capable to diffipate either totally, or in part. Tis known to thofe that deal in the fufion of Metals, tbat not onely Lead and Tin , but much harder Bodies will emit copious and hurfful Steams. And there are fome kinds of that Iron, which our Smiths call Cold-fhare iron, about whofe fmell whille it was red hot, when I made inquiry, the ingenioufeft Smith I had then met with told me, that he had found it feveral times to be fo ftrong, and rank, that he could fcarce indure to work with his Hammer thofe parcels of Metal whence it proceeded. Andeven without being brought to fufion, not onely Brals, and Copper will, being
well heated, become frongly fented, but Iron will be fotoo, as is evident by the unpleafing fmell of many Iron Stowes. And on this occafion I might not impertinently adde here a Tryal we made to obferve, whether the Steams of Iron may not be made, though not immediately vifible, yet perceptible to the Eye it felf, though the Metal had not a Red, much lefs a White heat. But having elfewhere related it at large, in a Difcourfe You may command a fight of, I fhall rather refer You to it, than loofe the time'twould take up to tranfrribe it.

Thefe things premis'd, I proceed now to the mention of ponderous Bodies; and concerning them, to reprefent, that if You will admit what almoft all the Corpufcularians affert, and divers of the Peripateticks do not now think fit to deny, that the Magnetical operations are perform'd by Particles iffiuing forth of the body of the Loadftone, or other Magnetical Agent: I fhall not need to go far for an Inftaace to our prefent purpofe, fince I have Hydro ftatically found, that fome Loadftones (for I have found thofe Minerals very differing in Gravity) are fo ponderous, as to exceed double the weight af Flints, or other Stones of the fame bulk.
But not to infift on Loadfones, Stone-cutters will inform You, (as they did me,) that black Marble, and fome other folid and heavy fones will, upon the atcrition they are expos ${ }^{\circ} \mathrm{d}$ to, when the Workmen are polifhing them, (efpecially without water,) emit, and that without the help of external heat, a very fenfible fmell, which I found to be much more ftrong and offenfive when, to make it fo, I had the curiofity to caufe a piece of folid black Marble to have divers fragmenss ftruck off from it with a Chizel and a Hammer: for the froaks facceeding one another faft enough to make a grear. concuffion of the parts of the black Marble, (for in white, which is not fo folid, the Tryal will not fucceed well,) there quickly follow'd as I expecked a rank and unpleafant fmell, and you will grant me I know, that Odours are not diffus'd without corporeal Emanations. I remember alfo, that having procur'd fome of thofe acuminated and almoft Coni-
cal fones, that pals among the vulgar for Thunder- Atones, by rubbing them a litle one agaiaft the other, I could eafily according to myexpectation excite a ftrong Sulphureous ftink. I have alfo tried upon a certain Mineral Mars, that was ponderous almoft as a Metal, but to Me it feern'd rather an unufual kind of Marchafite, that I could in a trice without external heat make it emit more trongly fented Exhalations, than I could contentedly endure: to which I fhall adde this Example more, that having once made : Chy mical mixture of a Metalline body, and coagula ted Mercury, which you will believe could not but be ponderous, though this Mixrure had already endur'd as violent a fire as was neceflary to bring it to Fufion, in order to caft it into Rings; yet it was fo difos'd to part with corporeal Effluxes, that a very in. genious Peifon that practis'd Phyfick, and was there when I made it, earnetlybegg'da litle of it of me for fome Patients troubled with diftemeers in the Eyes, and other parts remote enough from the band; which he affirm'd bimfelf to have very happily cured, by making the Patient wear a Ring of this odde Mixture, or weasing a lite of it as an 1 ppenfum near the disaffected part. If you make a vitum Saturni with a good quantity of Minium in reference to the Sand or Chry ftal, which it helps to bring to Fufion, you thall have a Glafs exceeding ponderous, and yet not devoid of Ele9tricity: And I remember, that having fometimes caus'd Brafs it felfto be Turn'd like Wood, that I might try, whether fo Great (though invifible)a Concuffion of all the parts would not throw off fome Steams that might be fmell'd, I was not reduc'd to foregoe ny Expectation; but yet becaufe it was not fully ana fwer'd, and गecaule alfo there is great difference of Brafs upon the fcore of the Lapis Calaminaris, whereof together with Coppet tis made, I enquired of the Workman, who us'd to turn great quantities of Brais, whether he did not often after find it more ftrong; andhe inform'd me that he did, the fmell being fometimes to ftrong, as to be offenfive to Strangers, that came to his Shop, and vere not uf'd to it.

Of Confifent Bodies.

I proceed now tothe Effluviums of folid and hard Bodies, of which, if molt of our Corpurcularian Philofophers, and divers others be not much miftaken, I may be allow'd to give inftances in all Electrical Bodies, which, as I have already noted, muft according to their Doctrine be acknowledged to operate by fubitantial Emanations. Now among Electrical Bodies I have obferv'd divers, that are of fo clofe a Texiure, that Aqua fort is its felf, nor fpirit of Sale will work upon them, and to be fo hard, that fome of them will frike fire like Flints: Of the former fort 1 have found divers Gems (which I nam'd in my Notes about Electricity,) and even the Cornelian it felf, which I found to attract Hairs, though it be thought to be of a much flighter Texture than precious Stones, did yet refift \downarrow quad for tis, as I tried in a large Ring, (brought out of the Eaft-Indies,) which I purpofely broke, and reducd fome part of it to powder, that I might make thefe and fome other Tryals with it. Rock Chryftal alfo, though it have a very manifeft attractive virtue (as they call it,) I have yet found it fo hard, as to ftrike fire rather better than worfe than ordinary Flints. And to fhew that no hardnefs of a Body is inconfiftene with its being Electrical, I hhall adde, that though Diamonds be confeft to be the hardeft Bodies that are yet known in the world, yet frequent Experience has affur'd me, that even Thefe, whether raw or polifh'd, are very manifeftly (and fometimes vigoroufly enough) Eleçrical.

And to let you fee, that I need not to have recourfe to this kind of Bodies, to prove, that very folid ones are capable of $E f$ Anvia; I will, to what I have formerly noted about the O dour of black Marble, fubjoin two or three Examples of the like nature.

The firft fhall be taken from a fort of Concretions very well known in divers parts of Italy by the name of Cugoli, becaufe of the great ufe that is made of it by the Glafs-men. Thefe Concrecions you will eafily believe are very hard, as other Minerals of that fort are wont to be; and yet being invited by my Conje-

Of the Atmolpheres

Etures about the Atmorpheres of Bodies, to try them by rubbing them one againft the other, I found as I expected, that they afforded not onely a perceptible, but a very ftrong fmell, (which was far from that of a Perfume.)

And this brings into my mind, that having met with fome Stones cut out of Humane bladders, whofe Texture was fo clofe, that I could not with Corrofive Menftruoms make any fenfible Solution of one whereon I made my Tryal; though to facilitate the Liquors operation, part of it were reduc'd to fine Powder, yet by a litle rubbing of one of thefe fo clofely contexed Stones, it would prefently afford a rank fmell, very like the ftink of fale Urine.

I remember I have caus'd Iron to be turn'd with a Lath, to examine whether by the internal commotion, that would by thatoperation be produc'd in the corpufcles of the Metal, even that foild as well as ponderous Bodie would not become capable of being fmellds and though by reafon of the nature of that parcel of iron whereun we made our Tryal, or fome accidental difpofition, which was at that time (being Winter) in my organs of Smelling, the Odour feem'd to me but very faint; yet upon the enquiry I made of the Artificers, whether in Turning greater pieces of iron they did not find the fmell Atronger? they told me, that they often found it very ftrong, and fometimes more fo than they defired.

And this brings into my mind, what I have carefully oblerv'd in Grinding of iron; for there are many Grindftones fo qualify'd, that in cafe iron inftruments be held upon the Stone, whillt it is nimbly turnd under it, though the water that is wont to be us'd on fuch occafions ftifles (if I may fo fpeak) the Smell, and keeps it from being commonly taken notice of; yet if you purpofely caule (as I remember I have done) the ufe of Water to be forborn, your Succefs will not be like mine, if you do not find that Itore of foetid Exhalations will be produc'd. And though it be not always lo eafie to difcern by the fmell, from which of the

Of Confifent Bodies:

two Bodies they ifue, or whether they proceed from both; yet it feems probable enough, that fome of the Steams come from the iron, and tis more than probable that if they proceed not from that Metal, they mulf from a Body that is fo hard as so be able to make impreffions in a trice upon Iron and Steel themfelves.
The latt Example I fhall name under this head, is furnihh'd me by Marchafites, lome of which would after a fhort concuffion withour external heat be made to exhale for a pretty while cogether aftrong Sulphureous odour, and yet were fo hard, that when fruck with a Steel-hammer, (which would not eafily break them) they afforded us fuch a number of Sparks, as appear'd ftrange enough. And tis known, that tis from theit difpofition to Atrike fire, (which yet Idare not attribute to aill forts of Marchafites,) that this kiod of Mineral is, by a name frequendy to be met with in Writers, call'd Pyrites. And in this Examplewe may take notice, that a Body, capable of being the fource of corporeal Emanations, may be ac once both very folid and very ponderous.
It remains now that I manifeft, that even the Fixedneif of Bodies is not incompacible with their dirpofition to emit Efluviums.
1 might alleadg on this occafion, that the Regulus of Antimony, and alfo its Glafs, though they muft have endur'd Fufion to actain their reffeeative Forms; yet they will without hear communicate to Liquors Antimonial Expirations, with which thofe Liquors being impregnated become Emetick and Pargative. I might alfo adde, that divers Electrical Bodies are very fixt in the fire, and particularly that Chryftal, as we have more than once rried, will endure feveral Ignitions and Extinctions in water, without being truly Calcin'd, being indeed but crackt into a greac mulcitude of liitle parss; but becaure the above named Antimonial bodies will affer a while fly away in a ftrong fire, and becaure the Eflluviums of Chry ftal are not fo fenfible as thofe which can immediately affect our Eyes or Noftrils, I will here fubjoyn one inflance, fuchas I hope will make it needlefs for me to adde any

193

Of the Atmofpheres

more, it being of a Body which muft have fuftain'd an exceeding vehement fire, and is look'd upon by moft of the Chymifts as more undeftroyable then Gold it felf, and that is Glafs, which is able as you know to endure fo great a brunt of the fire, that you did not perhapsimagine I fhould of all Bodies name it on this occafion. But my conjectures about the Atmorpheres of Bodies leading me to think, that Glars it felf might afford me a confirmation of them; I quickly found, that by rubbing a very litle while two folid pieces of it (nor, as I remember, of the finer fort) one again!t the other, they would not onely yield a fenfible O dour, but fometimes fo ftrong an one, as to be offenfive. By which you will eafily perceive why I told you above, that I did not acquiefce in the Cartefian Argument againft Electrical Bodies performing their operations by Emanations of their own fubetance, drawn from hence, that Glafs does attract light Bodies, (as indeed it does, though but weakly,) and yet is too fixt to emit Effluviums, the conerary of which Suppofition the lately mentioned Experiment (and by us often repeated) does fufficiently evince.

From what other folid Bodies, and that will endure the fire, I have, or have not been able to obtain fuch odorous Steams, it is not neceflary to declare in this place, but may perhaps be done in another.

You may I prefume have taken notice, that according to what I int imated a while agoe; I have forborn in the precedent Examples to mention thofeeffluvia of folid Bodies, that need the action of the Fire to be obtain'd. But fince the Sun is the grand Agent of Narure in the Planetary world, and fince during the Summer, and efpecially at Noon, and in Southern Climates, his Hear makes many bodies have litle Atmofpheres, that we cannor fo well difcern that they have conftantly; I fee not why I may not be allow'd to afcribe Atmofpheres to fuch Bodies, as I have obferv'd to have them when the Sun fhines upon them, and alfo to think shat the like may be attributed at leatt fometimes to fuch other

Bodies, as will do the things ufually perform'd by Efluviums, when yet they are excited but by an external heat, which exceeds not that of the hot Sun.

Of thefe two forts of Bodies 1 hall for brevities fake name but two or three Examples, and then haften to a Conclufion.

The firf of thefe I muft make bold to borrow from my Obfervations about Electricity, among which this is one, that to fhew that the particular and ufual manner of exciting fuch Bodies, namely by rubbing them, is not alwayes neceffary; I took a large piece of good Amber, and having in a Summer morning, whilft the Air was yet frefh, tried that it would not without being excired attract a light Body I had expos'd to it; I remov'd it into the Suns beams, till they had made it moderately hot, and then I found according to my expectation that it hadacquir d an Attractive virtue, \& that not onely in one particular place, as is ufually obferv'd when tis excited by rubbing, but in divers and diftant places at once; at any of which it would draw to it thelight body plac'd within a convenient diftance from it: fo that even in this Climate of ours a folid Body may quickly acquire an Atmofphere by the prefence of theSun, and that long before the warmeft part of the day.

The next inftance you will perchance think fomewhat ftrange, it being that when for want of an opportunity to make the like Trial in the warm Sun, I took a litle but thick veffel made of Glafs, and held di near the fire till it had got a convenient degree of heat, (which was not very great, though it exceeded that which I had given the Amber, I found as I had imagin'd that the heat of fire had made even this Body actractive, as that of the Sun had made the other.

What degree of heat l have obferv'd to bee either neceffary, or the moft conventent to excite Electrical bodies according to their different natures, (for the fame degree will not indifferently ferve for them all,) this is not the propereff place to declare, and it will be more to our prefent purpofe to make fome flort reflection on what has been hitherto delivered.

It feems then probably deduceable from the foregoing Experiments and Obfervations, that a very great number if not the greateft part even of Confiftent bodies, whether Animal, Vegetable, or Mineral, may emit Effloviums, and that even thofe that are folid may (at leaft fometimes) have their litle Atmofpheres; though the neighbouring Solids will often keep the Evaporations from being every way ambient in reference to the Bodies they iffue from.

For as the inftances hitherto alleadg'd (which are not all that I could have nam'd) do plainly thew that divers Bodies (and fome that have not been thought very likely) are fuch as we fpeak of, fo feveral things induce me to believe, that there may be many more of the like nature.

For firft, very few if any have (that I know of) had the curiofity to make ufe of nice Scales, (which fuch Tryals require,) to examine the Expirations of inanimate bodies, which if they fhall hereafter do, I make litle doubt but they will light on many things, that will confirm what we have been propofing, by their finding that fome Bodies, which are not yet known to yield Exhalations, do afford them, and that many others do part with far more copious ones than is imagin'd. For one would not eafily have thought, that fo extremely cold a Body as a folid piece of Ice fhould make a plentiful Evaporation of its felf in the cold Air of a freezing night; or that a piece of Wood, that had long lain in the houfe, and was light enough to be conveniently hung for a long time at a Ballance, that would loofe its efquilibrium with (as I remember) halfa quarter of a Grain, fhould in lefs than a minute of an hour, fend forth iteams enough to make the Scales manifeftly turn, and that in Winter.

But fuppofing (which is my fecond Confideration) that Tryals were made with good inftruments for weighing, thoughit will follow, that in cafe the expofed body grow lighter, fomething exhales trom it, yet it will not follow, that if no diminution of weight be difcover'd by the inftrument, nothing that is corporeal

Of Conifitent Bodies.

recedes from it, I will not urge that tis affirm'd, not onely by the generality of our Chymifts, but by learned modern Phyficians, that when either Glars of Ancimony, or Crocus metallorum impregnate Wine with Vomative and Purgative Particles, they do it without any decrement of their weight; becaufe the Scales in Apochecaries Shops, and the litle accuratenefs wont to be imployed in weighing things, by thofe that are not vers'd in Statical afo fairs, make me (though not deny the Tradicion which may perchance be true, yet) unwilling to build upon obfervations, which to be relyed on are to be very nicely made; and therefore I fhall rather take notice, that though the Loaditone be concluded ta have conftantly about it a great multitude of Magnetical Effluvia, (which may be call'd its Atmofphere,) yet it has not been oblerved to loofe any thing of its Weight by the recefs of fo many Corpulcles. But becaufe if the Cartefian Hypothefis about Magnetifms be admitted, the Argument drawn from this inftance will not be fo ftrong as it feems, and as it otherwife would be: I fhall add a more unexceptionable Fxample, for I know you will grant me that Odours are not diffus ${ }^{\circ} d$ to a diftance without Corporeal Emanations from the Odorous body: and yet, though good Amber. Greece be, even without being excited by external heat, conftantly furrounded by a large Atmofphere, you will in one of the following Difcourfes fiad caufe to admire how inconfiderable the waft of it is.

If it be faid, that in Tract of time a Decrement of weight may appear in Bodies, that in a few hours or dayes difcovers not any; the Objection, if granted, overthrows not our Doctrine, it being fufficient to eftablifh what we have been faying, if we have evinc'd that the Effluria of fome Bodies may be fubcle enough not to make the Body by their avolation appear lighter in Statical Trials, that are not extraord narily (and as it were obftinately) protracted. And this very Objection puts me in mind to adde, that for ought we know the Decrement of Bodies in Scatical Experiments long continued, may be fomewhat Greater than even nice.

Scales difcover to us; for how are we fure that the weights them? felves, which are commonly made ot Brafs, (a Metal very unfixt,) may not in Tract of time fuffer a litle Diminution of their Weight, as well as the Bodies counterpois ${ }^{\text {² }} \mathrm{d}$ by them: and no man has I think yet tryed whether Glafs, and even Gold may not in tract of time loofe of their Weight, which in cafe they fhould do, it would not be eafily dilcover'd, unlefs we had Bodies that were perfecaly fixt, by comparion to which we might be better affifted, than by comparing them with Brafs weights, or the like, which being themfelves leis fixt, will lofe more than Gold and Glafs.
My third and laft confideration is, that there may be divers other wayes, befides thofe furnifh 'd us by Staticks, of difcovering the Effluvia of folid Bodies, and confequently of fhewing, that tis not fafe to conclude, that becaufe their Operation is not conftant or manifeft, fuch Bodies do never emit any Effluvia at all, and fo are uncapable to work by their intervention on any other Body, though never fo well difpos'd to receive their Action. And this I the rather defire that you would take notice of, becaufe my chief (though not onely) defign in thefe Notes is' (you know) to illuftrate the Doctrine of occult 2ualities; and it may conduce to explicate feveral of them, to know that fome particular Bodies emit Effuvia, though perhaps they do it not conftantly, and uniformly, and though perchance too, they do not appear to emit any at all, if they be examin'd after the fame manner with other exhaleable Bodies, but onely may be nrade to emit them by fome peculiar way of handling them, or appear to have emitted them by fome determinate operation on fome other fingle Body, or at moft fmall number of Bodies.
Perchance you did not think, till you read what I lately told you about Glafs, that from a Body that had endured fo violent a fire, there could, by fo fleight a way as rubbing a lirle while one piece againft another, be obtain'd fuch fteams, as may not onely affect but offend the Noftrils. Nor hould we eafily believe, if Experi-
ence did not affure us of it, that a Diamond, that is juftly repured the hardeft known Body in the World, fhould by a litle rubbing be made to part with Elearical Effluvia. Nay, (that I may give fome kind of corffirmation to that part of the laft Paragraph that feems moft to need it,) 1 fhall adde, that I once had a Diamond not much bigger than a large Pea, which had never been polifh'd or cut, whofe Electrical virtue was fometimes fo eafily excited, that if I did but pafs my fingers over it to wipe it, the virtue would difclofe it felf, and if as foon as I had caken it out of my Pocket, lapplied a hair to it, though I touch'd not the Stone uith my fingers, that I might be fure not to rub it, that Hair would be attracted at fome diftance, and many times one after an other, efpecially by one of the fides of the Stone, (whofe furface was made up of feveral almoft triangular Planes,) and though this excitation of the Diamond feemed to proceed onely from the warmth that it had acquir'd in my Pocket, yet I did not find that That warmth, though it feem'd not to be alter'd, had alwaies the fame effeet on it, though the wiping it with my finger faild not (that Iremember) to excite if. Something like this uncertainty I always obferv'd in another Diamond of mine, that was much nobler than the firt, and very well polifhed, and in a fmall Ruby, that I have yet by me, which would fometimes be confiderably Elearrical without being rubb-d, when I but wore the Ring it belong'd to on my lite finger, and fometimes again it feem'd to have loft chat virtue (of operating without being excited by friction, and that fometimes within a few minutes, without my knowing whence fo quick a change fhould proceed. Bur I muft infift no longer on fuch particulars, of which I elfewhere fay fomething; and therefore I proceed to take notice, that we fhould fcarce have dream'd, that when a Partridg, or a hunted Deer has cafually fee a foot upon the ground, that part where the Footttep hath been (chough invifibly) imprefs'd, thould continue for many hours a Source of Corporeal Effluxes; if there were not fetting Dogs, and Spaniels, and Bloud-hounds, whofe nofes can take notice at

Of the Aemoopheres

that diftance of time of fuch Emanations, though not onely other forts of Animals, but other forts of Dogs are unable to do fo.

I faw a ftone in the hands of an Academick, an Acquaintance of mine, which I fhould by the Eye have judg'd to be an Agate, not a Blood ftone, and confequently I hould not have thought that it could have communicated Medicinal Effuvia appropriated to exceffive Bleedings, if the Wearer of it had not been fubject to that Difeafe, and had not often cur'd both himfelf and 0^{-} thers, by wearing this ftone about his neck; which if he left off, as fomerimes he did for Trials fake, his exceedingly fanguine comv plexion (to which I have rarely feen a Match) would in a few daies caft him into Relaples. What I have elfewhere told you about the true virtues of fome Stones, (for I fear that moft of thofe that are wont to be afcrib'd to them are falfe,) may give fome confirmation to what I have been delivering, which I cannot now ftay to do, being to draw to a Conclufion as foon as I have put you in mind, that it would not probably have ever been expected that fo ponderous and folid a Body as the Loadfone thould be invironed by an Atmofphere, if Iron had been a fcarce Mineral, and had not chanc'd to have been plac'd near it.

And with this inftance I fhall put an end to thefe Notes, bee caufe it allows me to make this Reflexion; that fince folid Bodies may have conftant Atmofpheres about them, and yet not difcover that they have fo, but by their operation upon one particular Body, or thofe few which participate of That; and fince there are already (as we have feen) very differing wayes whereby Bodies may appear to be exhaleable, it, is not unlikely that there may be more and more Bodies (even of thofe that are folid and hard) found to emit Effluvia, as more and more wayes of difa covering that they do fo, thall either by chance or induftry be brought tolight.

T2

The CONTENTS.
Experiment if

ABout the raijing of Mercury to a great beight in an open Tube, by the spring of a litle included Air. VV bercin is fet down the beight the Mercury was raisd to, P. 3. its fudden a/cent upon the firgt Suck, with the vibrations it makes before it fettles: what proportion of height it has upon the feveral Exuctions, and what beight the Mercury was at in the Barometer at the time of the trials of this Experiment. p. 2. 3.4 as allo what the quantity of the included Air was, and boss the Experiment rama be made wfe of againft thofe, that in the explication of the Torricellian Experiment recur to a Funiculus or a fuga vacai.

Experiment 2.
Shewing, that much included Sir rais'd Mercmry in an open Twbe ${ }_{2}$ no higher than the weight of the Atmolphere may in a Barofcope. 7 The reafon that induc'd the Authour to think it sould be fo: the Succe Se of the Experiment, and notice taken of the great force of the spring of the Air then when it could not raife the Mercury any bigher.
8.9 .10

Experiment 3.
Shewing that the spring of the included Lir will raife enercury to almoft equal beights in very unequal T ubes. of the Air, whilf itexpands it felf into the place of a larger Cylinder of Mercury, together with the Reafou why this and the former Exper iment were not tried in water, as alf oan account of an advertutious Spring that was fuperaddid to the Air by beat.

Experiment 4.

11.12. 13

About a new Hydranlo-pneumatical Fountain, made by the spring of uscompref'd Air. 13 .

D d
Seve:

The Contents.

Several directions for it. I4.IS The ufes to be made of it; as in Hydranlo-pnewmaticks, or to hew by what degrees the Air re. fores it felf to its spring, or epecially to find what kind of line the jalient water defcribes in rarified A ir.
$16 . \& c$,
Experiment 5.
About a way of Speedily breaking fat Glaffes by the weight of the Atmopphere.

Experiment 6.

Shewing, that the breaking of Glafs plates in the foregoing Experiment, need not to be afcrib'd to the Fuga Vacui.

Experiment 7.

About a convenient way of breaking blown Bladders by the Spring of the Air included in them.
And of the ufefulnefs of this Experiment in other tryals:
About the lifting up a confiderable Wreight by the bare Spring of litle Air included in a Bladder.
WVith a bint that this may not be unferviceable for the explanation of the cMufcles.

Experiment 9.
'About the breaking of Hermetically feal'd Bubbles of Glaß by the bare spring of their own Air. That they broke not prefently, and what the reafon might be of the fownefs of that effect.
ib. 25

Experiment 10 .

Containing twe or three Tryals of the force of the Spring of our Air ancompref]'d upon ftable and even folid Bodies, (whereto tis external.)
Several trials of it with different circumftances, that the veffels broke not here neither immediately up on the laft Exuction: 27 with a Note nece β ary for the practif 6 of one of the Trials. 28

Experiment in.
Shewing, that Mercury will in Iubes be raijed by Suction no bigher

The Contents:

than the weight of the Atmofphere is able to impell it up. The principle of the Schoolmen of a fuga vacui fhewn to be infufficient, as allo the fuppofition of a Funiculas. 30 kc . Some particulars to be taken notice of concerning the exbaufting a siphon, an inftrument of frequent ufe in thefe Experiments.

Experiment 12.

About the differing beights whereto Liquors will be elevated by suction, according to their feveral (pecifick Gravities.
Notice given, that the proportion of the specifick gravity of Mercesry to water is not quite as 14101. 35.36 The notion of a fuga vacui unreafonable. ib. The ufe that may be made of this experiment in the efimating the gravity of feveral liquors, with fome tryals thereupon. 36.37 .38 Experiment 13.
Aboat the heights to which Water and Mercury may be railed, proportionably to their Specifick Gravities, by the Spring of the Air. 38 Experimene 14.
About the beights anfwerable to their refpective Gravities, to which Mercury and Water will Jubfide, upon the withdrawing of the spring of the Air.
39.\& 6

Vvith notice of the difficulty of the Trial, and the allowance that muft be made in it.
ib.
Experiment 15.
'About the greatef beight to which Water can be rais'd by Attraction or fucking-Pumps.

41
The motives for the trying of it, the apparatus. 42.43
The height of the water, the fame comparid to that of the 2uickfilver at the fame time in a Barofcope, and examin'd according to the proportion of their (pecifick Gravities. $44 . \& c_{0}$ Some circumftances delivered, that induced the Author to think the trial was exactly enough performed.
An intimation given of the difference there, may be in thefe kind of trials from the varying weight of the Atmo jphere.

Dd 2
49
A

The Contents.

A miftake of VVriters of Hydraulicks in the conceit of carrying water over never fo bigh mountains. 49.50

$$
\begin{equation*}
\text { Experiment } 16 \tag{52}
\end{equation*}
$$

About the bending of a Springy body in the Exhaufted Receiver. 50 No alteration of the Spring difcovered.

Experiment 17.

About the making of Mercurial, and other Gages, whereby to eftimate how the Receiver is exhaufted.

52
several Gages mentioned. 53. One preferr'd and defcrib'd, and directions for it given. 54.8 K . Two other Gages ulefuls when is not requir'd the Engine fould be very much exbaufted. $\quad 58.59$ Experiment 18.
'About an eafie way to make the Preffure of the Air fenfible to the Touch of thofe that doubt of it.

59
VVith a Caution in ufing of it. 61
Experiment 19.
About the fubfidence of Mercury in the Tube of the Torricellian Ex: periment to the level of the fagnant Mercury. 61 Some confirmations of what had been faid in the firft Treatife of the Phyfico-Mechanical Experiments. Exp.17. $\quad 62.63$ Experiment 20.
Shewing, that in Tubes open at both ends, when no fuga Vacui can be pretended, the weight of Water will raije Luick flver no bigher in flender than in larger pipes. 64.65. the other with them after the Torricellian way. 65,66 Experiment 21.
Of the Heights at which pure Mercnry, and Mercury SImalgan'd with Tin, will fand in Barometers.

- A Note concerning the inconvenience, if the Amalgam be too thick: the sfe that may be made of this Experiment, to difcover how wuch two mixt Bodies penetratc one another, as alfo to further
- illuftrate that the height of the Liquors in the Torricellian Experiment depends upon the Æquilibrium witb the outward Air. 67

The Contents.

Experiment 22 -

Wherein is propofed a way of making Baromiters, that may betranfported even to diftant Countries.
The figure the Barometer is to be of, the way of filling it, putting it into a Frame, and fecuring it from the harm the Mercury its felf might do in the Tr an (portation by its moving up and down in the upper emptypart.
The great ferviceablenefs of this Inftrument, with an intimation of others of a different k ind.
74.75
'A Pofticript advertijing, that there has been fince fome difference found betwixt an ordinary Barofcope and thefe Travailing ones, with a gueds at the reafon of it, and that for all this the portable. Barofcopes may be ferviceable.

Experiment 23.

Confirming, that cMercury in a Barometer will be kept fufpended bigher at the top, than at the bottom of a Hill. On whichoccaflon fomething is noted about the beight of Mountains, efpecially she Pic of Tenariff.

77
otber Authors opinions about it examined. 80
A more moderate beight allow'd than that afferted by Ricciolus. $8 \mathbf{r}$. 82. with a con fideration to be had in the meafuring the altitude of Mountains diftant from the Sea.

$$
\text { Experiment } 240
$$

76.77 69.70. \& c .

The Contents.

Experiment 26.
About the making of a Barofcope (but of litle prattical wfe) that ferves but at certain times. 90
The Argument it affords againft a fuga Vacui. ib.
Experiment 27.
'About the Afcenfon of Liquors in very llender Pipes in an Exhan* - Sted Receiver.

Experiment 28.
'About the great and feemingly. pontancous Afcenfion of Water in a Pipe fill'd with a compact body, whofe Particles are thought incapable of imbibing it.

93 By it an Explication that bas been made of the cause of Filtration examined. A probable caule of the \mathcal{A} fcenfion of S ap into trees bence fuggefted. An attempt to make a Syphon, that fhould run of it felf without Suction.

Experiment 29.
Of theifeemingly fpontaneous afcenfion of Salts along the fides of Glafles, with a conjecture at the Cawle of it.

97

$$
\text { Experiment } 30
$$

'About an attempt to meafure the Gravity of the Cylinders of the Atmolphere, fo as that it may be exprest by known and commons weights.
Wherein alfo the /pecifick Gravities of Mercury and VVater are compared.

Experiment 31 .

About the Attractive virtue of the Loadfone in an Exbaufted Receiver.

Experiment 32.

Shewing, that when the Preffure of the External Air is taken off, tis very eafie to draw up the Sucker of a Syringe, though the Hole, at which the Air or VVater thould fucceed, be ftopt.

The Contents.

Experiment 33.

About the opening of a Syringe, whofe Pipe was fopt in the exbaufted Receiver, and by the belp of it making the preßure of the Air lift up a confiderable weight.

Experiment 34.
IIL
Shewing, that the caule of the afcenfion of Liquors in Syringes is to be derived from the preffure of the Air. Exemplified in three feveral I'yals.

Experiment 35.
113.115 .117

Shewing, that upon the preffure of the Air depends the ficking of Cupping-glafles to the fichy parts they are apply'd to. 118 Experiment 36.
About the making, without heat, a Cupping. Glafs to lift up a great weight.

Experiment 37°
Shewing, that Bellows, whole nofe is very well fopt, will open of themjelves, when the preffure of the external Air is taken off. 124 Experiment 38.
About an attempt to examine the Motions and senfibility of the Cartef fan Materia lubtilis, or the Æther with a pair of Bellows(made of a Bladder) in the exbaufted Receiver.

Experiment 39.
'About a farther attempt to profecute the Inquiry propos'd in the foregoing Experiment.
Firft with a Syringe and a Feather.
Then with a Syringe in water.
If there be an Ether, what ktnd of body it muft be, with a confirmation of the $34^{\text {th }}$ Experiment.

Experiment 40.
138
About the falling, in the exhaufled Receiver, of a light body, fitted to have its motion vifibly varied by a mall refiftance of the Air. 139 A Defign mentioned to try this way, what the degrees of celerity would be of defcending bodies in an exhaufed Receiver. 141
A Caution given concerning this prefent Experiment. ib.

The Contents.

Directions given, which way to lengthen Receivers for the Trial of this and other Experiments.

About the propagation of Sounds in the exhawfed Receiver. 143 A Contrivance deforib'd neceffary for this and divers Experiments.

144
The Trial perform'd by it.
145.146

Another Trial with as Alarum. watch.
146.147 An affertion of Merfennus examined: a propofal of bis foewn to be unpracticable. 148.149 A mention of fome other Irials defigned concerning Sound. 149.150 Experiment 42.
About the breaking of a Glafs drop in an Exhaufted Receiver, 150 VVberein an Hypothefos, afcribing the caufe of the breaking of them to the force of the external Air, is examined.
ib.
Experiment 43.
About the production of Light in the exbaufted Receiver.
151
Experiment 44,
About the production of a kind of Halo , aud Colours in the Exhaufted Receiver.

152 The reafon of it propofed, with a fuggestion that the fame caufe might bave been of that Apparition of Light mentioned in the formerly publifht Experiments. 153.154

Experiment 45 About the production of Heat by Attrition in the exhaufted Recei
ver.
Experiment 46 .
About the llaking of 2uick-Lime in the Exhaufted Receiver. 157

Experiment 47:
About an attempt made to mealure the force of the spring of included Air, and ex amine a Conjecture about the difference of its frength in unequally broad mouth'd Veßels. 158 The firft Trial by a Syringes 159

The Contents.

Another different Trial; the fucceffe of which is fummarily related, and the way of making the Experiment delivered: $\quad 160, \& \mathrm{C}$ with the above named conjecture about \&.c.

About an eafie way of making a fmall quantity of included Air raife in the exhanfted Receiver 50 or 60 pound, or a greater weight.

Experiment 49.

About the weight of Air. 168
Two Notes in profecution of the $36^{\text {th }}$ of the already publifhed Experiments, concerning the eftimating the weight of the Air, by the belp of a feal'd Bubble.
Another Tryal, by weighing the Receiver its felf. $\quad 169.8 \mathrm{zc}$ An Advertifement of the variation of the gravity of the Air, and that by Experiments made at different times or places there are obtain' d different proportions betwixt It and W'ater. 171.172 Experiment 50.
'About the disjoyning of two Marbles (not otherwife to be pull' d a funder without a great weight) by withdrawing the preflure of the Atmofphere.

172

NOT ES \& c. about the Atmo pheres of Confiftent Bodies (herebelow:)
An advertifement, phewing the reafon why the fe Notes are annex. ${ }^{1} 77$, and what difcourfe they belong to.

The Proemium.

That there are fuch Atmofphares, prov'd à priori, both from the Atomical and Cartefian Hypoibefis. 182 Demonftrated by particular Examples in feveral Bodies. 183.184 In fuch as are moft unlikely to emit effluvia, as firft in very cold bodies. 185.186. in very ponderous. 186.\&2c. is very folid and hard bodies. 189.8 cc . and laflly, in thofe that are moft foxt. 191 where the Argument of Des-Cartes againft. Electrical emanaE

The Contents.

tions, drawn from the fixedneffe of Glafs, is examined. 192 obfervations about the exciting the Electricity of Bodies, as that of

A mber by the Sun, and that of Glafs by the heat of the fire. 193 The confiderations that may induce us to believe, that very many other Bodies, not yet difcovered to do fo, emit their Eflyviums. 194. \& c

 0

WHEREIN

Are contained divers EXPERIMENTS made both in compreffed and alfo in factitious A I R, about FIRE, ANIMALS, doc.

Together with
A DESCRIPTION of the ENGINES wherein they were made.

> By the Honourable ROBERT BOYLE, Fellow of the Royal Society.
LONDON,

Printed by Miles Fle/ber, for Richard Davis, Bookfeller in Oxford, Anno Dom. MDCLXXXII.

BOITAUVITVOD 2т АनMI979XA

THE

PREFACE

TO

The LATINE Edition.

AFter - I bad firft publifbed my Phyficomechanical Experiments to the Curious World, and, fome years after, the Continuation of them, (together with a full Defcription of the Engines, and leffer Veffels, which I ufed in the making of them) I thought it a very zenial thing in me, if, fuperfeding any farther labour upon fuch Subjects, I left that Argument to be ftudied, and, if they had pleafed, cultivated by others. And therefore I was content to annex onely fome Experiments, occafionally made, concerning Refpiration, concerning the fcarce credible Rarefaction of the Air; and laftly, concerning the Prefervation of fone Bodies, whileft they are defended from the contact of the Air, in regard thofe Tracts were of kin

$$
\mathrm{A}_{2}
$$

The Preface to the Latine Edition.

to other Arguments, which I bad occafion to bandle at feveral times. But in feven or eight years fpace, bearing of very few Experiments made, either in the Engine I ufed, or in any Dother made after the model thereof, I began to reaffume fome Thoughts, concerning the fartber ufe thereof may felf: At which time it bappened very opportunely, That a certain Tract written in French, fmall in bulk, but wery ingenious, containing fundry Experiments concerning the Prefervation of Fruits, and Jome other Tracts of a different nature, was brought unto me by Monfieur Papin, who had joined bis Pains with the eminent Monfleur Chriftian Hugenius, in making the faid Experiments; TAnd, upon farther difourfe.mith bim, finding that be came out of France into England but a little before, in hopes to obtain fome Place here, wbich might be fit for his Genius, and, owhileft he was in that expectancie, that be was milting to beflow his Pains about Experimental Philofophy, upon which, I had an Inclination, at my coft, to gratife his Curiofity, whileza I allo indulged my ami. And, feeing he brad a Pneumatick-pump of his own, made by bimelf, to the rje of which be was more accuffomed, though it differed from the friuctiure of my Pump, I gave him the freedom to afe bis omr, becaufe be beft knew how to ply it alone, and (if any difordernflould bappen, from the Tuxati-

The Preface to the Latine Edition:

on of its Parts, or any other (cafualtie) bom to repaix it more eafily. Though, in bis abfence, I chofe rather to ufe my own Puntp, both becoufe my Domeficks were better arquainted mith it, and alfo becaufe it mas not fubject to fa many and frequent Inconveniencies, by reafon of its more folid ftructure.

But, feeing feveral forts of Experiments, long fince made on divers Bodies, bad left me little to doe about the fame Subjects; there mere only two things, which I chiefly defigned to profecute. One of which contained thofe Experiments, which, when I firft publifbed my Phyfico-mechanical Experiments, I had wifbed in general bad been made, not in rarefied or expanded, but in condenfed or rather compreffed Air. The other was to be verfant about thofe Trials which were not to be made; as the former, with natural Air, either in its wonted fate, or any way rarefied, but with factitious Air, (that I may fo fpeak,) fuch as, in my former Writings, I bad mentioned to be producible by the belp of Fermentations or Corrofions; The divers waies of producing or extricating that factitious Air, and the waies of Trying it, when it was produced, baving been fome years ago prefenters. to the Royal Society, I was invited, by that Lear-s ned Affembly, to profecute farther thofe Difquifiti-i ons. Nom, although thofe were the chief kinds of Experiments mhich I applied my mind unto, yet it will.

$$
\text { A } 3 \quad \text { appear }
$$

The Preface to the Latine Edition.

appear by the following Sheets, that I did not confine my felf to them alone.

But, before I could make any confiderable progrefs in this Work, it pleafed the moft Juft and Wife God, the Supreme Arbiter and Ruler of all things, to affict me with the Stone (the Pains whereof do as yet now and then trouble me) fo that I was enforced to take another courje of proceeding. For, to eafe my felf, it was judged meet, that Nionfieur Papin bould fet down in Writing all the Experiments and the Phxnomena arifing therefrom, as if they bad been made and obferved by bis own Skill ; and moreover, the Calculation of the Degrees of the Rarefaction and Conderfation of the Air, included in our Mercurial Gage, was intrufted to bis Care. But I my felf was alwaies prefent at the making of the chief Experiments, and alfo at fome of thofe of an inferiour fort, to obferve whether all things mere done according to my mind. But, as for thofe Experiments which required a longer time in makeing, fuch as thofe about the Confervation of Bodies, he did from time to time, with great diligence, acquaint me with thofe Alterations, which bappened in them, in my abfence; and be alfo brought the Glafs-inftruments to me, and declared to me the Effects of the Experiments, when they were finifbed, that $\int 0 I$ might take into confideration the Changes made in

The Preface to the Latine Edition.

the Materials, when taken out of the Veffels. Yet, I confefs, I was purpofely fomewhat more incurious and remifs about thofe Experiments which were made concerning the Prefervation of Fruits, and of Fleth in Liquors, which was made chiefly by the help of Compreffron; and alfo about the Coction of Meat. Eor, as fome of thefe later Experiments were propounded for Tryal by Monfieur Papin, for a particular End of bis own, fomewhat different from my Defign in the other Experiments; fo I was very willing, that be fbould ufe bis own method about them; not doubting but be would ufe bis greateft Induftry therein, as I found, by the Event, that he bad done. Yea, I did judge, that I might more fafely acquiefce in bis Re. lations, concerning the Experiments about Flefh, about Fruits, and about Boiling of Meat, becaufe, as thefe were fome of the laft which we made, fo I bad caufe enough to truft bis Skill and Diligence ufed about the former Experiments; fome of which, viz. thofe which are marked with an Afterisk, be bimfelf propounded, as if they bad been formed in bis own brain, as allo not a few of the Mechanical Inftruments, (efpecially, the Double-pump, and Windgun) which fometimes were of neceflary ufe to us in our Work, are to be referred to his Invention, who alfo made fome of them, at leaft in part, with his own bands.

The Preface to the Latine Edition.

In the following Tract, the Reader will not find the Reafons fubjoyned, which moved mee to make thefe Experiments, (which Iufually did in my former Phy-fico-mechanical Experiments, and in the Continuation of them) for I bad neither leifure, nor a mind free from other bufineffes, to make fuch a Preface; and Idid alfo bope, that the fagacious Reader would find out iny Senfe well enough, though purpofely not exprefled in plain words, if he did but attentively confider the nature of the things treated of, efpecially if calling in to bis aid thoofe Jhort Corollaries, which he will find annexed to the feveral Experiments, wheresy be may filb out my aim. Though, to Jpeak the Truth, fome few of thofe Inferences owe themfelves more to my Affitant than to me.

I am well aflured, That very many of the following Experiments will not be thought weighty enough by many Readers, as to deferve to be printed, and indeed I my Jelf was fo far of their mind, that I bad once thoughts of expunging them out of the following Collection; But at laff I was more eafily perfuaded to afford them a place amzong ft the reft, becaufe, however they may be confidered apart, yet, in confort with the reft, they may be, at leaft, of moderate ufe.

I was not very Jolicitous about the fyle, becaule, being infirm in point of Health, and befides, furrounded with many bufineffes, I was enforced to leave

The Preface to the Latine Edition.

the choice of words to Monfieur Papin; my chief Care being to bave the whole Worke diligently read over to me, that to no miftake might pafs by unobfervel about: the Experiments themjelves. Befides, feeing the things bere treated of are meerly Phyfical, and their mamer of bandling but Hittorical, there is no need of any farther Apology, to excufe the incomptnefs of the fylle: Yet this may be alledged in excufe thereof; That the Heads of things (or Memorials as they are called) being at frift jet down, for bafte, by Monfieur Papin in bis own native Tongue, foil. the French, and afterwards turned into Latine, (in which babit they now appear) do labour with that inconven nience which doth ufually attend all Tranflations, efpecially where the Interpreter muft have a greater care of the Propriety of words, than of the Elegancy of them.

Moreozer, be that Jall attentively confider the following Experiments, will not wonder, that they are delivered in a lefs accurate method. For we accounted it fufficient for our purpofe, to reduce thofe Experiments, which did differ and bad leaft affrity amongft themfelves, into Jome certain Heads, to which they feemed mioft commodioufly to be referrable : And, befides, confidering the nature of the Experiments themfelves, I bope the Reader mill eafily grant, that at leaft many of them ought to bave been fet domn in

The Preface to the Latine Edition.

the way of a Diary, yet diffinguifbed and, as it were, intercalated by frequent intervals, becaufe the Examination of fome of them was protracted for many days, the nature of the Experiments themelelves, and alfo the defign of the Experimentators requiring fuch Cbafms: Add bereto, That I was more willing to fet down divers things, with their minute circumftances, becaufe I was of opinion, that probably many of thefe Experiments would be never either re-examined by others, or re-iterated by my felf. For though they may be eafily read, when fet down with Pen and Ink in Paper-fleets, yet, he that flall really go about to repeat them, will find it no eafle task.

For there are fo many, and fucb fundry forts of Inftruments, both of a greater and leffer fize, which are neceffarily required for ufe berein, fome of them to be made on purpofe for the prefent occafion, refpect alfo being baid to the time and affiduity, requifite and necelfary for making the Experiments and Obfervations, in cafes wherein fo fubtile and elaftick a Body as the Air is, muft be violently reduced into a preternatural flate, and muft be long kept in that difpofition, that, as it is a very difficult thing to prevent thofe Inconveniences which do attend fo unufual Experiments, \int_{0} it is far more difficult, to apply Remedies to thofe Inconveniences, after they bave once bappened. For thefe, and other Reafons, fo mucb time

The Preface to the Latine Edition.

is to be fpent, that I am almoft afbamed to tell how much thereof was impended on thefe Trials which are contained in the prefent Book, though but fmall, to which this Proeme is prefixed.

Nevertheless, though all thefe things are alledged in excufe, yet the deficiency of this Collection is 50 well known to me (there being little to be found therein which may commend Books) that I would invite very fem Philofophers to the reading of fo incult and unpolite a Rhapfodie, efpecially from the beginning to the end. For though it may probably bappen, that fome Experiments, contained berein, may not be difallowed by the Curious, yet they may have leave from me, to efteem this whole Tract but as a loofe Heap (or rather Chaos) of Particulars belonging to the Air, especially, as conflituted in its preternatural flate, and to the operations of it upon fome bodies, as clothed with fuch and fuch circumftances; fo that it is free for them to cull out onely thofe Experiments which pleafe their Curiofity, or any other of their Concerns beft, without being obliged to reade over the whole Book, no more than a Lexicon, which we ufe not to confult, but now and then, for the fake of a word. In Jbort, 'T is not probable, That a Book fo impolite, as this is, will be either wholly read over, or can conciliate any favour from the reading, unlefs with thofe Readers to whom a Book comes fufficiently

The Preface to the Latine Edition.

 commended onely upon this accompt, That it contains things New and aldo True. For if thole two Privileges are enough to obtain Favour; then there is no cause, that the following Tract Should wholly defpair of the Reader's benevolence, especially fince forme Trials contained therein do treat of the Properties and Operations of the Air; I fay, of the Air, which, notwithflanding the laudable Endeavours of forme ingenious modern Writers in the Explication thereof, yet is a Body which, I fear at prefent, we bave greater use and necel/ity of than knowledge.
An ADVERTISEMENT of

THE

PUBLISHER to the READER,

Before the Latine Edition.

SEveral Tracts, made by our Author, printed at Geneva, and bound up in one Volume, were not long fince tranfported into Englaved: In which matter, though the Author himfelf doth not complain (which yet he might lawfully doe) of the immoderate Liberty of fome men, who have prefumed, unknown to him, to bind up fo many of his Writings together, and to publifh them. Not to mention the Print, as being but bad, (or at leaft not accurate) yet there are two things in that Edition, which; in our Author's behalf, cannot be concealed without juft reprehenfion, for they may empair his Credit much, efpecially with thofe to whom his Writings are no otherwife known than by that Collection.

For, Firft, There is no Signification made therein, That any of Mr. Boyle's Tracts were ever written in any other Language than that wherewith they are there clothed, viz. The Latine, whence it may probably come to pafs, That all the Faults and Defects of Style, which are wont to blemifh Tranflations, efpecially fuch as are literally made, may, by Readers, who are not otherwife enformed, be imputed to the Author himfelf, who, for Reafons often rendred by him, was induced to write all his Works in the Eng li/b Tongue: The Verfions of fome of them into Latine being not fo much as feen by him, till, being come from the Prefs, they were put into his hands.

An Advertijencent of the

Secondly, The feveral Tracts making up that Collection, are all dated in one and the fame year, viz. 1677 . as if they had been all, both writ, and alfo publifhed, by our Author at once, whereas indeed fome of them were made publick 8 or 10 years, fome II or 12 , others 17 or 18 years betore ever this Collection faw the Light: Hence an Injury, greater than the former, may be offered to our Author; for thofe Readers, to whom neither Himfelf, nor his Lucubrations are known, but from that Volume, may be eafily perfuaded to believe, that thofe Experiments, if perhaps they meet with the fame which are comprehended in thefe Books, and are alfo found in other mens Works printed before 1677, were transferred by our Author out of their Tracts into his own; than which nothing can be imagined or fpoken at a greater diftance from Truth: For, indeed, if, applying my felf for three whole years to manage the Experiments of fo Great a Perfon, and thereby having frequent opportunity to converfe with him, I fometimes cafually light upon fomething new, yet who fees not, that Thanks is to be returned to him alone, who afforded me both the Occafion of meditation, and alfo Leifure to operate; yet fuch is the Humanity of this Noble Perfon, that he mentions my Name in the Preface to this Book, as if fome things therein were mine: Who then can jufly fay, that he hath excerped any thing from other Authors, who gives his own freely unto others? But, to make the matter more clear, and alfo, to fatisfie fome Ingenious Perfons who have earneftly defired a Catalogue of all Mr. Boyle's Works, I will here fubjoin it, and alfo affix to each Tract the time of its Publication; for by this means any Enquirer will be able to perceive, that what was written by our Author for New, hath really been publifhed before the Writings of all the reft. And befides, the Faults of many will be detected; for though fome Writers have with Ingenuity enough cited the Name of our Author in their Works, yet more have done otherwife, transferring not a few

Publifber to the Reader, \&c.

of his Experiments, together with the Ratiocinations explaining them, after the manner of Plagiaries into their Books, making no mention of his Name at all.

But here I muft advertife the Reader of thefe two things:
I. That thofe Books, marked with an Afterisk, were long fince turned into Latine; yea, fome of them but a little while after their Editions in Englijh; yet without any Additaments in their Verfions.
2. The other, which might have been fet in the firft place, is, to hint the Reafon, why this prefent Tract bears the Title of Continuation, \&xc. Part the Second. For you muft know, that after the firft New Pbylico-mechanical Experiments of our Author were publifhed tothe World, fome years after, a large Continuation of them in Quarto was likewife printed, which was alfo tranflated into the Latine Tongue, but, by the Death of the perfon to whom the Charge of publifhing it was committed, and other Accidents happening thereupon, that Verfion could not yet be found; and if no hope do appear of recovering it again, (which we do not wholly defpair of) then probably a fecond Tranflation may be undertaken, for the fake of the Curious.

A
 CATALOGUE

Of all the

PHILOSOPHICAL WORKS

Publifhed by our AUTHOR.

* EW Pbyfco-mechanical Experiments concerning the Weight and Spring of the Air; publifhed in Englifh, Anno Dom. 1660.
* A Continuation of them, Part I. 1669.
* The Defence of the New Experiments, \&xc. againft Francif. cus Linus.

The Examen of the Phyfical Dialogues of Thomas Hobs, concerning the Air. Thefe two were publifhed, A.D.1661.

* The Sceptical Chymift, 1661.
* Phyfological E/Jays, together with the Hiftory of Fluidity and Firmness, and fome other Tracts, Printed 1662.
* The Experimental Hiftory of Colours begun, A. 1663 .

Concerning the ufefulnefs of Experimental Pbilofophy; the firft Tome: A. 1664.

The fecond Iome was printed, 1669.

* A Tract concerning the Origin of Forms and Qualities, 1666. Though this Tract was turned into Latine divers years before the Genevian Collection was publifhed, yet was omitted therein, whence it appears, that the Publifher was not very cautious, who affirms in his Preface, That all Mr. Boyle's Works are contained in that Volume.

A Catalogue of the Author's Books.

The Experimental Hiffory of Cold begun, to which is fubjoined a Differtation concerning Antiperiftafis, together with an Examen of Mr. Hobs's Docirine about Cold ; 1665.

* The Origin of Forms and Qualities; the fecond Edition ; to which is annexed a Differtation concerning Subordinate Forms; 16\%\%.
* Tratts concerning the Cofmicat Qualities of tbings; Cof. mical Sufpicions; the Temper of the Marine Regions; the Temper of the Subterranean Regions, and of the Buttom of the Sea; 167 I .
*. An Efay concerning the Origin and Vertues of Gems; 1572.
A 1 rait containing New Experiments between Flame and Air; together with an Hydroftatical Differtation; 1672 .
* Some Eflays concerning the wonderfull Subtilty and Efficacy of Eftluviums, and their determinate Nature; 1673 .
Some Tracts confifting of Obfervations concerning the Saltnefs of the Sea; with a Sceptical Dialogue concerning the Nature of Cold both pofitive and privative; 1674 .

Tracts containing fome Sufpicions concerning fome Occult Oualities of the Air; with an Appendix touching Celeftial Magnets, \&c. 1674.

An Introduction to the Hiftory of particular Qualities in the Philofophical Tranfactions; N. 63. p. 2057.

* Of the Excellency of the Mechanical Hypothefis; N. 103. p. 53.

Experiments and Obfervations concerning the Mechawical Production and Origin of Several particular Qualities; together with-Some Reflexions upon the Hypothefis of Acid and Alcaly; 1675.

The Sceptical Cbymift, or Chymico-phyfical Doubts and Paradoxes about thofe Experiments, whereby vulgar Spagyrifts do labour to evince, that Sal, Sulphur and Mercury are the genuine Principles of things; to which, viz. in this 2d. Edition, Jundry

$$
b \quad \text { Experi- }
$$

A Catalogue of the Author's Books.

Experiments and Confiderations are fubjoined concerning the Pro. duciblenefs of Chymical Principles; 1680.

* A Continuation of New Phyfico-mechanical Experiments; the fecond Part; 1680.

Thefe are the Philofophical Works of our Author hitherto publifhed; what he hath wrote in Divinity belongs not properly to this place; not to mention feveral Differtations of his which you may find here and there interfperfed among the Philofophical Tranfactions publifhed in Print.

THE

TRANSLATOR

 TO THE
R E A D E R.

THough the Firft Part of the Phyfico-Mechanical Expements of this Honorable Author was publifhed by him in the Englifh Tongue, as was alfo, fome years after, bis Firft Continuation of the fame, yet fo welcomly were they entertained by the Curious, efpecially in Iranfmarine parts, that the Firfl Part batb been long fince publifhed in the Latin Tongue; and the Firft Continuation is alfa tranflated into the fame Tongue, though (for reafons, in part mentioned at the end of the Publifber's Advertifement to the Reader prefixed before this Trace) not yet Printed.

This Second Continuation of the aforefaid Experiments Jpeaks Latin at the firft hand; but that all thofe. Three Tracts might beclothed with one habit, it was the defire of fome ingenious Perfons, that it might alfo be rendred into Englifh; which Province bath been recommended to me by the Bookfeller.

Imay without vanity affrm, that I bave an advantage beyoud fome others, in reference to the Verfions of any Tracts of

Joonismus $1^{\text {us }}$

(I)

THE SECOND
 CONTINUATION O F

 PHYSICO-MECHANICAL

 PHYSICO-MECHANICAL EXPERIMENTS.

ICONISME I.

The defcription of the Engine, with a double Tube for the exbaufting of the Air.

AA

ARE Two Pumps made of Brafs.

BB Are Two Plugs hollow within, and open below.

CC Are Two holes in the upper part of the Plugs with Valves opening outwardly, that they may afford paffage to the air to go out, and hin der it from coming in.
DDDD Are Iron Rods ferving to move the Plugs, and annexed to them, by means of the Gnomons FF.

EE Are Two flat Iron firrups at the top of the Rods DD, on which the Operator muft fand to feta work the Engine.
GGG Is a Cord joyned to the Two Stirrups, and compaffing the Pully H.

The Second Continuation of

LL Are Two Valves at the bottom of the Pumps, opening inwardly, for the admiffion of the Air out of the Tube MM.

MM Is a Tube reaching from both Pumps to the Plate OO, by means of the Curvature PP QQ; which Curvature ought to be of to great length, that the Tube $P \mathrm{QQ}$ may not hinder the exercifer of the Pumps, but that he may conveniently ftand on the ftirrups EE.

OO Is a Plate bored in the middle, on which the Receivers, to be evacuated, are to be put; as R for example.

Before this Engine can be fit for ufe, it is to be put into a frame of wood to fupport it, as is fhewed in the fecond Scheme, and as much water is to be poured through the hole Q in the Plate OO into the Pumps, as is fufficient to fill the Cavities of the Plugs, and a little more; and then fome body muft ftand on the two Iron Stirrups EE, and muft alternately deprefs and elevate them. For by this means it will come to pals, that the Plugs, following the motion of the Stirrups, in their affent will leave the fpace in the bottom of the Pumps empty, and feeing all other paffage is intercluded from the Air, that Air alone which is contained in the Receiver R is conveighed into the aforefaid Pumps by the Tube QQ PP M, and opens the Valve L, which being prefently fhut hinders the fame Air from making a regrefs : wherefore the Plug, afterwards defcending, Compreffeth that Air, whence of neceffity the Valve C muft be opened, and all the Air muft pafs out at it, viz. becaufe the water in the bottom of the pumps doth exactly fill all the fpaces, and doth alfo regurgitate through the Valve C.

Here we may obferve, That this double Engine is upon many occafions to be preferred before a fingle one (that is moved with the Foot,) for it doth not onely produce a double effect, but performes it alfo much more eafily; for in thofe Engines, which are furnilhed but with one Tube, whilft the Plug is drawn up to evacuate the Pump, the whole Pillar of the Air, incumbent on the Plug, is to be elevated by force; and again, when the Plug returns back, it is alfo by force to be reftrained, left it thould be too fwiftly impelled by the Air, and fo break the bottom of the Engine; but in thefe double Engines, the Plyer of them is in a manner wholly free from that toyle. For in the Firft fuctions, the Plugs are eafily lifted up, becaufe the Air, immediately derived trom the Receiver R into the Pumps, preffeth the Plugs downwards, almoft as ftrongly as the external Air incumbent on the oppofite part; and when the quantity of the internal Air is diminifhed, it comes to pafs that the Plug to be depreffed, tends downward with fo much the greater torce, and fo by means of the Cord GGG compaffing the Pully, draws the other Plug upwards, and at the fame time hinders it from too much velocity of defcent. And by this means both Plugs at one and the fame time will be helpfull tohim that exercifeth the Pumps.

Seeing the Plugs make but a very fmall refiftance, a man may eafily judge, that the two Pumps of this Engine may be plyed with greater eafe and alfo with more fpeed, than one Pump in fingle Engines can, fo that this engine is of great ufe in order to thofe Experiments, which cannot be well made, but with velocity and fpeed.

ICONLSME II.

The defoription of the Mercurial Gage.

THE Firf defcription of a Mercurial Gage, to difcover the degrees both of the rarefied and condenfed Air, may be feen about the beginning of the Continuation of our Phyfico-Mechanical Experiments; but thofe Gages which Iufed
in the following Experiments, are declared in the fubfequent Scheme.

The whole Gage ABCDE confifts of Three Glafs Fig. . Tubes, all very well faftned and cemented together, yet fo, that a paffage is open from one to the other; The firft of thefe Tubes $A B$ being open at the extreme A, is of lefs capacity than the Tube BCD, but of greater than the Tube ED. The Tube BCD is crooked in the middle, and the Tube ED ought to be Hermetically fealed, at the extreme E, but the part BCD muft firft be filled with Mercury.

This Inftrument thus prepared, if it be put into a Receiver, out of which the Air is afterwards to be extracted, it will come to pafs, that the Air remaining in the part ED, will by its fyring comprefs the Mercury DCB and force it to afcend into the part BA, and its felfe will be dilated in the Cavity DC. If then the proportions be duely obferved between the bignefs and length of the Tubes, as fhall be declared hereafter, when the Air is extracted, the Mercury will almoft reach to the top A, and the Air in the other Leg, being fodilated, that it cannot fuftain a greater body of Mercury, will be kept included in that place.

But that this Inftrument may exactly tell the quantity of the Air produced in its Receiver, the Tubes AB ED are to be diftinguilhed by marks into feveral parts; And when the Torricellian Experiment is tryed, above the plain Plate LM of the Pneumatick Engine, as you may fee in the Figure, a Receiver FGE is to be taken, being perforated in the top F, and the Tube HI is to be tranfmitted through the hole, that fo the Receiver myy be applyed to the Plate; and then the Hole F being fopped, and the Gage ABCDE being put into the Receiver, the Air is to be exhaufted; the Air then being dilated in the Receiver, the Mercury cannot be fuftained fo high in the Tube HI, but muft defcend by degrees; and at the fame
time the Air of the Tube ED drives the Mercury by little and little into the Tube AB. When then the Mercury in the Tube HI defcends to the height of 29 Digits (I take Digits for Inches throughout all this Tract) and ftays at that height, if we mark to what height the Mercury hath afcended into the Tube AB, we may know, that as often as the Mercury in our Gage thall reft at that height, the Air in the fame Receiver will be able to fuftain onely 29 Digits of Mercury; fo that the place in the Gage, or in the Paper femblably divided, muft be marked with the figure 29 . And fo further, every Digit of the defcent of the Mercury in the Tube HI may be marked in our Mercurial Gage, and the part $A B$ will be fit to thew all the degrees of the rarefied Air.

But now if the Air be condenfed in the Receiver above its wonted preffure, and all ways of its efcape be ftopped, you may immediately know it by the Tube ED; for the Mercury will be impelled into it by the incumbent Air, through the open hole fo much the higher, as the compreffion of the Air in the Receiver fhall be the greater; and how great that is, and what an altitude of the Mercury it can fuftain, may eafily enough be found out, if the computation be made after the manner following.

It is evident from the Experiments long fince publifhed by Mr. Boyle in his Anfwer to Linus, That the fpace poffeffed by the Air, is diminifhed in the fame proportion, as the compreffing force is encreafed, and vice verfa.

Let then (for Example) the fpace A be poffefled by a certain quantity of Air, when (for inftance) Fis. 2. the compreffing force is F; if now we encreafe that force by the addition of G, which is equal to it, it will happen, that our felf-fame quantity of Air will be reduced to half its fpace, fo that B the remaining fpace will be the half of the total fpace A, even as the former preffure F is the half of the total preffure $F+G$. So further, if we encreafe the preffure more by the

6

 The Second Continuation ofaddition of H , fo that the firft preffure F is onely $\frac{1}{4}$ of the total preffure $\mathrm{F}+\mathrm{G}+\mathrm{H}$, it will come to pafs, that the Air can poffefs onely the fpace C which is $\frac{1}{4}$ of the total fpace A . And fo afterwards, the remaining fpace will be in the fame proportion to the total fpace, as the firf preffure is to the total preffure.

The remaining fpace. The total pace : : The firft preflure : The total preffure.

So that three of thofe terms or quantities being known, it will be eafy to find out a fourth by the Rule of proportion. For inftance, In our Gage let the Tube ED be the total fpace, in which the Air is compreffed by the wonted preffure of the Air, which in England is wont to be equivalent to 30 Digits of Mercury, or thereabouts; and therefore the firft preflure will be 30 Digits of Mercury. Now if that preffure be encreafed, and the Air be reduced into a narrower face, fuppofe into the fpace NE; if I would find out the quantity of this preffure, I meafure the remaining fpace NE exactly, and I conftitute that, fuppofe 6 Digits or Inches, for the firft term of proportion; the fecond term will be the total fpace DE , fuppofe 12 Digits; the third term will be the height of 30 Digits of the Mercury, which was the firft preffure; and fo the fourth term or total preflure will be found to be 60 Digits of Mercury; whence I may conclade, that the preffure of the Air in the Receiver can fuftain the Mercary to the height of 60 Digits : And fo of the reft.

From the fame principle before laid down, it will be eafy to collect, what ought to be the proportion between the Largenefs of the Tubes AB and ED. For that depends on the length of the Legs, which the higher they are, fo much the better they can reftrain and keep in the Air being but a little dilated in the fealed part. For inflance, Let the length AB be of 10 Inches, which height of the Mercury is $\frac{\tau}{\gamma}$ of the accuftomed
preffure, it will be fufficient that the Tube HB be twice as big as the Tube ED; for after the Mercury hath afcended to the top of the Tube AB, the Air included in the other Leg, expanding it felf into the fpace, forfaken by the Mercury, will poffefs three times more than its former fpace, and fo $\frac{1}{2}$ of the firt preffure, which is 10 Digits, will be fufficient to curb its fpring. But if the Legs were of lefs length, then the Mercury would be expelled by the included Air, at leaft in part. And therefore the bignefs of the Tube AB ought to have a greater proportion to the bignefs of the Tube ED, that the afcending Mercury may afford greater place to the Air to be dilated, and fo, the fpring of the Air being weakened, the weight of the Mercury cannot be overcome. And that would happen fo, if the height of the Gage be to the height of 30 Digits, in the fame proportion which the firft fpace of the Air is in, to the total fpace, which the Air would poffefs in vacuo: According to the principle before laid down.
It is better that the height of the Tube be longer than fhorter; becaufe if it be florter, the Mercury will be expelled in part, and fo will not be able to fhew all the degrees of rarefaction; but if it be longer, this onely will happen, that the Mercury will not reach to the top, and fo the Gage will neverthelefs indicate all the variations, though they be lefs fenfible ones.

But the Tube DC ought to contain that quantity of Mercury at the leaft, which may be fufficient to fill the Tube AB, before any way of eruption be opened for the Air included in the Tube ED. If the capacity of it be much greater, the matter is not much; nor need we be very folicitous concerning the Figure of this Tube. to the plain Plate BB.
BB Is a plain Plate of Brafs, made to cover the Veffel AA exactly.

CC Is a fmall Tube of Brafs, paffing through the middle of the faid Plate, and faftened thereunto.
E. Is a little Valve, opening inwardly, to fhut the fmall Tube C aforefaid.
F Is the Spring deprefing the Valve E.
GGG Is the Gnomon fattened to the Plate BB, made for reftraining the Spring F.

II Is a fquare Lath, fuftaining the Plate BB , and bored through in the middle to tranfmit the little Tube C.

LLL LLL Are two Iron Wires, which paffing through the holes in the Lath II and compaffing the upper part of the Iron Plate KK, do hinder the faid Plate, that it cannot be much moved from the Lath

KK Is an Iron plate with a hole in the middle formed into a Female-ferew, to receive the Male-fcrew MM.

MM Is an Iron Screw, whofe ufe is, fraitly to conjoyn the Receiver. A A with the Plate BB. And left the Brals Veffel fhould be broken, it is convenient to put fome wood with Leather between the Screw and the upper part of the Receiver: Alfo Leather is to be put upon the Plate BB both to prevent the breaking of the Glafs, and alfo for the more exact fhutting of the Receiver:
NN Is a Pump faftened to the Tube C below the Plate BB.
00 Is the Sucker or Plug of the Pump NN.

P Is a little hole in the lower part of the Pump, by which the Air enters into it, when the Plug is brought to the loweft part thereof.

Now if we would comprefs the Air by the help of this Engine, we put the Bodies, about which the Experiment is to be made, into the Receiver AA ; and laying it on the Plate BB , we firmly bind it thereto by the help of the Screw MM. This being done, the Sucker or Plug OO is to be drawn, till the external Air by the hole P, can fill all the upper part of the Pump; then if the Plug be drawn upwards, it will come to pafs, that the Air finding no other way of egrefs, will open the Valve E, and enter into the Receiver AA, from whence there is no regrefs, becaufe the valve E is prefently depreffed by the Spring F, and doth thut the hole C. And fo we may iterate the compreffion of the Air into the Veffel AA, as often as we pleafe, and the quantity thereof is eafily known by the Mercurial Gages.

But I am wont fo to fafhion the Pump, that it may be fitted by a Screw to the Tube C. For fo when one Receiver is full, we may take away the Pump, and ufe it to fill other Receivers.

Now becaufe in thefe Engines, Mercurial Gages are ufed onely to thew the degrees of compreffion, there is no need of ufing the Gages here, which are defcribed in the firf Figure; for they are made with more difficulty, and befides, they afford but a fmall fpace to note the degrees of compreffion in. And therefore it is better to fold the Glafs Tube, fealed at one end, in feveral places, as the Figure T fhews, that a long Tube may be contained in a fhorter Receiver: fo that the Mercury being put in, through the open end, as much as will fuffice to fill the length of one Digit, all the reft of the fpace filled with Air, will ferve for the marking of the degrees of compreffion, much more fenfibly than can be done in a fhorter Tube.

C
Here

Here we muft note, That when the Mercury tends downwards in fuch an inflected Gage, the weight thereof doth help the external preffure; but when it is impelled upwards, the fame weight makes refiftance: This difference mult be heeded, if we have a mind to try very accurate Experiments.

ICONISME II.

How mixtures may be made in compreffed Air.
Fig. 3.

IET the Receiver be AA, in which we have a mind tomix eithen liquors or powders.
Let QQ RR be two Tubes, each of them fealed at one end, and open at the other.

Let RQS be a Veffel of Brafs, to be laid upon the orifice of the Tubes, as is fhewed in the Figure.

The Liquors to be mixed muft be poured into the Tubes QQ RR, each liquor in his own Tube, and let the Veffe! inverted RQS be laid on the orifices of the Tubes, and in that pofture letall be covered with the Receiver AA, let the Screw be wrung or ftraitened, and the Air intruded after the manner deferibed fol 9 . And when you fhall underftand by theGage TT, that the compreffion is arrived at that degree, which you intend, the Engine is to be inverted, and fo the Liquors will flow down from the Tubes into the Veffer RQS, and be mixed there. If you defire to mix more liquors or powders, then the number of the Tubes is to be encreafed accordingly.

ICONISME III.

How factitious Air may be tranfmitted out of one Receiver into another.

ITryed two ways (principally) to tranfmit Air out of one Receiver into another; but becaufe the frit of them feemed lefs convenient, I fhall bere onely defcribe the Latter.

AA Is a plain Plate made of Metal, having an hole in the middle.

BB Is the Stop-cock faftened to the hole in the middle of the Plate AA, one of whofe ends is formed into a Male-fcrew.

DC Is a Copper Funnel open below, with a broad orifice (that fo it might be eafily fet upon the Pneumatick Engine and there fand firm) and in the upper part the orifice D is fafhioned into a Female-ferew, to receive the Male-fcrew of the Stop-cock BB.

EE Is a fmall Tube, open at both ends, both whofe orifices are excavated into a Female-Screw, to receive

Fig. 2. the Male-fcrew of the Stop cock BB.

FF Is the Receiver laid on the Plate AA, and exqui- Fig. r. fitely fitted thereunto.

Now if we would make factitious Air, we muft put the matter which is to produce the air, into the Receiver FF, and placing the faid Receiver on the Plate AA, by means of the Screw, we muft ftrongly faften it thereto, after the fame manner as hath been defcribed in our Engine for compreffing the Air; and the Stop-cock BB we infert into the Femalefcrew D; then the orifice C, and with it the Receiver, is to be placed upon the pneumatick-Engine, and the Stop-cock B being opened, the Air is to be extracted; when the Receiver FF

The Second Continuation of

is emptied of Air, the Stop-cock B is to be fhut, that fo all paffage of external Air into the Receiver may be intercluded, and the Stop-cock being taken out from the Female-fcrew D, the Receiver is prefently to be immerged in water, fo that at leaft the Plate AA with the Stop-cock may be covered therewith; for fo it will be clear, that no Air from without can find ingrefs, and the Air produced out of the matter included in the Receiver, will be preferved unmixed, and the degrees of its rarefaction or compreffion are known after the fame manner, as hath been defcribed p. 4 .

Now if we would tranfmit that Air into another ReFig. 3. ceiver; another Receiver FF with another Plate AA, and a Stop-cock BB is to be procured and evacuated after the fame manner, as was before defcribed, then by meanes of the fmall Tube EE, we joyn the Stop-cocks BB of both Receivers, as is fhewn in Fig. 3, and all fufpected places are to be ftop'd with Cement or Turpentine, that no external Air may find admiffion ; then, the Stop-cocks being opened, the Air produced in the former Receiver flows into the latter, and the Stop cocks being again fhut and plucked out from the Tube EE the Receivers may be kept apart; and if there be any matter included in the latter Receiver, we may eafily view what influence the factitious Air hath upon it.

But becaufe the Mercurial Gages defcribed fol. 4. are fpoiled if they be inverted, and the Gages, mentioned fol. 9. do prefently expel their Mercury, if the Air be rarefied in their Receivers; and feeing the operation, here defcribed, cannot be perfected, but both Receivers muft be inverted, and both likewife emptied of Air; we muft make Gages of another fort after the manner following. See Fig. 4.

AA Is a Glafs Phial filled with Mercury to the Superficies DD or thereabout.

BB Is a Glafs Tube very well cemented, in the orifice of the Phial.

CC Is another Tube tranfmitted through the Tube BB, and reaching to the bottom of the Glafs. This Tube muft be fealed above and open below; neither muft it fo exactly fill the Tube BB , but that paffage may be opened to the external Air within the Glafs AA.

Now if you put this Inftrument into a Receiver, from which the Air muft be afterwards extracted, it will come to pafs, that both Tubes will be exhaufted of Air, and when you invert the Receiver, to take in new Air, as in Fig. 3 is declared; the Mercury will flow down to the orifices of the Phial, and will be there kept below the orifice of the Tube BB ; and the new Air entring, will eafily fill both Tubes and Phial : Then the Receiver being erected, the Mercury will again be ftagnant in the bottom of the Phial, and the orifice of the Tube CC will be found demerfed in it. Then if any Air be produced, out of the bodies included in the fame Receiver, it will come to pafs that the Mercury will afcend into the Tube CC, and there, reducing the Air into a narrower place, will fhew the degrees of compreffion.

Note that almoft all the kinds of factitious Air in the beginning are in part deftroyed, and therefore the degrees of compreffion cannot here be fo exactly known, unlefs we know by Experiments, what part of the Air is wont to be deftroyed.

ICONISME IV.

An Inftrument by which Air may be filtrated through Water.

${ }^{\text {AA }}$S a Glafs Receiver, whofe orifice, laid upon the Fig. 1. Plate BB , agrees exquifitely therewith.
$\widehat{B B}$ Is a plain Plate with an hole in the middle, to tranfmit the Tubes CC DD.

C 3

CODD Are two Tubes cemented to the Plate BB, one of which is no higher than the Plate, but the other reacheth almort to the Top of the Receiver.
EEEE is a Stop-cock, to whofe holes the Extremities of the Tubes CC DD are faftned.

FF is the Key of the Stop-cock unperforated, wherein onely one chink GG is excavated.

HH Is the Receiver, compaffing the end of the Stop-cock, and faftned to it, ferving againft the ingrefs of the outward Air, and communicating with the Pump II.

LL Is a Glafs Veffel.
M Is a hole in the top of the Receiver, whofe Stopple is faftned with a Screw.

In the fecond Figure there is exhibited a Stop-cock, cut tranfverfly, that the two Tubes CC DD may be the better diftinguifhed, and their infertion into the Stop-cock be perceived.

This Inftrument is thus to be ufed: We put the thing, about which the Experiment is to bemade, into the Veffel; and the Receiver AA being laid on the Plate BB, we pour water into the hole M till the Receiver be half full, or thereabouts, and the Veffel LL, with the matter contained therein, do fwim on the top thereof; then we ftop the hole exactly, and fatten it with a ferew, in the fame manner us hath been defcribed in the firft Scheme. Thefe things being thus prepared, the Key is to be fet in that pofture that the chink GG may communicate with the Tube CC; then the Plug being brought to the loweft part of the Pump, the Air of the Receiver AA, entring through the upper Orifice of the Tube CC, will flow down through the chink GG into the Receiver HH , and into the Pump. Then the Key being inverted, fo that the chink GG doe anfwer to the infertion of the Tube DD, the Plug is to be impelled upward, and then the Air will be expelled from thenceland, finding no other paffage, will be driven through the chink GG, into the Tube DD; and from thence will emerge to the

Pbyyfico-Mechanical Experiments:

 upper part through the water flagnant in the Receiver. Iterating this labour, we ftrain the Air through the Water, as of ten as we pleafe; and by this means, we know whether it be clothed with any new qualities, in refpect of the body included with it.
ICONISME IV.

How the fame Numerical Air may be fometimes coxdenfed, fometimes rarefied.

LET the Receiver AA be placed upon the Plate $B B$ and fcrued in, as is defcribed fol. 8.

Fig. 3.
CC Is the Stop cock, faftned to the hole in the midtt of the Plate BB.

DD Is a pump joyned to the Stop-cock C with a ferew.
E Is a Veffel of that bignefs, that it may fluctuate in the Receiver AA without danger of inverfion.

Let fome Animal be put into the Veffel E, and let the Receiver AA be put upon it and ferewed to it, as the Scheme flews. Then let the Pump be filled with water, and by a Screw fitted to the Stop-cock; the Stop-cock being then opened, let the Plug P be forced upwards, then the water afeending through the Stop-cock will, in part, fill the Receiver AA, and will reduce the Air, contained therein, into a narrower fpace, without any addition of new Air; if then you draw the Plug downwards, the fame numerical Air will be again rarefed. Thus you may both condenfe and rarefie the fame Air as often as you pleafe; and by this means you may find out, whether the condenfation of the Airdo contribute any thing to prolong the life or health of Animals, yea or no?

The Second Continuation of

ICONISME II.

The defription of a Wind-Gum.

AAT Sa Copper Globe, hollow within. BB Is a Tube, faftned to the Globe.
F Is a Valve opening inwardly, and fhutting the Globe BB.
G Is the Spring depreffing the forefaid Valve.
H Is a Gnomon affixed to the Globe AA, and making faft the Spring G.

CC Is a Tube of Iron, faftned to the Tube BB and the Globe AA.

DD Is a Plug exactly fitted to the forefaid Tube.
EEE Is another Plug fitted alfo to the Tube BB with an Iron Wyre, reaching almoft to the Valve F.

R Is the protuberance of the Tube CC, fomewhat hollow. ed above to receive the end of the Iron LL.

LL Is a crooked Iron, moveable about the Extremity in R , fo that it is like a leaver to lift up the Plug EEE.

OPO Is a crooked Iron, faftned in M, that the Thumb fticking in the Angle P, the reft of the Fingers may attract the Leaver L, and fo force the Plug EEE upwards. But the Curvature is made for this ufe, that the one end O might be applyed to the fhoulder, if it be thought fit to aim at any mark.

TT Is a rectangle of Iron, compaffing the Leaver LL and the Iron OPO, to keep the Leaver in that pofture, which the prefent Scheme holds forth; for otherwife the Plug EEE, would be thruft out far away, whileft we intrude the Air into the Globe AA.

II Is an elliptick hole in the upper part of the Globe very well shut with a Valve, opening inwardly; whofe ufe is to

Phy/ico-Mechanical Experiments.

- give liberty of infpection, and of amending what is amif; for the Valve may be drawn through the hole by reafon of its elliptick Figure.

SS Is a metalline plate tranfverfly placed above the hole II, and perforated to tranfmit the Screw V, by whofe help the Valve fhutting, the hole II is fuftained and is applyed clofely to the hole.
Q Is an hole in the inferiour part of the Tube CC, by which the Air enters into the Tube, whileft the Plug \mathbf{D} is brought to the loweft part of the Tute.

The Air is thruft into this Engine after this fort, Itread with my foot upon the crooked end of the Plug DD, that it may not be removed from the ground, and I lift the Engine upward, till the upper part of the Plug be found below the hole Q, and then the Air entring through the forefaid hole, doth wholly fill the Tube CC.

Then I forceably deprefs the Engine, and fo the Air, contained in the Tube CC, opens the Valve F, and is thruft into the Globe AA; whence it cannot return, becaufe the faid Valves prefently ftop the paffage; and thus by iterated turns, we may condenfe the Air in the Globe, untill the force of its Spring cannot be overcome by our ftrength.

Now if we would difcharge the Air, fo condenfed, the Plug DD is wholly to be drawn out, and a bullet of Lead to be put into the bottom of the Tube CC: Then by means of the Leaver LLL the Plug EEE is to be impelled upward, as we faid before, and then the extremity of the Iron-wire opens the valve B, and the air breaking out therefrom, expels the Leaden Bullet through the Tube CC with great violence.
Note that before the plug DD is again put into the Tube CC for the compreffion of the Air, about half an ounce of water is to be poured into the faid Tube. For by this means no Air at all can efcape out by the Plug, and moreover, that
water exactly filling the upper part of the Tube CC, will Caufe that the whole Compreffed Air will be intruded within the Cavity AA, and fo the condenfation will be perfected much fooner, than if, at every turn, part of the compreffed Air did remain below the Valve F.
This Engine is much better than any Wind-Guns hitherto mentioned in Print.
YI. Becaufe that feeing one onely valve ferves, both for the letting in, and difcharging forth of the Air, it is lefs fubject to be fpoiled or impaired, than if two Valves were ufed for that purpofe.
2. If any diforder happen in other Guns, the Engine remains ufelefs, but here by the Elliptick hole, a man may take out the Spring and the Valve, and fo mend whatfoever is amifs.
3. In other Guns the Valves being covered with Leather were put in before the Engine was on every fide fhut, and therefore Silver-folder could not be ufed in cementing the parts, but onely Lead folder by which the Air, being much compreffed could by no means be reftrained; but here all things are well cemented with Silver folder, without danger of burning, in regard the Valve covered with Leather is put in afterward through the Elliptiek hote II.
4. But this Engine is chiefly to be preferred before others on this accompt, becaufe we immit feveral bodies into the Receiver, through the Elliptick hole, and fo make many Experiments in highly-compreffed Air.

ICONISMEV.

An Inftrument to diffill in vacuo.
AA S a Brafs Veffel, fhut below and open above. BB Is a Diaphragma or Midrift of Tin, whofe Fig. 8. edges are fo polifhed on both fides that they exquifitely do agree and fuit with the edges of the Veffells $A A D D$, which are alfo polifhed, and fo keep the external Air from Ingrefs.

CC Is a Tube faftened to a hole in the middle of the Diaphragma $B B$.

DD Is a Brafs Veffel whofe aperture is applyed to the Diaphragma BB.

EE Is a Stop-cock fattned to the hole of the Diaphragma BB.

FF Is a Tube reaching from the Stop-cock EE to the hole for fuction in the Pneumatick Engine.

GG Is a metalline Veffel flhutting in the commiffures of the Veffels with the Diaphragma, and alfo the Stop-cock; that it, being filled with water, may keep all fafe from the external Air. This Veffel is to be foldred to the Veffel AA.

We ufe this Engine after the following manner, Taking away the Diaphragma BB, we put the things to be boiled into the Veffel AA, and fo fet it in a convenient place, that it be not fhaken, whileft it is evacuated, then putting on the Diaphragma BB and the VeffelDD, we put to the Pneumatick Engine, and making ufe of the Tube FF, the Air is pumped out of the Veffels, the Vefiel GG being yet firt filled with water. Then the Stop cock is to be fhut, and taking away the Tube FF, we may place the evacuated Engine on the Fire, and the Vapours afcending through the Tube CC, are con-
denfed in the upper Veffel, and fo we have a liquor diftilled in vacuo; and the quantity of the generated Air, is known by the Mercurial Gage H, but that muft be kept up in the Top of the Receiver, left the Mercury do exhale, by reafon of too much heat.

Note that round pieces of Paper, perforated in the middle, are to be laid over the orifices of the Veffels AA DD, to the end they may be better joyned with the Diaphragma; and the commiffures of the Tube FF with the Stop-cock and Pneumatick Engine are to be fortified with cement, and the Stopcock EE is fo to be difpofed with the Veffel GG that part of the Key may be prominent without the Veffel through the hole, that fo it may conveniently be turned, and yet neverthelefs, the Stop-cock, with the Diaphragma, may be taken out of the Veffell GG, whilft the Veffell EE is to be filled with flefh or any other matter. And that is very eafily done in this manner, The Key confifts of two parts, one of which M is turned in the Stop-cock it felf, by means of a certain chink, which receives the fmall protuberance of the other part OO, which other part doth exactly fill the fmall Pipe NN, faftned to the Veffel GG, and being prominent outwardly may eafily be turned in it, and communicate its motions to the other part M, but it is drawn outward whilf the Diaphragma BB is to be taken out of the Veffell GG.

Shews you another Inftrument, herein differing from the former, that it is almoft all of Glafs and affords a longer paffage for the vapours.

BB Is not a Diaphragma, but onely a fmall Tube, polifhed at both ends, that it may exquifitely fuit with the orifices of the Veffells A and D.

AA DD Are two Glafs Veffels, whofe orifices are applied to the Tube BB, and fo the Vapours are eafily tranfmitted from the one to the other.

$$
\begin{aligned}
& 1 \\
& c \\
& i \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& t \\
& 1 \\
& t \\
& 1 \\
& 1 \\
& t \\
& 1 \\
& 1 \\
& t \\
& t \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

Ployjico-Mechanical Experiments.

EE FF GG I have the fame Ufe as in the former Scheme, and the whole Inftrument is to be evacuated after the fame manner, and placed upon the Fire, except that here the Vef, fel AA, as being made of Glais, muft not be put on an open Fire, but in balneo Marie, or on Sand, and the Vapours will be condenfed in the Veffel DD.

ARTICLEI.

Several waies wed to belp the Production of the Air.

EXPERIMENTI.

$$
\text { Faly in. } 1676 .
$$

BEcaufe it appears by the new Experiments publifhed at Paris, in the year 1674 . and which are to be fold by Fohn Cufon in St. James Street, That Bread alone can produce no Air in vacuo, we were willing to try whether yet it did not contain fome Air, which might come forth fome other way. I therefore included a little Piece of Bread, very moift and a little kneaded, in vacuo with a Mercurial Gage.

$$
\text { Fuly } 12 \text {. }
$$

In fix hours fpace no Air was produced yefterday, but this night a little brake into the Receiver, as much as did fuffice to fuftain three digits of Mercury; the reafon was, becaufe I had neglected to fortifie the Cover with Turpentine.

Towards the Evening, I found the Mercury higher by one inch or thereabout, and I am very certain that nothing had entred from without.

$$
7 u y \times 13 .
$$

This night alfo the Mercury afcended higher, but my Gage was not of that fort as exactly to difcover many degrees.

$$
\text { D } 3 \text { July }
$$

This day the Piece of Bread disjoined its Receiver from the Cover, by the force of the produced Air, and the Smell of it was acid.

Hence it follows, That Water is a fit Diffolvent to draw forth Air out of Bread.

EXPERIMENTII.

Fuly 11.

I tried another way to extract Air from Bread, for by the help of a Burning glafs I burnt Bread in vacuo, and fo I found that the Bread did generate much Air, and that Air did ever and anon break out, as by Fulmination; whence it feems probable, that Air is contained in Bread, but it is fo clofely coarctated therein, that no eafie operation can give it a difcharge; but if any thing could diffolve and loofe that knot, it may then produce great effects.

EXPERIMENT III.

29503 mol mato

I took eight ounces of dryed Grapes, and, with feven ounces of Water, included them in a Receiver, able to hold 22 ounces of Water, the Grapes were bruifed.

Sept. 23.
The Receiver was demerfed under the Water all this night, yet the Mercury afcended two whole inches.

Sept. 30.
In feven daies fpace, the Mercury came to the height of thirteen inches.

$$
\text { Ottober } 5 .
$$

In five daies face, the Mercury ran up twelve inches, and was now 25 inches high.

Octob. 18.

The Mercury did not proceed to afcend with the fame fwiftnefs, and the Air began to pass out of the Receiver, but not before this day; yet thefe Grapes produced much more Air than thofe which I had included without Water. See Art.IX. Exper. I.

EXPERIMENTIV.

$$
\text { Fuly } 12 .
$$

I included of Raiinns of the Sun bruifed ten ounces in vacuo, with a fufficient quantity of Water to promote Fermentation.

Fuly 14.
ni: In 2 daies fpace the Raifins had produced ten inches of Air.
About the evening the Mercury was about fifteen inches high: the fifteenth day, the Mercury had almoft reached to its accuftomed height.

$$
\text { Fuly } 16 .
$$

This day, in the morning, I found the Receiver fevered from its Cover, and the Air breaking forth through the Water, in which it was demerged: I included the fame Raifins again in vacuo.

$$
\text { Fuly } 18 .
$$

This day, in the morning, I found the Air again breaking out.

$$
\text { Fuly } 19 .
$$

I flut up the fame Raifins in the fame empty Receiver. I oldgap ,
This day I found the Receiver full, and the Air breaking out of it.

I again thut in the fame Raifins in the fame exhaufted Receiver.

- lari mellons unode quasy fuly 23.

Yefterday about noon I found the whole Receiver almoft
full of Air, and this day in the morning I perceived the Air to pafs out very often. From the I. Experiment of Artic. IX. it appears, that Grapes, without Water, can generate but little Air: fo that it is manifeft hereby, that Water is a fit medium to elicit Air out of them : 'tis alfo evident that the Production of Air is not begun prefently upon the Affufion of Water; but it proceeds on with greater fwiftnefs, after that the parts of the Water in five or fix days time have more deeply funk into, and pervaded the Grapes.

EXPERIMENT V.

$$
\text { Auguft } 13.1677 .
$$

I included Pears in two Receivers in vacuo; and Plums in another.

$$
\text { Aug. } 16 .
$$

In three days fpace all my Receivers were filled with Air, newly generated; yea, one of them, which included the Pears, becaufe I had left it expofed to the Raies of the Sun, in the fpace of 24 hours, was feparated from its Cover, whence we may conjecture, that the Production of Air is very much promoted by the Heat of the Sun.

EXPERIMENT VI.

O\&tob. 16. 1677.
I took two ounces of Grapes bruifed, and fecured them from the ingrefs of Air, in an exhaufted Receiver, capable of containing twenty ounces of Water.

$$
\text { Octob. } 17 .
$$

The Mercury rofe higher about one half-inch. Octob. 18.
Thefe laft 24 hours the Mercury ran up about another halfinch

The height of the Mercury was two inches.
The 22 it was almoft 4.
The 27 it was almoft 6 inches. Fan. 2. 1678.
The Mercury as yet came not to the height of 10 inches. Ostob. 16. 1677.
I put 3 ounces of bruifed Grapes, with half an ounce of Spirit of Wine into a Receiver able to hold 30 ounces of Water, and then I exhaufted the Air.

Octob. 17.
The Mercury afcended but a very little. Ostob. 18.
The Mercury came not up to the height of one quarter of an inch.

$$
\text { octob. } 20 .
$$

The Mercurial Gage was out of order.
Fan. 2. 1678.
I this day found my Receiver filled with Air; and alfo, when fome of the Liquor was poured out, fome Bubbles were formed in the Turpentine about the Orifice, and were broke outwardly.
From this Experiment, made in two Receivers together, it feems to follow, that Spirit of Wine doth much advance the Production of Air in vacuo, though in common Air, it wholly hinders it. See the II. VIII. and XIV. Experiments of the II. Article.

EXPERIMENT. VII.

Fuly 19. 1678.
I put Muft, expreffed from Grapes bruifed, and kept for 10 months in a Veffel, fopt with a Screw, into the fame Receiver, being alfo toopped with a Screw.

The Second Continuation of

$$
\text { July } 21 .
$$

The Mercury had not afcended at all.
23 . The height of it was 3 .
24. The height was 5 .
25. In the morning it was 104 .

Towards the evening the height was 137 ; and the Muff got out.
26. The Mut. was almoft all got out of the Receiver; and although the Air now did poffefs double the face it did yefterday, yet it kept up the Mercury in the fame height. 27. About half of the remaining Muff brake forth this night, becaufe I had omitted to Set the Screw, left the Receiver fhould have been broken in pieces.
From this Experiment it follows, that Grapes kept fo long a time, do rather acquire than lose a fermentative Virtue.

EXPERIMENT VIII.

men elddul tron an fan. 30.
5.. 1 put two quantities of Apples, boiled the day before, into two Receivers flopp'd with a Screw; with one of them I mixed one third part of Sugar, the other had no Sugar at all.
N. All the fe Receivers were quite full.

$$
\text { fan. } 3 \text {. }
$$

I included raw Apples bruifed in three Receivers; in one of them I mixed one third part of Sugar ; the fecond was without Sugar, and fo was the third, but it differed herein from the fecond, that it was fix times as big: For by this means we may know, whether the capacity of the Veffel, or the mixing of Sugar, or the crudity of the Fruit, can promote or retard the Production of Air.

In that Receiver onely which contained the raw. Apples with Sugar forme Air was produced.

> Pbyfico-Mechanical Experiments. Febr. 14.

The raw Apples with Sugar had impelled the Mercury up to 30 inches; thofe that were boiled with Sugar, to two onely; in the other Receivers no Air was produced. Febr. 18.
In the Receiver, containing the raw Apples with Sugar, the Mercury came to the height of 56 inches; in that containing the boiled Apples with Sugar, the height was 3. in the other Receivers there was alfo fome Air produced, except in that wherein the boiled Apples without Sugar were put. I opened that Receiver in which the Apples had produced fo great a quantity of Air; yet the Apples feemed hardly to ke fermented, but were endued with a moft pleafant Tafte.

$$
\text { Febr. } 2 \text { I. }
$$

The boiled Apples, without Sugar had loft fome of their Juyce; and, opening the Receiver, I found the Cover to be broke, and yet the Apples were not rotten at all.

> March I.

In the great Receiver, containing the raw Apples, the Mercury was 25 inches high; in the little one, onely 7 ; but in that where the Apples were boiled with Sugar, the Mercury had afcended to 9 inches.

March 8.

In the great Receiver the height of the Mercury was 29; in the leffer $22 \frac{1}{2}$; and where the boiled Apples with Sugar were, the altitude abode at 9 digits.

$$
\text { March } 17
$$

The Juyce got out of the great Receiver; in the little one the height was 67 ; where the Apples were boiled with Sugar, it was 15 digits.

From this Experiment it feems inferrable, that Sugar, the Crudity of the Fruit, and the Largnefs of the Receiver, do all contribute to the Production of Air.

ARTICLE II.

Several waies to binder the Production of Air.

EXPERIMENT I.

Decemb.21. 1678.
I made Pafte of Bread-corn-meal, without Leaven, and put it into an empty Receiver, and then I put the Receiver in a certain Apartment, with Fire, which there kept a greater heat than is wont to be in the middle of Summer; yet the Dough or Pafte produced no Air in 10 hours fpace; whence it feems to follow, that if Dough hath once fuffered too much Cold, it can fcarce recover its faculty of Fermenting; for, fome years ago, when I made Dough without Leaven, in the Summer time it produced very much Air in vacuo in a fhort time.

EXPERIMENT II.

May 23.
I included 3 ounces of Dough, kneaded with Leaven, in a Receiver capable of holding 50 ounces of Water; I alfo poured upon it fome quantity of Spirit of Wine, to try whether Fermentation would be hindred by that means.

May 24. The Mercury was 3 inches high.
26. Little change.
27. No change.

May 29. No change.
June 2. It feemed to have afcended a little higher.
14. No change.

Decemb. 14.

No more Air being produced from the Dough, I took it out from the Receiver, and found the fmell of it not gratefull, but fubacid: I put it into an empty Receiver, and there it rofe or fwelled to double its accuftomed fpace, and made a little Ebullition.

I included 3 ounces of Dough kneaded with Leaven in a Receiver able to hold 50 ounces of Water, but here I mixed no Spirit of Wine.
May 24. The Mercury was May 26. 'Twas 38 incheshigh. $19 \frac{1}{2}$ inches high. 27 . There was no change. Dec. 14.
The Mercury perfifted in the fame height; and this day, opening the Receiver, I found the Dough of a moft acid fmell.

From which Experiment it feems to follow, that Spirit of Wine, even in Dough kneaded with Leaven, doth hinder the Production of Air.

EXPERIMENT III.

Auguf 29.

I included Pears, with a Mercurial Gage, in a Receiver full of Water, and then I intruded Air into it, till the Mercury ftaid at 26 inches higher than it was wont ; within a quarter of an hour, one of the Pears was broken, and afterwards almoft all of it was reduced to the confiftence of a Pultis.

Ang. 30.
In 24 hours fpace, the Pears feemed to have afforded no Air; but on the contrary, the Mercury in the Gage was depreffed an inch and half.

$$
\text { Aus. } 31 .
$$

I this day found no change in the height of the Mercury.
Sept. $\mathbf{1}$.
Now the Pears began to produce Air, and the Mercury was almoft 27 digits high.

$$
\text { Sept. } 2 .
$$

In 24 hours the Mercury afcended more than 8 digits, and now 'twas 35 digits high.

The height of the Mercuipt. 3 . now it was 52 digits high or thereabout.

Sept. 4.
Within thofe 24 hours the Mercury rofe 7 digits higher, and retted then in 59 .

Sept. 5.

It was 64 digits high; a Pear, being broken, was become black.

Sept. 6.
Three digits and more being added to the height of the Mercury, it came now to the 67 digits and $\frac{?}{4}$ beyond what it was accuftomed.

Sept. 7.
It defended 3 digits, and reffed again in 64.
Sept. 8.
This day the Mercury was depreffed to the 58 digit, and forme of the Water had broke out; and therefore I fraitned or $\int e t$ the Receiver with a Screw.

The Mercury afcended full 3 digits, and now fuck fufpendod above 67 .

Sept. 10.
In 24 hours it mounted $\mathbf{I}_{\frac{1}{2}}$, and flopped almoft in 69 .
Sep. 1 r.
Now it began to defend again, and was no higher than 67 digits ; yet I am certain, nothing had efcaped out of the Receiver, but it was a fharp cold night.

No change did evene.
Sept. 13.
The height of the Mercury did again decrease; it was not above 64 digits: the Cold increafed.

Phyfico-Mechanical Experiments.

In 24 hours it became higher by 6 digits, reaching to 70 . Sept. 16. It was 69 digitshigh, \mid Sept. 20. It again reached to
or thereabouts.
19. It remained in the fame place.
71.
23. The Mercury was again deprefled to 69 .

Octob. I .
It came now to the height of 75 digits.

OEtob. 3.

Yefterday I found no change at all in the Mercury; but this day it ftuck in 70 ; and the Cold was very bitter.

$$
\text { Ostob. } 5 \text {. }
$$

Yefterday the Mercury did abide in the fame place; but this day it reached to 75 : it was a rainy day.

Octob. 7.
It continued rainy; and the Mercury continued in the fame place.

Octob. 10.

Hitherto the Mercury was not changed; but this day I found it haddefcended to 69 digits; though the Rain ceafed not.

$$
\text { Octob. } 12 .
$$

Yefterday the Mercury ftood ftill; but this day it was depreffed to 65 digits: and the cold weather returned.
oitcb. I 3. The height of the \mid Nov. 5. The tieight was $80 \frac{1}{2}$. Mercury was 64.
14 \} The hieight 369 .
15. 5 was 374.
24. The height was 68 .

Nov. 2. The height was 64 .
The Cold encreafed.
The Cold abated.
2. 2. The height was 65 .

It was a hard \ddagger roft.
$0_{2} 7$. The height was 68.
It was a Thaw.
Decem.6. The height was 61.
It was a very bitter Froft.
From the former Experiment we may learn, That Fruits in a great Compreffon of the Air, cannot produce fo great a quancity of Air; for when I made an eftimate of the quantity
of the Fruits, and of the fmall fpace which is to be filled with Air; I found, that that quantity of Air was not $\frac{1}{8}$ part of that which had been produced in an empty and a large Receiver: yet the Cold of the Water might alfo give fome Impediment to the Generation thereof, as the following Experiment will confirm.
'Tis allo farther manifeft, that the Air is produced by iterated turnes, and as it were by reciprocations, even as all bodies in motion by the force of their gravity or of their fpring are carried beyond their point of reft, and fo fuffer many vibrations, or goings and returnings: Now although Cold and Heat are not the fole caufes of fuch reciprocations, yet they feem to contribute much thereunto.

EXPERIMENT IV.

Febr. 22. 1677.
I included ro ounces of Pafte in a Receiver capable of holding 22 ounces of Water, and afterward I thruft as much Air into it as was fufficient to fuftain 73 digits of Mercury, befides the wonted Preffure. In two hours fpace I perceived no. fenfible change.

$$
\text { Febr. } 23 .
$$

In $x 8$ whole hours the Mercury ran up 7 digits onely, its height being 80 .

In 6 hours fpace it was now afcended 3 digits; its height was 83 .
$\left.\begin{array}{r}\text { Febr. } 24 . \\ 25 . \\ 26 . \\ 27 \\ 28 . \\ \text { March I } .\end{array}\right]$ Its height $\left[\begin{array}{c}90 \\ 97 \\ 101 \\ 105 \\ 107 \frac{\pi}{2} \\ 112\end{array}\right.$ And Water feemed to be expreffed out of the mals.
March 2. $\}$ Its height $\{120$
3.) was ? 121

4, \& 5. It fayed at 121
March

Thefe 2 or 3 laft daies, the Froft being diffolved, the Mercury ran up 4 digits : the height thereof was 125 .

$$
\text { March } 10 .
$$

Yeferday the Mercury perfifted in the fame height; but this day, mounting 6 digits, it ftayed in 13 .

March 21 .

By reafon of the long cold feafon, no Air was produced : but in the three lait daies the Mercury afcended 7 digits, and ftayed in 138.

$$
\text { April. } 4
$$

Yefterday I perceived the Mercury had afcended, but I deferred exactly to meafure the quantity till this day: But in this very night one of the Iron-wires, that ftraitned the Receiver was broken, and fo the Receiver was ejected to 4 or 5 foot diftance.

From this Experiment we may conjecture, that the Compreffion of the Air did very much hinder the Production thereof; for that is wont to be perfected in Pafte in 2 or three daies fpace. Moreover, Cold doth much hinder the fame Production.

EXPERIMENT V.

March I. 1677.

I included two ounces of Raifins of the Sun with fix ounces of Vinegar in an empty'd Receiver, and Bubbles in a fufficient quantity did break forth: the Raifins were bruifed.

$$
\text { March } 2 .
$$

The Mercury in 24 hours fpace afcended not to the height of half a digit : yet fome Bubbles ftill appeared.

$$
\text { March } 25 \text {. }
$$

The Vinegar did alwaies appear interfperfed amongt fome of the Bubbles, yet the Mercury afcended not to the height: of one digit.

By this Experiment it appears, That Vinegar doth hinder the Production of Air and Fermentation; feeing otherwife Raifins are wont to afford much Air.

EXPERIMENT VI.

Apr. 7. I included to ounces of Pafte in a Receiver capable of holding 22 ounces of Water; afterwards I intruded Air into it, as much as fufficed to futtaine 128 digits of Mercury ${ }_{2}$ befides its accuftomed height.

In 6 hours fpace the Mercury mounted up 4 digits, and staid in 132 .
Apr. 8. In 16 hours the Mercury ran up 9 digits higher; it flaid in 141 .

Nine hours after the Mercury was not changed.
Apr.9. This day, in the morning, I perceived fome Air had broke forth, and the Mercury was depreffed to 130 digits, and therefore with a Screw I thut the Receiver more clofely, and thruft in II digits of new Air: the height was 141.

Apr. 27.
For cight whole daies the Mercury kept its flation in the fame place, but thefe two lant daies it afcended 7 digits, and ftayed in 198 above its wonted height.

Apr. 30.
Perceiving the Mercury to perfft in the fame height, I a little relaxed or eafed the Screw, that fome Air might break forth; and when I faw that the Mercury had fo far defcended, that it exceeded its accuftomed height onely 50 digits, I prefently fet the Screw, that fo I might know whether that remiffion of the Spring of the Air would afford any place for new Air to be generated; and truly in two or three minutes

time

 time I found the Mercury to have afcended fenfibly higher.Three hours after, making an Admeafurement, the Mercury was found 12 digits higher; for it came to 62 .
In 5 hours fpace it afcended r digit and $\frac{t}{2}$ and no more. May I.
In 15 hours the Mercury gat higher onely one digit. May 3.
Yefterday the Mercury perfifted in the fame height, but this day 'twas higher by $\mathbf{I}_{\frac{1}{2}}$, and remained in 66 .

May 4.
The Mercury was not changed at all, and therefore I fuffered all the Air to efcape; but fomthing hindred, that I could not quickly fet the Screw, whence it is probable, that very much Air, which at that time was produced, got out of the Receiver; yet neverthelefs, after the Receiver was again ftraitly ftopp'd, I perceived that two digits of Air and more had been produced in 5 or fix minutes time.

$$
\text { May } 7 .
$$

The Mercury in 3 daies, again mounted 2 digits.

$$
\text { May } 8 .
$$

The Mercury was higher by $\frac{1}{2}$ a digit,
May ix.

Thofe two laft daies the Mercury again ran up half a digit, and not much more. I included this mafs, almoft unfit, as it feemed, for producing of Air, in vacuo; and then in 5 hours fpace the Mercury afcended to the height of one digit.

$$
\text { May } 2 \mathrm{I} .
$$

It did not yet afcend quite 3 digits.

$$
\text { May } 30 .
$$

The Mercury ftaid at the height of 4 digits and $\frac{7}{z}$.
By this Experiment it appears, that all the Air producible from Pafte, may be in a manner generated in a great Compreffion; yet it is fomewhat reftrained by that hindrance, which at length in a leffer Compreffion will break forth in a fhort time.

$$
\mathrm{F}_{2} \quad \text { More- }
$$

Moreover, we have a confirmation by this Experiment, that Air is producible by repeated turns and operations; alfo, that it is produced more flowly in compreffed than in free Air: For fuch a Production in free Air is wont to be perfected in two or three daies time.

EXPERIMENT VII,

$$
\begin{aligned}
& \text { Fuly 30. } 1677 . \\
& \text { Artificial Air. }
\end{aligned}
$$

I included Plums and Apricocks, many of them being cut afunder, in an empty Receiver, and atterwards I immitted as much Air, produced out of Cherries, into the fame Receiver: as was fufficient to fuftain 64 digits of Mercury. Aug. I.
Our Fruits had produced no Air, but grew yellow by reafon of their overmuch Ripenefs, more than thofe which were in Common Air. See p. 37.

$$
\text { Aug. } 3 .
$$

This day I found the Mercury a little higher, and that Apricock which remained whole, feemed to be full of fome drops of Water.

Aug. 7.
The whole Apricock grew more and more foft ; the Merciry. was 59 digits high above its wonted Preffure.
 ingit abode at the fame height.
24. The height of it was 77. Though I certainly knew that nothing had iffued or efcaped out of the Receiver.
29. Seeing I found that neither the Fruits nor the height of the Mercury were changed any more, I opened the

Receiver and perceived that the Apricocks had kept their colour very well, but the flefh of them was fpongeous, and their tate fubacid; many bubbles had broke forth from them, at the time they were freed from the circumptant preffure.

$$
\text { July } 30.1677 .
$$

Common Air.
I included the half parts cut off from the Fruits aforefaid, in a Receiver full of Common Air; and with them alfo fome Fruits of the fame kind uncut.

$$
\text { July } 3 \text { I. }
$$

I found the Mercury hadattained 8 digits high.

$$
\text { Ausuft } 1 .
$$

At 6 a Clock in the Evening the Mercury was 21 digits high; in the other Receiver it was not moved.

$$
\text { August } 3 \text {. }
$$

Our Fruits kept their firmnefs much better than thole which were included with Artificial Air. The height of the Mercury was 35 digits.

$$
\text { August } 4
$$

The height of the Mercury was 42 digits.

$$
\text { August } 6 .
$$

Our whole Apricock feemed not at all to be altered. The height of the Mercury was 57.
$\left.\left.\begin{array}{c|c}\text { Aug. } \\ 8\end{array}\right\} \begin{array}{c}\text { The height }\end{array}\right\} \begin{array}{c}81 \\ \text { of it was }\end{array}$ Aug. $\left.\left._{95} \left\lvert\, \begin{array}{c}9 \\ 10\end{array}\right.\right\} \begin{array}{c}\text { The height } \\ \text { of it was }\end{array}\right\} \begin{aligned} & 113 \\ & 124\end{aligned}$
The colour of the whole Apricock yefterday began, and now proceeded to wax yellow. No moifture appeared.
Aug. $\left.11 \begin{array}{l}13 \\ 13 \\ 14\end{array}\right\}$ The he it was ht $\left\{\begin{array}{l}131 \\ 157 \\ 163\end{array}\right\}$ Aug. 15$\}^{\text {The height }} \boldsymbol{1} 71$ $16\}$ of it was $\} 171$
17 and the days following the fame height remained.

$$
\text { F } 3
$$

Aug. 27. The height was 182.
29. When I law that neither the Fruit nor the height of the Mercury were changed any more, I opened the Receiver, and found the Apricocks of a more acid and left acceptable tate, than the others in factthous air ; yea, their pulp was of a very good colour, but fpongie: they font forth many bubbles, as the others did.
From this Experiment made in two Receivers together, 'ti probably collected, that the artificial Air of the Cherries was a great hindrance to the Apricocks, that they could not produce air; yet notwithstanding, it doth advance the alteration of their colour and firmness; and is alfo good to preferve their tate.

EXPERIMENT VIII.

Octob. 10. 1677.
Grapes without Spirit of Wine.
I hut in an ounce and half of Grapes unripe and bruifed, in a Receiver that would hold 10 ounces of Water; I drew out no Air.

Otto. ir. The Mercury afended a little.
12. There was but a fall change.
13. The height was $\frac{3}{2}$ a digit.

17 The height was I digit.

18 The height $\quad x^{\frac{1}{2}}$
19. The height almost 4 digits.

20 The height the
fame, but forme finew or mouldinefs appeared in their fuperficies.
${ }_{21}$ The height was $4_{\frac{\pi}{2}}^{\frac{1}{2}}$
${ }_{22}$ The height re-
23 mined the fame,
24 but the mouldinets or finew encreafed.

Nov.
Pbyyico-Mechanical Experiments.
$\left.\begin{array}{r}\text { Nov. } 6 \\ 8 \\ 9 \\ 12 \\ 14\end{array}\right\}$ The height $\left\{\begin{array}{l|l}9 & \text { Nov. } 18 \\ 10 & 12 \\ 12 & \text { Dec. } 8 \\ 15 & 12 \\ 17 & 17\end{array}\right\}$ of it was $\left\{\begin{array}{c}23 \\ 26 \\ 36 \\ 39 \\ 39\end{array}\right.$

Fan.6. 1678. The height was 36. The air broke out.

$$
\text { octob. 10. } 1677 .
$$

Grapes with Spirit of Wine.

I made the fame Experiment in another Receiver, obfer: ving the fame circumftances, fave that here I mixed 2 drachms of fpirit of Wine with the Grapes.
Octob. 1r. The Mercury was ${ }^{\text {Oct. 17. It afcended a little. }}$ not changed. 18. The height of it was
12. There was no change.
13. The Mercury was not moved.
not yet a quarter of an inch.
x9. It was moved buta very little.

$$
\text { fan. } 6
$$

The Grapes during all the time elapfed, had produced no air.
By this Experiment made in a double Receiver, it appears that fpirit of Wine doth hinder Fermentation.

EXPERIMENTIX.

$$
\text { Oitob. 17. } 1677 .
$$

I pat one Peach into an emptied Receiver, with fome quantity of firit of Wine, which yet could not touch the Peach, unlefs it were elevated into vapours.

$$
\text { March } 27.1678
$$

I drew out the Peach, which had kept its colour, onely it had loft its firmnefs. Though the Receiver was but frmall, yet it was not filled with air, for when it wasopened, the air feemed
to rufh into it: The Peach being foftned, was fo depreffed, that the lower part of it did a little touch the fpirit of Wine; it alfo came to pafs, that the fuperiour part had almoft contracted the tafte of the fpirit of Wine, as well as that which was immerged in it.

EXPERIMENTX.
 Octob. 17.

Air with Spirit of wine.
\rightarrow I included 5 Peaches in an unexhaufted Receiver, and together with them, fome fpirit of Wine, which could not touch the Peaches, unlefs it were elevated in form of Vapours.
digits
Octob.18. The Mercury afcended not at all.
20. The height of the Mercury was $3^{\frac{1}{2}}$
Nov. $\left.24 \begin{array}{r}21 \\ 223 \\ 26\end{array}\right\}$ of height was $\left\{\begin{array}{l}5^{\frac{1}{2}} \\ 7^{\frac{1}{2}} \\ 9 \\ 9{ }^{\frac{1}{2}} \\ 9^{\frac{1}{2}}\end{array}\right.$
Nov. 6$\}$ The height $\left\{\begin{array}{l}14 \\ 12\end{array}\right\} \begin{gathered}\text { of it was } \\ 16\end{gathered}$
14\} It kept the fame
$16\}$ height.
Dec. $\left.\begin{array}{r}8 \\ 16 \\ 27\end{array}\right\}$ The height $\left\{\begin{array}{l}18 \\ 19 \\ 29^{\frac{1}{2}} \\ 20^{\frac{1}{2}}\end{array}\right.$
Fan.6. 1678. it was 23 March 28.1678.it was $3{ }^{\frac{1}{2}}$

Octob. $\mathbf{1} 7$.

Air without Jpirit of Wine.

I included 5 Peaches in a Receiver full of Common Air, without (pirit of Wine.

Octob. 18.
The Mercury afcended not at all
octob. 20.
The height of the Mercury was 5 digits.

Phyfico-Mechanical Experiments.

Octob. Nov. $\left.\begin{array}{c}21 \\ 22 \\ 23 \text { (The height } \\ 26 \\ 2 \\ 6\end{array}\right)$ of it was $\left|\begin{array}{c}8 \\ 10 \\ \text { II } \\ \text { I2 } \\ 15 \\ 17 \\ \frac{1}{2}\end{array}\right|$ Fan.6. 1678 . The height was 32 March 28. 1678 . The height was $33^{\frac{1}{2}}$.

$$
\text { April. } 15 .
$$

The Liquor in the lower part of the Receiver had brokeall out, and the air followed it; fo that I took out the Peaches.

By this Experiment we learn, That the very Vapours of fpirit of Wine do fomewhat hinder fermentation, yet much lefs than the fpirit it felf.

EXPERIMENTXI.

$$
\text { April 27. } 1678
$$

Pafte with Leaven or Ferment.

I included an ounce and half of Pafte, mixed with leaven with common air in a Receiver, able to hold 23 ounces and half of water.

$$
\text { April } 28
$$

The height of the Mercury in the Gage was $2 \frac{1}{2}$.

$$
\text { April } 30
$$

The height of it was $3 \frac{\pi}{4}$.

$$
\text { May } 4 .
$$

The Mercury was depreffed, though no air broke forth, and the Pafte was mouldy. The height of it was $2 \frac{1}{2}$.
May
$\left.\begin{array}{r}6 \\ 10 \\ x_{4}\end{array}\right\}$ The height $\left\{\left.\begin{array}{l}2^{\frac{3}{4}} \\ 3 \\ 3{ }_{4}^{\frac{1}{2}} \\ 4\end{array} \right\rvert\,\right.$
May
$\left.\begin{array}{l}17 \\ 20 \\ 24 \\ 28 \\ G\end{array}\right\}$ The height $\left\{\begin{array}{l}4^{\frac{1}{2}} \\ 5 \\ 6 \\ 8 \\ 7 \text { fune }\end{array}\right.$

Paffe without Leaven.

Iincluded an ounce and half of Patte, without Leaven, with common air, in a Receiver capable of holding 23 ounces and an half of Water.

$$
\text { April } 29
$$

Hitherto the Mercury had not afcended; but this afternoon I found its height to be a quarter of a digit.

$$
\text { April } 30 .
$$

There was no change.

$$
\text { May } 4
$$

The Mercury afcended but very flowly, and the Pafte was finewed or mouldy.

$$
\text { May } 6 .
$$

पand the height of the Mercury was 4 digits.

By this Experiment, made in two Receivers at once, it feems clear, That Leaven doth rather hinder than help the production of Air, if the Pafte be not made in a place hot enough.

Pbylico-Mechanical Experiments.
EXPERIMENT XII.
May 23.
Pafte with Spirit of wine.
I included an ounce and hali of Pafte, without Leaven, in a Receiver capable of holding 25 ounces of Water, and I poured fpirit of wine on the Pafte.

May 24. The Mercury was I digit high.

31. There was no
3uly 19 No change.
ange. change.

$$
\text { December } 14 .
$$

When the height of the Mercury was no more changed, I opened the Receiver, and the Pafte affected my Noftrils with a fubacid fmell.

May 23.

Pafte without Jpirit of wine.

I included one ounce and an half of Pafte, without Leaven, in a Receiver capable of holding 25 ounces of Water ; but I added no fpirit of Wine.

$$
\text { May } 24 .
$$

There was noafcenfion of the Mercury.
May 26. It was 3 digits high.

$$
\text { December } 14
$$

The Mercury came again to the height of 15 digits, but this day Iopened the Receiver, and found the Pafte very acid.

From theie Experiments, made with Pafte, in a four fold Receiver at one and the fame time, it feems to follow, That fpirit of Wine doth very much prejudice the production of Air; and the rather if the Patte be wrought with Ferment ; befides, it is clear, that Pafte without Ferment in tract of time, will prcduce no lefs Air than Pafte with Ferment.

EXPERIMENT XIH.

octob. 1 r.

I included new Ale in a Receiver, exactly filled by the help of my Pneumatick Engine, that fo no air might be left : And I included another quantity of the fame Ale, in another Receiver, wherein fome room was allowed for the Air. Octob. 12.
I this day found the Cover of that Receiver in which I had left fome Air, to be broken, and therefore I transfufed the fame Ale into another Receiver, in which there was room large enough left for the Air. In the Receiver exactly fall, the Mercury afcended a little,

October 13.

In the Receiver exactly filled, the height of the Mercury was 12 digits, in the other Receiver 13 digits, though it had been thut up a fhorter time, and a much larger fpace was left therein, in which the Air newly produced might have been dilated.

Ottober 14.

In the full Receiver the height was I_{3}; in the other Receiver, 18. Towards Evening I found the full Receiver to
work with greater fwifnefs, forthe height of the Mercury in it, was 22 ; and in the other 20.

$$
\text { Ottober } 15 \text {. }
$$

In the full Receiver the height of the Mercury was 4^{2} digits ; in the other 26. Befides we muft mark, that fome bubbles of Air, which in the full Receiver had poffeffed its upper part, now did wholly vanifh; and befides the Ale did occupy a long fpace in the Mercurial Gage, wherein before it was not found.
October 16. In the full Receiver the height was 60 digits. In the other 30 .
18. In the full Receiver the height was 90. In the other 40 .
22. In the full Receiver the height was 90. In the other 42 .
23. In the full Receiver the height was 108. In the other 50.
26. In the full Receiver the height was 108. In the other 60 .
28. In the full Receiver the height was $\mathrm{I}_{3} 3$. In the other 63 .
The bubbles which were vanifhed, appeared again, yet: nothing flowed out.

$$
\text { Nov. } 8 .
$$

The full Receiver had loft much Ale, wherefore I opened it, and thereupon all the Ale feemed as if it would have vanifhed into Froth, unlefs I had fuddenly fhut the little hole, which I had opened: I tried it many times, that if the hole were opened in the Gage, the Mercury prefently defcended; but if the hole were again fhut, it would fpeedily afcend; as if the compreffion, being abated, had afforded fome facility for the production of Air. The Ale had a moft pungent tafte.

$$
\text { Nov. } 9 .
$$

I opened the other Receiver, and obferved in a manner the fame circumitances.

From

From this Experiment it feems to follow, That Ale if the Air be wholly excluded from the Veffel will ferment more flowly than if fome Air were left with it : yet in tract of time, it makes a greater compreffion, if no place be left for its dilatation.

EXPERIMENT XIV.

Fune 27.

Peafe with Spirit of wine.

I put green Peafe into an emptied Receiver, with firit of Wine. Towards the Evening the Receiver feemed to admit the external Air, and the Mercury came to the height of 18 digits; and therefore I firmed the Cover with Turpentine.

$$
\text { Fune } 30 .
$$

I perceived no more change in the height of the Mercury.

$$
\text { Fuly } 7 .
$$

No Air was produced, even in the moft vehement heat.

Fune 27.

Peafe without Spirit of Wine.
I put new Peafe into an emptied Receiver, without firit of Wine. The Receiver and the quantity of the Peafe were the fame, as in the laft mentioned Experiment.

$$
\text { Fune } 28 .
$$

The Receiver was full of Air, for I think it was not exactly thut ; and therefore I again included the fame Peafe. Towards Evening the height of the Mercury was 5 digits.

Fuly i fur it was 19
Fuly 8. The Air got out of the Receiver being too much filled.

Pbylico-Mechanical Experiments.

From this Experiment, made in two Receivers at once, it appears, That fpirit of Wine doth alfo hinder the production of Air in Peale.
\qquad

AR T IC LE III.

The Effects of Artificial Air are different from the Effects of Common Air.

EXPERIMENT I.

June 19. 1677.

IPut Cherries into an evacuated Receiver. In 6 hours time the Mercury came to the heiglit of 5 digits and an $\frac{1}{2}$.

June 20.
The afcenfion of the Mercury was $3 \frac{1}{2}$.
Towards the Evening it was 2.
N. The Afcenfons are always to be underfood, as added to the former.

7ин

July 12 The afcen- 3 Full 4\} ~ T h e ~ a f c e n - ~ $\left\{2 \frac{1}{2}\right.$ $\left.{ }_{2}\right\}_{3}$ ion was $\} 4$ arden- 4$\}$ 3 lion was \int_{2} The height was 4^{8}; but Buna I transmitted the Air into another Receiver, and the Mercury was depreffed to the height of 35 digits.

Fuly 6. The afcenfion of the Mercury was 4 digits in one nights fpace.
7. The afcenfion of it was $5 \frac{1}{2}$ in 24 hours fpace.
8. The afcenfion of it was 5 .
9. The afcenfion of it was 5 .
r. The afcenfion of it was 6 .
11. Theafcenfion of it was 12 . in the fpace of 34 hours.
12. The afcenfion of it was 7 .
13. The afcenfion of the Mercury was 3. the height about 92 digits; but the Air being tranfmitted into another Receiver, the Mercury flaid in the height 50.

18. The afcenfion of the Mercury was 9 . the height of it 102.
19. The height of the Mercury was 92. viz. becaufe I tranfmitted part of the Air into another Receiver.
20 The afcenfion of the Mercury was 15 .
22. Some Air got out, and the height of the Mercury was $63 \frac{1}{2}$.
23. The afcenfion of it was $12 \frac{1}{2}$.
24. The afcenfion of the Mercury was 4 . the height of it was 79 digits ; but the Air being tranfmitted into another Receiver, the height ftaid at 62 .
$\left.\begin{array}{l|l}25 \\ 26\end{array}\right\} \begin{aligned} & \text { The afcen }-58 \\ & \text { fion was }\end{aligned}\left\{\begin{array}{ll}27 & 28\end{array}\right\} \begin{gathered}\text { The afcen } \\ \text { fion was }\end{gathered}\left\{\begin{array}{l}4\end{array}\right.$
30. The afcenfion of it was 10 . the height was 98. Part of the Air being tranfmitted into another Receiver, the height ftaid at 64 .
3r. The afcenfion was 6 .
Aug. I. The afcenfion of the Mercury was 9 . digits.
2. The afcenfion of it was 4.
3. I tranfmitted the Air into another Receiver, and the Mercury abode in the height 68.

Phyfico-Mechanical Experiments.

Aug. 4. I tranfmitted the Air again into another Receiver, and the Mercury refted in the height 54.
6. The afcenfion of the Mercury was 7.
7. The afcenfion of it was 4.
8. There was no afcenfion thereof.
9. The afcenfion thereof was 3 digits.

The Receiver being opened, I found the Cherries of a whitifl colour, and of very little tafte; but the tafte they had, was not ungrateful: their flefh or pulp was fpongie.
From this Experiment it feems to follow, that Cherries contain much Air in them, and that they produce it very irregularly.
EXPERIMENTII.

$$
\text { Fuly 13. } 1677 .
$$

I put Cherries into an empty Receiver, and then I tranfmitted into the fame Receiver, as much Air produced from other Cherries, as was fufficient to fuftain so digits of Mercury.

$$
\text { fuly } 15 .
$$

Yefterday the Mercury had not afcended at all; but this day it was two digits higher, viz. in 22.above its wonted height.

Fuly 16. The height of the Mercury was $23^{\frac{1}{2}}$.
Fuly 17 The height of it was 25 .
26. The height of it was 43. Some Air got out.
27. The height of the

Mercury was 45 . Some more Air made an efcape. 30. The height of it was 52 .
31. The height of it was 61 digits.

$$
\text { Auguft } \mathrm{I} \text {. }
$$

The height of the Mercury perfifts in a manner the fame, but the Air brake out.

The Second Continuation of

August
 27.

The Air had all broke out for fome time before; I took out the Cherries, and found them not to have loft their colour, as. they had in the former Experiment ; and befides they had contracted no putrefaction nor mouldinefs, but had a tafte a little more acid than they were wont to have; and being opened, there were many cavities in their pulp, like fermented pate or dough, but not quite fo thick.

From this Experiment compared with the former, it may probably be inferred, that in Artificial air, fruits do produce lees Air, and fo they keep their colour and their tafte better; for the Cherries in the former Experiment remained included in. a Receiver, not much longer than thole in this.

EXPERIMENT II.

September 10. 1677.

Common Air.

I put 6 ounces of unripe Grapes into a Receiver, capable of containing 25 ounces of Water; and I ftop'd it firmly by the help of a Screw, with Common Air.

September 1 I. The Mercury afcended not at all.
September 12 . The Mercury ftop'd a little below one digit.
Sept.

Sept. 18 19 $\left.\begin{array}{l}19 \\ 20 \\ 21 \\ 22\end{array}\right\}$ The height $\left\{\begin{array}{l}16 \\ 18 \\ 20 \\ 22 \\ 23 \frac{\pi}{2}\end{array}\right.$
September 23. The height of it was 27. The Grapes were not altered.
september 24 . The height was 30.
25. The height was 31. The Grapes now began to be yellow.

Pbyfico-Mechanical Experiments.

 October r. The height remained at 35 :
octob.2. The height was 36 Octob.10 The height was 35 5 The height ftayed 65 at 36 .

13 The height of it was $3^{2 \frac{1}{2}}$. The Air got not forth, but the Cold began to come on and encreafe. Novemb. 9. The fame height remained.

Decemb. 19.
I found the Air almoft all to have made an efcape.
Decemb. 20.
Itook out the Grapes, and I found that by their Smell and their Tafte, they had contracted fome mouldinefs, though the fame was not difcernable by the eye. Their firmnefs was encreafed.

Septemb. 10. 1677.

Factitious Air.

I included two ounces of crude Grapes in a Receiver capable of holding 8 ounces of Water; and to the Common Air, I fuperadded Air produced out of Pears, until the Mercury did ftay 10 digits above its wonted preffure.

Septemb. II.
The Mercury defcended, its height was 8 digits. Septemb. 12.
The height of it was II. the afcenfion of it was 3 .
Sept. 13$\}$ The height $\{16 \mid$ Sept. 1 The height $\{23$
$14\}$ of it was $\left\{20\right.$ St 16 of it was $\left\{\begin{array}{l}24 \\ 2\end{array}\right.$
Septemb.17. The height was 28. the Grapesturned yellow. Sept. 18
$\left.\begin{array}{l}18 \\ 19 \\ 20 \\ 21\end{array}\right\}$ The height $\left\{\left.\begin{array}{l}29 \\ 30 \\ 3 \mathrm{I} \\ 33\end{array} \right\rvert\,\right.$

Sept. 22$\}$ The height $\{35$

$$
23\} \text { of it was } 220
$$

Becaufe fome air had broke out: The Grapes were alfo of a Yellow colour.

Sept.

Sept. 24. The height of the Mercury was 21 digits.
25. The height was 22 .
26. The height almoft the fame.
27. The height abode in 22 .
29. The height was 27 .
30. The height was 28.
octob. I \& 2. The height ftay'd at 28.
Octob. 5$\}$ The height $\left\{\begin{array}{l|l}30 & \text { Octob. Io } \\ 6\}\end{array}\right\}$ The height $\left\{\begin{array}{l}3 \mathrm{I} \\ 3 \mathrm{I} \\ \hline\end{array}\right.$
Novemb. 9. The height was 13. Some Air had got out.
December 19. The height of the Mercury was 20 digits. Decemb. 20.
I took out the Grapes, and their Smell and Tafte were more grateful than of others, and their Firmnefs was rather increafed than diminifhed.

By this Experiment, made in two Receivers at once, we learn, That Factitious Air feems fit to alter Colour, and to preferve Tafte; but the Firmnefs might be increafed here, as it is augmented in Turpentine; viz. the Spirits in tract of time being exhaled.
EXPERIMENTIV.

$$
\text { Fuly } 18 .
$$

I took two pieces of Orange, and by the help of my Screw. I ftopped them in faft in my Receiver, with Common Air, and then into the fame Receiver I put Air, produced out of Cherries, as much as was fufficient to fuftain 12 digits of Mercury. At the fame time I put another piece of the fame Orange inti another Receiver, with common Air alone, and that not con.preffed.

$$
\text { Fuly } 20 .
$$

The Orange in the common Air began to contratt mouldinefs; the other feemed not at all to be altered.

The mouldiness of the Orange in the common Air increafed; the other remained found.

$$
7 \text { uly } 16 .
$$

The Orange in the common Air, did not proceed to increafe its mouldinefs, but feemed wholly rotten: the other alfo began to putrifie, but remained free from mouldinefs.

$$
\text { Aug. } 1 .
$$

Perceiving that the Oranges were no more fenfibly changed, Iopened the Receivers, and though the Air, wherewith I had mingled artificial Air, was fo compreffed in its Receiver, that now it could not fuftain 26 digits of Mercury above its wonted preffure, yet the Fruits were far better preferved in it, than in the other; onely fomething in the fuperficies feemed to have loft its juice, but all the inner parts, with the Rind, or Pill, were very well-coloured, well-tafted, and firm: In the other Receiver, the whole Orange feemed almoft rotten, not excepting theRind. In the Exper.X. of Artic.IV. the Orange was more corrupted in the compreffed Air, becaufe as it feems, no factitious Air had been mixed with it.

Here alfo it feems worthy our obfervation, That the fame Air, generated from Cherries, is apt to produce different effects, upon Fruits of a different kind; for here it retarded the alteration of colour and firmnefs, which in Exper. VII, of Artic.II. where I included Air with Apricocks, it accelerated and haftened.

> EXPERIMENT. V.

$$
\text { fuly 20. } 1676 .
$$

Factitious Air.

I included a fmall piece of Beef in an emptied Receiver, and, then I put Air, produced from Cherries, into the fame Recei-1 ver, as much as fufficed to fuftain 27 digits of Mercury.

The Second Continuation of

fuly
2_{2} The Mercury perfifted almof in the fame height, 23 and came not to its wonted preffure. 25
Fuly 26. This day the Beef had removed the Receiver from its Cover; and becaufe it ftunk very much, we threw it away,

> Fuly 20. 1676.

Common Air.
I put a piece of Beef into a Receiver full of Common Air, and I carefully ftopped and firmed it in, by the help of the Screw.

Fuly 2r. The Mercury had not at all afcended in the Gage.
Fuly 22. The height of theMercury was I digit.
23. The height of it was $5^{\frac{1}{2}}$.
25. The height of it was $9 \frac{1}{7}$.
26. The height of it was $14 \frac{1}{2}$. In the Evening $x 8$.
27. The height of it was $21 \frac{1}{2}$. In the Evening 25 .
28. The Screw, not being firm enough, fuffered the Air to break forth.
By this Experiment, made in 2 Receivers at once, it appears That Air produced from Cherries, is a great hindrance to the production of Air from Flefh.

EXPERIMENT VI.

March 14. 1676.

Common Air.

I put two Onions into a Receiver, full of Common Air, with a Mercurial Gage ; and I faftned the ftopple witha fcrew, to fee whether Vegetation would increafe the quantity of the Air, or diminifh it.

March
Pbyyico-Mechanical Experiments.

Two days after, the Mercury feemed depreffed $\frac{1}{4}$ of a digit; but afterward it recovered its former height, and 2 digits more; and now the Air brake forth, and the Roots grew longer.

$$
\text { April } 28 .
$$

About 10 or 12 days fince I perceived the Roots to be corrupted; and indeed now they were wholly putrified.

$$
\text { May } 9
$$

The Mercury perfifted in the fame height, becaufe the Air had broke forth; and therefore I took out the Onions, and found their Roots putrified, but they were not mouldy at all.

$$
\text { March 17. } 1676 .
$$

Factitious Air.

I included two Onions in an empty Receiver, and afterward put Air, produced from Pafte, into the fame Receiver.

March28. My Onions took root, at leaft as well, as thofe which I kept in the Common Air.

$$
\text { April } 28 .
$$

The ends of the Roots began to putrifie, yet they were in far better cafe, than thofe who are furrounded with Common Air. Perhaps the caufe of this difference is to be fetched from hence, That a greater quantity of Water was included with Artificial Air. The Mercury mounted higher 9 or 10 digits.

$$
\text { May } 18 .
$$

Hitherto the Onions feemed not all to be corrupted, but this day I found one of them to have contracted fome corruption, which may be called a Syderation or Planet-ftriking, and differs from a mouldinefs.

From this Experiment,made in 2 Receiversat once, wemay gather, That Artificial Airdoth not at all hinder Vegetation : It appears alfo thereby, That not onely the fenfible bignefs of the body, but alfo the quantity of the Air, is increafed by Vegetation.

The Second Continuation of

EXPERIMENTVII.

Auguft 25.
Common Air.
I included 6 ounces of unripe Grapesin a Receiver capable of holding 25 ounces of Water, but I did not exhauft the Air.

Auguft 26. The Mercury afcended a little.
27. The height of the Mercury was I digit.
28. The height of it was $I \frac{1}{4}$.
29. The height of it was I $\frac{1}{4}$.

Auguft 30.
The Mercury feemed to have defcended rather than afcended. The colour of the Grapes was lefs altered here, than in the Receiver, into which Air produced out of Pears, had been immitted.

Ausuft 31 .
The Receiver was broken, and I left the Grapes expofed to the free Air.

$$
\text { Septemb: } 7 .
$$

The Grapes being left in the free Air, did ftill keep their green colour, and were of a tafte grateful enough, though lefs pungent than before.

$$
\text { Ausuft } 25 .
$$

Factitious Air.

I included 2 ounces of unripe Grapes in a Receiver capable of holding 8 ounces and $\frac{1}{2}$ of Water: and having ftopped it clofe with a Screw, I filled it further with Air, which I immitted, produced from Pears, as much as fufficed to fuftain 15 di-
gits of Mercury.

$$
\text { Auguft } 26 .
$$

Some Air efcaped out, and therefore I immitted new Air,

Phylico-Mechanical Experiments.

produced out of the fame Pears, untill the Mercury ftaid at 17 digits above its wonted preffure.

$$
\text { Auguft } 27 .
$$

The Mercury was depreffed below the 16 digit ; and yet no Air had brake forth. Towards Evening, I found the Mercury had again afcended to 17 .
$\left.\begin{array}{r}\text { Aug. } 28 \\ 29 \\ 30\end{array}\right\}$ The height $\left\{\begin{array}{r|r}19 & \text { Aug. } 31 \\ 21 & \text { Septemb.I } \\ 22 & 2\end{array}\right\}$ of it was $\left\{\begin{array}{c}\end{array} \begin{array}{l}23 \\ 24 \\ 24\end{array}\right.$ September 4.
The fame height continued at 24 . and the Grapes had all contracted a yellow colour.

Septemb. 5.
The Air broke out.
September 7.
The Air proceeding to get out by degrees, I took out the Grapes, and found them very infipid, and of an unacceptable tafte.

This Experiment, made in 2 Receivers at once, doth confirm to us the efficacie of Artificial Air, toalter the colour of Fruits. 'Tis alfo very obfervable, That in this Experiment it did prejudice the prefervation of the tafte, and promoted the production of the Air, contrary to what had happened in the former Experiments. It would be worth the while to try, whether the fame fuccefs would evene with all unripe Fruits.

$$
\begin{gathered}
\text { E X P E R I M E N T VIII. } \\
\text { Auguft 2. } 1676 . \\
\text { Factitious Air. }
\end{gathered}
$$

I fhet up one Gilliflower in a Receiver, with Air produced from Pafte made with Meal, and not mixed.

$$
\text { Auguft } 4 .
$$

Our Flower began to change colour and to be moift.

The Second Continuation of

August 9.

The Gilliflower was little altered.
August 12.
The moisture increafed by little and little, but no mouldinets appeared.

Aught 3 I.
The Gilliflower was little altered, yet it was less frefh than thole which were kept in vacuo.

August 2.

Common Air.
I hut up one Gilliflower in a Receiver, with Common Air, not mixed.

$$
\text { August } 4 .
$$

Our Flower was not changed.
August 9.
The Gilliflower was madid, and had almoft loft all its colour.

$$
\text { August } 12 \text {. }
$$

Now a great mouldinefs coveredall the Flower.
August. 2.
VAcuum.
I included two Gilliflowers in Vacuo ; and took fpecial are, that no humidity fhould be included with them.

$$
\text { August 4. } 1676 .
$$

One of the Gilliflowers began to appear madid.

$$
\text { August 31. } 1677 .
$$

During the whole elapfed Year, the Gilliflowers had furfere no mutation.

By this Experiment, inflituted in 3 Receivers at once, it feems probable, That Factitious Air doth render the change of colour more fpeedy, yet it prevents mouldinefs, even as Vacuumdoth the fame.

Pbylico-Mechanical Experiments.
 EXPERIMENT IX.

$$
\text { Fuly } 24 .
$$

Common Air.

I put Apricocks, and fome Plums, of which divers were cut in pieces, into a Receiver full of common Air, and ftopped it firmly with a Screw.

$$
\text { fuly } 25 \text {. }
$$

The Mercurial Gage was fpoiled, and therefore I could not by any means perceive the quantity ofthe Air to be generated. Fuly 30.
The Fruits feemed not at all to be altered, faving that one of the diffected Plums had contracted fomething of mouldinefs.

$$
\text { Auguft } 2 .
$$

I opened the Receiver, and found all the Fruits firm, of a good colour, and of a grateful tafte.

$$
\text { fuly } 24
$$

ARTificial Air.

I made the fame Experiment in another Receiver, with the fame circumftances, fave onely that into this laft Receiver Iintruded Air, produced from Cherries, as much as was fufficient to fuitain 22 digits of Mercury.

$$
\text { Fuly } 25 \text {. }
$$

I found the Mercury to have defended 3 digits, it ftaid in 19. Toward the Evening it recovered its former height, it ftaid in 22 .

Fuly 26$\}$ The height $\{28$ $\left.{ }_{27}\right\}$ of it was $\left\{_{34} \frac{1}{2}\right.$ $\left.\begin{array}{l}\text { Fuly } 28 \\ 29\end{array}\right\}$ The height $\left\{\begin{array}{l}36 \\ 40\end{array}\right.$
Fuly 30. The height was 44. The Apricocks which were cut, began to moiften, and to be diffolved into water.

> July, 3.r. The height was 5 r .
> Aug. I. The height was 60

Auguft 2. The height was 65 , Towards Evening, when I tound fome liquor had efcaped out of the Receiver, I fcrewed it more flraitly, but one of the iron Wires being broken, all the Air got out." Wherefore I took out the Fruits, and found them very foft, efpecially thofe whofe lower parts were immerged in the Water; for the reft they were a little more firm; but all of them retained a grateful tafte.
From this Experiment made in 2 Receivers, it feems to be inferrable ; That Air produced from Cherries, doth promote the alteration both of colour, and alfo of firmnefs in Apricocks.

It appears alfo, That fome part of fuch Air is deftroyed in the beginning.

EXPERIMENT Fuly 30. 1676.
I put Plums, cut afunder, into 3 Receivers, of which one was full of Artificial Air, produced from Goosberries; the fecond was full of Common Air, the third was Vacuous.

$$
\text { Auguft } 2 .
$$

In the Artificial Air, the Plums were not changed. In the Common Air, they began to be mouldy; but in the evacuated Receiver, they retained their colour, but were foft.

$$
\text { Augut } 5 \text {. }
$$

In the Artificial Air the Plums had contracted a red colour, humidity, and foftnefs; In the Common Air, they feemed black and mouldy, yet retaining their firmnefs : In the evacuated Receiver, they were almoft melted or diffolved.

$$
\text { Ausuft } 7 .
$$

In the Common Air the Plums now began to foften.

In the Common Air, the Plums feemed to have lof their black colour, and to have contracted a red one ; even as it happened 3 days ago to the Plums in the Artificial Air.

In this Experiment, Artificial Air feems to have promoted alteration.

EXPERIMENT XI.

September 24.

I put 5 Peaches into a Receiver, with Common Air mixed with Air produced from Grapes, and I included the Grapes themfelves in the fame Receiver; that the Common Air might be the better faturated with the Artificial.

September 25. The height of the Mercury was 21 digits.

Octob. 2. The fame height continued.
3. The height of it was $52 \frac{1}{2}$.
5. The height the fame; but the Peaches feemed fomewhat madid.
6. The height of it was 58 .
7. The height of it was the fame.
8. The height of it was 61 .
11. The Mercury afcended a little.
19. The height of it was 65 .
25. The height of it was 61 . The cold was fharp.
27. The Coldabated and the Mercury afcended.
30. The height ftay'd at 6I. and a little more.

Novemb.2. The height of the Mercury was 59. 'Twas bit ter cold weather.
6. The height of it was 61 . The Frof broke and was diffolved.

The Mercury came to 96 digits above its wonted height. And I opened the Receiver, and whilert the Air was breaking out, the Peaches did emit many bubbles through their skin, not without violent noife, and the skin in fome of them was broken; They had preferved their tafte pleafant enough and the colour of their pulpe was commendable, but they had loft their firmnefs, as if they had been boiled; being left in the Air for 3 hours fpace, they wereall rotten.

This Experiment proves, That Common Air doth corrupt bodies, yet it doth fo much lefs, if it be mixed with Factitious Air.

> E XPERIMENT XII.

Auguft 4.

The First Receiver.
I cut 5 Pears, each of them into four parts, and I put one part of each into a Receiver full of Common Air, and ftopped it clofe with a Screw.

Augut 6.
The colour of thefe Fruits was altered little lefs than of others: The Mercury afcended not at all.

Auguft 7.
The Pears were little altersd, The Mercury was higher by a little.

$$
\text { Auguft } 8 .
$$

The Pears underwent no great mutation. The height of the Mercury was 4 . digits.

Auguft 9. The height of it was $4^{\frac{1}{2}}$.

Pbyfico-Mechanical Experiments.

Aug. io $\left\{\begin{array}{c}\text { The height } \\ \text { II }\end{array}\right.$ of it was $\left\{\begin{array}{c}6 \\ 10\end{array} \left\lvert\, \begin{array}{ll}\text { Ang. } 13\end{array}\right.\right\}$ The height $\left\{\begin{array}{l}16 \\ \text { of it was } \\ 20\end{array}\right.$ The Pears began to be foftned.
Aug. 15. The height of it was 21 .
16. The height of it was 19. I believe the Air had got out.
17. Now I found the Air hadefcaped out.
18. When the Air had almof all got out fince yefterday in the Evening, and I faw the Fruits to look worfe than before, I took them out, and found them putrified.

Auguft 4.

The Second Receiver.

I took one quarter of each of the aforefaid Pears, and included it after the fame manner; and afterwards I immitted Air, produced out of Cherries, till the Mercury poffeffed 23 digits: above its wonted preffure.

$$
\text { Augult } 6 .
$$

Thofe Fruits had altered nothing, but their colour a little.

$$
\text { Auguft } 7 \text {. }
$$

The Pears, almoft all, feemed rotten. The Mercury perfifted in the fame height.

$$
\text { Ausuft } 8 .
$$

The Pears were not altered much more. Something hindered, that I could not fee the Mercury.

$$
\text { Auguft } 10 .
$$

The Pears wax'd moreand more foft. Now looking upon the height of the Mercury, it was 40 digits more thanits wonted height.

$\left.1_{3}\right\}$ of it was $\{6 \mathrm{r}$ Is $\}$ of it was $\{73$
Aug. 16. The Mercury defcended; yet I know affuredly that nothing had got out.

The Second Continuation of

Ausuft 17.

The Mercury exceeded not 67 digits in height, yet the Air could by no means efcape out.

$$
\text { Auguft } 18 .
$$

The Mercury perfifted at the fame height, but I fuffered the Air to break forth; it affected my Noftrils with a fharp odour : moreover the tafte of the Fruits feemed very acid, and their pulpe exceeding foft.

$$
\text { Auguft 4. } 1677
$$

The Third Receiver.

I put a quarter of each of the forefaid Pears into a Receiver, not exactly fhut.

$$
\text { Augult } 6 .
$$

The Pears feemed to change their colour. Auguft 7.
One of our pieces of Pears began to lofe its firmnefs : but in the Artificial Air another piece of the fame Pear did yefterday feem wholly rotten.

Auguft 8.

One piece was mouldy, the reft were foft.
Auguft 9.
The Pears grew more and more rotten.
Auguft II.
The Pears were wholly mucid and rotten.
This Receiver compared with the firf, fhews, That Corruption doth not begin in Free Air fooner than in incbuded Air; but when it is begun, it is much more, yea, and more fpeedily increafed, viz. becaufe the included Air might be fatiated.

$$
\text { Auguft 4. } 1677 .
$$

The Fourth Receiver.
I included one quarter of each of the faid Pears in Vacuo.

Plyyfico-Mechanical Experiments.

Auguft 6. The height of the Mercury was 5.

$\left.\begin{array}{c} 8 \\ 9 \\ 90 \\ 11 \end{array}\right\} \text { The height }\left\{\begin{array}{l} 8 \\ \text { ro was } \\ 12 \\ 144 \\ 16 \end{array}\right.$	$\left.\left\lvert\, \begin{array}{cl} \text { Auguft } & 13 \\ 14 \\ 15 \end{array}\right.\right\} \text { The height }\left\{\begin{array}{l} 20 \\ 23 \\ 17 \end{array}\right\} \text { of was }\left\{\begin{array}{l} 25 \\ 20 \\ 20 \end{array}\right.$

had undergone no alteration, but this day they began to
be foft : The Mercury afcended not.
Auguft 26. Neither the Pears, nor the height of the Mercury were altered at all.

This production of the Air feems very regular.
By this Experiment, made in 4 Receivers at once, we find the aptitude of Artificial Air for the foftning of Fruits.

And that the production of Air was here promoted by Artificial Air, is very probable; yet it had fucceeded otherwife with Apricocks, Artic.II. Exper.VII.

EXPERIMENT XIII.

$$
\text { Auguf 21. } 1677 .
$$

The First Receiver.
1 divided 6 Apricocks, each into 4 parts, and I put one piece of each into a Receiver full of Common Air, and ftopped it firmly with a Screw.

$$
\text { Aug. } 22 \text { : }
$$

The Apricocks feemed riper this day than yefterday; but no Air was produced by them.

$$
\text { Auguft 23.0a? }{ }^{2} \text { a' } T
$$

One piece, contiguous to the Water, began to be mouldy, the reft inclined to putrifaction: the Mercury feemed to have afcended a little.

$$
\text { Aug. } 24 .
$$

A piece next the Water, was covered with a great deal of K mouldi-

66 The Second Continuation of

 mouldinefs, another piece, more remote from the Water, was fomewhat mouldy alfo; but all were rotten.Aug. 25.
The Fruits contracted no more mouldinefs ; but the putrifaction more and more increafed. The height of the Mercury was 7 digits.
Aug.26. The height of the Mercury was 15. digits.
28. The height of it was 30.
29. The fame height continued.
30. The height of it was 33. The Fruits were almoft all diffolved.
Lait 3r. The height of it was 3.8 .
Septemb.I. The height of the Mercury was the fame.
2. The fame height ftill.
3. The Mercury afcended a little.

Septemb.42'The height $\{4 \mathrm{I} \mid$ Sept. 7$\}$ The height $\{45$

$$
5\} \text { of it was }\{43,8\} \text { of it was }\{46
$$

Septemb. 9. The fame height continued.
Sept. 22. Little or no change was made in the height of the
Mercury; but the Fruits were almoft melted into water. Octob. \mathbf{x}.
When the Mercury continued in the fame height, and the Fruits were almoft all vanifhed, I opehed the Receiver, and found the Apricocks very much impaired, and foft, yet they. had retained a tafte, not ungrateful, but fubacid.

The Second Receiver.

- lovered one quarter of each of the forefaid Eruits, the Receivernot being fortified againft external Air.

Aug. 22.

The Apricocks were flacrid orquailed, as if they had been dry or withered.

Phylico-Mechanical Experiments.

$$
\text { Aug. } 23
$$

Many of our Fruits appeared rotten and mouldy.

$$
\text { Aug. } 24
$$

The Apricocks were wholly infected with putrefaction and mouldinefs.

Auguft 21.

The Thtrod Receiver.

1. Iincluded firmly by the help of a Screw, one quarter of each of the forefaid Fruits, in an unexhaufted Receiver; to which I afteradded Air produced from Pears, as much as fufficed to fuftain 20 digits of Mercury.

$$
\text { Aug. } 22 \text {. }
$$

The Mercury afcended notatall; but the Fruits feemed to have acquired a greater degree of maturity than thofe which are included in Common Air.

$$
\text { Aug. } 23 .
$$

Thefe Fruits feemed lefs altered than they which were in Common Air.

$$
\text { Aug. } 24
$$

The Fruits were not altered.

$$
\text { Aug. } 25 .
$$

TheFruits did begin to produce Air, but I could not difcern the quantity.

$$
\text { Aug. } 26 .
$$

Little alteration in the Fruits.

$$
\text { Aug. } 28 .
$$

The Apricocks began to moiften, yet they werefar lefs altered than thofe which remain in Common Air.

$$
\text { Aug. } 30 .
$$

The Mercury did this day emerge above the bodies by which it was hid. Its height above the wonted preffure, was 30 digits.

The Second Continuation of

Aug. 3 r. The height of the Mercury was 40 digits:
Sept. x. The height of it was the fame.
2. The fame height continues.

Ins noi 3. The height thereof 45 .
8. The height was little changed.
9. The height was 40 . and yet no Air got out:
11. The height was, 38.
12. The Mercury continued to defcend.
13. The height of it was 33:

Sept. I4. The Mercury was fo depreffed, that it appeared nomore.

Sept.22. The Mercury did emerge again, its height was 3 3. The Fruits were covered with a kind of mucor or Finew. Octob. I.
Whenthe height of the Mercury, nor the Apricocks, were any more altered, and the Finew vanifhed away, I.opened the Receiver, and found the Apricocks not impaired, but of a calour laudable enough, but their pulp was fpongy and foft, and of a fubacid tate.

Auguft 2. I.

The Fourthreceiver.

It took a quarter of each of the aforefaid Fruits; and thut them up firmly with a Screw in an unexhaufted Receiver, into which afterwards I intruded Air, till the Mercury came to 90 digits above its accuftomed preffure.

$$
\text { Aug. } 22 .
$$

Oar Receiver broke into an hundred pieces by the force of the Air compreffed within it: whereupon I put the Fruits into another Receiver, and added onely fuch a quantity of Air as was able to futtain 60 digits of Mercury.

Aug. 25.
The Apricocks had contracted no mouldinefs, I added new Air.

Phylico-Mechanical Experiments. Auguf 26.

The Apricocks were wholly infected with mouldinefs, and rottennefs,
This Receiver, if compared with the former, doth fhew , That the quantity of corruption, doth depend on the quantity of the Air.
By this Experiment made in 4 Receivers at once, we have a confirmation, That in Factitious Air alteration is made quicker; but in tract of time, the corruption is far greater in Common Air.

A R T I C L E IV.

The Effects of Compreffed Air, are different from the Effects of Common Air.

> EXPERIMENT.

$$
\text { March 2.1. } 1677 .
$$

IPut z Onions into a Receiver, which was to be fopped clofe with a Screw, and I intruded fo much Common Air thereinto, that raifed the Mercury 60 digits above its wonted preffure.

March 28.

My Onions took root as well as-other Onions which I had. included in Common Air at the fame time.

$$
\text { April, } 28
$$

The Onions included in Common Air 8 days ago, were covered with mouldinefs, though in the beginning they had put forth roots numerous enough : The Onions in the other Receiver began to contract corruptionat the ends of their roots, but the compreffed Air xo days before had found a gradual paffage

The Second Continuation of

 paffage out, and now was almoft all efcaped. And therefore I put in new Air, till the Mercury had attained to the height of 60 digits above its accuftomed preffure.$$
\text { April } 29 .
$$

The Onions in the compreffed Air, were all over covered withmouldinefs.

From this Experiment it feems to follow, That a little compreffion doth not prejudice thofe bodies which are to be expanded by vegetation.

Moreover the new Air, which was intruded, feems to have promoted the mouldinefs, though in the beginning it is probable that the compreffion of the Air did retard both the mouldinefs, and alfo the corruption.

EXPERIMENT. II.

May 9.

I put 2 equal quantities of Tulips and Lark-fpurs into 2 Receivers of an equal bignefs, and ftopped them up firmly with Screws : I left one of them with Common Air onely, but Icompreffed the other with the intrufion of new Air, till the Mercury did exceed its wonted heightby 70 digits.
May II.

Two Tulips in the Common Air contracted mouldinefs, but all things remained unaltered in the compreffed Air.

$$
\text { May } \mathbf{r} 2 .
$$

A third Tulip, in the Common Air, began to be finewed; but there was no fach thing in the compreffed Air.

$$
\text { May } 14 .
$$

This day I perceived one Tulip in the conspreffed Air to be infected with fome mucor or finew, but thofe which remained in the Common Air, were all very mucid, and alfo one of the Lark-fpurs in the Common Air, had contracted a mucor.

Three of the Tulips in the compreffed Air had indeed contracted a Finew, but not half fo much as Tulips in the Common Air were covered with. And moreover 2 of the Lark-fpurs in the Common Air appeared finewed alfo; but thofe fhut up in compreffed Air, were pieferved frefh, and wholly freefrom mouldinefs or finew.

$$
\text { May } 21 \text {. }
$$

The Flowers in the Common Air were all rotten and putrified; but the other in the Compreffed Air, received no further alteration: and befides, the Tulips, which had contracted fome finew, feemed rather to lofe that, than to acquire new.

$$
\text { May } 30 .
$$

When the Flowers in the common Air, being wholly putrid, were diffolved inte water, Itook them out, and kept the liquor in the Veffel to try whether any Infects would breed therein. In the compreffed Air the Flowers fuffered no more fenfible alteration; and therefore I took them out, and found themmadid, and infected with a fubacid odour.

By this Experiment it feems plain, That comprefled Air doth hinder putrefaction and mouldinefs in fome plants.

EXPERIMENTII.

$$
\text { May 2I, } 1677 \text {. }
$$

I cut an Orange into two equal parts, and one of the halfs I fopped up in a Receiver with Air fo compreffed, that it would fuftain 100 digits of Mercury aboveits wonted preffure; but I left the other half in another Receiver, well fhut, onely with common Air.

$$
\text { May } 25
$$

Each half of the Orange had contracted mouldinefs, but that which was in the common Air was much more mucid than: the other.

May 26.

This day I perceived that the compreffed Air had almoft all got out, and therefore I put in new.

May 30.
Every day I perceived fome Air had got forth, and therefore I made a dayly fupply by adding new. And it came to pafs that the Orange by receiving new air, fo often admitted, had contracted a mucor notwithfanding the compreffion much more than the other piece of Orange that was always left in the fame air without preffure.

$$
\text { 才иие } x \text {. }
$$

I took out the two half Oranges, and that which remained in the compreffed air, feemed to have contracted a corruption at leaft three times greater than that which had continued in the common air.
By this Experiment, The aptitude of compreffed air, to retard corruption, is confirmed; yet in progrefs of time'tis very probable, that the quantity of corruption dothdependupon the quantity of the air. See Exper. I.

EXPERIMENTIV.

May 31.
1677.

I included two equal quantities of Rofes in 2 Receivers, which I ftopped by the help of Screws, into one of which I intruded as much air as would fuffice to fuftain 90 digits of Mercury, befides its accuftomed preffure; but I left the other onely with common air.

Fune II.
The Rofes in the common air were free from mouldinefs, onely they feemed to have loft fomething of their colour ; but thofe which were fhut up in the compreffed air hadalmoft all contracted a yellow colour, as if they had withered in the open 2 ir , and yet they were not mucid or finewed.

This laft Week the Flowers in the common air adinitted not the leaft change; but thofe in the comprefled air grew more and more yellow. I opened both Receivers, and found the Rofes to have kept their fmell, yet it was fomewhataltered, neither of them were dry nor withered: I kept them apart in the open air, and found that the Rofes, taken out from the compreffed air, were not fo foon altered by the contact of new air, as thofe which had remained in the air not compreffed.

From this Experiment it feems to follow, That compreffed air is fometimes fitter for the alteration of colour than common air. And perhaps it may not be unworthy of our notice, that Rofes fo included, contract not a mouldinefs, but onely a yellow colour; but in Tulips and Larkfpurs the matterfucceeded otherwife. See Exper. II.

EXPERIMENTV.

Fune I. 1677.

I put the 2 halfs of the fame Orange in 2 Receivers; In the one I increafed the quantity of air till it fuftained the Mercury 100 digits above its wonted height; but I left the other uncompreffed, onely exactly fhut.

$$
\text { Эипе } 6 .
$$

Each half of the Orange was infected with mouldinefs, efpecially that, whofe ambient air was compreffed. But note that new air was every day to be fupplied thereunto; for the compreffed air in 24 hours fpace had almoft all got out. But in Exper. III. it had remained very well hut in for 6 whole days.
fune II.

The Orange in the common air contracted no more mouldinefs; but in the compreffed air, the mucor or mouldinefs was more and more increafed.

Fune 18.

Finding the mouldinefs of the Orange in the common air to be leffened rather than increafed, I took it out; and perceiving further, That in compreffed air the Orange was not more mucid, after I had ceafed to intrude new air; I was willing to trie, whether the new air did fuppeditate new ftrength to the Orange to exert and thruft out its mouldinefs; therefore I made the Mercury in the Gage, by reafon of the air I intruded, to exceed its wonted height 80 digits.

Fune 20.
Two days after I had intruded new air into the Receiver, the mouldinefs of the Orange appeared to be manifertly augmented.

From this Experiment we may gather, That the quantity of the mouldinefs doth depend on the quantity of the air.

EXPERIMENTVI.

Fune 17. 1677.

I put 2 Shrew-Mice into 2 Receivers, of equal bignefs, and ftopped them up carefully; In one of them I left onely common air ; into the other, I intruded air, till the Mercury was higher than its wonted preffure 30 digits : But the Moufe in the common air was included about 5 and $52^{\prime}, 6^{\prime}$ after the other.

The Moufe in the compreffed air feemed to lofe his ftrength much fooner than the other, the motion of his breaft being lefs frequent. Yet notwithftanding about 6 and 18^{\prime}, the Moufe in the common air, which feemed the ftronger, fell into convulfive fits and died; but the Moufe in the compreffed air, feemed then, and fome time after, to be as well, as it was an hour and half before.

About II of the Clock, the moufe in the compreffed air did as yet breath ; but about 4 in the morning he was found dead

Pbyfico-Mechanical Experiments.

in the fame pofture, wherein he was 7 hours before; whence we may conjecture, that he was free from convulfive fits.

I muft not here omit to relate, that the Moufe in the common air had confumed fomething of that air, fo that the Mercury ftood at 29 digits, which, when the Receiver was opened, prefently afcended to 30.

From this Experiment we learn, That compreffed air feems fitter than common air, for the prolongation of Life, feeing the one Moufe lived 24^{\prime} and no more, but the other lived about 15 turns longer, though onely a double quantity of Air was included in his Receiver.

EXPERIMENTVIT.

Fune 13. 1677.
I put 4 Flies into a Receiver, into which I afterwards intruded air, till the Mercury did occupy 60 digits above its wonted height ; and at the fame time I included 3 other Flies in another Receiver, with common air not compreffed.

$$
\text { Fuly } 14 \text {. }
$$

This day in the morning all the Flies were well. In the afternoon I found 2 of them dead in the compreffed air, but in the common air they were all alive. About 5 of the clock one of the Flies in the compreffed air was alive and three in the common air.

Fune 15 .

This morning I found all the Flies in the common air dead ; butthat fingle one which remained alive in the compreffed air, feemed ftill to be very well, and being taken out of the Receiver, flew fpeedily away.

From this Experiment it feems to follow, That Flies are not very fenfible of the compreffion of the air; and that they die more for hunger than for default of air: for the Flie which was fo long well, fed upon the carcaffes of thofe which were
dead, fo that flie feemed to beaffected with no diffemper. Yet I iterated the Experiment. See Exper. VIII.

EXPERIMENT VIII.

Fune 15.
Frepeated the former Experiment, onely including 4 Flies in each Receiver, and comprefing the air fomewhat more.

Fune 16.
This morning I found 2 of the Flies in the commonair dead, and but one in the compreffed air.

About 2 in the afternoon the 4 Flies in the common air feemed to be dead, but in the compreffed air, the 3 werealive.

Fune 17.
All the Flies died, except one in the comprefled air.
From this, and the former Experiment, a man may conje. Cture, That the compreffion of the air is of fmall confequence 20. Flies ; and indeed they are not prejudiced by the rarefaction of the air, but with great difficulty, unlefs there bealmoft a compleat vacuum.

EXPERIMENT IX.

Fune 18.

I included 2 Frogs in 2 Receivers, and fopped them by the help of Screws ; the one onely with common air, the other with air compreffed to fuftain 70 digits of Mercury.

Fune 19.
Both che Frogs were alive; and the height of the Mercury in both Receivers remained the fame.

Fune 20.
Neither of the Frogs were dead, and they feemed to me rather to diminifl than increafe the air, but the -difference was fo frall, that I dare not be pofitive therein.

Ployico-Mechanical Experiments.

In the morning both the Frogs were alive; but towards evening the Frog in the common air was found dead:

Fune 22.
At evening the Frog in the compreffed air was alive:

$$
\text { Fune } 23 .
$$

In the morning I found the Frog dead.
It muft be found out by iterated Experiments, whether the greater length of life was to be afcribed to the compreffion of the air, or to the difpofition of the Frogs.

EXPERIMENTX.

$$
\text { Fune 18. } 1677 .
$$

I fhut 2 half parts of the fame Orange in 2 Receivers, and ftopped them by the help of Screws; the one with common air, the other with air compreffed to fuftain 90 digits of Mercury.

$$
\text { Fune } 22 .
$$

This morning Ifound the Orange in the common air, to be infected with mouldinefs, but the other was found.

At 3 of the clock in the afternoon, the Orange in the com: preffed air feemed alfo to have contracted fome mucor.

$$
\text { Эине } 23 \text {. }
$$

If found the Orange in the common air far more mucid than the other.

Fune 24.

The Orange in the common air did not increafe his mouldinefs, but the other was covered all over withit.

Эиие 28.
The mouldinefs produced in the common air was now wholly vanifhed; In the other Receiver, I faw no further alteration in the Fruit.

Perceiving that the Fruits perfifted in the fameftate, I took them out. The half Orange, which was kept in common air, feemed half rotten; but the other befides its finew, appeared wholly putrified.

By this Experiment we have a confirmation, That the quantity of the mouldinefs orfinew doth depend on the quantity of the air.

It feems alfo worthy of obfervation, That the mouldinefs, or hoarinefs did appear a little later in the compreffed air than in the common, though afterwards it increafed much more.
EXPERIMENTXI.

Fune 29. 1677.
I included Rofes in 2 Receivers, ftop'd by the help of Screws; I left one with common air onely, but I filled the other with fo much air intruded by force, that the Mercury afcended to 90 digits above its wonted preffure.

$$
\text { fuly } 14 .
$$

Four or five days ago I found the Rofes in the compreffed air to wither and to degenerate into a yellow colour. There was not the leaftalteration in the other Receiver.

$$
\text { Fuly } 17 .
$$

When I perceived that this prefent Experiment proceeded after the fame manner, as That mentioned $p .72$. I took out the Rofes. Thofe kept in the compreffed air, were very much corrupted, and of a very ungrateful fmell; but the others were little altered; and their fmell not unpleafant.

Hence we have a further confirmation, That the quantity of corruption doth depend on the quantity of the air.

Phyfico-Mechanical Experiments.

EXPERIMENTXII.

Fuly 4.

I cut a Limon afunder, and put both halfs into two Receivers, to be ftopped by the help of Screws: The one I left with common air onely, but the other I filled with fo much compreffed air, that it fuftained 90 digits of Mercury above its wonted preffure.

Fuly 7.

This day both parts of the Limon feemed to grow mouldy at the fame time.

$$
\text { Fuly } 17 .
$$

The part of the Limon in the compreffed air, had contracted much more of hoar or finew, than the other: And perceiving no further alteration in them, I took them out, and found the Limon in the compreffed air far more putrid than the other.
By this Experiment, it is confirmed, That the quantity of corrruption doth depend on the quantity of the air.

It feems alfo, That a triple compreffion of the air, in refpeet of a Limon, is too weak fenfibly to retard the production of mouldinefs or finew.

EXPERIMENT XIII.

Fuly 18. 1677.

I included 2 parcels of Gilliflowers, equal in number, in 2 equal Receivers, and ftopped them clofe with Screws. I filled the one with compreffed air, till it fuftained roo digits of Mercury above the wonted preffure; but the other was left with common air alone.

$$
\text { 7ubly } 23
$$

In the compreffed air, the Gilliflowers were bedew'd with fome hoarinefs or mould; the others appeared onely moift: but

But the Mercury exceeded its wonted height onely 70 digits, becaufe fome of the air had got forth.

$$
\text { Fuly } 25 \text {. }
$$

In the compreffed air, the Gilliflowers proceeded to be much more corrupted than the others : They had wholly loft their colour.

Fuly 26.

In the compreffed air, the Gilliflowers were wholly putrified, and covered with an hoary finew ; the others were moint onely in fome places.

> Auguft r:

Perceving no farther alteration in the Gilliflowers, I took them ou: of their Receivers; thofe which were kept in compreffed air were rotten, and did finke; but the other kept their colour, and their fmell was not offenfive, but they were moif.

This Experiment confirms, That the quantity of the air doth inceafe corruption.

We may alfo obferve, That the mouldinefs or hoarinefs is not produced, but in compreffed air; neither is it probable that this happened by chance, feeing in each Receiver there were 4 Gilliflowers included, or three at leaft.

EXPERIMENT XIV.

Fuly 2 1. 1677.
I included a Shrew-Moure in a Recipient, with common air, and fhut it in firmly with a Screw, to trie whether he would produce or confume air.

After 2 hours the Moufe died, and fome air was confumed, buta lefs quantity than in the Experiment mentioned $p .74$.

$$
\text { Fuly } 24
$$

Hitherto I found no change in the height of the Mercury.
Towardsevening it feemed a little higher.

Pbyjico-Mechanical Experiments.

$$
\text { Fuly } 25 .
$$

This day in the morning much air was produced de novo.

$$
7 \text { fuly } 26 .
$$

The quantity of the produced air increafed more andmore.
By this Experiment we have a confirmation, That living Animals do confume air, but dead ones produce new.

EXPERIMENTXV.

$$
\text { Auguft } 3 \mathrm{x} .
$$

Compressed Air.
I put Pears into a Receiver, whereto, after it was well ftopped, I added as much Air, as fufficed to fuftain 30 cigits of Mercury above the wonted preffure.

September I.
The Mercury was depreffed, as it happened fol. 37.

$$
\text { Sept. } 2 .
$$

The height of the Mercury decreafed : it exceeded not 25 digits.

$$
\text { Sept. } 3
$$

This day the Mercury proceeded one digit higher; it ftaid in 26.

$$
\text { Sept. } 4 .
$$

The height thereof was 28.

$$
\text { Sept. } 8 .
$$

Becaufe the Receiver did afford fome efflux to the air, I therefore put in new : And this day, opening the Receiver, to compare the tafte of thefe Fruits with the tafte of the others, I found that 5 of the Pears had loft their firmnels, bit 2 had retained it.

I included Pears of the fame kind in another Receiver, with common air onely, not compreffed.

$$
\text { September } 1 .
$$

The Mercury was a little depreffed, as if it had been in compreffed air: The caufe whereof I judge attributable onely to the Cold.

Sept.2. The Mercury was not changed. Sept. 3.

The height of the Mercury was one digit above the wonted preffure.

Sept. 4 The height $\left\{\begin{array}{l|l}4 & \text { Segt. } 6 \\ 5\end{array}\right\}$ of it was $\left\{\begin{array}{c}\text { The height }\left\{\begin{array}{c}6 \\ 6\end{array}\right. \\ \frac{1}{2} \\ 7\end{array}\right.$ September 8.
The height of the Mercury was 20. The Pears being taken out of the Receiver, had preferved their tafte much better than thofe which were included in vacko. They alfo retained

$$
\text { Auguft. } 3 \mathrm{r} .
$$

V ACuum.

I included Pears of the fame fort in vacuo, but fome external air brake in, and the height of the Mercury was I digit.

Sept. I)

The Pears, being taken out, had kept their firmnels, but had loft much of their tafte.
From this Experiment, made in 3 Receivers at once, it feems to follow, That in a greater compreffion, a lefs quantity of air i) produced.

Pbylico-Mechanical Experiments.

 EXPERIMENT XVI:

 EXPERIMENT XVI:}

December 7.

I fhut up a fmall Bird in a Receiver, capable of holding 20 ounces of Water. The Bird began to be ill, before I had Set the Screw ; but, after I had intruded fo much air, as could fuftain 30 digits of Mercury above its wonted height, fle feemed to recover again ; but in fome fpace of time atter, the began again to be fick, and therefore I intruded air the fecond time, till the Mercury ftaid in 45 digits above its wonted height, and then the Bird was again reftored to health, but a little time after fhe began to gafp again; then opening the Receiver, after fhe had ftaid in it 28 minutes, fhe got out, and was very well.

EXPERIMENT XVII.

Fanuary 20. 1678.

I put a Shrew-Moufe into the Receiver of my Wind-Gun, whofe elliptick aperture was fcituate in its upper part, the Figure of it is fet down $p .16,17$. Then as quick as I could, I fo far condenfed the air there, till it was reduced to the twentieth part of its fpace, or thereabouts; and then I prefently difcharged that Air, and the elliptick hole being opened, I furpected that the Moufe had been onely a little convulfive; but when he was taken out, there were no figns of life in him. And therefore 'tis left to enquiry, Whether the caufe of his death were to be afrribed to the Narrownefs of the Receiver, or to the Compreffion of the Air?

Wherefore I put another Moufe into the fame Receiver, and the air being reduced to a third or fourth part of its fpace, I opened the Receiver, butnot fo carefully as I had done in the former Experiment; yet the Moufe, taken out therefrom, wäs found to be very well.

Iafterward repeated the fame Experiment, the air being about 7 or 8 times condenfed, and the Moufe feemed to fuffer no inconvenience thereby.

I tried the fame Experiment again, in Air compreffed 7 times, and left the Moufe included for 24 minutes, which time being elapled, I difcharged the Air, and the hole being opened; I perceived the Moufe to fetch many deepgroans, as it were; yet, being taken out, he could not recover his health again.

By thefe Experiments it is manifeft, That a great compreffion of Air is noxious, yea mortiferous to Animals.

EXPERIMENT XVIII.

Fanuary 28: 1678.
I put a Shrew-Moufe into a Glafs, to whofe neck I tied a bladder ftopping the orifice. Thefe things being thus prepared, I put them into a Receiver for the compreffing of the Air. A little time after, when the Moufe began to be fick, I compreffed the Air, and the bladder was ftraitned, and fo the Moufe was found in compreffed Air, though no new Air could penetrate to him: Then he feemed to be much better, and his heart did not pantfo often; and opening the Receiver, in a fhort time, he was as well as ever.
I iterated the fame Experiment, and the Moufe was left there fo long, that he could hardly breath, whileft I began to comprefs the Air; and the compreffion feemed again to abate his refpiration ; the Receiver, being opened, and fo the Moufe expofed to the Air, could not breath much more freely; but if I blew the Air on him by Bellows, he feemed to be fomething relieved; but being again committed to the compreffed Air, he breathed lefs frequently, and at laft died:

$$
\text { March } 25 .
$$

Becaufe in the former Experiment it was not clearly manifert, whether the Air did enter through the ligature of the blad-

> Pbyfico-Mechanical Experiments.
der, I ufed the Inftrument defcribed p.15. And when I perceived that the Moufe was fick, and breathed feldom, I intruded Water into the Receiver, fo that the Air was reduced to the half of its fpace, and then the Moufe breathed more rarely; but if, extracting the Water, I left the whole fpace entire for the Air, his refpiration feemed more vivid, and the Air being thus many times contracted and dilated, the fick Moufe feemed to me to breath more lively in the common Air, than in the compreffed. Whence I conjectured, That the Air is to Animals, like Food, the quantity whereofought to bear fome proportion with their ftrength : and that I might more certainly know it, I put the fame Moufe into my pneumatick Engine, and rarified the Air, fo that it poffeffed more than double the fpace it was wont; whileft the Air was rarefying, prefently the Moufe began to bebetter; yet a little while after he feemed. to be fick, and when the Air was reftored, it brought no fenfible commodity or inconvenience to the Moufe. I thus repeated the rarefaction three times, and the fame fuccefs fol-. lowed; but at latt the Moufe died.

ARTICLE V.

The Effects of Artificial Air upon Animals.
EXPERIMENT. I.
May 5. 1677.

IPut a Bee, with Vinegar diftilled, and pulverized Coral, inta an emptied Recipient, and the Air being wholly exhaufted, I ordered the matter fo, that the Coral fell downinto the Glafs of Vinegar : But the Air, produced from thence, did not reftore

The Second Continuation of

reftore any power of motion to the Bee; but when fhe was expofed to the open Air, in a little time after the began to move herfelf.

Hence a fufpicion doth arife, That Artificial Air is unfit for the life of Animals.

EXPERIMENT. II.

Auguf 12. 1676.
I put 2 Flies into a Receiver, and exhaufting the Common Air, I fubftituted Air, produced from Goosberries, in its place, as much as could fuftain 26 digits of Mercury.

Afterwards I put 2 other Flies alfo in vacuo; but with this difference, that I reftored commonAir to thefe latter Flies, onely in that quantity, as could fuftain 23 digits of Mercury.

Within a quarter of an hour; thefe latterFlies, upon the reAtitution of the Air, recovered that power of motion which they had loft in vacuo, and did flie in the rarefied Air; but the former lay without any motion, though they had received a greater quantity of Air.

Auguft 13.

The Flies in the artificial Air, feemed ftill dead; but the others were luity.

The Flies taken out of the artificial Air, and expofed to the common air, remained foall this whole day, and yet did notrecover any life.

Auguft. 18.
Irenewed the fame Experiment, with the fame fuccefs, though I had reftored a greater quantity of artificial air.

Hence we have an high confirmation, That artificial air is noxious to the life of Animals.

Phy/ico-Mechanical Experiments.

EXPERIMENT III.

Fиие 22. 1677.

I put Pafte into 3 Receivers, out of which I afterwards ex haufted the Air.

Fune 23.

When my 3 Receivers did this day regurgitate with Air produced from the Pafte, I kindled a perfumed Cone, and thus. kindled, I put it into one of my Receivers, which being prefently ftopped, theFire, within one minute of time, went out. Then by blowing,I expelled the artificial Air from the Receiver, and put in fire to it, as before; and then it burned bright for a pretty long time, though I had fhut the Receiver as fpeedily; and as accurately as before.

I tried another Experiment, after the fame manner, with a Fly, and in the artificial Air fhe was prefently deadas it were, but afterward, being expofed to the Sun, fhe in a fhort time grew well again. Then I blowed in common Air into the Receiver, which being done, the Fly included as before, fuffered no inconvenience thereby.

I iterated the felf-fame Experiment with the fame Fly in our third Receiver, being filled with Artificial Air, and the fame fuccefs followed, fave onely that this Fly, when it was taken out from the artificial Air, could not be reftored to health, but' in a longer time, viz. becaufe fhe was left there longer.

By thefe Experiments it appears, That facticious Air is preat judicial to Fire, as well as to the life of Animals.

> EXPERIMENT IV.
> fune 25 . 1677.

I put Pafte into 4 Receivers, and oxhaufting the Air wholly from

88

The Second Continuation of

from two of them, I pump'd out onely half the Air from the other two.
fune 26.
I found the 2 Receivers which Ihad left half full with common Air, to be quite filled with Air newly produced; neither dare I affert, whether they had for fome time regurgitated or no, fo that the quantity of common Air was much diminifhed. However the matter was, I put 2 Flies at once into one of the Receivers, after the manner before defcribed; and they, as foon as they touched the bottom of the Receiver, in a very little while after remained without motion. I put a third Fly into the Receiver, after the fame manner, and found the lived alittle longer there than the former. A fourth Fly, being thruft in, maintained her life longeft of all, yet at laft, fuffering fome convulfion, the lay unmoved and refupine. All the Flies, after fome ftay in the artificial Air, being taken out from thence, and expofed to the common, grew well in a fhort time.

I made the fame Experiments in another Receiver half full of artificial Air, and in a manner with the fame fuccefs; but the Flies, in that Receiver, to which onely common. Air wasblown in, recovered the power of motion and their ftrength in a fhort time.

Fune 27.

I tound one of the Receivers, which was wholly evacuated of common Air, to be full of artificial Air ; but it being cafually thrown down upon the ground, ingrefs was thereby afforded to the external Air: yer I put a Frog into it, which feemed not to be very fick therein.

fune 30.

My fourth Receiver, by the power of the produced Air, feemed at length forced away from his Cover. I put a Frog into it, in manner aforefaid, and fhe fell into high Convulfions for five minutes fpace, and then lay without motion. After four minutes were elapfed, I opened the Receiver, and taking
Pboffico-Mechanical Experiments.
out the Frog, for 46 minutes fhe remained without motion; but afterwards in four or five minutes more the grew very well.

By thefe Experiments, it is evident, That artificial Air is very hurtful to the life of Animals; but if it be mixed with common Air, it doth not foreadily produce its effects.

EXPERTMENTV.

Fune 28. 1677.

I put Pafte into 4 Receivers, 3 of which I caufed to be wholly exhaufted of common Air, but the fourth was left half full of Air.

Fune 29.

One of the Receivers which were wholly exhaufted, was found full of Air newly produced; and a Frog being put into it for 4 or 5 minutes, had ftrong Convulfive fits; then for one minute it lay ftill without motion, whereupon I took the Frog out, and in 5 minutes fhe began to move, and a while after became well again.

I took another Receiver, filled with artificial Air, and putting a Frog into it, 7 minutes were elapled before fhe ceafed to be convulfive. And afterward, when the had lain I minute there without motion, I opened the Receiver, and taking out the Frog, found that the began to ftruggle and move, yet I judged thofe motions to be the relicks of her Convulfions ; for after that the remained unmoved for a whole half hour and more; yet at latt fhe grew well again.

As for that Receiver, from which I had exhaufted onely half of the Air, it had fo long regurgitated with produced Air, that it is very credible, much common Air had got out together with it. A Frog being caft into it, feemed to be vehemently moved, and convulfive for 10 minutes, as the reft did, and then the feemed quite dead; but after a full minute was elapfed, I

The Second Continuation of

 opened the Receiver, and the Frog, being expofed to the open Air, within a quarter of an hour began to recover motion again.I put a Frog into a Recipient, full of common Air, to trie, whether, the Pafte being now taken out, the Frog would continue her life any longer time there ?

$$
\text { fuly } \mathrm{x} \text {. }
$$

In the afternoon, I found the Frog dead, in the morning the was alive and breathed, fo that fhe lived about 48 hours.

$$
\text { Fune } 30 .
$$

I caft a Frog into my fourth Receiver, which was wholly filled with artificial Air; for 7 minutes and an half fhe wasvehemently convulfive, and at laft died ; then after 2 minutes, the was taken out of the Recipient, and yet recovered no motion at all.

$$
\text { Fuly } \mathrm{x} \text {. }
$$

Perceiving the Frog to remain in the fame pofture, I threw her away.

We have a confirmation by thefe Experiments, That artificial Air is fo much the morehurtful to Animals, by how much the freer it is from common Air.

EXPERIMENTVI.

Fune 30.
I included Pafte in two Receivers, and then I exhaufted the Air.

$$
\text { Fuly } 4 .
$$

I would have put a Shrew-Moufe, being taken by the tail, into one of my Receivers, filled with artificial Air, but the little Vermine, with his fore-feet, did fo catch at the edges of the Receiver, that he could not thenbe thruf into it; and by this means the Receiver, being for a while open, afforded ingrefs to the external Air ; yet I thut it again, till I had bound the legs

Pbylico-Mechanical Experiments. 91

 of the Moufe, and then he was eafily put in, and there fuffered vehement Convulfions, andafter the elaple of one minute, died, I prefently took him out, and expofed him to the common Air; but his life being wholly gone, no power of motion could be recovered.Then Itook the other Receiver, and putting a Snail into it, did with fome wonder obferve, that he continued to be moved very ftrongly for a whole quarter of an hour; but afterwards his motion was flower, untill about ano-her quarter of an hour being elapfed, he lay ftill, as if he werecead; but then being taken out of the Receiver, and expofed to the Air, in a fhort time he grew well.

I put Flies into the fame Receiver; but now thad admitted too great a quantity of external Air, for the Flies fuffered no prejudice.

By this Experiment we gather, That artificiel Air doth kill Animals by fome venemous quality, and not onely by the defect of common Air; for the Snails lived a longer time in vacuo. See Artic. VI. Exper.III.

EXPERIMENTVII.

$$
\text { Fuly 5. } 1677 .
$$

Itook a Receiver, filled with Air produced from Cherries, and then tranfmitted that Air out of that intoanother Receiver, full of common Air, in which a Frog was kept: Matters were fo ordered, that the Water gave place onely to the artificial Air entering in, and the Water it felf flowed out: And thus the Frog, being included in pure artificial Air, for a quarter of an hour and more fuffered Convulfions, and at laft lay ftill without motion : yet being after taken forth, and expofed to the open Air, fhe grew quickly well.
It feems probable by this Experiment, That Air produced from Cherries, is lefs hurfful to Frogsthan that produced from Pafte. See Exper. V.

The Second Continuation of

E X PERIMENT VIII.

July 9. 1677.
I put Goosberries into three empty Receivers.

$$
\text { Fuly } 20 .
$$

I found one of my Recipients fevered from his Cover by the force of the produced Air ; I caft a Flie into it, which died in one punctum of time ; a fecond Flie being likewife caft into the Receiver, prefently alfo died : a third Flie put into the fame Receiver, feemed a little while to be convulfive there; but lefs than a fourth Flie, which I included there, which yet before one quarter of a minute was elapfed, lay unmoved; afterward Idifpelled the artificial Air out of the Receiver, by blowing, and in a little time the Flies grew well.

$$
\text { fuly } 24
$$

I took another Receiver, filled with Air produced from Goosberries, and putting a Shrew-Moufe into it, found that he died there in the fpace of one half minute.

From this Experiment, it feems inferrable, That Air produced from Fruits, is lefs hurfful to Animals than Air produced from Minerals. For the 20 day of $\mathcal{F} u l y$ I tried, that a Moufe did not live above a quarter of a minute in Air produced out of Gunpowder.

EXPERIMENTIX.

Fuly 5. 1677.

I included Pafte in 4 Receivers, having the Air exhaufted from them.

$$
\text { Fuly } 6 .
$$

One of thofe Receivers, being filled with factitious Air, was forced from its Cover, which I again ffopped, yet not fo fuddenly, but fome commonair might mix with the artificial: yet I.

Pbyfico-Mechanical Experiments.

put a Shrew-Moufe into it, who was prefently highly convulfive, and after one minute and an half remained unmoved; and, being prefently taken out, he feemed to make fome convulfive motions, but died notwithftanding.

Fuly 7 .
I took a fecond Receiver, filled with artificial Air, and having put a little Bird into it, I fuddenly ftopped it; fhe prefently fell into convulfive motions, and within a quarter of a minute, or a little more, died; I took her out, but it was too late, for fle nevér ftirred more.
I blew out the artificial Air from the Receiver, and then, another Bird of the fame kind, being put into it, was very well, yet fhe faid there 4 minutes.

$$
f_{x} \text { ly } 9 \text {. }
$$

I took a third Receiver full of artificial Air, and put that Bird into it, which in the former Experiment had continued well, and yet feemed to be lively and found; before the had been there a full quarter of a minute,fhe lay without motion, and being prefently taken out, there appeared no fign of life in her.

In the afternoon I put an Adder into my fourth Receiver, and within 2 minutes he began to beill, and to gape and pant; yet he was not wholly deprived of motion till after 24 minutes. Then after 6 minutes more, which made up half an hour, I took the Adder out of the Receiver, motionlefs as he was, and expofed him to the free Air, yet he did not Recover life.

$$
\text { Fuly } 10 \text {. }
$$

The Adder remained in the fame fate, and gave no hope of revivifcence.

EXPERIMENTX.

$$
\text { fuly 12. } 1678
$$

I put a Bird into a Receiver full of Air produced out of Raifins,
fins of the Sun; fhe died in $\frac{1}{4}$ of a minute, end though I took her out prefently, yet fle never ftirred more.

Fuly 18.
I likewife put a Shrew-Moufe into a Receiver full of Air produced from Raifins of the Sun; but a thred left on the edge of the Receiver, hindered me from ftopping it clofe; yet the Moufe prefently began to be very ill, and after 2 minutes he lay, as it were without any motion; yet being taken out, in 2 or 3 minutes time he was wellagain.

EXPERIMENTXI.

October 1. 1678.
About 10 of the Clock in the morning, I included a ShrewMoufe with common Air, in a Receiver, fortified againft the external Air; about II the Moure was brought to fuch ftraits, that he could hardly breath: I threw in another frong and litify Moufe into the fame Receiver, and prefently put on the ftopple again: But becaufe the firft Moufe had confumed fome of the Air, it came to pals that the external Air was forcibly impelled into the Receiver, and fo was able to difpel a great part of the Air ftagnant there; and indeed, when this was done, the firf Moufe feemed to be much better, neither did it die much fooner than the other, but both of them died about noon. About 4 in the afternoon, I thruft a frefh ftrong Moufe into the fame Receiver, and left the external Air might again expel the included Air, I put him in very flowly and liefurely; The iffue was, that this third Moufe lived not 3 minutes entire.

Whence we may conjecture, That that portion of Air which hath once ferved the refpiration of Animals as much as it could, is no longer ufeful for the refpiration of another Animal, at leait of the fame kind.

Phyfico-Mechanical Experiments.

EXPERIMENT XII. Wolorit

April 28.

This day in the morning I put fo great a quantity of Pafle into an empty Receiver, that in the atternoon 1 found the Receiver full of factitious air; whereupon I thruft down a Snail into it, which prefently frothed very much, and did very often expand and again contract it felf; but at length after 4 minutes were elapred, he ceafed to move at all, yet I took him not forth, till he had ftaid in the Receiver an whole quarter of an hour, and then, being extracted, he feemed as if he had been quite dead; for though he were pricked with a pin, yet he difcovered no fign of lite; yet after another quarter of an hour, being alfo pricked with a pin, he made a little motion.

I blew out the factitious air from my Receiver, and then thrufting in another Snail after the fame manner, as I did the former, he was very well in the Receiver, and did not froth at all.

We have a confirmation by this Experiment, That factitious air is a greater enemy to Animals, than a vacuum is.

EXPERIMENT XIII.

Fune 22. 1678.

This day in the morning I put green Peafe into an empty Receiver, and towards evening the Mercury had almoft attained to the height of $\mathbf{r} 0$ digits.

$$
\text { Fune } 23 \text {. }
$$

The height of the Mercury was almoft 30 digits.
Fune 24.
The Mercury did not as yetexceed zodigits in height: The Cover did no longer ftick to the Receiver, yet litherto nothing had efcaped out of it.

The Second Continuation of

fune 26.
I included the fame Peafe in the fame empty Receiver.
Fune 29.
When I now found that the Receiver was filled with factitious air, I thruft a Snail into it, who put forth much fpumeor froth, and did very often expand and contract his horns; but after 6 minutes were elapfed, he lay ftill, as if he had been dead, for 2 or 3 minutes; then the Receiver being opened, and the Snail taken out, moved himfelf a little, if he were pricked; whence it feems to follow, that air produced from Peafe is lefs prejudicial to Snails than air fromPafte. See Exper.XII,XI. I blew new air into the Receiver, and a Snail then put into it did very well.

In this Experiment it feems obfervable, That Peafe do quickly produce air in vacuo; but in the wonted compreffion of air they generate but little.

ARTICLE VI.

Animals in Vacuo.
EXPERIMENTI.
June 22. 1676.

IPutaButterflie into an empty Receiver, and it was almoft 3 hours before fhe was wholly deprived of her faculty of motion; at length, perceiving him to lie unmoved, I let in the air into the Receiver, and in a little time the Butterflie recovered his motion. Then I bound him by one of hishorns with a thred, and fo hanged him in the Receiver, and then he was carried very freely from one part of it unto the other, by clapping his wings ; but after the air was extracted, the clapping
of her Wings was in vain, for fhe could not move the thred in the leaft, frombeing perpendicular.

EXPERIMENTII.

Fuly 12. 1676.

Yefterday I put 2 Flies into a Receiver, in which I left $\frac{1}{\frac{1}{3}}$ of air, (i.e.) as much as would fuftain ro digits of Mercury; The biggeft of the Flies feemed to die prefently, but the other, which was a fmall bodied one, lived almoft 24 hours.

When both the Flies lay, as if they were dead, I fuffered fome air to enter in, till the Mercury was 15 digits high; and then the leffer Flie began to move her feet, but the other continued ftill without motion.

Hence it appears, That air highly rarefied may ferve for Infects to breath in, and that it doth not kill them fo foon as artificial air.

EXPERIMENT III.

May I.

I put 2 Snails into an emptied Receiver, and for an whole hour they feemed to be well enough, and crept up to the top of the Receiver; but in 2 hours time, they fell down from thence, and lay without motion.

Six hours after they were firft put in, I took them out è vacuo, and within half an hour they began to move a little. During the time they were included, they produced near as much air as fufficed to fuftain the Mercury in the height of $\frac{1}{4}$ of a digit.

Thefe Snails lived longer in vacuo than the others included in artificial air. Artic.V. Exper.VI.

EXPERIMENTIV.

Auguft 12. 1676.
I put Fly-blowings, or the Eggs of Flies, intoan empty Receiver, to trie, whether they would produce Worms there or no. Aug. 14.
I faw the Worms were formed, but the air had crept into the Receiver, fothat it could fuftain 15 digits of Mercury.

Hence it appears, That Infects may be produced, and may live, if not in vacuo, yet at leaft in air very highly rarefied. See Exper. VI, and VIII.

EXPERIMENTV.

March 17. 1677.

I put 2 equal quantities of Frog-fpawn into 2 Veffels of Glafs, of equal bignefs, I left the one included in an empty Receiver, expofed to the Sun; but the other, being in a Receiver full of common air, Ifortified againft the accefs of the external air. The Frog fpawn in vacuo did all fwell into bubbles.

$$
\text { May } 2 .
$$

No Frogs were produced in either Receiver, and that Seed or Spawn which was kept in vacuo, remained ftill full of bubbles; but about. 3 days ago all the bubbles vanifhed, and the Spawn was charged into a certain green liquor.

$$
\text { Fuly } 2 \text {. }
$$

Our Receivers remained in a Window expofed to the Noonday Sun; and fo fome Water that was mixed with the Frog. fpawn, all in vacuo, and the very Spawnit felf was elevated into vapours, and afterwards fticking to the fides of the Receiver, out of its own Veffel, was there condenfed; but the Veffel kept in the common air, fill containedall its Water, together with the Seed or Spawn.

Pbyyico-Mechanical Experiments.

EXPERIMENTVI.

Auguf 16. 1677.
I put Flies-Egsinto an empty Receiver.
Aug. 29.
When no Worms were produced out of them, I gave admiffion to the Air to enter into the Receiver, and leftall things in the fame pofture, to trie, whether the Eggs had lof their taculty of producing Worms.

Septemb.9. The Eggs produced nothing.
This Experiment, if it be compared with Exper.IV. feems to fhew, That Infects may be generated, and may live in air highly rarefied, but not at all in vacuo.

EXPERIMENTVII.

Эиие 15.

I thut in a Frog in an emptied Receiver, at about 7 of the Clock in the evening, about 9 the Frog died.

June 16.
I repeated the fame Experiment, and again perceived that thedead Frog in 2 hours fpace, had produced fome air, rather than confumed it.

$$
\text { Fune } 18 .
$$

The Frog, left hitherto in vacuo, was fwollen very much; but the air now entering, made her far more flaccid and lank than fhe was wont to be.

Weare inftructed by this Experiment, That a Receiver void of artificial air, is lefs hurtful to the life of fuch kind of Animals. See Exper. IV. and VII. of Artic.V.

O
2
EX

100

The Second Continuation of

EXPERIMENT VHI.

Auguft 3.1678.

I put Flie-blowings ficking to Flefl, into an emptied Receiver.

Ang. 12.
No Worms were generated from them.
Aug. 15.
Perceiving no change in the Eggs, I opened the Receiver, totrie, whether they would yet be generated in the free air.

Sept. 15.
Nothing was produced from them.
We havea confirmation by this Experiment, That Animals, which may begenerated and live in highly rarefied air, yet are killed in vacio. See Exper. IV.
E XPERIMENT. IX.

$$
\text { Auguff 22: } 1678 \text {. }
$$

Tincluded Vinegar full of fmall Eels, or Vinegar-worms in an emptied Receiver.
Ang. 29:

The Worms were fill moved, yet they were fewer than-in the beginning.

September 6.

Yefterday fome of thofe Worms did itill move in our Vinegar, but this day I could not fee one; whereupon taking a Microfcope, I found themall dead; but in the Vinegar, which I had leff in the-open air, the Eels made as brisk motions as at the beginning.

Hence it appears, That thofe, even very diminutive Animals, are alfo affected wish the prefence and abfence of the air.

ARTI-

Phylico-Mechanical Experiments.

A R T I C L E VII.

Fire in Compreffed Air.
EXPERIMENT. it.
May 14

ITook a perfumed Cone, of that nature, that being once kindled in the Freeair, 'tis wont by degrees wholly to be confumed; and put it into a Receiver firmly ftopped with a Screw ; and I intruded air into it, till the Mercury came to 120 digits above its wonted height, and then putting to my Burning glafs, I kindled the Cone, which prefently darkned all its Receiver with Smoke, and after fome time $\frac{7}{8}$ parts of I digit thereof in length were reduced to afhes; yet taking out the Cone, and blowing away the afhes, I found onely the fuperficies thereof confumed, but the inner parts were untouched.

I included another Cone of the fame fort in a much greater Receiver, but I did not comprefs the air therein: The Cone, fired by the fame Burning-glafs, was not taken out, till all the Fumes were abated and fallen down; yet much lefs of this Cone was burnt than of the other:

EXPERIMENTII.

May 1r.

I weighed a perfumed Cone exactly, and then firmly included it in a Receiver with common air, and Ikindled it by the help of my Burning glafs; when the Fumes were condenfed, I
took the Cone out of the Receiver, and weighed it again, the lofs of its weight was almoft one grain. Then I got me many pieces of Paper, each of them of the felf-fame weight, which I prefume to call Paper. grains .

Afterwards the fameCone, obferving the fame circumftances, was again included and kindled, but firt I had intruded air into its Receiver, as much as could fuftain 90 digits of Mercury, and thus by means of a pair of Scales, I found the lofs of weight this time was 4 times more than of the former, for the Cone was lighter by 4 Paper.grains.

From this Experiment it feems to follow, That the confumption of matter is fo much the greater, by how much the greater quantity of air is contained in the Receiver.

EXIERIMENTII.

May 17. 1677.
Included a perfumed Cone in a Receiver firmly ftopped by the help of a Screw; and, the air being compreffed to fuftain 60 digits of Mercury above its, wonted preffure, I fet fire to it with my Burning glafs; the Cone being afterwards taken out, had loft 3 Paper grains and an half in weight.
I repeated the fame Experiment, but in air, fo compreffed, that the Mercury reached to 120 digits above the wonted preffure, then the Cone was $7 \frac{3}{4}$ Paper-grains lighter; and fothough the quantity of the air was not double, yet the confumption of the matter by the fire, was more than twice as much as that was in the former Experiment.

$$
\text { May } 17 .
$$

I iterated the fame Experiment inair, compreffed to fuftain 97 digits of Mercury, and then the lofs of weight feemed to be 6 Paper:grains.

By all thefe Experiments we are taught, That the matter is fomuch the more confumed by the Fire, by how much the

> Plyyico-Mechanical Experinents.

103
compreffion of the air in the Receiver is the greater; yea, the confumption feems to have a greater proportion to the confumption, than the compreffion hath to the compreffion.

$$
\text { May 18. } 1677 .
$$

I included a perfumed Cone as before, in a Receiver 7 times larger than that which I ufed in the forme: Experiments, and I immitted no air at all into it. The Conekindled there, loft $3 \frac{ \pm}{4}$ Paper-grains of its weight, and no moer; whereas in the fame quantity of air, it it had been reduced to a 5 part of its fpace, the Cone would have loft 10 grains, viz. by obferving the proportion of the confumption made before in air, fuftaining Mercury to 120 digits above its accutomed height, (i.e.) air reduced to a 5 part of itsf pace.

From this Experiment it feems to follow, That the fame quantity of air, if it be reduced to lefs than its accuftomed fpace, on thataccount alone caufeth agreater confumption, than if it had remained in its wonted expanfion.

EXPERIMENTIV.

May 19. 1677.

I repeated the Experiment laft defcribed in the fame Receiver, clofely ftopped with a Screw, that nothing might go out or in. The Cone loft I paper grain and a quarter onely of its weight, whence I fufpect that it was not well kindled.

$$
\text { May } 21 \text {, fuisomol Jud (aishoo bace }
$$

2i I made the fame Experiment, after the fame manner. This -day the Cone was lighter by 4 Papergrains; whence I more certainly collected, That it was not well fet on fire in the former Experiment.

$$
\text { May } 23 .
$$

I repeated the fame Experiment twice, but do fuppect that

104

The Second Continuation of

the Cone was not well kindled, feeing at one time it lofton$1 y^{\frac{3}{4}}$, and at another time I Paper grain of its weight.

$$
\text { May } 24
$$

I tried the fame Experiment again, and this day alfo the lofs of weight was found onely i Paper grain and a quarter. Then Iopened my Receiver, and having wiped and cleanfed away the Soot, I iterated the Experiment, and then the Cone took firevery well, for the lofs of its weight amounted to 6 Papergrains and an half.

I tried the fame Experiment again in an uncleanfed Receiver, and then the Cone loft onely 3 Paper grains in weight.

$$
\text { May } 25 .
$$

I irerated the fame Experiment in a Receiver well wafhed, and the Cone was lighter by 6 Paper-grains and an half.

I made the fame Experiment in the like manner, and in a well cleanfed Receiver, and the Cone loft 7 grains and an half of its weight.

I tried the fame Experiment again, in an unwafhed Receiver, and then I could not fufficiently kindle the Cone.

$$
\text { May } 26 .
$$

I tried the fame Experiment in an unwafhed Receiver about the middle of the day, the Sun being clear, and clouded with no mifts; and I removed not my Burning glafs from kindling the Cone a long time, fo that it took fire very well, and became 8 Paper grains lighter.

By thefe Experiments it is manifeft, That the quantity of a Cone to be confumed in the fame quantity of air, is not fixed and certain, but fometimes greater, fometimes leffer, as the Cone fhall be more or lefs kindled: Befides the imperfect mixture of the matter may caufe fome difference; yet it feems certain that fire is more eafily kindled in compreffed air, than in common; and the confumption will be the greater in a certain quantity of air, if that air be reduced into a narrower fpace, than if it enjoyed its wonted expanfion.

EXPERIMENTV.

May 22.

I put a perfumed Cone into a Receiver made for compreffing the air; and intruding the air till the Mercury faid in 30 digits above its wonted preffure : I kindled the Cone, and found its weight to be abated $\pm \frac{3}{4}$ of a Paper grain.

$$
\text { May } 23 .
$$

I made the fame Experiment again, after the fame manner, and in effect with the fame fuccefs.

I tried the fame Experiment again, but the Cone took not fire well. Whence we have a confirmation, that Fire is more eafily kindled in air much compreffed, than incommon air, or that which is but a little condenfed.
I iterated the fame Experiment, and after I had removed my burning-glafs from kindling the Cone, whileft I was intent to fee, whether the Cone would proceed to be confumed, the Receiver brake into 100 pieces, fome of which ftruck my head and wounded it: which paffage I mention, that fo no man may be confident his Glafs will not break, whileft he is about thefe Experiments, becaufe he hath found that at other times it hath relifted a greater preffure. For this very Glafs of mine, had contained air 4 times more compreffed, very well. See Exper.III. Yea inExper.VI. of Artic.II. it had refifted Air, fuftaining 198 digits of Mercury above its wonted height; yet now it was broken by a preffure more than 6 times lefs : and therefore whilf a man looks into fuch Receivers, his head had need be fortified with fome perforated or pellucid muniment and defence to preferve it from a blow.

A R TICLE VII. Fire ufed to produce Air. EXPERIMENTI
 Fune 4. 1676.

,Burnt Paper, Lefmeared with Sulphur in vacuo, and found that it produced fome Air, which Air was notat all diminifhed for 2 . whole days.

That Air is to be afcribed to the Paper, for no Air is produced out of Sulpheralone.
EXPERIMENTII.
 I burnit Harts horn in vacua, and found that the Fumes iffu. ing therefrom, did contain fome Air in them.

$$
\text { Fune } 17 .
$$

Thefe 2 laf days, I iterated the fame Experiment, and al ways obferved, That, Air produced from Harts-horn, was in a thort time in part deftroyed; but that, which preferved the elaftick nature of Air for a full hour after the Burning glafs was removed, feemed afterwards not to lofe it at all.

Fииe 19.
I roo's the Harts horn out of the Receiver, and found no votatil. Salt, but onely a foetid Oil to be produced therefrom.

Phyfico-Mechanical Experiments.
 EXPERIMENTII.

107

Fune 2 r .

I burnt Amber in vacuo, and at firft I could not find that the Fumes did afcend above the height of one digit; and yet in a Receiver full of Air, they would be carried up to the top of the Receiver, and from thence be reflected downwards ; yet afterwards, even in the vacuum it felf the Fumes reached almoft to the top of the Receiver, but the Mercury was not at all changed inits Gage.

Fune 22.

This night, a great deal of that Water, in which I had immerfed the Receiver, found a paffage into it, though the Cover was fo well fitted to the aperture, that I never perceived any water to get in betwixt them before. Hence a fufpicion arofe in me, that fome volatile Salt had probably attracted (if I may fo fpeak) the aqueous parts, by reafon of the congruity betwixt them.

Fuly 8.

Iftill kept the Receiver immerged in Water, but no more Water entered in, as if, the Salts being wafhed away, the external Water, being deftitute of affiftance, could no longer creep in : But that agreement between the Fumes of the Amber, and the parts of the Water had need of a confirmation by a great many more Experiments.

Hence it appears, That Amber producethno Air, no not though it be burnt.

EXPERIMENTIV.

$$
\text { 7an. 18. } 1677 .
$$

1 put 2 drachms of Camphire into an empty Receiver, and the commiffure of the Cover with the Receiver, being fortified

$$
\mathrm{P}_{2}
$$

wo 8 The Second Continuation of

 againft external Air. I put the Camphire on a digefting Fur= вace.7an. 19.

The Camphire was fublimated into Flowers, but no Air was produced.

EXPERIMENTV.

$$
M a y 24 . \quad 1676
$$

rincluded Sulphur vivum in an exhaufted Receiver, and melted it by the help of my burning glafs, but found that the Fumes produced therefrom, did contain no Air in them, becaufe the Mercury did afcend to the aperture of its Gage, as it ufeth to do while the Receiver is evacuating: yet when the Receiver was cooled, the Mercury returned to its former height; and therefore I think that change proceeded onely, herefrom, becaufe the Air included in the fealed leg of the Gage, was rarefied, and drove the Mercury into the orher part.

EXPERIMENTVL

Fuly 19.
Having included Pafte 9 days agoe in vacuo, and perceiving that it now contained no more air; I endeavoured to fire it with my burning glass. The fubfiding Fumes had tinged the fuperficies of the Pafte, with a curious yellow colour; and befides I conjectured, That fome Air was produced, becaufe the Feceiver, which before was ftraitly joyned to its cover, was now with eafo plucked therefrom.

Phyleco-Mechanical Experiments.

A R TICLE IX.

Concerning the Production of Air in Vacuo.

EXPERIMENTI.

September 9. 1676.
Exhauted the Air out of a Receiver half full of dried Grapes, and fortified it againft theexternal Air. Sept. 10.
In 24 hours time the height of the Mercury was $\frac{1}{2}$. Sept.12. In two days time, the afcenfion of it was $\frac{1}{2}$.
14. The afcenfion of the Mercury was ${ }^{\frac{3}{8} .}$.
17. The afcenfion of it was $\frac{3}{3}$.
22. The afcenfion of it was $\frac{5}{8}$.
27. The afcenfion was $\frac{5}{3}$. The height 3 digits. October 11 .
The height of the Mercury was now about 6 digits.
September. 9. 1676.
I put dred Figs into a Receiver, and filled about half of it with them and then I extracted the Air, till the Mercury ftaid in the height of 3 digits.

Sept. 10. No Air was produced.

$$
\text { Sept. } 17 .
$$

Perceiving no Air to iflue out of the Figs, I opened the keceiver.
By this Experiment we learn, That dried Fruits, put into an exhaufted Receiver, do produce very lietle. Air witl any regularity.

110
 The Second Continuation of

EXPERIMENT II.

$$
\text { August 5: } 1676 .
$$

I included Pears and Apricocks in vacuo. Aug. 6.
In 18 hours time the Mercury reached 2 digits; in 10. hours more it reached the third digit. Its height was 3 digits. Aug. 7. The height of it was 5 digits.
8. The height of it was $6 \frac{1}{2}$.
9. In I_{4} hours face, the Mercury mounted $\frac{3}{4}$. Its height was $7 \frac{\text { t }}{4}$.

Aug. 29. The height of the Mercury was 4 r.
Sept.I. The height of the Mercury was $42 \frac{1}{2}$.
4. The height of it was 44 .
7. The three days lat pat, being hotter than the foregoing, the afcenfion of the Mercury was $2 \frac{1}{4}$. Its height was $46 \frac{1}{4}$.
Sept.10. The height of the Mercury was $47 \frac{1}{2}$.
13. The Mercury was deprefled, its height was onely 44 digits.
23. The Mercury was by degrees again mounted to the 48 digit.
27. The height of the Mercury was $50 \frac{1}{2}$.

Nov. 5. The Mercury afcended by degrees to the height of $5^{2 \frac{1}{2}}$.

Pbylico-Mechanical Experiments.

$$
\text { Nov. } 28 \text {. }
$$

The Apricocks were reduced to Water; the skin was fevered from the Pulp, yet no more Air was produced. mon?

$$
\text { Fan,10. } 1677 .
$$

Whileft it was a very hard Froft, the Mercury came to the height of 57 digits : but when the Thaw came, it was depresfed to 23 . Whether the ftrength of the Frof opened fome way for the Air to get out, I know not.
March 3.

The Mercury could afcend no higher, becaufe the Air was got out. This day Ifound the Receiver tumbled on the ground, and the Apricocks, when the Froft was broke, were putrified, and had loft their colour.

From this Experiment it feems tofollow, That Apricocks do produce Air almof as eafily in their wonted preflure, as in vacue.

EXPERIMENT III.

$$
\text { Fиме } 20 . \quad 1676 .
$$

I put fowre Cherries into 2 empty Receivers, and obferved altogether the fame circumfances in them both; fave that in the one, the Cherries were whole, in the other, cat afunder. In 2 hours fpace the whole Cherries had impelled the Mercury into the Gage to the height of 10 lines; and the diffected Cherries, to about:20,

$$
\text { Fuse } 2 \mathrm{I} \text {. }
$$

In 24 hours fpace, the Mercury, which was in the Receiver, containing the whole Cherries, came to the height of 3 digits; but in the other Receiver the Mercurial Gage was fpoiled.

$$
\text { Fune } 26 .
$$

The whole Cherries had not yet produced fo much Air that could fuftain 15 digits of Mercury; but the diffected Cherries had wholly filled their Receiver with Air.

112

The Second Continuation of

 Fuly 9.This day the Receiver of the whole Cherries was removed from his Cover: I did eat one of the Cherries, and its tafte feemed pleafant enough. I included the reft again in vacuo, many of them were broke, and in one hours fpace they impe!led the Mercury to afcend to the height of about 2 digits. Fuly 10.
Thefe laft 24 hours the Mercury afcended not; whether the Gage was prejudiced, I am not certain.

Fuly 15 .
This day I found the Cover fevered from his Receiver, and fo it was clear, that the Gage was fpoiled or hurt.

This Experiment gives us a probable confequent, That fome diffected Fruits do fooner produce their Air, than whole and undivided ones.

EXPERIMENTIV.

June 9. 1676.
I put Cherries (not acid ones) into an empty Receiver, and within one hour I found as much Air produced from them, as fufficed to fuftain $\frac{1}{4}$ of a digit of Mercury.

June 10.
In 18 hours the Mercury feemed to have come to the height of II digits.

Fune 1 I .

Our Fruits produced Air, lefs, and lefs copioufly; fo that this day, towards the evening, they came not up to the height of 15 digits.

Fune 12. Now the Mercury was a little higher than 15 digits.
13. The height of the Mercury was 22 digits.
16. The Mercury yet came not up to 30 digits.
18. Perceiving no more Air to be produced from my Fruits, I opened the Receiver.

Such a fmall production of Air feemed very obfervable to me, becaufe I had found by experience, that Fruits of the fame kind in France, had filled their Receiver in 2 days time; it may probably come to pafs, that Fruits of the fame kind, in feveral Countries, may differmuch amongtt themfelves.
EXPERIMENTV.

$$
\text { June 12: } 1676 .
$$

I put Cabbages cut in piecesinto an empty Recipient, with a Mercurial Gage, and in one hours face the Mercury had made one line.

Fune 13. The Mercury was now come almoft to the height of 10 digits.
17. The Mercury was come almoft to the top of its Gage, and the Receiver being opened, I found the Cabbages little altered.
19. The Cabbages being left 2 days in the open Air, were wholly corrupted and blackifh. I put them again in vacuo, to trie, whether the putrefaction begun, would promote, or elfe retard the production of Air.
Fune 19. The Mercury in half an hour ran up $\frac{1}{2}$ of a digit.
22. For three whole days the Mercury got higher onely 10 lines. Its height was I and $\frac{1}{3}$ of a digit.
23. Finding that the Cabbages produced no more Air, I took them out of the Receiver, their Smell was very bad.
Hence a fufpicion arofe within me, That Bodies, whenthey putrefie, have already produced almoft all their Air.

> EXPERIMENTVI.

$$
\text { May 29. } 1676
$$

I took pieces of Orange weighing 4 ounces, and put them into a Receiver capable of holding 10 ounces of Water, and I exhaufted the Air.

This day the Receiver was removed from his Cover, by the force of the produced Air; fo that I took out the Oranges, and prefently put them into another empty Receiver capable of containing 8 ounces of Water, and the Mercury within half an hour, was elevated to the height of one half digit.

$$
\text { Fune } 13 \text {. }
$$

That fudden afcenfion of the Mercury was not durable, for it yet came not to the height of 2 digits.

$$
\text { Fune } 16 \text {. }
$$

The Mercury, the laft 24 hours afcended about 3 lines. Fune 2 r .
The Mercury, thefe lait 24 hours, did not afcend the fpace of one line.

$$
\text { Fuly } \mathrm{x} 8 .
$$

I perceived nomore alteration was made in the height of the Mercury ; but fome mouldinefs appeared, though I am certain that no Air from without, had found any ingrefs into the Receiver.

EXPERIMENTVII.

April 27. 1676.
I put a Tulip into an empty Receiver, with a Mercurial Gage, but before it was fortified againf the external Air, fome Air had got in, enough to fuftain 2 digits of Mercury.

$$
\text { May } 2 .
$$

The Tulip, which firf feemed ftriped with fundry colours, was now wholly changed into a dark red, and was moift, It produced very little Air.

> EXPERIMENT VIII.

$$
\text { April 22. } 1676
$$

I put half of a Limon into an empty Receiver, with a Mer
curial Gage, fo fhort, that the Mercury could not run up the fpace of 3 digits.

April 24. In 2 days fpace the Mercury came to the height of one digit and an hall.
25. The Mercury was now 2 digits high.
27. Yefterday the Mercury made 4 lines,but this day onely one.
29. The 2 laft days, the Mercury mounted higher by one line.

$$
\text { May } 3 \text {. }
$$

In 4 days face the Mercury afcended one lineand a little more. May 3. 1677.
The Mercury came to the top of its Gage, yet no Air got out; but the Limon was little altered.

$$
\text { fan.r. } 1678 .
$$

As yet no Airefcaped out of the Receiver; but the Limon had contracted a yellow colour, and moifture therewith.

EXPERIMENT. IX.

March 16. 1677.

I put 2 Apples, of the fame fort, in 2 empty Receivers, one of the Apples began to putrifie before, the other was onely bruifed with a few blows.

May 15. 1677.
As yet the Fruitswerein very good cafe; but this day that Apple which wasbruifed, appeared wholly rotten, and the Receiver was forced from his Cover; the other Apple remained without any change.

Auguft 20. 1677.
That Apple which before began to be rotten, fuffered no farther alteration; but this day finding that the Receiver was pulled from his Cover, and fearing left the Apple would be fpeedily putrified, I took it out; its tafte was grateful, but fubacid, as if it had been fermented; but the pulp inclined to the confiftence of meal.

From

16 The Second Continuation of

From this Experiment it feems to be confirmed, That Fruits, have produced the greateft part of their Air, when putrefa-: ction begins to alter them; feeing the putrid. Apple did not fill its Receiver but in a much longer time than the other Apple. See Exper. V. of this Article.

> EXPERIMENTX.

$$
\text { May 17. } 1676
$$

I poured 2 equal quantitics of Milk into 2 Glafs Receivers, of equal bignefs; the one I left in the Free Air, the other I included to be kept in an emptied Veffel, with a Mercurial Gage.

$$
\text { May } 18 .
$$

The Cream did fwim on the top of that Milk, which was left-in the Free Air; but that which was in vacuo, was onely covered with Bubbles; and the Gage was not changed at all

$$
\text { May } 19 .
$$

The Bubbles fwelled more and more, and the Mercury in the Gage was a little higher.

$$
\text { May } 20 .
$$

The Bubbles in vacuo fwelled yet more, and that Milk fee med curdled; but the other in the Free Air was manifefly curs dled. 'The Mercury in vacuo came almoft to the top of its Gage. May 22.
The Milk invacuo proceeded to generate Air more and more, and now it evidently appeared to be curdled; whence it ismanifeft, that the coagulation of Milk, when the Air is taken away, is retarded. Now almoft all the Bubbles were broke.

$$
\text { June } 20 .
$$

The Milk in vacuo was no longer covered with Bubbles, and remained ftill coagulated in the fame ftate. But the Milk in the Free Air, 1tank filthily, and was full of Worms: when it was put on the Engine, and the Air extracted, it did emit ma.

Phyfico-Mechanical Experiments.

ny very great bubbles for a long time ; and the Worms did move themfelves very vehemently, but not one of them died in: 4 hours fpace.

$$
\text { May 19: } 1677 .
$$

Three or four Monethsago, fome Whey in vacuo was poured out of a Veffel into a Receiver, and it feemed clear and limpid, like Water; yet there was Whey enough left in the Veffel, to feparate the Butyrous from the Cafeous part, at a fufficient diftance.

This day the Milk ftagnant in the Receiver, feemed to have got out of it; fo that it is clear, that the Air in the Receiver, was of greater force than the external. Air, for the Cover allo was forced from the Receiver. Towards night, I took that Milk out of the Receiver, and found it to beacid, both in fmell and tafte, yet it was not unacceptable to the palate; but after a fhort time, the Whey, which hitherto had remained limpid between the Cafeous and Butyrous part, began to difappear, and to be blended with the reft.

$$
\text { May } 24 .
$$

This day the Butyrous part was wholly vanifhed though as yet it had fuffered no fenfible mutation; but the Milk began tofmell amifs.
Fune r.

Our Milk had not yet contracted the worft of fmell, nep ther had it produced any Worms, but it grew dry by degrees; and this night the Mice eat it up, as perhaps they had done the Butyrous part before.

This is the Story of my Preferved Milk, in which thefe 4 things feem moft obfervable. Firft, That the Coagulation of Fiilk, when Air is extracted therefrom, is fomewhat retarded. Secondly, The weight of Butter, or of Whey, or Cheefe, is not the fame in the Air, as it is in vacuo; for in the Air they are mixed one with another confufedly: but in vacu one fwiars
'118 The Second Continuation of on the top of the other. Thirdly, The putrefaction of Mills, when Air is extracted, is hindered, or very much retarded. Fourthly and laftly, Milk by long continuance in vacuo, is made unfit to generate Worms, even in Common Air.

EXPERIMENTXI.

September 5. 1677.
I took the fame Receiver, and the fame Veffel, which I ufed before to preferve Milk invacuo, and I included Urine therein, after the fame manner, as I had done Milk before. The quantity of Urine was 3 ounces and 3 drachms, orthereabouts; and the Receiver was onely capable of holding 10 ounces of Water.

$$
\text { Sept. } 7 \text {. }
$$

The Mercury reached to the height of almoft 2 digits. Sept.8.
The Mercury was this day fomewhat higher than yefterday. December 5 .
The Mercury afcended not above 3 digits in height, and for the whole moneth paft was not changed at all. The Urine feemed not at all to be altered.

Decemb. 6.

Ifet other Urine under a Receiver, not fortified againft the external Air.

$$
\text { Decemb. } 16 .
$$

The Urine in vacuo ftill kept unaltered, but the other, in to days time feemed turbid, and to have contracted fome mouldinefs in itsfuperficies.

This Experiment, compared with the former, gives us a probable inference, That Urine, which is an excrementitious lumour, contains lefs Air in it, than Milk which is alimental.

Moreover, The efficacy of the Air to corrupt Urine, feems very obfervable.

Phyyico-Mechanical Experiments.

E X P ERIMENT XII.

$$
\text { May } 19 .
$$

I took Pafte very much diluted, and without Leaven, and put it in a Glafs Veffel into an empty Receiver; and though the Veffel, which contained it, were not half full, before all the Air was exhaufted, yet the Pafte had fwollen above the brims of the Veffel.

May 20. The Patte continued to fwell more and more, and was interfperfed with many cavities.

May 22.
This day the Pafte was much more tumid than before, and much Air was generated therefrom.

May 23.
This day in the morning I found the Cover fevered from his Receiver, by the force of the produced Air, and fome of the Pafte was fpread above the edges of the Receiver, yet its fwelling was fomewhat abated. In the afternoon, its tumidnefs was much more abated, yet it took up twice more room than it did before it was put into the Receiver. The tafte of it was not acid, and therefore I think that Bread, thus made, is very light.

EXPERTMENT XMI.

$$
\text { Fuly } 20,1676 .
$$

I took a quantity of Beef, and put it into an exhaufted Receiver, fortified againft the external Air ; and likewife I pat another equal quantity of Beef into a Receiver, neither exhaufted, nor clofely ftopped.

$$
\text { Fuly } 21 \text {. }
$$

In 30 hours fpace, the exhautted Receiver was all filled with Air, fo that I furpected fome Air had got in; and therefore I

120 The Second Continulation of

included the fame Beefagain, and fo clofed it, that there was no fear of the ingrefs of any external Air.

$$
\text { Fuly } 22 .
$$

In 14 hours face the Mercury came to the height of 55 dig.

$$
\text { Fuly } 25 \text {. }
$$

For 3 whole days and more, the Beef did not produce fo much Air, as would fill one half of the Receiver.

$$
\mathcal{F u l y} 26 .
$$

This day the Receiver was fevered from his Cover; and in one hours fpace, I perceived that the Beef, being again included in vacuo, had produced Air, which fufficed to fuftain 10 digits of Mercury.

$$
\text { Fuly } 28 .
$$

I found the Receiver again filled with Air,and re exhaufting it, much Air was in a fhort time again produced from the Beef.

$$
\text { fuly } 30 .
$$

The Receiver being again filled, I included the Beef again in vacuo, and found, that the Air produced from it in one hours fpace, was able to fuftain ro digits of Mercury.
Auguft I.

The Receiver being this day filled again, the Beef ftank fo filthily, that we threw it out of doors.

Henceit appears, That Flefh, whileft it putrifies, doth produce much more Air, than before it putrifies; but 'tis otherwife with Fruits. See Exper.IX. of this Artic.

> EXPERIMENT XIV.

$$
\text { Fuly } 18.1676
$$

I put fome Goosberries, which I had kept long in Receivers to produce Air, intoa vacuous Receiver.

Within half an hour the Mercury afcended to the height of one digit.

In an hour and halfs time, the Mercury mounted another digit.
fuly

In 24 hours time, the Receiver was almof all filled with Air. Fuly 20.
The Cover was forced from his Receiver, and much juice had run out of the Receiver.

$$
\text { Fuly } 29 \text {. }
$$

I left the fame Goosberries in a Receiver, not hitherto fortified againft the external Air; but this day I included them again in vacuo, to trie, whether they could produce any more Air.

$$
\text { Fuly }{ }_{3} \mathrm{O} \text {. }
$$

In 16 hours time, the Goosberries drave up the Mercury a digit and $\frac{1}{2}$ into the Gage.

$$
\text { Fuly 30. } 1677 .
$$

The Goosberries could not wholly fill their Receiver; and they alwaysremained in the fame ftate, but a while fince they had almoft loft their red colour, and inclined to white.

From this Experiment it feems to follow, That thefe Fruits, after they have produced all their Air, admit very little alteration; as ifthat Air it felf were the caufe of corruption.

E XPERIMENTXV.

Auguft 23.

I put Pears into a vacuous Receiver with a Mercurial Gage; and before the Receiver could be well fortified againtt the ingrefs of the Air, the Mercury was come to the height of one digit and an half.

In 2 hours fpace the Mercury afcended 4 digits; its height was almoft 6 .

Auguft 24. The height of the Mercury was I2 digits.
25. The height thereof was 16 .

R
Aug.

Sept.7. The height of it was the fame, becaufe fome Air had
efcased, but I prevented that for the future.
8. The height of the Mercury was $53 \frac{1}{2}$.
9. The height of it was $54^{\frac{1}{2}}$.
10. The height of it was 58 .

Septemb. 12.
Yefterlay the Mercury perfifted in the fame height; but this day i: feemed to be depreffed: whence I conjecture, that fome Airnad got out. The height of it was $53 \frac{1}{2}$.

Sept. 13.
I tranfmitted the Air into another Receiver : the height of it was $32 \frac{1}{2}$.

Sept. 16.
I perceived that the Air had got out; and opening the Receiver, I fund the Pears very rotten.

Thefe Pears produced their Air irregularly enough, fome times quiker, fometimes more flowly.

EXPERIMENT XVI.

September 17.

put dried Plumsinto an evacuated Receiver.
Sept.19. The Mercury feemed to have afcended a little.
22. I perceived not that the height of the Mercury was any more altered.

Novemb. 8.

When I faw that the Plums produced no more Air, I opened. the Recever.

Physico-Mechanical Experiments.

By this Experiment, we have a confirmation, That dri'd Fruits are very unfit to produce Air.

EXPERIMENTXVII.

Septemb. 28.
I put frefh Nut-kernels, cut into pieces, having thrown away their fhells, into an evacuated Receiver witha Mercurial Gage. 29. The Mercury afcended a little.
30. Theheight of it was 2 digits.

Octob. 5.
The Mercury proceeded toafcend by degrees : theheight of it exceeded 6 digits.

Oct. I 5. Theheight thereaf was ro digits.
22. The height of it was 15 .

$$
\text { Nov. } 28 .
$$

The Mercury was come to the height of 20 digits, or a little more ; but this day the Receiver was caft down and broken, and the Nut-kernels thrown about ; they were kept very well, both as to colour and tafte.

Hence wemay conjecture, That Air without fenfible putrefaction may be produced from Fruits, even of an hard confiftence.

124

The Second Continuation of

$$
A R T I C L E X
$$

Concerning the Production of Air above its wonted Preffure.

EXPERIMENT. I.

Fune 22.

IIncluded new Peafe in a Receiver with a Glafs full of Raifins of the Sun bruifed, and mixed with Water, I did not exhauft the Air.

Towards Evening the Mercury had mounted to 12 digits, but a great part of that Air was produced from the Railins, not from the Peafe.

Fune 23. The height of the Mercury was 49.
Fune 24$\}$ The height $\{75 \mid$ Fune 26$\}$ The height $\{90$ $25\}$ of it was $\{90\} 28\}$ of it was $\{100$
The Peafe did as it were fweat, and grow yellow. 30. The height of the Mercury was 110 .

Fuly 1. The Mercury afcended not, yet no Air efcaped out.
4. The height of the Mercury was 124.
7. The height of it was 140 .

$$
\text { Fuly } 10 .
$$

The height remained the fame, but the liquor which diftilled, or fweat out from the Peafe, got out.

$$
\text { Fuly } 12 \text {. }
$$

New liquor was produced from the Peale, but the Mercury continued in the fame height.

$$
\text { Fuly } 13 \text { : }
$$

The liquor got out of the Receiver, and fome Air befides;
whereupon Ifet the Screw, and new liquor being in a fort time collected, did fortifie the Cover within.

$$
\text { July } 15 \text {. }
$$

This day the Receiver was broken in pieces; but the Peale being fofter than ordinary, were eafily ffript of their husks, as if they had begun to be boiled : they kept their ordinary taft.

EXPERIMENT II.

Sept. 15.1676.
I put unripe Plums into a vacuated Receiver; but before the Receiver could be guarded againft the external Air, the Mexcury had already afcended to the height of one digit.

$$
\text { Sept. } 16 .
$$

In 24 hours time the Mercury ran up 5 digits, its height was 6 digits.

Sept. 17 . The height of the Mercury was 8.
Sept. 18

Octob: r. The height of the Mercury was 30.
4. The height of it was 3 r . 'twas fomewhat cold.

Octob. 5$\}$ The height $\{32 \mid 0$ tob. 9$\}$ The height was 33. $7\}$ of it was $\{33$, II \} ~ T h e ~ f a m e ~ h e i g h t ~ f i l l . ~
Octob. I 5 . Thee 2 lat days, the Cold being abated, the Marcury afcended more fpeedily; its height was 37.
octob.
$\left.\begin{array}{l}17 \\ 19 \\ 22 \\ 26\end{array}\right\}$ The height $\left\{\begin{array}{l|r}38 & \text { Octob.29 } \\ 39^{\frac{1}{2}} & \text { Nov. } 2 \\ 41 & 5 \\ 43 & 20\end{array}\right\}$ The height $\left\{\begin{array}{l}45 \\ 46 \\ \text { of it was } \\ 47 \\ 53\end{array}\right.$

In this Experiment, the Air lems to be produced fometimes regularly enough, and at other times Anomaloufly.

126
 The Second Continuation of

EXPERIMENTIII.

Fuly 6. 1676 .

I put Goosberries into an emptied Receiver, but before it could be guarded againft the external Air, it had entered in, and impelled up the Mercury to the height of half a digit; and afterwards in half an hour, the Air produced from the Goosberries, had impelled it up to another femi digit.

In 7 hours time the Mercury afcended 4 digits higher: it ftaid in 5 .
fuly 7. In 14 hours fpace the afcenfion of the Mercury was 2 digits and $\frac{1}{x}$.

In ro hours fpace, the afcenfion of it was $2 \frac{x_{2}}{2}$.
July 8. In 14 hours the afcenfion of the Mercury was $\mathrm{I} \frac{1}{2}$. In 10 hours the afcenfion of it was 2 digits.
Fuly 9. In 14 hours the afcenfion of the Mercury was $2 \frac{1}{2}$. In ro hours its afcenfion was $\mathrm{I}^{\frac{1}{4}}$.
Fuly $\mathbf{1 0}$. In 14 hours the afcenfion of it was $x^{\frac{3}{4}}$. In ro hours the afcenfion of it was 3.
${ }^{F}$ uly $1 \mathbf{1 x}$. In 24 hours the afcenfion of the Mercury was 4.
Fuly 12. In 24 hours the afcenfion of the Mercury was 4. Now the Mercury was brought to its wonted preffure. Fuly 13 .
This day in the morning, I found the Cover to be broken, and becaufe it was faftned by a Screw, that it mightnot be fevered from the Receiver, I fufpected that it was broken by the force of the internal Air; I fubftituted another Cover in its place.

$$
\text { Fuly } 14,15,16,17,18 .
$$

Iperceived no change in the height of the Mercury, becaufe the Cover was not exactly fhut; and therefore I took out the Fruits, and put fome part of them into another evacuated Receiver, and the reft I foppedupclofely with common Air, that nothing might get out.

In 4 hours the afcenfion of the Mercury was 4 digits. Fuly 19. In 14 hours the afcenfion of the Mercury was $1 \frac{1}{2}$. but, fufpecting the Air to have efcaped, I Jet the Screw.

In 9 hours the afcenfion of the Mercury 1 I digits.
The Cover was broke, and the Air madean efcape.
This Experiment feems to prove, That Goosberries contain much Air in them, which, as foon as it is freed from the wonted preffion of the Air, doth more readily break forth, than when it is reftrained by fome ambient Air, until the Goosberriesbegin to be fermented, for then Air is produced in a far larger quantity, even in a great compreffion.

EXPERIMENTIV.

$$
\text { fuly 8. } 1676 .
$$

I included Pafte in an exhautted Receiver, and, before it was guarded againft the external Air, the Mercury was come to the height of 3 digits, by reafon of the Air making an irruption from without; whence it came to pals, that the Pafte, which was much fwollen, lof about the third part of its tumidity.
A little while after it fwelled again, and within half an hour the Mercury mounted higher by 2 digits.

In one hours time the afcenfion of the Mercury was $2 \frac{1}{2}$. and the Pafle continued to fwell or rife more and more.
In another hours fpace the afcenfion of the Mercury was 3 digits and $\frac{1}{2}$.
In r hours time the afcenfion of it was $4 \frac{1}{2}$ digitsit faid in 16 . Fuly 9.
In 14 hours fpace, the afcenfion of it was 21 digits. The height of the Mercury was 37. Moreover I furpected that fome Air had got out; when I fet the fcrew, the Cover brake, and upon the ingrefs of the external Air, the Pafte, which always did r ife, now did abate about 2 digits of its tumidity, though it was now found in a. lefs comprefifion than before.

128 The Second Continuation of

In 5 hours fpace the afcenfion of the Mercury was I_{5} digits. But when I again endeavoured to fet the Screw, the Cover brake, fo that the Air efcaped; the Pafte did prefently fomewhat pitch, and was deprefled.

In 4 hours fpace the afcenfion of the Mercury was Io digits, the Pafte did again fwell or rife, as before; butbeing willing to fubititute abetter Screw in the place of the other, I permitted an egrefs to the Air, yet this time the Pafte did not pitch or fubfide, as before it had done.

> Fuly Io.

This night the Pafte rofe again, yet it feemed to have produced no Air.

In 4 hoursfpace there was no afcenfion of the Mercury.
In 7 hours face the afcenfion of it was 4 digits.
Fuly 12 I perceived noafcent of the Mercury. 13. It feemed to have afcended a little.
17. Seeing no more Air was produced, I took out the

Pafte and found it to be of a fubacid fmell,
This Experiment feems to prove, That Air may be produced out of Pafte, in compreffed Air, as well as in vacuo.
But the Pafte was twice depreffed, becaufe the compreffed Air fuddenly finding out a way of eruption, was fo much dilated, as it is wont to happen in all Springs, when they are carried beyond their point of reft: but, when that Air was immediately repelled by the external Air, the Paftedid pitchand was depreffed.

EXPERIMENTV.

Fuly 13.1676.
I included fome Beans, of that fort which are given to Horfes for Provender, in vacuo, with fome Water; fome of them which were bruifed, feemed to fwell much; but thofe which were left whole, fuffered no fenfible alteration.

In 2 hours fpace I faw no Air produced, though the Beans continued to fiwell.

Fuly 14. In 24 hours the afcenfion of the Mercury was 7 digits.

Fuly 15 . In 16 hours the afcenfion of the Mercury was 3 digits and $\frac{1}{2}$.

In 8 hours the afcenfion of it was $\frac{1}{2}$. the height of it was 12.

Fuly 16. In 14 hours the afcenfion of it was 3.
17. In 26 hours the afcenfion of it was 6.
18. In 24 hours the afcenfion of the Mercury was almoft 9.
19. Iftopped the Receiver firmly with a Screw, becaufe the Air had got out. In 9 hours face the afcenfion was I digit.
20. In 24 hours fpace, the afcenfion was $3^{\frac{1}{2}}$.
21. In 24 hours fpace the afcenfion was $5 \frac{1}{2}$.
22. In 14 hours the afcenfion of the Mercury was 2 digits.
23. In 24 hours the afcenfion of the Mercury was 18 digits.
24. In 14 hours the afcenfron of the Mercury was almof 5. The height of it was 35 above the wonted preffure.
25. The Receiver could not fuftain a greater preffure. I found the Beans of a fortid fmell, not much unlike the fmell of putrified Flefh.
From this Experiment it feems to follow, That Beans contain much Air in them, and that, that Air is produc'd in a moderate preffure, as well as in vacuo, fometimes more fpeedily, fometimes more flowly.

Efpecially, that great inequality, which happened \mathcal{F} uly 23. is to be taken notice of.

The Second Continuation of

EXPERIMENTVI.

fuly 23.
I included Goosberries in vacuo, and fortified them very well againft the external Air.
In 2 hours fpace the Mercury afcended I digit.
Fuly 24. The height of the Mercury was 7 digits $\frac{1}{2}$.

Fuly 29. The height of it was almoft 30 .
30. The height of it was almoft 3 I. I tranfmitted fome Air out of this Receiver into another evacuated Receiver, and fo the height of the Mercury was 26.
31. The height of the Mercury was 35 . Auguf x .
The height of the Mercury was 39. But fome Air had efcaped out; and going about to fop the Receiver clofe, I fuffered fome more Air to get out.

The height of the Mercury was 30.
Aug. 2. The height of the Mercury was 39 . I tranfmitted fome Air into another Receiver.

The height of the Mercury was 3 r .
Aug. 3. The height of the Mercury was 39.
4. The height of the Mercury was 4 t .
5. The height of the Mercury was 43 . I tranfmitted the Air into another Receiver.
The height of the Mercury was 30 digits.
6. The height of the Mercury was 43 .
7. The height thereof was 47 .
8. The height thereof was 48 . But the Air being tranfmitted into another Receiver, the height of it was 36 .
9. The height of the Mercury was 4 I. Fourteen hours were paft.

Phylico-Mechanical Experiments.

Aug. 10. The height of the Mercury was 47. the Air being tranfmitted into another Receiver, the height of it was 35. 24 hours were elapfed.
11. The height of the Mercury was $38 \frac{1}{2}$. Fourteen hours were elapfed.
12. The height of the Mercury was 42 , twenty four hours were paffed. I extracted the Air, and the height of the Mercury was 26.
13. The height of the Mercury was 33. twenty four hours were elapfed.
$\left.\begin{array}{l}14 \\ 15 \\ 16\end{array}\right\}$ The height $\left\{\begin{array}{l|l}36 \\ 39 \\ 31^{\frac{1}{2}}\end{array}\right\}$ hours $\left.\left.\begin{array}{l}17 \\ 24\end{array} \right\rvert\, \begin{array}{l}18 \\ 19\end{array}\right\}$ The height $\left\{\begin{array}{l}44 \\ \text { of it was } \\ 47 \\ 50\end{array}\right\} \begin{aligned} & \text { hours } \\ & 24 \text {. }\end{aligned}$
I tranfmitted the Air into another Receiver, and the Mercurial Gage was fpoiled. Itook out the Goosberries, and found that they had loft their colour, and alfo almoft all their acidity.

From this Expcriment we may infer, That Goosberries do produce their Air regularly enough, unlefs fomething be extracted out of the Receiver, for then they acquire ftrength to produce new Air more fpeedily.

EXPERIMENTVII.

September 12.

I put crude Grapes into an emptied Receiver, but before they could be fortified againft the external Air, fome thereof had got in, as much as could fuftain 3 digits of Mercury.
$\left.\begin{array}{r}\text { Sept. 13 } \\ 14 \\ 16\end{array}\right\}$ The height $\left\{\begin{array}{r}5 \\ 10\end{array} \left\lvert\, \begin{array}{r}\text { Sept. } 17 \\ 17 \\ 17\end{array}\right.\right\}$ of whe height $\left\{\begin{array}{r}19 \\ 23 \\ 25\end{array}\right\}$ of it was
Sept. 22. The height of the Mercury was 30 . I flopped the Receiver with a Screw.
23 The height of the Mercury was about $30 \frac{1}{2}$.
24 The height thereof was 32 .

Octob.15. The height of the Mercury was 46. It afcended chiefly thefe 2 laft days, when the Froft was diffolved. Nov. 2. The height of the Mercury was 54 digits. 5. The height was 58 .

Fan.10. 1677.

Now the Mercury was come to the height of 70 digits; and yet I perceivec no fenfible mutation in the Mercurial Gage, even when the Cold was moft fierce, though the Grapes and their Juice were concreted into Ice.

$$
\text { September } \mathbf{2 I} \text {. }
$$

Hitherto the Grapes feemed notaltered: but the Mercury had afcendeda little becaufe the Air had found a paffage out. This day I opened the Receiver, and when the Air brakeforth, many of the Grains feemed to be contracted into wrinkles. The Grapes had kept their tafte but much more pungent; but their Juice continued to be tinged with a curious red colour.

This Experimentfeems to intorm us, that Grapes produce not all their Air, but in a long tract of time.

> EXPERIMENT VIII.

$$
\text { Auguft ¥o. } 1677 .
$$

I pue Pearscut intwo, into a vacuous Receiver. Towards Evening the Mercury was come up to the height of 10 digits.
Awg. 112 The heght $\left\{\begin{array}{r|r}20 \\ 13 \\ 14\end{array}\right\}$ of it was $\left.\begin{array}{r}\text { Aug. } 15 \\ 38 \\ 48 \\ 17\end{array}\right\}$ The height $\left\{\begin{array}{l}55 \\ 60 \\ 68\end{array}\right\}$
The

Phyfico-Mechanical Experiments.

The Air being tranfinitted into another Receiver, the height of the Mercury remained at $53 \frac{1}{2}$.
Aug. 18$\}$ the height $\{61$ Aug. 20 the height $\$ 70$
19\} of it was $\{64$ 21 $\}$ oit was $\{72$
The Air being tranfmitted into another Receiver, the Mercury remainedin the height of $6 \mathbf{r}$.

Aug. 22$\}$ the height $\left\{\begin{array}{l}68 \\ 23\end{array}\right\}$ Ang. $24\left\{\begin{array}{l}\text { the height }\left\{\begin{array}{l}79 \\ 74\end{array}\right) \text { of it was }\{8 \mathrm{r}\end{array}\right.$
The Air being tranfmitted into another F.eceiver, the height of the Mercury was $6 \mathbf{r}$.

Aug. 26. The height of the Mercury was 56 . becaufe fome Air had got out, yet I tranfmitted the Air into another Receiver, and the Mercury remained in the height 52.

Aug. 27 28$\}$ the height $\left\{\begin{array}{l|l}60 \\ 68 & \text { Au. } \\ 20 & 30 \\ 75 & \text { Sept. }\end{array}\right\}$ the height $\left\{\begin{array}{l}83 \\ 88 \\ 93\end{array}\right.$
Septemb. 2. The height of it was 100.
Sept. 3. The height of it was 89 . becaufe tome Air had efcaped out, which made me cautious to prevent the like for the future.

Sept. 4. The height of the Mercury was 100.
5. The fame height continued.
7. The fame height ftill continued, though no Air at all had any egrefs.
9. The height of the Mercury was 107.
10. The height of the Mercury was the fame.

The Air being tranfmitted into another Receiver, the Mercury ftaid in the height 99 .

Sept. II. The Mercury maved not.
13. The height of the Mercury was 105.

October 8. I this day found that the Air had got out.
This Experiment feems to inform us, that Pears do produce. their Air, as it were by Paroxyfms, or Fits.

A R T I CLE XI.
 Various Experiments. EXPERIMENTI.

March 16.

IMelted down Lead with a fire in a Brafs Veffel, whofe Diameter was an inch and half; but before the Lead was concreted by cold, I put it into a Receiver, out of which I exhaufted the Air with great fpeed; whence it came to pafs, that the figure of the concreted Lead, was concave, and the parts of it were fo much the more depreffed, by how much they were the nearer to the Center : whereas, on the other fide, Lead congealed in common Air, doth exhibit a convex figure, except in the middle, where a little cavity doth appear.
I made the fame Experiment with Tin, and had the fame fuccers : though both Metals being liquid, and very hot, had remained long enough in vacuo, yet no bubbles feemed to emerge from either of them; whereas all other hot liquors do fend forth numerous bubbles in vacuo.
EXPERIMENTII.

September 2.
I put Water faturated with diffolved Salt, in vacuo, to trie whether it would be there converted into Chryftals, and the Salt be carried above theplain, or fuperficies of the Water, as it is wont to happen in the Free Air.

Sept.15. The Water with the diffolved Salt, abiding in the
fame flate, I opened the Receiver; feeing no vapours could efcape out of the evacuated Receiver, 'tis confentaneous to Reafon to judge, that the Salt could not there be converted into Chryftals.

EXPERIMENTIII.

Auguf 8. 1676.
I put Air produced from Goosberries, into an evacuated Recipient, furnifhed witha Mercurial Gage.
March I. $167 \frac{6}{7}$. When I perceived that no change was made in the height of the Mercury, I opened the Receiver.

> EXPERIMENTIV.

Auguft 8.

I took a Phial which was able to hold 7 ounces, 5 drams, and 3 grains of Water, and exhautted the Air out of it; and when in a ballance it was fufpended in an aquilibrium with another weight, I pierced the bladder which covered the orifice, with a Needle, and then, the phial being filled with Air, appeared heavier by 4 grains and $\frac{1}{2}$, whichlatter weight to the former, is in the fame proportion as i to $8 \mathrm{r}_{4}$; whence it follows, that Water is about 800 times more ponderous than that Air of an equal bulk. Yea,'tis probable, that the proportion is with the leaft, becaufe this day the Air was hot and clear, and befides fome Air was always left in the Receivers after the exhauftion.

EXPERIMENTV.

$$
\text { Fan. 16. } 1677 .
$$

I put Aqua Fortis with fixed Nitre into a Receiver; and, having exhaufted the Air as much as I could, I poured in one of them on the other, and found much Air produced. I marked the height of the Mercury in the Gage.

The Second Continuation of

March 5. Finding that the produced Air was not deftroyed, and that the Mercury perfifted in the fame height, I opened the Receiver, and found Nitre produced in vacuo from the mixture.

EXPERIMENTVI.

$$
\text { May 12, } 1677 .
$$

I filled a Phial, of a long and very narrow neck with Oil up to the middle of the neck; and thus filled, I put it into a Receiver firmly ftopped by the help of a Screw; into which afterwards I intruded Air till it could fuftain 120 digits of Mercury above its wonted re ght. And the Oil in the neck of the phial, appeared depreffed toward the phial about one quarter of an inch; the caufe whereof I judge attributable to the compreffion of the Air; and yet having eafed the Screw, and thereby fuffered the Air to break in and be dilated, the. Oil did not afcend at all; fo that I judge it was condenfed onely by cold.

Auguft 5. I made the fame Experiment after the fame manner, onely ufing Water inftead of Oil; and yet I could perceive no change of the height of the Water in the neck of the Glafs, though the heat being moderate, might have produced a fenfible effect.

Fan.r4. 1678. Becaufe I found by fome Experiments, that compreffed Air did enter into the pores of the Water, and did pierce even to the bottom, a fufpicion might arife, that theWater was not condenfed by the compreffed Air,forthis reafon, becaufe the Air entering into the pores, did make the preffion within equal to the preffion from without. And to be fure of this, I filled the Glafs abovefaid with Spirit of Wine, leaving onely the length of 3 digits in the top of theneck thereof, which was filled with Air onely. Then my hands being applied tothe Glafs, the Spirit of Wine, being heated, in a fhort time, filled the whole neek even to the top. Then the Glafs being inverted into a Veffel
Pbyfico-Mechanical Experiments.

Veffel full of Mercury, I removeid my hands, which being done, the Spirit of Wine being foon cooled; afforded fpace to the Mercury to fill 3 digits in height. I put the Veffel and the Glafs in that pofture, into a Receiver, into which I aiterwards compreffed the Air, till the Mercury exceeded its wonted height 90 digits, and yet there was no fenfible condenfation of the Spirit of Wine, nor any afcenfion of the Mercury; however it is certain, that no Air had crept in, becaufe the Mercury hindered it ; and the Receiver being opened, when the Air, that compreffed from without, was dilated, no bubbles appeared in the Spirit of Wine.
In this Experiment, it feems worthy our Enquiry, how it comes to pais that Spirit of Wine was fo fenfibly condenfed by a moderate cold, and not at all by a great compreffion of the Air.

EXPERIMENT VII.

$$
\text { May 12. } 1676 .
$$

I poured Spirit of Wine into a Glafs Veffel, and fuperadded fome drops of Oil of Turpentine thereto, which fwimming upon the Spirit of Wine, began to be whirld about by motion, hither and thither, as it is wont to come to pafs. I put the Glafs Veffel on the Pneumatick Engine, and covered it with a Receiver, and yet the bubbles did not at all ceafe to be moved up and down. Then I pump'd out the Air, till the Spirit of Wine did onely not bubble; and it came to pafs, that the bubbles emerging from the Spirit of Wine, did adhere to thedrops of Oil, and carried them with themfelves to the fides of the Veffel, and there retained them; yet 2 drops, free from fuch bubbles, proceeded to have further motion: Afterwards I wholly exhaufted the Receiver, and fome drops were emitted to the top thereof, by the force of the bullient Spirit of Wine; but the remaining drops proceeded on to be moved a little, T and
and in a little time after they refted. The Air being immitted, the drops began again to renew their motion, but it was a flow one, and it quickly ceafed.

I iterated the fame Experiment, with Spirit of Wine and Oil of Turpentine, cleanfed from Air; and no ebullition was then made, yea no bubble appeared at all, but the drops of the Oil of Turpentine were moved in vacuo, as in the open Air.
Hence it feemsto follow, that the caufe of the motion of the drops is not to be afcribed to the diffolution, for all the diffolutions in vacuo, have hitherto feemed to meto produce bubbles.

EXPERIMENTVIII.

May 19. 1676.
I left yefterday 2 Radifhes in vacuo, one of them I hanged up, the root being upfide down, the other in a contrary pofture; both of them cut tranfverfly did hang overa fibjacent Veffel, which contained red Wine. All thefe being left a whole night in vacuo feemed well purged from their Air. Opening the Receiver, I added 2 other Radifhes to the former included ones, cut after the fame manner and from which I had further detracted their thick skin. Then exhaufting the Receiver, I immerged the cut part of all the Radifhes atonce, into the fubjacent Wine: and then many bubbles feemed to arife out from them, as it came to pafs in thofe little Glafs-Tubes of Experiment IX. yea more bubbles were emitted from thofe Radifhes, which were purged from Air the whole night, than from thofe which had not remained above half an hour in vacuo; and from whom I had taken away their skin.

This Experiment feems to afford us a confirmation, that Bubbles are formed of particles of Air, fwimming in Water; and becaufe in the skin there are fome Canales, fit to retain parts of Air, it came to pafs that the Radithes, from which I had detracted their skin, afforded no opportunity for the forming of fo many Bubbles.

Ploylico-Mechanical Experiments.

The liquor afcended no lefs into thofe Radifhes which hanged with their roots upwards, than into thofe of a contrary pofture.

EXPERIMENTIX.

$$
\text { May 4. } 1676 .
$$

I immerged one end of afmall Clafs tube, open at both ends, into Water ftagnant in vacuo, and prefently the Water afcended upinto it, as it is wont todo in common Air, and even to the fame height; but a little while after, many Bubbles being formed there, lifted the Water higher, and kept it fufpended in 3 different places, difterminated by many Bubbles; and many other Bubbles feemedto pafs out from thatend, which was immerfed in Water.

Then I fealed the other end of the tube Hermetically; and fo the Experimentbeing made in common Air, the Water could not afcend upinto the tube by theopen end. But in vacuo the matter fucceeded far otherwife; for the Water afcended up into the tube, no otherwife, than if it had been open at both ends; and many Bubbles formed in a fhort time, did diftinguifh the Water, contained in the tube, by great intervals, as before, whileft the mean time, many other Bubbles feemed inceffantly to pafs out from theend of the tube, immerfed in Water, yet in progrefs of time, they appeared lefs frequent.

But this circumftance I much admired, that the Water being furpended higher in the tube, feemed to be filled with no Bubbles, whereas the end onely did emit fo many.

Then I took out that end from the Water, and no Bubbles did any more appear, though that end was wholly filled with a Cylinder of Water.

May 5. Irepeated the fame Experiment; but before I had immerged the end of the tube in Water, a drop of Water which ran over from the fuperiour aperture of the Receiver, flowed

140 The Second Continuation of

 down to the open end of the tube, and pierced up into it the height of 2 lines, neither was any Bubble formed there in a fuH halt hours time: that being paffed, I immitted the end of the tube into the Water of the Veffel, and not long after, Bubbles began to beformed, as before, of which fome tollowed others within half a minute; yet afterwards they came forth lefs frequent. Furthermore, iterating this Experiment many tires, I perceived, that when the Water was extracted from the tube, no Bubbles appeared : but if it were immerged in Water, Bub: bles would cleave to the end of it, either fooner or later.May 6. I tried the fame Experiment, with the infufion of Nephritick-wood, and the fuccefs was wholly alike, but that the Bubbles could emerge and pierce the liquor, before they hadacquired any bignefs, for being yet very fmall, they pervaded the liquor, contained in the tube, and were carried to the upper part thereof: whence we may conjecture, that that liquor is very thin, and hath no vifcofity to refift the pervading Body.

May Io. Iiterated the fame Experiment with Spirit of Wine, mixed with a certain Oil, made per deliquium: yet I found no new event, but that the afcenfion of the liquor into the tube; was not fo high.

From thefe Experiments it feems to follow, that the Bubbles are formed, in the extremity of the tube of aerial particles, fwimming in the Water, which finding fome impediment at that end, cannot pafs by, and fo, new ones coming upon them, they fwellinto a Bubble.

EXP.ERLMENTX.

$$
\text { Fuly 18. } 1676
$$

Two days ago I took fome Beans, fuch as are given to Horfes for Provender, and included them in an iron tube clofely ftopped; yet I firft affufed Water on the compreffed Beans, till

$$
\text { Phyfico-Mechanical Experiments. } 14 \text { I }
$$

the tube feemed wholly full; to try whether the force of the fwelling Beans would te enough to break the tube. This day the tube feemed not to be altered at all, but the ftopple being plucked back, fome quantity of Air brake out; and much Water fell upon the ground, which was not fucked up by the beans; then a certain noife, as it were, of bubling Water, was heard for a whole hour and more.

Fuly 25 . I left the iron tube in the fame pofture, but this day one of the ends of it being unftopped, and fome Beans taken out, the murmur of the bullient Water was heard, as before.

From this Experiment it feems to follow, that Beans do contain Air in them, which in a great compreffion cannot efcape out; but if it be freed from the force compreffing it, then it makes an eruption.

EXPERIMENTXI.

Marcb 4. 1677.

I put a Glals half full of Spirit of Sal-Armoniack and l_{i}. matura Cupri, into a Receiver exhaufted as much as I could, and there ftopped it in. And it came to pafs, that in 15 minutes face the liquor had contracted a certain blew colour, but very much diluted; but, the Air being immitted, in 3 minutes, the blew colour appeared vivid and thick. I put the liquor fo tinged again in vacuo, to trie, whether in tract of time that colour would vanifh.

April 4. The blew colour was almoft quite vanifhed, but upon the admiffion of the Air, it quickly returned.

EXPERIMENTXII.

May 8.

Iput a certain Oil made per deliquium, with Spirit of Wine into
into an exhaufted Receiver, and the Spirit always fwam on the top; now left the Spirit might be fpilt by bubling above the edges of the Veffel, I extracted the Air by degrees, and in the beginning great Bubbles came from the Spirit, and but very fmall ones from the Oil; but after one hours time, the Oildid emit great Bubbles, which being fmall at bottom, in their afcent did fill the whole latitude of their Veffel; and after another hour, fome Bubbles brake out with fo great force, that they hit againft the top of the Receiver.

May 9. I iterated the former Experiment in a Glafs fomewhat long and narrow, that I might the better perceive the motion of the Bubbles; and then I faw the Bubbles paffing out of the Oil into the Spirit of Wine, without any great increafe of their quantity; but being diftant onely I quarter of an inch from the fuperficies, they were fuddenly expanded.

EXPERIMENT XIII.

May 3. 1676.

I mixed a certain quantity of Aqua Fortis with a quantity of Spirit of Wine fomewhat greater; and then I diftributed that mixture equally into 3 Glafs Veffels, and put three equal pieces of Iron into them, to each Veffel one. This being done, 1 included one of the 3 Veffels in vacuo, and there many great ebullitions were made. Then after a quarter of an hour, Itook out the Veffel, and found the liquor black and turbid, whereas the other two Veffels had their liquor not altered in colour, but onely fome black powder did appear in the bottom of the liquor.

Of thefe 2 Veffels, I put one in vacuo, and then there arofe ebullitions,great indeed, but much leffer than the former: when onequarter of an hour was elapled, I took the Veffel è vacuo, and found the liquor black indeed, yet fomewhat lefs fo than the former; but the liquor which was left always in the Air, didin a manner remain unchanged
Pbyfico-Mechanical Experiments.

May 4. This day in the morning the liquors in the 2 Veffels, put in vacuo, appeared cleanied and green, and had no other operation.
But the liquor which was not put in vacuo did bubble more ftrongly than yefterday, and exhibited a red colour. I put the 3. Veffels together in vacuo, and perceived no eminent ebullition, onely fome Bubbles appeared larger in the red liquor, than in the other two.

From this Experiment it feems to follow, that Spirit of Wine in vacuo doth accelerate ebullition.

EXPERIMENTXIV.

$$
7 \text { an. 21. } 1678 .
$$

I kept a Glafs half full of Sal Armoniack, and filings of Copper, the hole thereof being fo exactly ftopped, that the blew colour, which wasinduced into that liquor, from the contact of the external Air, (See Philofophical Tranfactions, Num.120.) did wholly now difappear. The ftopple was made of Leather, prepared after a fpecial way and manner.
I put that Glafs in vacuo with Pafte not yef fermented.
I did it to this end, that the Receiver, being full of Air from the Pafte, I might perforate the leather that itopped the Glafs, with an Iron Wire prepared for that purpofe; and that I might trie, whether the contact of the Air generated from the Patte, would alfo communicate fome colour unto the liquor.

Fan.22. There was no need to perforate the Leather, for this day I found the liquor already tinged; fo that it is probable, that Air produced from Pafte, is endued with fuch minute particles, that it cap penetrate Leather which is impervious to common Air.

Yet I will keep the Glafs, not touching its ligature, to trie, whether that colour may vanifh again.

Fan.25. Now the liquor became almof colourlefs, whence

144 The Second Continuation of it appears, that common Air is too thick to penetrate all paffages, whichare pervious to Air, produced from Pafte.

Feb. 2. I put the fame phial in vacuo, but did not fortifie the commifure of the Receiver with the Cover, with Turpentine, fo that the Air making a gradual ingrefs, in 24 hours filled the Receiver, even asit was leifurably filled, with the Air produced from Pafte, yet the liquor remained ftill colourlefs.

Feb. 15. I put the fame Glafs again in vacuo with fome quantity of Pafte; but this time the Air produced fromthence, did not pervade the Leather, as it had done before, and the liquor was not tinged at all.

EXPERIMENTXV.

$$
\text { April 2. } 1678 .
$$

I put a Shrew-moufe into the Engine defcribed $p . \mathrm{I}_{3}, 14$ and when I perceived he was reduced to extremity, I began to ftir the Pump, that the Air might penetrate, and be, as it were filtrated through the Water. The Moufe a while after, feemed to be better, yet he could not be wholly reftored to health. Now becaufe he had been long kept fafting, I am uncertain whether he died for want of Aliment, or of new Air.

April 12 . I iterated the fame Experiment with a fmall and weakly Moufe, that had been kept a long time fafting. And finding that this Experiment had the famefuccefs with the former, I took out the Moufe, before he wasdead; and though he then enjoyed the Free Air, yet he recovered not; fo that we have need of more Experiments, that we may attain to a certain knowledge of the effect of that Filtration.

EXPERIMENT XVI.

May 2. 1678.
Six Weeks ago, I included Frog-Spawn in 3 Recipients; the

$$
\text { Pby)lco-Mechanical Experiments. } \quad 145
$$

the firf of which was vacuous ; the fecond contained common Air ; and into the third, I intruded fo much Air, that the Mercury faid in 60 digits above its wonted height.

In 15 days the Mercury in the evacuated Receiver came to the height of a digit. The Spawn in the common Air feemed corrupted and of a blackifh colour ; but that in the compreffed Air, remained unaltered in colour; but no Frogs were generated.

After an wholemonth was elapfed, the Sperm in vacuo had not changed its colour, excepting the black round fpots, but feemed reduced into Water: the colour of that in the common Air wasvery black, but in the compreffed Air the Spawn began to be reddifl.

As yet no change was perceived, neither in that Spawn in vacuo, nor that in the common Air; but in the compreffed Air, the Spawn waxed more and more red.

May 22. The Sperm in vacuo was not changed ; in the compreffed Air it remained red; but in the common Air it became again colourlefs.

Fune 23. The Sperm in vacuo and in common Air was tinged with no colour, but in the compreffed Air it inclined to greennefs.

Octob. 15. I took out all the Spawns; that which was kept in vacuo was almoft exhaled out of its Veffel, and was ftagnant in the Receiver, like clear Water: In the common Air, the Sperm remained colourlefs; but that in the compreffed Air kept ftill its red colour.

EXPERIMENTXVII.

May 9. 1678.

Six days ago, I included two pieces of the fame Orange in 2 Receivers, not quite of equal bignefs, but in the greater Receiver, there was left fome quantity of Water, fo that no lefs fpace

146 The Second Continuation of

was left for the Air in that, than in the leffer. The iffue was, that the Orange included with Water, though it were not touched by it, yet was 4 times more mouldy than that which was kept without Water.

And therefore in iterating this Experiment, I put 2 pieces of the fame Orange into 2 Receivers, but I filled the third part of one of them with Water, yet fo, that it did not reach the Orange.
Fune 15. Neither of the Oranges had contracted any mouldinefs.

May 16. I repeated the fame Experiment with the fame fuccefs, yet neither Orange had acquired any mouldinefs in the fpace of more than a month, though in former Experiments all fuch Oranges would be mouldy.

The caufe of the difference feems to beattributable to fome difpofition of the Air.

EXPERIMENTXVIII.

Fune 1. 1678.

1 put a fmall Glafs tube, half full of Venice Turpentine, into the Wind gun, defcribed p. 16. and I had fcarce reduced the Air to the tenth part of its wonted fpace, but the Leather, fpread over the Elliptick valve, was driven out; fo that the Air having made an efcape, I drew the Glafs tube out of the Engine, and found many Bubbles formed in the fuperficies of the Turpentine; and therefore I fufpected that the Air had pervaded the Turpenzine, and that it would have penetrated more deeply intoit, if they had remained longer thusenclofed together: and therefore I re immitted the fame Tube into the fame Gun, and there left it in Air reduced to about the 15 part of its fpace.

Fune 3. Iopened the Engine, and, taking out the Tube, found the Turpentine almof free from Bubbles, yet by degreesmany
were formed therein, in the parts remote enough from the fuperficies.

Fune 4. I threw away the former Turpentine, and put new in the fame Tube, and included it in vacuo, that the Turpentine might be the better purged from all Air; then I poured Water upon it, and thut up all in the Wind-gun.

Fune 8. I opened the Engine, and at firft fight, both the Water and the Turpentine in the Tube, feemed to be very free from Bubbles; but a little while after I perceived, that Bubbles were formed in the Turpentine, and that they afcended by degrees; yea, fome of them feemed to be made almoft in the very bottom, about half an inch below the fuperfices of the Turpentine. So that we may conjecture, that all the Water, and fo great an height of the Turpentine, were penetrated by the Air, which formed thofe Bubbles.

EXPERIMENT XIX.

Auguf in. 1678.

I included Spirit of Sal Armoniack, with a Mercurial Gage in vacuo ; and after that the Spirit ceafed to emit any Bubbles, I mixed Filings of Copper therewith, which caufed many Bubbles to break forth again; but they were fo far from producing any Air, that they contrariwife confumed that which was there before. As it hath been already obferved in the Philofophical Tranfactions, N. 12O. But the liquor was made greenifh and turbid.

Decemb. 5. The Spirit was almof all exhaled out of the Veffel, in which it was contained, and being condenfed in the Receiver, remained ftill turbid, by reafon of much filth which was included there: but that which was not exhaled out of the Veffel, appeared clear like Water. Alfo the Mercury was wholly expelled out of the Gage. Whence I conjecture, that the Air in the Receivér, was more and more confumed.

EXPERIMENTXX.

September 2. 1678.
r put 2 Cylinders, one of Tin, the other of Lead, in vacuo; but their loweft parts were immerfed in Mercury; and at the fame time Iimmerfed 2 other Cylinders, like the former, after the fame manner in Mercury : but thefe latter were left in the free Air.

Sept. 6. I opened the vacuous. Receiver, and the Mercury in the Tin Cylinder, was come to the height of 4 digits and an half above the fuperficies of the ftagnant Mercury; and cutting the Cylinder tranfverfly, in the middle of that height, the Amalgama feemed to have penetrated into the Cylinder, about half a line. And cutting the Cylinder tranfverfly again, in that part which was diftant onely I digit, from the fuperficies of the ftagnant Mercury, I found the thicknefs of the Amalgama to equal one line.
In the Lead Cylinder the Mercury came to the height of 2 digits and $\frac{1}{2}$, but only as far as the fuperficies, and that very part which.was immerfed in the Mercury, was not penetrated by it to any fenfible thicknefs.

Sept.7. I took out the Tin, left in the Air, out of the Mercury in which it was immerged, and found the Mercury to have afcended to the height of 5 digits.
Sept. 10. The fame Cylinder being left in the Mereury, feemed to be befmeared therewith up to the very top, 6 digits and more, above the fuperficies of the ftagnant Mercury. When the Cylinder was tranfverfly cut in feveral places, it ap. peared that the Mercury had pierced fo much the higher into the Tin, by how much it came nearer to the ffagnant Mercuty; fo that in the part near to the forefaid Mercury, almoft the whole diameter of the Cylinder, 3 lines broad was penetrated therely.
Pbyfico-Mechanical Experiments.

In the Lead Cylinder, the Mercury exceeded not the height of 3 digits and $\frac{1}{2}$, neither had it penetrated to any fenfible thicknefs. Whenceit appears, that the weight of the Air, contributes lititle or nothing to the afcenfion of Mercury into Metals.

E XPERIM ENT Desemb. 12.1678.

I took a fmall Whiting, and having cut of his head, I divided him tranfverfly into 5 pieces. The firft whereof I included in vacuo. The fecond in common Air. The third in Air fo compreffed, that it could fuftain Mercury 50 digits above its wonted height. Thefe 3 Receivers were clofed with Screws. The fourth piece was put into a Receiver, full of Air produced from Pafte, which was prefently ftopped. The fifth was left in the Free Air.

Decemb. 15. This day in the Morning, that part of the Whiting, which was left in the free Air, began to fhine; and towards Evening it fent forth fomewhat a more vivid light.

Decemb.16. In the Morning, the Whiting left in the Free Air, gave over fhining; but towards Evening it fhone again.

Decemb. 17. This Morning the fame part of the Whiting fhined a little, yet lefs than it did yefterday in the Evening.

Decemb.18. In the Morning there appeared no light,though I fixed my eyes a long time upon the Receiver in a dark place ; but the Night coming on, the light appeared again.

Decemb.20. Hitherto the fame part of the Wbiting left in the Air, proceeded to thine ; but all the other. parts did not yet begin to thine.

Decemb. 22. Jefterday the light of the Whiting left in the Air, had not quite ceafed, but this day it appeared no more.

Decemb.24. The part of the Whiting in the Free Air, gave over its fhining quite; but that which wasincluded with com-

150 The Second Continuation of mon Air, did yefterday fend forth a faint light; but this day it proceeded notto flime.

Decemb. 26. No fhining appeared any more in the common Air: but the three other pieces did not fo much as begin to fline.

Fan. 26. 1679. I perceived no more fhining in any one of the Receivers.

A R T I C L E XII.

Artificial Air deftroyed.

EXPERIMENTI.

$$
\text { Auguft 3. } 1677 .
$$

ITranfmitted Air produced from Cherries, into a Receiver full of Common Air, but fo ftopped with a Screw, that the Mercury afcended to 25 digits above its wonted preffure.

Aug. 4. The Mercury was depreffed about 2 digits. The height of it this day was oncly 23 digits.

Aug. 6. The height thereof was reduced to 20 digits.
Aug. 7. The height thereof was the fame.
Aug. 8. The Mercury was fomewhat depreffed.
Aug. ro. The height of it was $19 \frac{1}{2}$ above its wonted height. When I perceived little or no alteration more, I opened the Receiver.

From this Experiment we have a confirmation, that Air produced from Fruits, at the beginning is in part deftroyed; but the reft can keep the form of Air very long.

EXPERIMENTH.

May 26. 1676.

I took 6 grains of Sal Armoniack, and put them into a Rca ceiver, with a fufficient quantity of Oil of Vitriol: then the Air being exhaufted, I forced down the Salt into the Oil; whereupon a great ebullition prefently followed, and the Mercury afcended into the Gage, almoft to its wonted height; but prefently after it funk again, and returned to its former flate.

May 27. I repeated the fame Experiment; but this time the Salt remained 10 hours in vacuo, before it was put into the Oil; but the ebullition followed, as in the former Experiment; yet the Air was produced much more flowly, neither could it wholly be deftroyed, but in 7 or 8 hours time; yet at laft the Mercury defcended to the very bottom.

May 29. I tried the fame Experiment again, leaving the Materials 24 hours in vacuo: This time the ebullition feemed much lefs, and the Air was produced both in a lefler quantity, and more flowly than before. I obferved alfo, that whileft the. Materials ftaid in vacuo, before their mixture, that the Mercury came nearer to the open end of the Gaige, as if fome Air had been either extracted or deftroyed.

Fuly 8. I put Oil of Vitriol alone into a Receiver, in which I left onely a fifth part of common Air, to trie whether this Oil, without Sal Armoniack, would diminifh the elartical force of the Air: but it fell out contrary, that the force of the Air was increafed, and the Mercury in one hours fpace, feemed to have afcended a little into the Gage; but afterwards for 24 hours paceno change was made.

This Experiment doth confirm, that fome Artificial Airs, may be deftroyed; but why this deftruction happens fometimes fooner, fometimes flower, it may perhaps feem worthy of a further enquiry.

ARTI.

A R T I C LE XIII.

Experiments concerning the different celerity of Air produced in vacuo, or in common Air.

EXPERIMENT.I.
C. OMMONAIR.

Fuly 10. 1676
Put Pafte, kneaded two days before, and fowerifh, into a Receiver, and ftopped it firmly with a Screw.
In one hours fpace the height of the Mercury was one digit.

In 7 hours fpace the height of it was 6 digits.
fuly 11. The height of it was in digits.
12. The height of the Mercury was 24.
13. The height thereof was 30.
14. The height of the Mercury was fenfibly greater.
15. The Mercury afcended a little. Meafuring its height exactly this day, I found it 38 digits.
19. Nomore Air was produced from the Pafte.

$$
V A \subset u \cdot \mathrm{M} .
$$

Fuly 10. 1676.
I put another quantity of the fame Pafte, much lefs than the former, intoan exhaufted Receiver.

Though the quantity of the Pafte was lefs, yet in one hours time, the height of the Mercury was 2 digits.
Phyfico-Mechanical Experiments.

In 7 hours time, the Mercury came almoft to the top of the Gage, but it was a flhort one.
fuly 19. The Pafte was not able to remove the Receiver from his Cover, though at the beginning it had produced a greater quantity of Air than the Patte in common Air. I endeavoured to fire it with a burning glafs, and the Fumes, elevared therefrom, afterward falling upon the Pafte, did tinge the fuperficies thereof, with a pleafant yellow colour; and that Air was thus produced, I conjectured hereby, becaufe the Cover was afterwards eafily fevered from its Receiver.

From this Experiment made in 2 Receivers at once, we learn, that Air is fometimes generated much more eafily in vacuo than in common Air.

> EXPERIMENTI. COMMONAIR.

$$
\text { Auguft 20. } 1676 .
$$

I put Pafte, kept for 24 hours, into a Receiver full of common Air; to which I further added new Air, fo that the Mercury exceeded its wonted height 4 digits and $\frac{1}{2}$.

In 6 hours fpace the Mercury gained almoft 4 digits. Its height was 8 digits.

Auguft 2r. The afcenfion of the Mercury was 4 digits and $\frac{2}{3}$.

Aug. 22. The afcent of it was about I digit.
23. The afcent of it was $\frac{1}{2}$ adigit.
26. For 3 whole days the afcent of the Mercury was onely $\frac{1}{2}$ a digit.
27. There was no afcent of it at all.
29. The Pafte taken out of the Receiver, affected our Noftrils with an acid fmell.

Auguft 20. I put another quantity of the fame Pafte into an empty Receiver, and kept the fame proportion between the quantity of the Pafte and the capacity of the Veffel, as in the former Experiment.

The Mercury feemed to have afcended in a fhort time. Its height was 2 , digits.

Ang. 2I. Theafcent of the Mecury was 5 digits.
22. The afcent of it was 3 digits.
23. The afcent of the Mercury was \mathbf{I} digit.
26. For three whole days the afcent of it was 2 digits.
27. There was no afcent of the Mercury.
28. I took out the Pafte exhaufted of its Air, from theReceiver.
This Experiment confirms to us, that Air is fometimes more eafily produced in vacuo, than in common Air.

EXPERIMENTM.

VA cuum.

Septemb.4. $\quad 1677$.
Iput the Kernels of Filberds into an exhaufted Receiver.
Sept. 5. The height of the Mercury was 5 digits.
Sept.

Sepr.15. The height of it was almoft the fame.
17. The height of it was 30.
18. This day the Air begen to efcape out of the $R \mathrm{R}$ ceiver, for fome Bubbles appeared in the Turpentine, which ftrengthened the Commiffure of the Receiver and Cover.

Phylico-Mechancal Experiments.

Septenber 4.

I put Kernels of Filberds into a Receiver with Common Air.

In the Afternoon the quantty of Air feemed to be leffened. Sept. 5. The height of the Mercury, was lefs than half a digit.
6. The height of it wis the fame.
7. The height of it wis I digit.
8. The fame height fill continued.
18. The fame height continued.

This Experiment gives us a confirmation, that fometimes Air is produced much more eafily in vacuo than in Common Air.

EXPERIMENTIV.

September 15.1677.
I included 8 ounces of Raiins of the Sun, bruifed and diluted with a little Water, in in exhaufted Receiver, able to hold 22 ounces of Water.
Sept.16. The height of the Mercury was 6 digits.

Sept. 2r. This day Ifound the Receiver forced from his Cover.

Sept. 24. I took out fome of the Raifins; but thofe that remained, I enclofed in the fame evacuated Receiver.

Sept. 25. The Raifins fored the Receiver, now full of Air, from his Cover.

September 15.1677.
I put 8 ounces of Raifins of the Sun, bruifed and diluted

The Second Continuation of

with a little Water, into a Receiver, able to hold 22 ounces of of Water ; but I did not exhaust the Air at all.

Sept. 16. The height of the Mercury was $\frac{3}{4}$ of a digit abovewhat was accuftomed.

Sept. 17. The height of the Mercury was $x^{\frac{1}{2}}$.
18. The height of it was 3 .

Being about to put. Peaches into the Receiver, I permitted the Air to break forth; and then many Bubbles did emerge from the Raifins.

This Experiment doth further teach, that Air is fometimes much more eafily produced in vacuo than in common Air.

EXPERIMENT V.

$$
\mathrm{V} A \subset \mathrm{C} \mathrm{u} \mathrm{M}
$$

February $17 \% 167 \%$
I put 3 Onions into an emptied Receiver.
Febr. 19. The afcenfion of the Mercury was I digit.
21. The accent thereof was again 1 digit. The Onions
were not altered.
25. The whole afcent of the Mercury was 9 digits The Onions not altered.
May 4. The Onions had yet undergone no alteration.
18. Neither were they yet altered.

June 19. I this day found the Receiver, forced from his $\mathrm{Cu}-$ ver, and the Onions rotten.
RAREFIED AIR.

Febr. 17. I inclofed 3 Onions in, Air forarified, that it could uftain onely Io digits of Mercury.

Phyfico-Mechanical Experiments.

Feb.19. There was no afcent of the Mercury.
21. There was yet no afcent thereof. The Onions did not germinate, but contracted a mouldinefs.
25. The afcenfion of the Mercury was about 7 digits. The Onions received no further alteration.
May 4. The Onions were not altered.
18. The Onions were not yet altered, but the Receiver, by the force of the produced Air, was removed from his Cover.
COMMON A IR.

February 17. I put three Onions in a Receiver not exactly fhut.
21. The Onions contracted no mouldinefs, but did germinate.
25. The Onions put forth root more and more.

May 4. The Onions began to be mouldy.
This Experiment gives us alikely proof, that fome Bodies do produce their Air not much more eafily in vacue, than in rarefied Air.
And befides it hereby appeareth, that Vegetation is hindred, not onely by the evacuation, but alfo by the rarefaction of the Air.

It feems alfo worthy our obfervation, that the Onions, as long as they emitted roots, did contract no mouldinefs..

158 The Second Continuation of

A R T I CLE XIV.

The difference betwixt mbole, or entire, and bruifed Fruits.

EXPERIMENTI. Bruised Fruits.

Auguft 23. 167%.

T
Put Pears bruifed into a vacuous Receiver, with a Mercu* rial Gage.
Auguft 25. The height of the Mercury, was 5 digits.
$\left.\begin{array}{r}\text { Aug. } 26 \\ 27 \\ 28\end{array}\right\} \begin{aligned} & \text { The height }\end{aligned}\left\{\begin{array}{r}10 \\ 54 \\ 18\end{array} \left\lvert\, \begin{array}{r}\text { Aug. } 29 \\ 30 \\ 31\end{array}\right.\right\}$ The height $\left\{\begin{array}{l}21 \\ 25 \\ 28\end{array}\right.$
Sept. x. The height of it was 30 .
2. The Receiver was found forced from his Cover.
WhOLE, OR ENTIRE FRUITS.

Auguf 23. I put whole Pears into a vacuous Receiver, and I took care that the quantity of the Pears, and the capacity of the Receiver, might be the fame with thofe which I mentioned before.

Aug. 25. The height of the Mercury was 1 I.
Aug. 26$\}$ The height $\left\{\left.\begin{array}{l}17 \\ 25\end{array} \right\rvert\,\right.$ Aug. 28 The height $\{28$ $27\}$ of it was $\{25 \quad 29$ of it was $\{30$
Aug. 30. The Mercury afcended no higher, becaufe the Receiver was forced from his Cover.

Pbyfico-Mechanical Experiments.

This Experiment feems to prove, that Bruifed Fruits do not produce air as foon as Entire ones.

> EXPERIMENTII
> ENTIREFRUITS.

Auguft 24.
I enclofed whole Apples in vacuo with a mercurial Gage. Auguft 25. The height of the Mercury was 5 digits.
Aug. 26 27 $\left.\begin{array}{r}27 \\ 28\end{array}\right\}$ of it was $\left.\left\{\begin{array}{r}9 \\ 12 \\ 15\end{array}\right) \quad \begin{array}{r}\text { Aug. } 29 \\ 50\end{array}\right\} \begin{aligned} & \text { The height }\end{aligned}\left\{\begin{array}{l}19 \\ 25 \\ 28\end{array}\right.$
September 1. The height of it was 29.
2. The height of it was 30.
3. The Receiver was forced from his Cover,

Bruised fruits.
Auguft 24. I put an equal quantity of bruifed Apples into a vacuated Receiver, of the fame capacity with the former.
Aug.25. The height of the Mercury was 1 digit.
26. The height of it was 3 digits.
27. The height of it was 4 .

Sept. 3. The Mercury continued in the fame height.
25. The Mercury afcended not at all.

This Experiment feems to inform us, that bruifed Fruits do produce air, flower than whole or entire ones.

$$
\begin{aligned}
& \text { EXPERIMENT III. } \\
& \text { BRUISED FRUT T }
\end{aligned}
$$

[^2]Aug. 26. The height of the Mercury was 1 digit.
27. The height of it was 2 digits.
28. The height of it was 2 digits and an half.
29. The height of the Mercury was the fame.

Sept. 15. The Mercury did not afcend at all, but itsheight remainedat $2 \frac{1}{x}$.
WHOLE F RUITS.

Auguft 25. 1677. I put unripe Grapes, not bruifed, into a vacuated Receiver.

Aug. 26. The height of the Mercury was 3 digits.
27. The height of the Mercury was 5 digits.

Aug. 28$\}$ The height $\{7 \mid$ Aug. 30$\}$ The height $\{12$
29\} of it was $\{10131\}$ of it was $\left\{\begin{array}{l}13 \\ 13\end{array}\right.$
Sept. 1. The height of the Mercury was 15.
2. The height of it was 16 .
3. The height of it was 18 .
4. The height of it was the fame.

Sept. 5. The height of the Mercury continued the fame; but all the Grapes had almoft contracted a yellow colour.

Sept. 7. The.Mercury refted in the fame height; butall the Grapes were yellow.

Sept. 15. The height of the Mercury was 20.
This Experiment gives us a further confirmation, that whole Fruits do produce air, more readily then bruifed ones.
EXPERIMENT IV.

FRUITS WHOLE AND ENTIRE.
September 10. 1677.
I put 2 ounces of ripe Grapes, but not bruifed, into a Receiver able to hold ro ounces of Water.

Sept.in. The height of the Mercury was 6 digits.
Sept. I2 2 Ihe height $\left\{\begin{array}{r|r}9 & \text { Sept. 15 } \\ 12 & 16\end{array}\right\}$ The height $\left\{\begin{array}{l}20 \\ 25\end{array}\right.$
$\left.\begin{array}{l}13 \\ 14\end{array}\right\}$ of it was $\left\{\begin{array}{l|l}12 & 16 \\ 15 & 17\end{array}\right\}$ of it was $\left\{\begin{array}{l}25 \\ 28\end{array}\right.$
Sept. 18. The height of the Mercury was 30. The Grapes were not altered at all.

Sept. 19. The height of the Mercury was the fame. 20. The Receiver was not yet forced from his Cover.

The Grapes were not altered, but appeared onely as little riper.
21. The Receiver was forced from his Cover, though as yet nothing had made any eruption out:
22. This day in the Morning, I found the Grapesbegin to rot, and therefore I included them again in vacuo. molt

Sept. 23. The height of the Mercury was 5 digits.
Sept. 24 25 The height $\left\{\begin{array}{r|r}9 & \text { Sept. } 27 \\ 26\end{array}\right\}$ of it was $\left\{\begin{array}{l}\text { Theight }\left\{\begin{array}{l}20 \\ 27 \\ 27 \\ 28\end{array}\right. \\ \hline\end{array}\right.$
octob. 10. The Receiver was not forced from his Cover, till this day: the Grapes by their colour feemed rotten, yet they had kept their firmnefs.

$$
B R U I S E D Q R U I T S \text {. }
$$

- Sept. x0. 1677. I included two ounces of ripe and bruifed Grapes in a Receiver capable of holding 10 ounces of Water.
Sept. II $\left.\begin{array}{r}12 \\ 13 \\ 14\end{array}\right\}$ The height $\left\{\begin{array}{r|r}4 & \text { Sept. } 15 \\ 7 & 16 \\ 10 & 17 \\ 12\end{array}\right\}$

Sept. 19. The Grapes had fevered the Receiver from his Cover, and much juice was fpilt.

Sept.20. I again put the fame Grapes into the fame Receiver; but becaufe they had fpilt their juice by ebullition, I did X not

162 The Second Continuation of not exhauft all the Air; but the Mercury faid in the height of 5 digits.

Sept.21. This day in the Morning, the Receiver, being now full of Air, did no longer ftick to his Cover; fo that I took out the Grapes, and tranfmitted them into another Receiver, which I ftopped clofe with a Screw, but extracted no Air from it.

Sept. 22. The height of the Mercury was 1 I digits, though the Receiver was able to hold 26 ounces of Water.
Sept. 23. Theheight of the Mercury was 19.
24. Theheight of it was the fame.
30. The height of it was 20.
octob.3. When the Grapes produced no more Air, I took them out, and found them of a bitter tafte, becaufe they were not yet come to their perfect ripenefs.

ThisExperiment, if you compare it with that, which I related before concerning unripe Grapes, doth feem to intimate, that unripe Grapes do produce lefs Air when they are bruifed, than when unbruifed; but ripe Grapes do the contrary.

EXPERIMENTV.

$$
\text { Nov. 19. } 1678 .
$$

I put Apples into 3 vacuated Receivers. In the firft was a found Apple; in the fecond, an Apple bruifed, and repofited loofly in the open Veffel: In the third was alfo a bruifed Apple, and repofited in the Veffel, but the Cover was fo fitted to the Veffel, that it did fraitly comprefs the parts of the Apple. For I was defirous to know, whether the bruifed Apple would produce Air in vacuo, as well as the found one, provided his parts were narrowly conjoined; but the iflue was, that in the exhaufting of the Receiver, the Air, formed between the parts of the Apple, didexpel all the juice.
Now.2x) In the firft Receiver the height of the Mercury
Ployfico-Mechanical Experiments.
was 5 digits; in the fecond, 3 digits; in the third, none at all.

Nov. 23. In the firft Receiver the height of the Mercury was 7 : in the two others there was no change.

Decemb.7. In the firft Receiver the height of the Mercury was II digits. There was noalteration in the other two.

Fan. 23. The firft Receiver was now fevered from his Cover, by the force of the Air produced anew. In the two others there was no Air generated.

May 20. 1679. This day the third Receiver was found forced from his Cover: whereas the fecond had produced no Air.

This Experiment informs us, that bruifed Fruits do produce lefs Air in vacuo, than found ones; contrary to what happens in common Air. The reafon whereof may perhaps be this, that Fruits bruifed are very much rarefied in vacuo, and fo the feveral principles, of which they confift, cannot act upon one another: but unbruifed Fruits, by reafon of the entirenefs of their ambient skin, undergo lefs rarefaction.

AR T I C L E XV.

Air is fometimes found unfit to produce mouldine/s.

> EXPERIMENT. I.

$$
\text { Fuly 12. } 1678 .
$$

TPut Rofes into two Receivers, which were to be ftopped with Screws. One of them contained common Air uncompreffed; but I intruded fo much Air into the other, as fuftained the Mercury 60 digits above its wonted height.

164 The Second Continuation of onthuguft 2. The Rofes in the common Air, 4 days ago, were turned into a yellow colour, as if they had been withered: but thofe in the compreffed Air kept their colour very well.

Febr. 10. 1679 . The Rofes in the compreffed Air, as yetretained their frefh colour.

This Experiment, compared with that which was made the Year before with Rofes, doth inform us, that the Air at divers times is diverfly affected; fo that fometimes it hath'a power to hinder corruption, and fometimes to promote it. See Artic. IV. Exper.IV.

> EXPERIMENTII.

May 22.

Fifteen days ago I included two equal quantities of Flowers, in two Receivers: Into one of them I thruft fo much Air as fuftained the Mercury 60 digits above its wonted height; but in the other, I left common Air incompreffed. The Flowers were Tulips and Larkfpurs.

Since that time no mouldinefs appeared, except onely that ro days ago, one half of a Tulip, being cut in two, in the common Air, feemed fomewhat mouldy: but this day, the other half of the fame Tulip in compreffed Air, feemed to be infected with fome mouldinefs.

As for the Flowers, fome of them feemedas frefh, as when they were firft put in; efpecially thofe in the common Air; for in the compreffed Air, they feemed more moift.

Fune 22. No more mouldinefs appeared: whence we have a a confirmation of the Inference drawn from the former Experiment, viz. That the Air is fometimes unfit to produce mouldinefs; feeing the year before, all thofe kind of Flowers had contracted argreat deal of mouldinefs. nuolis io no

Pbyyico-Mechanical Experiments.

AR TI CL E XVI.

Experiments concerning the change of weight, made by the Beams of the Sun, even in Veffels Sealed Hermetically.

EXPERIMENT.

$$
\text { Sept. } 4.1678 .
$$

Exposed one drachm of Minium, in an open Glafs to the Sun Beams concentrated in a Burning glafs, and I found that it had loft ${ }^{\frac{3}{4}}$ of a grain of its weight, though much of the Minium had not been touched by the Solar-rays.

EXPERIMENT II.

September 6.

Itook Coral, already calcined in fire, and endeavoured to calcine it further by the Beams of the Sun, in a fealed Glafs, but I could farce produce any good effect; yet the whitenefs of the calx of the Coral was fomewhat increafed.
Sept.ro. I expofed the fame Coral again to the SunBeams in the fame Glass Hermetically fealed, for two whole hours; and weighing the Glass: found that the lops of its weight, was about $\mathrm{T}_{\frac{1}{6}}$ part of a grain, fince the time it was frt foaled.

-TIA EXPERIMENT III.

May 23.
I put Calx of Tin in a light glass phial, foaled Hermetially
cally, and weighed it exactly : afterwards I expofed it to the Beams of the Sun for a long time, by the help of a large Burning-glafs ; then the Glafs, being again weighed, feemed to have loft $\frac{1}{64}$ part of a grain of its weight.

May 29. I repeated the fame Experiment, onely ufing Minium in ftead of Calx of Tin, and the lofs of weight came to ${ }^{\frac{1}{32}}$ part of a grain.

May 30. I endeavoured to burn the fame Minium again, but fuch plenty of Air was produced, that the Glafs broke into an hundred pieces, and made a great noife at its diffilition.

Fune 6. I tried the fame Experiment again with Minium, and then $\frac{1}{5}$ part of a grain was abated of the weight.

When I attempted again to burn the Minium, the Glafs broke a fecond time.
Fuly 15. It took Coals made of Wood for the fame Experiment, but the Sundid not affect them at all.

Fuly 20. I expofed Vive Sulphur to the Beams of the Sun, after the manner before defcribed; and though it was eafily melted, and did emit many fumes, yet I found no change atall in the weight.
Aug. r. I kept the fame phial ftill with the Flower of Sulphur, and expofed it often to the fire of my Burning-glats, without danger of being broken, viz. becaufe Sulphur produceth no Air; but the Fumes were emitted, as at the firtt, and the Sulphur bubbled up; but the weight feemed not to be changed.

A R T I C L E XVII.

The Prefervation of Bodies in compreffed Liquors.

EXPERIMENTI.

Auguff 3. 1678 .

IIncluded two Apricocks in two Receivers, one of which was exactly filled with Raifins of the Sun bruifed, and with Water; but in the other, there were onely fome Raifins enclofed, yet fo that the Apricock was not touched, neither by the Raifins, nor by the Water.

Sept. 10. I took out the Apricock, inclofed with the Water; and whileft the Air did break forth, the Fruit did bubble very much: the Raifins had loft almoft all their tafte, but the Apricock had preferved a pleafant relifh; yea, it feemed more pleafant than the tafte of fuch Fruits bought at that time of the Year ufeth to be.
$F e b .10 .1678$. The Apricock, inclofed without Water, as yet kept its colour and figure, onely feemed to have loft its firmnefs.

This Experiment informs us, that the tafte of fome Fruits may be preferved in an Infufion of Raifins of the Sun; at leaft in Veffels which are able to contain a great compreffion of the Air.

> EXPERIMENTH.

Sept. 17.1678
I included Peaches, with an Infufion of Raifins, in 2 Receivers, fhut with a Screw.

Sept.

Sept.21. Too great a quantity of Air produced in one of my Receivers, expelled fome part of the liquor out of it. The other Receiver as yet retained its liquor.

Sept. 25. The Receiver, out of which the liquor was expelled, lof fome more thereof, fo that its fifth or fixth part now feemed empty: but fetting the Screw, the liquor was then preferved. The other Receiver was not altered.

Sept. 26. The fame Receiver began again to leak and run over, fo that I et the Screw again.

Nov.27. Our Receiver feemed hitherto to be fhut exactly enough, but this day I opened it, and, whileft the Air was getting out, the Peaches bubbled very much; one of them, of the fort of thofe, to which the Stone, or Kernel ufeth to ftick, had preferved its firmnefs, and afforded a tafte pleafant enough; but the other, being of that fort, whichare of a yellow colour, was very foft, yet the tafte thereof feemed to be more pleafant than the tafte of the other. The liquor was very pleafant and grateful.

Decemb 28. As yet the other Receiver feemed unaltered; but when I opened it, an innumerable company of Bubbles did immerge from the Liquor, and from the Peach. The Peach on one fide had preferved its firmnefs, on the other it had loft it; but the whole Peach was acceptable to the Palate, yet fomewhat fharp.

This Experiment feems to teach us, that Liquors may grow fowre, though no Spirits have evaporated from them.

EXPERIMENTII.

7. September 20.

I included Peaches, with unripe Grapes, in two Receivers, and weighed them exactly. In the one were Apples bruifed to the confiftency of a Pultis : In the other, an Infufion of Raifins of the Sun.
Pbyfico-Mechanical Experiments.

Sept. 25. The Receiver filled with pulp of Apples, hitherto feemed unaltered; but in the other, the Air which was genera ted, had extruded the half of the contained Liquor, and impelled the Mercury into the Gage, to the height of roo digits; wherefore I opened the Receiver, and the Peach, whilef the Air was getting out, was almof reduced to the confiftency of a Puiltis; the tafte of it was pleafant enough.
I put another Peach into the fame Receiver, and fubftituted a new Infution of Raifins of the Sun, inftead of that which was loft.

Sept. 26. The Mercury was now come to 30 digits above its wonted height.

Sept. 27. The height of the Mercury was 72.
28. The height of it was 90 . The Liquor did work out.
30. The fame height remained, but the Liquor was all gone out.
october r. I now perceived that all the Air had alfo efcaped; Wherefore opening the Receiver, I found the Peaches very foft, yet of a pleafant tafte.
Octob.3. The Receiver filled with the pulp of Apples, had as yet loft nothing; but this day I perceived that almoft all the juice of the Apples had run out, I opened the Receiver, and found all therein very much fermented. The Peach was very foft, but in taftenot unpleafant.

This Experiment informs us, that Fruits cannot be long kept in pulp of Apples, by reafon of the great production of Air; though that happens a little later in the Infufion of Raifins.

EXPERIMENT IV.

$$
\text { Sept. } 23.1678 .
$$

I included Peaches with crude Grapes in two Receivers, one of which was exactly filled with pulp of Apples, the other with unripe Grapes bruifed.
ostob.

Octob. x. The Receiver filled with pulp of Apples, feemed as yetto have received no alteration; but the other was this day found emptied of his Wine: this therefore I opened, and found one of the Peaches to have retained its firmnefs, and its tafte; but the other had loft its firmnefs, yetretained a grateful tafte.

Feb. 5. 1679. The Receiver containing the Pulp of Apples, hitherto feemed unaltered; yet I opened it, and the great ebul. lition thereupon, did manifeft, that a mighty compreffion of the Air was in it. The pulp of Apples and the Peach had kept a. grateful tafte, but fomewhat more pungent than ordinary.

This Experiment thews us, that juice of crude Grapescank not conveniently be ufed for the prefervation of Fruits, by reafon of the production of too much Air.

EXPERIMENTV.

4. Sept. $25,1678$.

Fincluded two Pears, called Butter Pears, in a Receiven exacf. ly filled with pulp of Apples.

Sept. 28. Hitherto I perceived no alteration in the height of the Mercury.

Octob. 5. The Mercury was now come to the height of 15 digits.

Octob.6. The height of the Mercury was 16 digits ard more.

Ottab, 12. The Meroury was not changed.
Ottob.20. Three daysago the Mercury was depreffed, though nothing had efcaped out.

Octob.26. This day my Receiver was found cracked, though I did not find that the Air was compreffed within, but perhaps the Screvw was fet too higl. The pulp of the Apples was of a very grateful tafte; fo were the Pears, but they were very foft, and one of them feemed to incline to rottennels.

> Phyfico-Mechanical Experiménts.

Perhaps the crack in the Receiver was the caufe why fo little Air was produced in this Experiment.
EXPERIMENTVI.

$$
\text { Oitob. 1. } 1678
$$

Iinclofed Peaches in two Receivers, one of which was filed with pulp of Apples, and the other with unripe Grapes bruifed.

Octob.5. Much Air was produced in the fecond Receiver, yet fome of the Wine ran out. The height of the Mercury was 64 digits.

Octob. 6. The Wine proceeds to run out : the height of the Mercury was 70.

Octob.8. Now the Wine wasall run out of the Receiver, and the height of the Mercury was 86.

Octob.12. The height of the Mercury abode at 86.
octob.18.That Receiver, out of which all the Wine was run, yet held the Air very well; and the height of the Mercury in it, ftaid at 86. The other Receiver, filled with pulp of Apples, had for thefe five laft days fuffered fome juice to flow out.

Decemb. 4. I opened the Receiver filled with pulp of Apples, and thoughall the juice was got out, yet it ftill contained the Air, very much compreffed; and many Bubbles brake forth, not without fome noife, after the Receiver was quite opened. The Peach was very foft, and of a pungent tafte, like to that of inebriating Wine.

Fan.28. 1679. After the effufion of the Wine in the other Receiver, the Mercury ftaid in the fame height. I opened the Receiver; the Peaches did emit many Bubbles', and were wrinkled, but their colour was little changed : theirfapor was moft pungent, and inclining to acid.

This Experiment doth confirm the Conclufions of the former.

EX-

EXPERIMENTVII.

OEtob. 4. 1678.
I fut Peaches into three Receivers; The firf of which was filled with Ale, or Beer without Hops; the fecond with Beer Hopfed; the third with Wine.

- Ociob.5. The height of the Mercury in the firft Receiver was 15 digits ; in the fecond, 10 ; in the third 9 digits.

Ociob. 6. The height of it in the firt Receiverwas 25 digits; in the fecond, 45 ; in the third, 20.

Ociob. 8. The height of the Mercury in the firt Receiver, was 35 digits; in the fecond, 15 ; in the third, 20.

Ociob.12. The height in the firft Receiver was 63 digits; in the fecond, 15 ; in the third, 28.
15. The height of the Mercury in the firt Receiver was 8 Idigits; in the fecond, 15 ; in the third, 30 .
16. There was no more change perceived in any of the three Receivers.
18. The Mercury rather defcended than afcended, in all the three Receivers.
22. In the Wine onely, the Mercury afcended or defcended according to the heat and the cold.
24. The height of the Mercury in the firft Receiver was 96 digits; in the fecond, 15 ; in the third, 30 .
30. The height in the firf Receiverwas 15 digits; in the fecond, 20 ; in the third, 30 .
No\%3. The height in the firft Receiver was 117 digits; in the fecond, 20 ; in the third, 30 .
6. The height in the firft Receiver was $\mathbf{I 2} 0$ digits; in the fecond, 3 I ; in the third, 3 r.
11. The height of the Mercury in the firft Receiver was 105 digits; 'in the fecond 3 I ; in the third, 28. We was cold weather.

Plyyfico-Mechanical Experimients.

 173Nov. 16. The height of the Mercury was the fame. The Peach, which hitherto was demerfed, now mounted up to the upper part of the Liquor in the fecond Receiver; all the reft flaid in the bottom.
Nov.25. The height in the firf Receiver, was 140 digits; in the fecond, 47 ; in the third, 32 .
Nov.28. The height in the firt Receiver, was 96 digits; in the fecond, 36 ; in the third, 28 . It wasvery cold weather.

Decemb. 13. The height in the firfteceiver was 96 digits; in the fecond, 47 ; in the third, 33 . I opened the third Receiver and found the Peach firm, and of a laudable colour, but it had contracted much of tafte from the Wine, which yet was capable of being amended by Sugar, fo that a very pleafant and edibledifh might be made thereof. The Wine alfo was grateful to the palate.

Decemb. 30. The height of the Mercury in the firf Receiver was 96 digits; in the fecond, 47 . I opened the firt Receiver, and the Peaches, which had lain till then at the bottom of the liquor, did prefently emerge to the upper part thereof; they emitted many Bubbles: thetafte of the Ale, of which they had contracted much, was madepleafant with Sugar.
This Experiment informs us, that fermented Liquors may be ufful for the prefervation of Eruits, as being unfit to produce Air.

EXPERIMENT VIII.

Sept. 5. 1678.

I included one Peach not cut, with another, cut into pieces, in a Receiver; into which I after poured old Wine, tillit was exaetly filled, and then fhut it with a Screw. I hoped the if fue would have been, that if the Wine didextract any tincture from the Peach, that the cut Peach would eafily fupply it; and fo, the whole Peach would keep its full tafte.

174 The Second Continuation of

Nov.20. As yet nothing feemed to be altered; but this day I perceived, that fome of the Wine did run out.
Nov. 30. The third part of the Wine was loft.
Decemb. 8. Seeing the Wine begin again to run out, and that there was little of it left, I opened the Receiver, and found the Peaches very much fermented, yet endued with a grateful, but moft pungent tafte. The Winealfo was pleafant.

By this Experiment, if it be compared with the third Receiver in the former Experiment, we may conjecture, that Wine doth hinder the fermentation of Peaches, if it be in a fufficient quantity; but here the Wine was not fufficient, becaufe the pieces of that Peach which was cut, did fill the whole Receiver, fo that noroom was left for the Wine, but in the interftices.
EXPERIMENT IX.

Octob. Ir. 1678.
I put two Peaches, one whole, the other cut in pieces, into a Receiver filled with hopped and fermented Beer.

Octob. 12. In one nights fpace the Mercury afcended 3 digits.

Octob.15. The height of the Mercury was 15 digits.
16. The height of it was $\times 5$.
18. The height of it was I2. It was very cold.
20. The height of it remained at 12 .
22. Now the Mercury afcended again. The Cold abated.
Nov.2. The height of the Mercury was 20.
3. The Mercury defcended a little. It was cold weather.
6. The height of the Mercury was 28. The weather grew hotter.
8. The height of it was 33 .

Pbyjico-Mechanical Experiments.

Nov. x i. The height of the Mercury was 40.
12. The height remained at 40 . Some of the Beer wrought out.
16. The height of it was 46 .
19. The height of it was 43 . But much of the Beer was loft.
21. The Mercury afcended not, but the Beer proceeded to work out.
23. When the Beer was almoft all wrought out, I opened the Receiver, and found the Peaches very foft, yet of a grateful tafte, thoughthey had been kept 9 hours in the free Air, after the Receiver was opened:
N. Thefe Fruits werenever quite ripe.

From this Experiment, if it te compared with the fecond Receiver in Exper. VII. it may be inferred, that Beer doth hinder the Fermentation of Peaches, and the production of Air, if it be in a fufficient quantity: but here there was but a little Beer contained in the interfices, which was not able to hinder the fermentation of the Peaches.

EXPERIMENTX.

October 19.7 1678:
I included raw Beef in 3 Receivers; the firt of which was exactly filled with ftale Beer, forcibly intruded, fo that the Mercury exceeded its wonted height by 60 digits. The fecond was alfo exactly filled with ftale Beer, but here there was no compreffion made. The third was filled partly with the Beef, and partly with Common Air

Octab. 20. In the firft Receiver the Mercury was depreffed to the twentieth digit beyond its ufual height, though nothing at all had efcaped out. In the fecond alfo, it defcended a little; but in the third, it afcended fomewhat.

Octob.26. In the firft Receiver the Mercury did fometimes afcend,
afcend, and then defcend very irregularly; in the fecond it began to afcend flowly two days ago; in the third it was not moved atall.

Octob. 27. One piece of the fame Beef, which was left in the Air, began to have an ill fmell; and alfo the Mercury in the third Receiver began to afcend. In the fecond it proceeded to afcend by little and little; but in the firf it feemed rather to defcend.

Nov. 3. The Mercury in the firt Receiver afcended not; in the fecond, the height of it was 20 digits; in the third it was ro digits.

Nov. 5. Iopened all the Receivers, and the two firft did not ftink at all, yet they had contracted a Smell from the Beer. The Flefh boiled in the fame Beer, was found very tender, but its tafte wasbitter, perhaps by reafon of the too great quantity of the Beer. That Beef which was included with common Air, when the Receiver was opened, did prefently affect the noftrils with a ftinking fmell; yet when it was taken out, and accurately fmelt too, it fcarce feemed to ftink. I included the fame Flefh in the fame Receiver, to trie whether new Air being admitted, would promote corruption.

Nov. 6. The height of the Mercury was 3 digits. II. The height of it was 9 .
25. The height of it was 20 digits.

I opened the Receiver, I found the Flefh fo ftinking, that I was forced to throw it away.

From this Experiment it feems to follow, that Beer may be convenient for the prefervation of Flefh, efpecially if it be intruded by force into the Receiver; but this compreffion is foon abated, becaufe the Air compreffed in the fame Receiver, is apt to enter into and pervade the pores of the Beer by degrees.

Pbysico-Mechanical Experiments.
 EXPERIMENTXI.

November $12 .-$

I included Beef, as hardly as I was able to do it, in 3 Recei* vers : Into the firft of them I poured Water, mixed with one fortieth part of Salt, which filled up all the interftices which were left betwist the parts of the Flefh : In the fecond, fome falt Water was in like fort contained; but it was intruded by force, fo that the Mercury in the Gage afcended to 55 digits above its wonted height : Into the third Receiver, I poured no Water, and therefore thofe few interftices which could not be poffeffed by the Flefh, were left for the Air.

Nov. 13. The Mercury defcended in all the Receivers, efpecially in the fecond, which had admitted the compreffed Liquor.

Nov. 18. The two Receivers, which were not compreffed, did not repel the depreffed Mercury upward: But as for that whofe Mercury had been impelled to 15 digits, and afterwards had defcended moft of all, it now returned almoft to its former height. A piece of the fame Beef, being left in the Air, began to have abad fmell.

Nov.23. In the three Receivers Air was produced a new; but this day in the fecond the Mercury defcended 3 digits, the height of it was 20 : in the other two 'twas about 16 . I opened the firt Receiver, and the Flefl was not corrupted at all.

Nov. 30. I took the Fleth out of the Receiver which was put in without Salt, it did not ftink at all; but being boiled, was very tender and of a pleafant tafte.

Decemb. 6. I opened the Receiver into which I had forcibly introduced falt Water. The Mercury exceeded its wonted height 25 digits. The fmell of the Flefh did ftrongly affect the noftrils, yet it did not ftink. The Flefh put in vacuo fent A a forth the Receiver in which it was included, was taken out of the Pneumatick Engine; yet the Mercury in one hours fpace, came to the height of 3^{*} or 4 digits. Afterwards I immerfed the fame Receiver fo exhaufted, in hot Water, and the Liquor contained therein, did bubble very much, though the Water from which it borrowed all its heat, did not boil at all; but fo great a quantity of Air was produced, or elfe had entered from without, that the Receiver was quickly full. Afterwards the Liquor contained therein, did not bubble or boil, though it were immerged in boiling Water. I took out the Flefh, and found it pleafant and tender, yet lefs fo than I expected, perhaps becaufe it was not yet boiled enough.

This Experiment teacheth us, that Water, as well as Beer, may conduce to the prefervation of Flefh.

EXPERIMENTXII.

$$
\text { Nov.29. } 1678 .
$$

I inclofed Oifters in 4 Receivers; In the firf the Oifters were without their fhells, and filled the whole fpace as exactly as we could ; in the fecond, the Oifters, not taken out of their fhells, were included with common Air: in the third, the Oifters alfo were included in their fhells, and the remaining fpace of the Receiver was exactly filled with falt Water. All thefe 3 Veffels were firmly clofed with Screws. The fourth Receiver was exhautted of Air, and it contained 3 Oifters in their fhells, and eight taken out of their fhells. When the Air was pumped out of this Receiver, the Oifters which were taken out of their fhells, didemit many Bubbles, and thofe very great ones; but the 3 others underwent no fenfible mutation, fave that one of them did gape. Now. 30. In the 3 Recipients which were fopped with
Screws,

Screws, the Air feemed to be confumed, rather than produced; but the Mercury in vacuo afcended a little.
Decemb. 4. Whileft the Weather was cold, the Mercury afcended not; but now when the Cold began toabate, the height of the Mercury in the firft Receiver was 7 digits; in the fecond, none ; in the third, 3 ; in the fourth, 3 .

Decemb. 5. The height of the Mercury in the firt Receiver was 20 digits ; in the fecond, I digit; in the third, 3 ; in the fourch 5 .

Decemb.7. The height of the Mercury in the firt Receiver was 30 digits; in the fecond, r digit; in the third, 3 ; in the fourth, 8 . Other Oifters, left at the fame time in the Air, had a bad fmell.

Decemb. 9. In the firt Receiver the height was 30 ; in the fourth, II. The reft were not changed.

Decemb. 13. There was no change in the 3 firft Receivers, but in the fourth the height was 14 digits.

Decemb.20. In the firt Receiver the height was 46 digits; in the fourth 24 ; the reft were not changed.

Decemb. 21 . In the firft Receiver the height was 52 digits. in the fourth, 25 : in the reft no change.
Decemb.22. The height of the Mercury in the firft Receiver was 60 ; in the fourth, 27 : no change in the reft.
Decemb.27. In the fourth Receiver the height was 29. the reft were not changed.
Fan. r. 1679 The Oiftersin the third Receiver had tinged the Water witha black colour.
Fan. 25. The Mercury in vacuo feemed ftill to remain almoft in the fame height. But this day fome Bubbles were formed in the Turpentine, by the internal Air, about the Commiffure of the Cover with the Receiver. Therefore I opened the Receiver, and found the Oifters very ftinking; I likewife opened the other Receivers, and found the Oifters of a ftinking fmell, and turned to a kind of vifous Gelly.

This Experiment feems to inform us; that Fifhes do produce lefs Air than Flefh; and yet, that they will be corrupted, though they arefortified againft the Air.

EXPERIMENT XIII.
 $$
\text { Nov. 29. } 1678 .
$$

I exactly filled a Glafs. Veffel with frefh Butter, not at all. falted, and then ftopped it with a Screw. A mercurial Gage wastincluded in the fame Veffel.

Nov.30. In the night, the cold being very fharp, the Butter was condenfed, for the Mercury came nearer to the aperture of its Gage.

Decemb.2. The Mercury came nearer and nearer to the aperture of its Gage, perhaps becaufe the Cold did daily ins creafe.

Decemb. 5. The Cold being abated, the Mercury returned, almoft to its former height; part of the fame Butter, being left in the Air, began to have a very bad fmell.

Decemb.7. The Cold again returning, the Mercury did alfo again come to the top of its Gage. The Butter left in the Air, freelt worfe than before, notwithfanding, as yet it was edible.

Decemb. 24. The Butter had produced no Air ; being taken out of the Receiver, it was of a grateful tafte, except onely a little of the fuperficies, which was contiguous to the Leather that was fpread over the Cover.

From this Experiment it follows, that Butter may be kept ${ }^{\text {a }}$ great while, if it be defended from the contact of the exter. nal Air.

EXPERIMENT XIV.

Nov. 30. 1678. I filled two Receivers with Whitings; and

Phyfico-Mechanical Experiments. $\quad 1.8 \mathrm{r}$

that no Air might be left in the vacant fpaces, into the one I poured Wine; into the other, Oifters, with their juice, with out their fhells; fo that both the Receivers were exactly filled. When I had afterwards clofed their Covers with Screws, the Air in the mercurial Gages was compreffed; but in 3 hours fpace the Mercury again returned to its former mark.

Decemb.2. The Cold increafing, the Mercury came nearen to the aperture of its Gagein both Receivers.

Decemb.4. The Cold ceafing, the Mercury afcended very much in that Receiver wherein the Oifters were, but in thes other Receiver it was not moved.

Decemb.5. In theReceiver containing the Oifters, the heights of the Mercury was 20 digits; but in the other, it was not yet returned to its wonted height.

Decemb.7. In the Receiver with Oifters, the height of the Mercury was 40 digits ; in the other, it continued fill below its wonted height.

Decemb. 9. The Mercury in both Receivers was changed little or nothing.

Decemb. 20. When the Mercury was changed no more, I opened the Receivers, and both of themwere found to be very ftinking. And this feemed new to me in this Experiment, that the Receiver in which the Wine was, had admitted of corruption without production of Air ; for hitherto all Bodies, whileft they were corrupting, had produced Air.

EXPERIMENTXV.

Decemb. 3. 1678.

I put raw Beef into two large Receivers, with Pepper and Cloves; and that no-Air might be left in the interftices, I poured in Beer upon them, and no long time after, I found the preffure of the Air in the Receivers to be abated, the Mercury in the Gages coming to the open ends.

Decembs.

Decemb. 8. The Mercury did not afcend in either of the Receivers. I opened the one, that I might boil the Flefh, it was endued with a fweet fmell, contracted from the Cloves; and the Liquor contained in the fame Receiver, before it was boiled, did fmell like Hippocras.
Fan.2. 1679. I opened the other Receiver, and found no Air produced therein; the Flefh was not at all cormpted, and when I boiled it in vacuo, I obferved, that if a more intenfe fire were kindled, the Air, or fome Spirits, did make an eruption throughthe ftop-cock, which was taftned to the top of the Receiver. The Receiver, being cooled, all the night, the day after was found almof quite empty of Air. The flefh was very tender, and well tafted, onely it was a little over boiled, for it had been kept on the fire 6 full hours.
We have a confirmation by this Experiment, that Beer may be ufeful for the prefervation of Flefh, efpecially if the bitter taftethereof be corrected by fome Aromaticks.

E X P ERIMENT XVI.

Decemb. 4. 1678.

I included 2 Larks, with fome Beef, in a Receiver, all whofe fpaces unpoffeffed by the Flefh, I filled with Ale; and at the fame time I filled another Receiver with the fame fort of Beef, adding Beer alfo, but no Larks were put in with it.

Decemb. 9. Some pieces cut off from the Larks, and expofed to the Air, began to fmell ill; but thofe included in the Receiver, as yet had produced but little Air; for the Mercury was not yet come to 5 digits above its wonted height. In the other Receiver it was not moved.

Decemb. 19. In the Receiver, which contained the Larks, the Mercury afcended no higher ; for the Cover being broken, fuffered the Liquor to run out. Wherefore Iopened the Receiver, and boiled both the Beef and the Larks, which were not at all corrupted,

$$
\text { Pby/ico-Mechanical Experimexts. } 183
$$ corrupted, but they feemed very acceptable to the palate; yea the Beefhad contracted a pleafant tafte, partly from the Larks, and partly from the Beer:

Decemb. 23. I opened the other Receiver, and the boiled Flefh feemed pleafant, yet not fo pleafant, as that which was endued with a Venifon-like tafte from the Larks.

This Experiment fhews us, that even tender Birds may be preferved long by the help of Beer or Ale.

EXPERIMENT XVII.

December 14.

I included Apples in 4 Receivers; in the firft was an whole Apple, and all the fpaces were filled with powdered Sugar: in the fecond, an Apple was cut in pieces, and the fpaces filled with Sugar, as before: in the third an Apple was alfo cut, but the reft of the Receiver was filled with W ater, wherew ith ${ }_{\text {r }}^{10}$ part of Sugar was mixed: in the fourth, the Apple was alfo cut, andthe fpaces were likewife filled with a folution of one part Sugar, and 5 parts of Water.

Decemb. 21. This day in the firft Receiver the Mercury began a little to afcend, yet the Sugar did not melt: in the fecond Receiver all the Sugar was melted, and the pieces of Apple were Ihrievelled, alfo they produced much Air when they were firft put into the Receiver: In the 2 other Receivers the Mercury -beganalfo toafcend; but in the third, the piecesof Apple were very much corrupted, for their skin or rine was tiken off.

Decemb.22. Air was produced in all the Receivers, but the quantities of the Air produced, did not bear the fame proportion amongt themfelves, as the quantities of the Sugar; for in the fecond Receiver much Air was produced, but in the fourth the Mercury afcended lefs than in the third; and befides, in the firft fome Air was generated.

Decemb.27. In the three firf Receivers the height of the

184

The Second Continuation of

Mercury was ro digits; but in the fourth 'twas onely 6 digits.

Decemb. 31. In the firftand fecond Receivers the height of the Mercury was 13 ; in the third the height was 15 ; in the fourth it was onely 9 digits.

Fan. 2. 1679 . In the firt and fecond Receivers the height of the Mercury was almont 14; in the third, 17; in the fourth, ir.

Fan.7. In the fecond Receiver the height of the Mercury was I 6 digits; in the third, 36 ;-in the fourth the height of it was 15: but in the firft the Mercury had not afcended, and fomething had efcaped out of the Receiver, and therefore I eafed the Screw, that I might difpofe of it the better; and then the Air made an efcape.

Fan. 9. In the firf Receiver the height was 6 digits; in the fecond, 16 ; in the third, 39 ; in the fourth, 15.

Fan.17. In the firf Receiver the height was I_{3}; in the fecond, 19 ; in the third, 56 ; in the fourth, 17.
Fan. 30. In the third Receiver the height of the Mercury was 76 digits, and the Liquor brake out, and therefore Iopened it, and found the Fruit to have loft much of itstafte, but the Water had contracted it, and was pleafant enough to the palate. In the fecond Receiver the Mercury afcended no more. I opened this Receiver alfo, and found the Fruit much more pleafant in this than the other; yet much of its tafte was imparted to the ambient Sugar, fo that it was found changed into a very good Syrup.

Feb. I6. The height of the Mercury in the firlt Receiver was 22 digits; but in the fourth, 33. I opened it, and found the Fruit to have loft much of its tafte, and that the ambient Water had got it, and was thereby turned into a pleafant drink.

Feb. 27. In the firft Receiver the height of the Mercury was 30 digits.

March

Ployfico-Mechanical Experiments.

March 15. In the firft Receiver the height of the Mercury was not changed, but this day I found fomething to efcape out of the Receiver, and therefore I opened it, and found the APple of a laudable colour, but the Pulp was fpongy, and had loft much of its tafte.

This Experiment feems to teach us, that Sugar is not fo fit for the prefervation of Fruits, asFermented Liquors. See Exper. VII.

EXPERIMENT XVIII.

December 23 .

I filled a Glafs Veffel with Milk, and then fopped it with a Screw ; and into another Receiver I put a Lark with Milk, and ftopped it clofe.

Decemb. 24 . This Evening I perceived that the cafeous part was fevered from the butyrous, in the clofed Receivers as well as in the Milk, which at the fame time I had left expofed to the Air.

Decemb.27. I found no Air produced in the Receiver which held the Lark; but in the other, the mercurial Gage was fpoiled.

Decemb. 3 r. The Mercury afcended in that Receiver which contained the Lark; but the Milk that was left in the Airat the fame time that I ftopped the Receivers, did ftink 3 days ago.

Fan. r. 1679. In the Receiver, wherein the Lark was in cluded, the height of the Mercury was rodigits.
Fan. 2. The height of the Mercury was $14 \frac{1}{2}$. The Millk ftagnant below the butyrous part, appeared of a red colour.
Fan.4. The height of the Mercury was 19. Some white fewas concreted in the bottom of the Milk.
Fan. 9. The height of the Mercury was 29 digits.
Fan.25. I opened both Receivers and found the Lark to af-

This Experiment informs us, that fometimes Milk may be ufed with good fuccefs. for the prefervation of Flefh.

E X P ERIMENT XIX.

Decemb. 24. 1678.

I puta Lark into a fmall Receiver, and poured Butter upon it, melted with a flow fire, till all the fpaces were exactly filled, then I clofed the Cover with a Screw.

Decemb.27. The Mercury approached nearer to the aper: ture of its Gage; but the Butter feemed to be altered, for the loweft part of it was more yellow, and the middle more white than it feemed before the inclufion thereof; the upper part was fluid.

Fan. 5. 1679. The Mercury returned by little and little, to its, wonted height.

Fan. 9. The Mercury was fomewhat higher.
17an.28. The Mercury was little changed: I opened the Receiver, and found that part of the Butter which was contiguous to the Leather fpread over the Cover, to be white, and ofa very unacceptable tafte. The Butter which was more remote from the Leather, was yellow and fomething graveolent, yet it was edible. But the Lark being roafted, was grateful to the palate, though it had been kept 34 days.
This Experiment feems to inform us, that Butter melted and hot, is not fo fucceffully, ufed for the prefervation of Flefh.

Phyfico-Mechanical Experiments.

887

EXPERTMENT XX.

7an. 4. 1679.
I included boiled Flefh in vacuo in a Receiver flopped with a Screw, and filled the interfices exactly with Broth of the fame Flefh, which feemed a little too falt. Whileft I fet the Screw, all things in the Receiver fuffered a compreffion, and the Mercury afcended to the height of 6 digits into the Gage; but fhortly after it returned to its wonted height.

Fan.28. The Air was more and more confumed, fo that the Mercury now defcended to 8 digits below its wonted height. I opened the Receiver, and found the Flefh very fweet and tender. The Broth alfo hiad a fubacid, but a very grateful tafte.

This Experiment informs us, that Flefh, after it is boiled, may be keptlong without prejudice, which is a great conveniency in long Voyages at Sea, fo that perhaps there will be no need of falted Fleelh. For after the raw Flelh hath been kept fo long in Veffels foopped with Screws, till Experience fhews that there is no danger of its corruption; then it is to betaken out, and being perfectly boiled, is again to be included in the fame Receivers: And fo without doubt it may be kept for a long time without Salt. See Exper. XII.

EXPERIMENTXXI.

Fan. 30. 1679.

I putraw Flefh into 2 Receivers; to the firft I added Pep. per and Cloves ; in the fecond I mixed nothing, for I was willing to know, whether thefe fpices would promote the production of Air, or retard it.

Feb. In. The height of the Mercury in the firt Receiverwas 3 digits; in the fecond the height of it was below $x_{\frac{1}{2}}$.

$$
B b=
$$

Feb.

Feb.12. The height of the Mercury in the firt Receiver was $4 \frac{1}{2}$; in the fecond not above r_{1}^{1}. .

Feb. I 3. In the firf Receiver the height of the Mercury was 6 digits and more; in the feeond, it was 3 digits. I boiled the Flefh of the firft Receiver, after the mamer before defribed, and it was very pleafant and tender.
Feb. E4. The height, of the Mercury in the fecond Receiver was 5 digits.

Feb.19. The height of the Mercury in the fecond Receiver, was 8 digits.

Feb. 20. The height of the Mercury in the fecond Receiver was ri digits. I boiled the Fleh and found it very tender, though it had flaid over the Fire in balneo marie, onely for 3 quarters of an hour. I puit fome pape of this Flefh, before it was boiled, into a Receiver, and filled all the fpaces as exactly as I could with the fameFlefh, to try how long the Flefla might be preferved when the Air was fo excluded.

Feb.28. The Mercury afcended very little.
March 20 . The height of the Mercury was about 16 digits. I opened the Receiver, and the Flefh feemed of a pleafant tafle, yet inclining to corruption.

EXPERIMENT XXII.

February 10.

I put raw Beef into 3 Receivers: In the firft, the Beef was feafoned with Pepper and Cloves; in the fecond, it was encompaffed with falt Water; in the third, I put neither Salt nor Spice.

Feb.19. Four days ago the Mercury afcended in the third Receiver; in the firft alfo it began to afcend; but in the fecond it was not moved at all.
Feb.2x. In the firt Receiver the height of the Mercury was 4. di_{7}

> Phyfico-Mechianical Experiments.

4 digits and $\frac{1}{\frac{1}{2}}$, in the third, 10 digits; but in the fecond, there was no afent at all.
5v Fib,25. The height of the Mercury in the firt Receiver was 6 digits; in the third, 19 digits; in the fecond, half a digit.

Feb.26. This night there was no afcenfion of the Mexcury in all the Receivers. I opened the third Receiver, and the Flehh, after boiling, was found very good.

The former Experiment feems to teach us, that Spices do hinder the production of Air; but the prefent Experiment proves the contrary. Whence this contrariety fhould proceed, I know not; unlefs it be, becaufe, perhaps, I had left a fpace large enough for the Air in thefe Receivers; but in the former Experiment I filled all as exactly as Icould with Flefh.

March 9. The height of the Mercury in the firf Receiver was 8 digits; in the fecond, none.

March 12. The height of the Mercury in the firft Receiver was 12 digits; in the fecond, I digit.

April 3. The height of the Mercury in the firt Receiver was II digits; but in the fecond, it exceeded not one digit. I opened the Receiver, and boiling the Flelh, after my accuftomed manner, I found it very tender, and of an excellent tafte.

The Corollary from this Experiment feems to be, that the faltnefs of Water, included with Fleh, doth hinder the production of Air ; but becaufe there was fo fmall a quantity of Water, compared with the quantity of Flefh. I do rather incline to think that lefs Air was produced in the fecond Receiver, becaufe it was more exactly filled. And indeed if freth Water had been ufed inftead of falt, the matter fucceeds after the fame fort; but the chief Art to Preferve Flefl without Sa't confifts herein, That all Air be excluded from it, and that there be a great compreffion in the Receiver.

All thefe Experiments about the prefervation of Aliments,

190 - The Second Continuation of
what great ufe they may be of for the tranfporting of Fruits, Venifon, or other Flefh from places far remote to great Cities, and for the affording better nourifhment to Mariners, I leave to the Reader to judge.

A R T I C LE XVIII.

Experiments concerning Elixation and Diffillation in Vacuo.

EXPERIMENTI.

Decemb. 12. 1678.

IPut 2 ounces and 6 drachms of Beef into an empty Receiver, which was able to-hold 22 ounces of Water. Then 1 put it into boiling Water for 3 hours; which being done, I expofed it tothe Air to be cooled for a whole night; afterwards, ufing my Pneumatick Engine, I perceived, that the Air formed in the Receiver, could fcarce fuftain 3 digits of Mercury; and fo deducting from the Calculation, a man may eafily find, that Flefh, whileft it isboiled, cannot form Air enough to make an entire preffure in a Receiver capable of holding a double weight of Water : that is, If you include one pound of Flefh in an emptied Receiver, able to hold 2 ounces of Water, it will not generate Air that can remove the Cover from the Receiver, unlef's heat do confer much to produce the effect; but I confefs that our Flefh was not boiled enough.
See the Defrription of a Veffel to Boil and Diftil in Vacuo, pag. 19.

Phy/sco-Mechanical Experiments.

EXPERIMENTII.

December 23.

I inclofed 3 ounces of raw Beef in a Receiver able to hold 32. ounces of Water ; and when it boiled, having been long on the Fire, the Cover was forced from its Receiver, and fo fuffered the vapours to pafs ont: but becaufe it was prefently flut again, the fire being removed, the Receiver foon loft its internal preffure, fo that being fet again to the fire, it was a long time before it could force away the Cover the fecond time. I tried this again and again; yea, unlefs the Receiver had been expofed to a very ftrong fire, the Cover would never have been removed; but if the fire be kindledenough, fweet exhalations continually pafs out.

Decemb.24. The Receiver having been cooled during the whole night, was this day, by the ufe of the Pneumatick Engine, almoft wholly evacuated. Whence we feem to have a confirmation, that the divulfion of the Cover, is not made by that Air, which can keep the form of Air, but from the Steams exhaling from the Fleff, and fubfiding again therein, if they be hindred from egrefs, which may eafily be performed, if we ufe not too fierce a fire in the empty Receiver, and fo the lofs of . thofe fweet fmelling vapours may be eafily avoided.

EXPERIMENTIII.

7an. $21 . \quad 1679$.

I put Pafte without Leaven into an exhaufted Receiver; and alfo Fincluded another part of the fame Pafte in another Receiver, full of Common Air. I enclofed thefe 2 Receivers in balneo marice, ftopped with a Screw; and when they had ftaid there for 3 hours, having been expofed to a moderate fire, I opened the Receivers: The Pafte in vacuo I found reddifh, as

192

 The Second Continuation offar as the fuperficies; but the other had admitted Water; and the Pafte was not boiled enough, and therefore I put both Receivers again in balneo marie, where they ftaid an whole night.

Fan.22. This day in the morning, I found the balneum marice quite cold; and the Pafte, when it was taken out, was boiled enough, but it was covered with no cruft. That which was included in vacuo, was interfperfed with many cavities, but it feemed too infipid; the other contained no cavities, but afforded a more pleafant tafte. Both the Receivers were found almoft wholly emptied of Air.

EXPERIMENTIV.

February 3. 1679.
Ienclofed Pafte kneaded with Leaven in vacuo, and as foon as it had filled its Receiver with factitious Air, I tranfmitted it into that Receiver, which I am accuftomed to ufe to boil Flefh in balneo maric; ; but when the Pafte was thus removed out of one Receiver into another; it pitched or fank very much; yet when it had remained for 3 hours in a jervid balweo marie, the Bread made of it was interfperfed with many cavities, but it was covered with no cruft.

Feb.5. I iterated the fame Experiment, but this time the Pafte was included in vacuo, in the fame Receiver, which was afterwards put in balweo mariw, and therefore there was no need to remove the Pafte, and to expofe it to theAir. Hence it came to pafs, that the Bread made thereof, was much lighter than the former.

Pbyfico-Mechanical Experiments.

EXPERIMENTV.

February: 12.

I included Rofemary with Water in the Veffel defribed p. 19. and when the Air was pumped out, I put the Veffel in balneo arene, and there cameforth a Water endued with a very fweet fmell; yea and fome drops of effential Oil, fmelling very fweet alfo, and affected with no Empyreuma. But when I opened the Stop cock for to let in the Air, the noife did fo foon ceafe, that I judged much Air was produced from the Rofemary.

Feb.I 3 . I put the fame Rofemary into the fame evacuated Veffel, and adminiffred a more intenfe fire thereunto, yet I could extract no Oil, neither fweet nor ftinking; and befides the Water was lefs fragrant than the former.

EXPERIMENTVI.

February 10. 1679.

I boiled I pound of Flefh in vacuo, in the Veffel defrribed p.19. which could contain almoft 4 pound of Water: the upper part thereof, which was made of Glafs, did hold the mercurial Gage, by the help whereof, I perceived that the Mercury had not afcended to the height of 3 digits, though the Flefh had boiled for 3 hours and more. It was not boiled enough, and its tafte was ungrateful; and moreover, the Liquor which was formed of the condenfed Vapours, afforded alfo an unpleafant tafte.

Feb.ri. I iterated the former Experiment, but this time I fprinkled the Flefh with Pepper and Cloves; the iffue was, that the Mercury afcended to the height of 6 digits, though the Flefh was boiled no longer than the other; it feemed very grateful to the palate, and the Liquor formed from the VaC c
pours,

194 The Second Continuation of

 pours, afforded a moff pungent tafte of Pepper ; but it had contracted nothing ungratelul from the Fleth, as was done in the former Experiment.From thefe Experiments made about Elixation and Diftillation in vacuo, the Corollary feems to be, that fuch Veffels may be very ufeful for the Diftilling, and boiling of fuch bodies, which do contain thin, and very volatile Spirits : for all things will be preferved by their help, and nothing will avolate or flie away.

A R T I C L E XIX.

Concerning Elixation in Veffels fopped mith Screms, by the belp whereof, even Harts-horn, and the bones of Filbes, and Four-footed Creatures may be foftned.

EXPERIMENTI.

Fanuary 29.

$\Gamma^{\text {Ight days ago I filled a Veffel, fopped with a Screw, with }}$ Beef and Water together, and when it had continued, expofed to a moderate Fire for eight or nine hours in balneo marice, ftopped alfo with a Screw; I took the Flefh out of it, but it was boiled a great deal too much, and the Tafte of it was very unpleafant. Afterwards, I boiled new Beef in the fame Veffel, and after the fame manner, fave that this was feafoned with. Pepper and Cloves, and remained expofed to theFire, onely for three hours. The iffue was, that this Flefh preferved a moit pleafant tafte; wherefore,

> Phylico-Mechanical Experiments.
that I might know whether the excellency of this Flefh above the other, did proceed from the Spices, or from a fhorter time of boiling, I boiled other Flefh without Spices for 3 hours, in the fame Veffel, and after the fame manner: when the Flefh was taken out, it was of a good tafte. Whence I conjectured, that the caufe of fpoiling the firft Flefh, was to be chiefly afcribed tothe over-boiling: Yet I think that the Spices may be convenient to correct fome part of the ungrateful tafte; for I left a place for the condenifing of the Vapours, in the top of the Veffel, and found that the Liquor there formed, was of an unpleafant tafte; but when the Flefh was feafoned with Pepper and Cloves, no fuch thing was found.

EXPERIMENTII.

Ұаи. 29.

I boiled Apples, after the fame manner as I did the Flefh before defcribed; but I mixed no Water with them. They were fet upon a moderate fire almoft for 2 hours. They were very foft, and of a very good tafte, but fome pieces which were laid in the upper part of the Receiver, where the Vapours afcending from the inferiour part, were condenfed, were found of an unpleafant tafte; and alfo the drops, formed from the fame Vapours, did affect the Noftrils with an ungrateful odour.

EXPERIMENTIII.

February 4.

Ienclofed Flefh with Pepper and Cloves in a Receiver, ftopped with a Screw, but poured no Water in to fill the interftices, onely I compreffed the Flefh, as much as I could, and then I put the Receiver in balneo marice, already hot, and ftopped it with a Screw; and when it had remaines there, over a moderate fire, for a whole hour, the Flefh was rather over-boiled than

The Second Continuation of

under-boiled: But when I opened the balneum maria, all the Water brake out of it with a great force, viz. the Liquor being hot, and hitherto incarcerated, now having freedom given, at length did fhew itsftrength.

Feb. 5. I enclofed fome part of this Flefh in a Receiver flopped with a Screw.

March 12. The Flefh, which was included 5 weeks ago, was this day found very good. I do not doubt, but that perfect Elixation, wasable to contribute fomething to its prefervation, viz. becaufe the fundry principles, of which Flefh confifteth, had, whileft the heat continued, exerted their ftrength upon one another, far better than if the Flefh, being lefs boiled, by reafon of the great avolation of parts, had been to be removed from the Fire, as it happens in ordinary coctions. And indeed, by Experiments made about other Bodies, I have found that Elixation, the perfecter it is, doth fo much the more hinder fermentation. See Artic.XVII. Exper. XII, XX.

EXPERIMENTIV.

Februaryio.

I boiledan Ox-foot or Cow-beel, after the fame manner, as I had done the Flefh above mentioned, but I left the Cow-heel for 4 hours or more, upon a moderate fire. That time being elapfed, and the Veffels unftopped, the Flefh was excellently well boiled, and the bones were fo foft, that they might be cut with a Knife, and eaten like Cheefe.
$F e b .12$. I repeated the fame Experiment, but the Veffels remained expofed to the fire for 12 hours fpace; and though the Water of the balneum marice did every where fecure the Veffel demerfed in it, yet the Flefh had contracted a tafte and a fmell very Empyreumatical; but the juice, which in the former Experiment did concrete into a very firm Gelly, in this latter, could not be congealed at all.

By thefe Experiments it appears, That many bones and hard tendons, which we daily caft away as unprofitable, by the help of balneum marie, ftopped with a Screw, may be converted intogood nourifhment.

EXPERIMENTV.

February 10.

I boiled a Fifh, after the fame manner as was defcribed above, in balneo marice fopped with a Screw, but I mixed no Water therewith. The Fifh ftaid upon the fire two hours, onely ; then the Veffel being cooled and opened, the Fith was found of a very good tafte, and his bones were fo foft that they yielded to the preffure of ones finger, and the head of it could beeaten like its flefl. The juice of it in a fhort time did concrete into a Gelly of an hard confiftence.

This Experiment is very ufeful for the boiling of Filh which arefull of bones.

EXPERIMENT. VI.

February 15.

I purHarts horn into a Receiver which was to be flopped with a Screw, and filled the intervals with Water, I included the Receiver thus fopped, in balneo maria, ftopped alfo with a Screw, and foexpofed itfor 4 hours to a moderate fire; when that time was paffed and the Veffels opened, the Harts-horn was as foft as Cheefe; and the juice did foon concrete into a very firm Gelly.

Feb. 17. I repeated the fame Experiment, but no Water was included with the Harts-horn, and the fire lafted 6 hours under the balneum marice; when this was done, the Harts-horn was found very foft, but a little juice had excreted out of it, and that did adhere to the external parts of the Harts horn in the form of drops of Gelly.

The Excellency of this Balneum marix is confirmed by this Experiment : For feeing Harts-horn it felf can be boiled by the help thereof, without the mixture of Water, there is no doubt but all frefh Water, which is wont to be fpent in Ships to boil Flefh, may be preferved for other ufes of the Mariners. Furthermore, If we add what we have tried about the prefervation of raw Flefh, and after of that which is boiled. (See Exper. III.) Doubtlefs we may conceive great hope, that many inconveniences which are wont to prejudice Mariners, both by reafon of the faltnefs of their meat, and the putrefaction of their Water, will be almoft wholly remedied and prevented. Neither let any man object that fo many Veffels, and fo exactly ftopped, are very difficult to be procured; for daily experience doth evince, that very many mechanical inftruments, far moee difficult, may in a little time become very eafie for ufe, and as eafily procurable.

$$
F I N I S
$$

THE

I N D E X.

1. THe Defription of an Engine, with a double Tube, for the exhaulting of the Air.
2. The Defoription of the Mercarial Gare. \quad pag.r.r. 3. The Defcription of the Eugine for the comprefing pf 3. Air.
3. How mixtures may be made in combrefled Air.
4. How factitious Air may be transmitted out of one Receiver into another.
5. A veffel by which Air may be filtratid thorough Water. P.I I.
6. How the fame Numerical Air may be fometimes compreffed, and fomet imes rarefied.
7. The Defcription of a Wind gun. p.I5.
8. A Veffel to Diftil in vacuo.
9. Several ways ufed to help the prodiction of Air. p.rg.
10. Several ways to hinder the producion of Air. p. p. 28.
11. The Effect's of Faititious or Artijcial Air, are different from the Effects of Common Air, P. 47.
I3. The Effects of Compreffed Air, io differ from the Effects of Common Air.
12. The Effedts of Artificial Air upon Animals.
13. Animals in vacuo.
14. Fire in compreffed Air.
15. Fire ufed to produce Air.
16. Concerning the production of Air ir vacuo. p.106. p.109.
p. 69.
p. 85.
p. 96 p.ior.
p. 106 r9. Cox

IN DE X.

19. Concerning the production of Air above its wonted prefure.
20. Various Experiments.
21. Artificial Air deftroyed.
p. 124. p. 134.
22. Experiments concerning the different celerity of Air prodsred in vacuo, or in common Air.
23. The difference between whole or entire Fruits, and Fruits bruised.
24. The Air is sometimes found unfit to produce mouldinefs.
25. Experiments concerning the change of weights made by the Sun-beams, even in Veffels Sealed Hermetically.
p. 165.
26. The Prefervation of Bodies in compreffed Liquors. p. 167. 2% Experiments concerning Elixation, and Difitlation in va-
27. Concerning Elixation in Veffels flopped with a Screw. p.194.

SOME

OBSERVATIONS,

I. Ope Bodies may be exhaufled of Air. p. $63,121,127,129$. - II. Some Bodies included in Receivers, do produce Air more copioufly in the beginning, than towards the end. p.II2, III. Other included Bodies do produce Air lets copiously in the beginning, than towards the end. p. $2,24,49,53,119$, IV. Some Bodies produce Air almoff regularly. $\begin{aligned} \text { 120,126,127. } \\ \text { p.109,1ro }\end{aligned}$

$$
120,127,129,13 \mathrm{r} .
$$

V. Some Bodies produce Air by iterated turns. P. 32,33,
VI. Other Bodies produce no Air at all. $\begin{aligned} & 36,129,130,138 . \\ & \mathrm{p} \cdot \mathbf{1 0 6}, \mathbf{1 0 8}, \mathbf{1 0} 0,\end{aligned}$ VII. Compreflion doth in part hinder the production of Air. VIII. Some Factitious Airs do in part binder the production of
Air. IX. Other Factitious Airs do promote the production p.36,37,38. X. The production of Air in Pafte is haftened by Fern. 65. but it is not increased thereby.
XI. No Air is extricated in vacuo, from melted Metal $1 \mathrm{I}, 42,44$. XII T diving Animals con fume 135 . XII. Living Animals consume Air, but dead owes produce it. p. $80,8 \mathrm{I}$.

Dd
XIII. Some.

OBSERVATIONS.

XIII. Some Fruits are Sooner mollified in Factitious Air, than in Common. P.36,57,59,63,61,65. XIV. Some Fruits are better preserved in Factitious Air, than in Common.
p. 52 .
XV. Sometimes changes are fooner made in Factitious Air, than in Common.
XVI. At other times changes do happen flower in Factitious Air, than in Common. P.35,36,37.
XVII. Artificial Air doth presently extinguish Fire. p. 87.
XVIII. Factitious Air, produced from Fruits, is less burtful to Animals, than other Artificial Air. p.91,92.
XIX. Animals do fooner die in Artificial Air, than in vacuo.
XX. Animals live longer in compreffed Air, than in common. XX. Animals live longer in compreffed Air, than in common. p. $75,77$.
XXI. Corruption is increased by comprefled Air. p.72,73. XXII. Animals are killed in compreffed Air. p. 83,84 . XXIIF. Some Bodies contract not mouldinefs, but in compreffed Air. XXIV. Fire is more caflly kindled in compreffed Air, and con. fumes more there. $\quad \mathrm{p}, 101,1 \mathrm{O}_{2}, 1 \mathrm{O}_{3}, 104,105$. XXV. The quantity of moldiness doth depend on the quantity of the Air.
p. $74,78,79$. XXVI. The rarefaction of the Air doth binder vegetation. XXVII Some Bodies may be preferved long wircormpted p. 50° XXVII. Some Bodies may be preferved long uncorrupted. p.58, 115,116. XXVIII. Fermented Liquors are good to preserve Fruits. p. 173. XXIX. Some Liquors, if they be compreffed, do contribute towards the prefervation of Bodies. $\mathrm{p}: 175,176$. XXX. Sugar is not fo good for the Preservation of Fruits. P.185. XXXI. Some Fishes are corrupted without the Production of Ait.

. OBSERVATIONS.

XXXII. Raw Flefh may be long preferved without Salt. p.45, 1ク7,178. XXXIII. The fame Flejh boiled may be likewife preferved a long time.
XXXIV. Birds, even very tender ones may be long preferved. XXXV. Diffillation is very well perfected in vacuo. p.190,
XXXVI. Bones foftned. 191,I92. p.i97. XXXVII. Flefh contracts an Empyreumatick tafte in balneo mariæ.
p.i96. XXXVIII. 'Gelly extracted out of Harts-horn, without the addition of Water.

$$
F I N I S .
$$

ERRATA.

PAg.16.1.3. add in margine, F4.p. 20.1 .1 5. for EE r.AA.p.35ol.26.for 5 hours r. s minutes. p.40.l.3.dele almoft. p.41.1.8. for fune 1. r. fune 2. p. 60.1 .10 . for 10 r. 1 r digits. p.s.1.226. for Sept.1. r.Sept.15. p.68.l.penult. for no mouldinefs r.much mouldinefso p.75.1.18.for Fuly 14 . r. fune 14. p.82.l. 13 . for $6 \frac{1}{2}$.r. $6 \frac{1}{3}$. p.96.l. in. dele XI. p. 10 r.l. 2 r. for May 11. r.May 19. p. 151 I .1 .23 . for fuly r. Fune. p.154.1.13. for 28 r.29. p.rog.lult. dele any. p.168.1. antepenult. for meighed, r. filled. p.129.1.28. after later, infert then. p. 18 s.lantep. for $\rho e-$ r.fediment. p. 190.1.20. for 2 ounces r. 2 pounds.

Date Due
NOV 181932

BOYLE (Robert) A CONTINUATION OF New Experiemnts, Physico-Mechanical, touching the Spring and Weight of the Air, Parts I. and II., Oxford, 1669-82, numerous engraved plates, 2 vols in 1, sm. 4to, old calf gilt

15/-

$$
\begin{gathered}
Q \subset 161 \\
B 79 \\
1669
\end{gathered}
$$

3968618

[^0]: * Experiment the $X X X 1$. See alfo the caulfe of this Phenomenon difcours'd of in the Auकhors Hitory of Fluidity and Firmnefs.

[^1]: Oxford, Maych the 24.

[^2]: Aug. 25. 1677. I put unripe Grapes bruifed, into a vacuated Recipient.

