McGill MS M6
MIS.

$$
80+6
$$

What $\qquad$ 28



Case Il.
C.Y. Baruslan

HTICKS
15
$2+2+2$



$$
2 \lambda 0179
$$

SPECIES and MAGNITUDE 0 F
Curvilinear Figures.
LONDON,

Printed for Sam. Smith, and Bento Walford, Printers to the Royal Society, at the Prince's Arms in St. Paul's Church-yard. $\overline{M D C C I V}$.

$$
\begin{aligned}
& \text { (4) }
\end{aligned}
$$

2
(2)
\&) cidx 0
4,

$$
\begin{aligned}
& 10 \text { cTTTM } \\
& 19 \text {-35tim } \\
& 10 \text { B A } \\
& \text { (2) ", } \\
& \text { E2IT } \mathrm{E} \text { E }
\end{aligned}
$$

## ADVERTISEMENT.

PArt of the ensuing Difcourfe about Light was written at the defire of Some Gentlemen of the Royal Society, in the Year 1675 . and then Sent to their Secretary, and read at their Meetings, and the reft was added about Twelve Years after to complete the Theory; except the Third Book, and the laft Propofition of the Second, which were fince put together out of Scattered Papers. To avoid being engaged in Disputes about the fe Matters, $I$ have hitherto delayed the Printing, and Gould fill have delayed it, had not the importunity of Friends prevailed upon me. If any other Papers writ on this Subject are got out of my Hands they are imperfect, and were perhaps written before I had tried all the Experiments here feet down, and fully Satisfied my Self about the Laws of Refractions and Composition of Colours. I have here Published what I think proper to come abroad, wifhing that it may not be Translated into another Language without my Confent. The Crowns of Colours, which Sometimes appear about the Sun and Moon, I have endeavoured to give an Account of; but for want of Sufficient Observations leave that Matter to be further examined. The Subject of the Third Book I have alfo left imperfect, not having tried all the Expo-

$$
52959
$$

Experiments which I intended when I was about thefe Matters, nor repeated fome of thofe which I did try, until I had fatisfied my felf about all their Circumftances. To communicate what I bave tried, and leave the rest to others for further Enquiry, is all my Defign in publifbing the fe Papers.

In a Letter vuritten to Mr. Leibnitz in the Year 1676. and publifhed by Dr. Wallis, I mentioned a Method by which I bad found fome general Theorems about Squaring Curvitinear Figures, or comparing them with the Conic Sections, or other the fimplest Figures with which they may be compared. And fome $\gamma$ ear's ago I lent out a Manufcript containing fuch Theorems, and baving fince met with fome Tbings copied out of it, I bave on this Occafion made it publick, prefixing to it an Introduction and fubjoyning a Scholium concerning that Method. And I bave joined with it another fmall Tract concerning the Curvitinear Figures of the Second Kind, which was alfo written many rears ago, and made known to fome Friends, who bave folicited the making it publick.

> I. N.

# [I] <br> <br> The FIRST bOOK <br> <br> The FIRST bOOK <br> <br> 0 F 

 <br> <br> 0 F}

# OP TI C K S. 

PA RT I.

MY Defign in this Book is not to explain the Proparties of Light by Hypothefes, but to propofe and prove them by Reafon and Experiments: In order to which, I hall premife the following Definitrons and Axioms.

## DEFINITIONS.

D E FIN. I.

B$Y$ the Rays of Light I underftand its leafs Parts, and tho fe as well Succefive in the fame Lines as Contemporary in Several Lines. For it is manifeft that Light confifts of parts both Succeffive and Contemporary; becaufe in the fame place you may fop that which comes one moment, and let pals that which comes prefently after; and in the fame time you may fop it in any one place, and let it pars in any other. For that part of Light which is ftopt cannot be the fame with that which is let pars. The leaft Light or part of Light, which may be ftopt alone without the reft of the Light, or propagated alone, or do or fuffer any

## [i]

thing alone, which the reft of the Light doth not or fufers not, I call a Ray of Light.

## DEFIN. II.

Refrangibility of the Rays of Light, is their Difpofition to be refracted or turned out of their Way in pafing out of one tranf. parent Body or Medium into another. And a greater or lefs Refrangibility of Rays, is their Difpofition to be turned more or lefs out of their Way in like Incidences on the fame Medium. Mathematicians ufually confider the Rays of Light to be Lines reaching from the luminous Body to the body illuminated, and the refraction of thofe Rays to be the bending or breaking of thofe Lines in their paffing out of one Medium into another. And thus may Rays and Refractions be confidered, if Light be propagated in an inftant. But by an Argument taken from the Æquations of the times of the Eclipfes of Jupiter's Satellites it feems that Light is propagated in time, fpending in its paffage from the Sun: to us about Seven Minutes of time : And therefore I have chofen to define Rays and Refractions in fuch general terms as may agree to Light in both cafes.

## D E FIN. III.

Reflexibility of Rays, is their Dilpofition to be theturned back into the fame Medium from any other Medium upon whofe Surface they fall. And Rays are more or le $\beta$ reflexible, which are returned back more or lefs eafily. As if Light pafs out of Glafs into Air, and by being inclined more and more to the common Surface of the Glafs and Air, begins at length to be totally reflected by that Surface ; thofe forts of Rays which at like Incidences are reflected moft copioufly, or by inclining the Rays begin fooneft to be totally reflected, are moft reflexible.

## [3]

## DEFIN. FV.

The Angle of Incidence, is that Angle which the Line defcribed by the incident Ray contains with the Perpendicular to the refleEting or refracting Surface at the Point of Incidence.

## DEFIN. V.

The Angle of Reflexion or Refraction, is the Angle which the Line defcribed by the reflected or refracted Ray containeth with the Perpendicular to the reflecting or refracting Surface at the Point of Incidence.

## DEFIN. VI.

The Sines of Incidence, Reflexion, and Refraction, are the Sines of the Angles of Incidence, Reflexion, and Refraction.

## D EFIN. VII.

The Light whofe Rays are all alike Refrangible, I call Simple, Homogeneal and Similar; and that whofe Rays are fome more Refrangible than others, I call Compound, Heterogeneal and Difimilar. The former Light I call Homogeneal, not becaufe I would affirm it fo in all refpects; but becaufe the Rays which agree in Refrangibility, agree at leaft in all thofe their other Properties, which I confider in the follawing Difcourfe.

D E FIN. VIII.
The Colours of Homogeneal Lights, I call Primary, Homogeneal and Simple; and thofe of Heterogeneal Lights, Heterogeneal and Compound. For thefe are always compounded of the colours of Homogeneal Lights; as will appear in the following Difcourfe.
$A \boldsymbol{X}$ -

## [4]

## AXIOMS.

## A X. I.

THE Angles of Incidence, Reflexion, and Refraction, lye in one and the fame Plane.

## A X. IL.

The Angle of Reflexion is equal to the Angle of Incidence.
A X. III.
If the refracted Ray be returned directly back to the Point of Incidence, it - hall be refracted into the Line before defcribed by the incident Ray.

A X. IV.
Refraction out of the rarer Medium into the denfer, is made towards the Perpendicular ; that is, fo that the Angle of RefraEtion be le $\beta$ than the Angle of Incidence.

A X. V.
The Sine of Incidence, is either accurately or very nearly in a given Ratio to the Sine of Refraction.

Whence if that Proportion be known in any one Inclination of the incident Ray, 'tis known in all the Inclinations, and thereby the Refraction in all cafes of Incidence on the fame refracting Body may be determined. Thus if the Refraction be made out of Air into Water, the Sine of Incidence of the red Light is to the Sine of its Refraction as 4 to 3. If out of Air into Glafs, the Sines are

## [5]

as 17 to 11. In Light of other Colours the Sines have other Proportions : but the difference is fo little that it need feldom be confidered.

Suppofe therefore, that R S reprefents the Surface of Fig. 1. ftagnating Water, and $y \mathbf{C}$ is the point of Incidence in which any Ray coming in the Air from A in the Line A C is reflected or refracted, and I would know whether this Ray fhall go after Reflexion or Refraction : I erect upon the Surface of the Water from the point of Incidence the Perpendicular C P and produce it downwards to $Q$, and conclude by the firft Axiom, that the Ray after Reflexion and Refraction, fhall be found fomewhere in the Plane of the Angle of Incidence A C P produced. I let fall therefore upon the Perpendicular CP the Sine of Incidence A D, and if the reflected Ray be defired, I pro* duce $A D$ to $B$ fo that $D B$ be equal to $A D$, and draw C B. For this Line C B fhall be the reflected Ray; the Angle of Reflexion B C P and its Sine B D being equal to the Angle and Sine of Incidence, as they ought to be by the fecond Axiom. But if the refracted Ray be defired, I produce A D to H, fo that D H may be to A D as the Sine of Refraction to the Sine of Incidence, that is as 3 to 4 ; and about the Center $\mathbf{C}$ and in the Plane A C P with the Radius C A defcribing a Circle ABE,I draw Parallel to the Perpendicular CPQ, the Line HE cutting the circumference in E , and joyning CE , this Line CE fhall be the Line of the refracted Ray. For if EF be let fall perpendicularly on the Line PQ, this Line EF Thall be the Sine of Refraction of the Ray C.E, the Angle of Refraction being $E C Q$; and this Sine $E F$ is equal to DH , and confequently in Proportion to the Sine of Incidence AD as 3 to 4 .

## [ 6 ]

In like manner, if there be a Prim of Glass (that is 2 Glass bounded with two Equal and Parallel Triangular ends, and three plane and well polifhed Sides, which meet in three Parallel Lines running from the three Angles of one end to the three Angles of the other end) and if the Refraction of the Light in paffing crofs this Prifm be defoe Fig. 2. red : Let ACB reprefent a Plane cutting this Prifm tranfverlly to its three Parallel lines or edges there where the Light paffeth through it, and let $\geqslant \mathrm{E}$ be the Ray incldent upon the firft fade of the Prifm A C where the Light goes into the Glass; And by putting the Proportion of the Sine of Incidence to the Sine of Refraction as 17 to 11 find EF the firft refracted Ray. Then taking this Ray for the Incident Ray upon the fecond fide of the Glafs B C where the Light goes out, find the next refracted Ray F G by putting the Proportion of the Sine of Incidence to the Sine of Refraction as 11 to 17 . For if the Sine of Incidance out of Air into Glass be to the Sine of Refraction as 17 to 11, the Sine of Incidence out of Glass into Air muff on the contrary be to the Sine of Refraction as 11 to 17 , by the third Axiom.

Much after the fame manner, if A CB D reprefent a Glass fpherically Convex on both fides (ufually called a Lens, fuch as is a Burning-glafs, or Spectacle-glafs, or an Object-glafs of a Telefcope) and it be required to know how Light falling upon it from any lucid point $Q$ shall be refracted, let $Q M$ reprefent a Ray falling upon any point $M$ of its frt Spherical Surface ACB, and by erecting a Perpendicular to the Glads at the point M, find the fifty refracted Ray M N by the Proportion of the Sines 17 to 11. Let that Ray in going out of the Glass be incldent upon $\mathbf{N}$, and then find the fecond refracted Ray $\mathbf{N} q$ by the Proportion of the Sines 11 to 17 . And after the

## $[7]$

fame manner may the Refraction be found when the Lens is Convex on one fide and Plane or Concave on the other, or Concave on both Sides.

## A X. VI.

Homogeneal Rays which flow from Several Points of any Object, and fall aloft Perpendicularly on any reflecting or refraSting Plane or Suberical Surface, Shall afterwards diverge from fo many other Points or be Parallel to fo many other Lines, or converge to fo many other points, e either accurately or without any fenfible Error. And the fame thing will happen, if the Rays be reflected or refracted fucceffively by two or three or more Plane or spherical Surfaces.

The Point from which Rays diverge or to which they converge may be called their Focus. And the Focus of the incident Rays being given, that of the reflected or refracted ones may be found by finding the Refraction of any two Rays, as above; or more readily thus.

Cal. 1. Let A CB be a reflecting or refracting Plane, Fig. 4 . and $Q$ the Focus of the incident Rays, and $Q q \mathrm{C}$ a perpendicular to that Plane. And if this perpendicular be produced to $q$, fo that $q C$ be equal to $Q \mathbf{C}$, the point $q$ thall be the Focus of the reflected Rays. Or if $q \mathrm{C}$ be taken on the fame file of the Plane with QC and in Proportion to QC as the Sine of Incidence to the Sine of Refraction, the point $q$ shall be the Focus of the refractted Rays.

Cal. 2. Let AC B be the reflecting Surface of any Fig. 5: Sphere whole Center is E . Bifect any Radius thereof (fuppore EC) in T, and if in that Radius on the fame fide the point T you take the Points $Q$ and $q$, fo that $T Q, T E$, and $T q$ be continual Proportionals, and the point $Q$ be the

## [8]

the Focus of the incident Rays, the point $q$ fhall be the Focus of the reflected ones.
Fig. 6. Caf. 3. Let A C B be the refracting Surface of any Sphere whofe Center is E. In any Radius thereof EC produced both ways take E T and C $t$ feverally in fuch Proportion to that Radius as the leffer of the Sines of Incidence and Refraction hath to the difference of thofe Sines. And then if in the fame Line you find any two Points Q and $q$, fo that $\mathrm{T} Q$ be to E T as $\mathrm{E} t$ to $t q$, taking $t q$ the contrary way from $t$ which $T Q$ lieth from $T$, and if the Point $Q$ be the Focus of any incident Rays, the Point $q$ fhall be the Focus of the refracted ones.

And by the fame means the Focus of the Rays after two or more Reflexions or Refractions may be found.
Fig. 7. Caf. 4. Let A C B D be any refracting Lens, fpherically Convex or Concave or Plane on either fide, and let C D be its Axis (that is the Line which cuts both its Surfaces perpendicularly, and paffes through the Centers of the Spheres, ) and in this Axis let F and $f$ be the Foci of the refracted Rays found as above, when the incident Rays on both fides the Lens are Parallel to the fame Axis; and upon the Diameter $\mathrm{F} f$ bifected in E , deferibe a Circle. Suppofe now that any Point $Q$ be the Focus of any incident Rays. Draw QE cutting the faid Circle in T and $t$, and therein take $t q$ in fuch Proportion to $t \mathrm{E}$ as $t \mathrm{E}$ or TE hath to TQ. Let $t q$ lye the contrary way from $t$ which TQ doth from T, and $q$ fhall be the Focus of the refracted Rays without any fenfible Error, provided the Point $Q$ be not fo remote from the Axis, nor the Lens fo broad as to make any of the Rays fall too obliquely on the refracting Surfaces.

And by the like Operations may the reflecting or refracting Surfaces be found when the two Foci are given,

## [9]

and thereby a Lens be formed, which fhall make the Rays flow towards or from what place you pleafe.

So then the meaning of this Axiom is, that if Rays fall upon any Plane or Spherical Surface or Lens, and before their Incidence flow from or towards any Point Q, they fhall after Reflexion or Refraction flow from or towards the Point $q$ found by the foregoing Rules. And if the incident Rays flow from or towards feveral points $Q$, the reflected or refracted Rays fhall flow from or towards fo many other Points $q$ found by the fame Rules. Whether the reflected and refracted Rays flow from or towards the Point $q$ is eafily known by the fituation of that Point. For if that Point be on the fame fide of the reflecting or refracting Surface or Lens with the Point $Q$, and the incident Rays flow from the Point $Q$, the reflected flow towards the Point $q$ and the refracted from it ; and if the incident Rays flow towards $Q$, the reflected flow from $q$, and the refracted towards it. And the contrary happens when $q$ is on the other fide of that Surface.

## A X. VII.

Wherever the Rays which come from all the Points of any Object meet again in fo many Points after they have been made to converge by Reflexion or Refraction, there they will make a Picture of the Object upon any white Body on which they fall.

So if PR reprefent any Object without Doors, and AB Fig. 3. be a Lens placed at a hole in the Window-fhut of a dark Chamber, whereby the Rays that come from any Point $Q$ of that Object are made to converge and meet again in the Point $q$; and if a Sheet of white Paper be held at $q$ for the Light there to fall upon it : the Picture of that Object PR will appear upon the Paper in its proper Shape

## [10]

and Colours. For as the Light which comes from the Point $Q$ goes to the Point $q$, fo the Light which comes from other Points P and R of the Object, will go to fo many ocher correfpondent Points $p$ and $r$ (as is manifest by the firth Axiom ;) fo that every Point of the Object Shall illuminate a correfpondent Point of the Picture, and thereby make a Picture like the Object in Shape and Colour, this only excepted that the Picture fall be inverted. And this is the reafon of that Vulgar Experiment of caffing the Species of Objects from abroad upon a Wall or Sheet of white Paper in a dark Room.
Fig e 8.
In like manner when a Man views any Object P QR, the Light which comes from the feveral Points of the Object is fo refracted by the tranfparent skins and humours of the Eye, (that is by the outward coat EFG called the Tunica Cornea, and by the cryftalline humour AB which is beyond the Pupil $m k$ ) as to converge and meet again at fo many Points in the bottom of the Eye, and there to paint the Picture of the Object upon that skin (called the Tunita Retina) with which the bottom of the Eye is covered. For Anatomifts when they have taken off from the bottom of the Eye that outward and molt thick Coat called the Dora Mater, can then fee through the thinner Coats the Pictures of Objects lively painted thereon. And there Pictures propagated by Motion along the Fibres of the Optick Nerves into the Brain, are the cause of Vifion. For accordingly as there Pictures are perfect or imperfect, the Object is feen perfectly or imperfectly. If the Eye be tinged with any colour (as in the Difeafe of the faundife) fo as to tinge the Pictures in the bottom of the Eye with that Colour, then all Objects appear tinged with the fame Colour. If the humours of the Eye by old Age decay, fo as by furinking to make the Corned and Coat of the Cry-

## [11]

falline bumour grow flatter than before, the Light will not be refracted enough, and for want of a fufficient Refraction will not converge to the bottom of the Eye but to fome place beyond it, and by confequence paint in the bottom of the Eye a confufed Picture, and according to the indiftinctnefs of this Picture the Object will appear confufed. This is the reafon of the decay of Sight in old Men, and fhews why their Sight is mended by Spectacles. For thofe Con-vex-glaffes fupply the defect of plumpnefs in the Eye, and by encreafing the Refraction make theRays converge fooner fo as to convene diftinctly at the bottom of the Eye if the Glafs have a due degree of convexity. And the contrary happens in Chort-fighted Men whofe Eyes are too plump. For the Refraction being now too great, the Rays converge and convene in the Eyes before they come at the bottom; and therefore the Picture made in the bottom and the Vifion caufed thereby will noe be diftinct, unlefs the Object be brought fo near the Eye as that the place where the converging Rays convene may be removed to the bottom, or that the plumpnefs of the Eye be taken off and the Refractions diminifhed by a Concave-glafs of a due degree of Concavity, or laftly that by Age the Eye grow flatter till it come to a due Figure : For fhort-fighted Men fee remore Objects beft in Old Age, and therefore they are accounted to have the moft lafting Eyes.

## A X. VIII.

An Object Seen by Reflexion or Refraction, appears in that place from whence the Rays after their laft Reflexion or Refraction diverge in falling on the Spectator's Eye.

If the Object $A$ be feen by Reflexion of a Looking- Fig. 9 : glafs $m n$, it fhall appear, not in it's proper place A, but B 2

## [12]

behind the Glass at $a$, from whence any Rays $A B, A C$, $A D$, which flow from one and the fame Point of the Ob ject, do after their Reflexion made in the Points $B, C, D$, diverge in going from the Glafs to E,F, G, where they are incident on the Spectator's Eyes. For there Rays do make the fame Picture in the bottom of the Eyes as if they had come from the Object really placed at a without the interpofition of the Looking-glafs; and all Vifion is made according to the place and Chape of that Picture.
Fig. 2.
In like manner the Object D feen through a Prifm appears not in its proper place $D$, but is thence tranflated to forme other place $d$ fituated in the laft refracted Ray F G drawn backward from $F$ to $d$.
Fig. 10. And fo the Object $Q$ feed through the Lens AB, appears at the place $q$ from whence the Rays diverge in paffing from the Lens to the Eye. Now it is to be noted, that the Image of the Object at $q$ is fo much bigger or leffer than the Object it felf at $Q$, as the diftance of the Image at $q$ from the Lens $A B$ is bigger or lefs than the diftance of the Object at Q from the fame Lens. And if the Object be feed through two or more fuch Convex or Concaveglaffes, every Glass shall make a new Image, and the Object shall appear in the place and of the bigness of the lat Image. Which confideration unfolds the Theory of Microfcopes and Telefcopes. For that Theory confifts in ale moot nothing elfe than the defcribing fuch Glaffes as thall make the raft Image of any Object as diftinct and large and luminous as it can conveniently be made.

I have now given in Axioms and their Explications the fam of what hath hitherto been treated of in Opticks. For what hath been generally agreed on I content my felf to affume under the notion of Principles, in order to what I have further to write. And this may fuffice for an

Introduction to Readers of quick Wit and good Underftanding not yet verfed in Opticks : Although thofe who are already acquainted with this Science, and have handled Glaffes, will more readily apprehend what followeth.

## PROPOSITIONS.

## PROP. I. Theor. I.

LIG H T S which differ in Colour, differ alfo in Degrees of Refrangibility.

## The Proof by Experiments.

Exper. 1. I took a black oblong ftiff Paper terminated by Parallel Sides, and with a Perpendicular right Line drawn crofs from one Side to the other, diftinguifhed it into two equal Parts. One of there Parts I painted with a red Colour and the other with a blew. The Paper was' very black, and the Colours intenfe and thickly laid on, that the Phænomenon might be more confpicuous. This Paper I viewed through a Prifm of folid Glafs, whofe two Sides through which the Light paffed to the Eye were plane and well polifhed, and contained an Angle of about Sixty Degrees : which Angle I call the refracting Angle of the Prifm. And whilft I viewed it, I held it before a Window in fuch manner that the Sides of the Paper were parallel to the Prifm, and both thofe Sides and the Prifm parallel to the Horizon, and the crofs Line a peepefdiculare to it ; and that the Light which fell from the Window

## [14]

upon the Paper made an Angle with the Paper, equal to that Angle which was made with the fame Paper by the Light reflected from it to the Eye. Beyond the Prim was the Wall of the Chamber under the Window covered over with black Cloth, and the Cloth was involved in Darknefs that no Light might be reflected from thence, which in paffing by the edges of the Paper to the Eye, might mingle it fell with the Light of the Paper and obscure the Phenomenon thereof. Thee things being thus ordered, I found that if the refracting Angle of the Prifm be turned upwards, fo that the Paper may feem to be lifted upwards by the Refraction, its blew half will be lifted higher by the Refraction than its red half. But if the refracting Angle of the Prifm be turned downward, fo that the Pa per may feem to be carried lower by the Refraction, its blew half will be carried fomething lower thereby than its red half. Wherefore in both cafes the Light which comes from the blew half of the Paper through the Prifm to the Eye, does in like Circumftances fuffer a greater Refraction than the Light which comes from the red half, and by confequence is more refrangible.
Fig. 11.
Illufiration. In the Eleventh Figure, M N reprefents the Window, and DE the Paper terminated with parallel Sides DJ and HE, and by the tranfverfe Line F G diftinguifhed into two halfs, the one DG of an intenfely blew Colour, the other F E of an intenfely red. And BACcab reprefonts the Prifin whole refracting Planes $A B b a$ and $A C c a$ meet in the edge of the refracting Angle $A$ a. This edge Aa being upward, is parallel both to the Horizon and to the parallel edges of the Paper DJ and HE. And de reprefents the Image of the Paper feer by Refraction upwards in fuck manner that the blew half DG is carried higher to $d g$ than the red half FE is to $f e$, and therefore fifers

## [15]

fuffers a greater Refraction. If the edge of the refracting Angle be turned downward, the Image of the Paper will be refracted downward fuppofe to ds, and the blew half will be refracted lower to $\delta \gamma$ than the red half is to $p \varepsilon$.

Exper. 2. About the aforefaid Paper, whofe two halfs were painted over with red and blew, and which was ftiff like thin Paftboard, I lapped feveral times a flender thred of very black Silk, in fuch manner that the feveral parts of the thred might appear upon the Colours like fo many black Lines drawn over them, or like long and flender dark Shadows caft upon them. I might have drawn black Lines with a Pen, but the threds were fmaller and better defined. This Paper thus coloured and lined I fet againft a Wall perpendicularly to the Horizon, fo that one of the Colours might fland to the right hand and the other to the left. Clofe before the Paper at the confine of the Colours below I placed a Candle to illuminate the Paper ftrongly : For the Experiment was tried in the Night. The flame of the Candle reached up to the lower edge of the Paper, or a very litele higher. Then at the diftance of Six Feet and one or two Inches from the Paper upon the Floor I erected a glafs Lens four Inches and a quarter broad, which might collect the Rays coming from the feveral Points of the Paper, and make them converge towards fo many other Points at the fame diftance of fix Feet and one or two Inches on the other fide of the Lens, and fo form the Image of the coloured Paper upon a white Paper placed there; after the fame manner that a Lens at a hole in a Window cafts the Images of Objects abroad upon a Sheet of white Paper in a dark Room. The aforefaid white Paper, erected perpendicular to the Horizon and to the Rays which fell upon it from the Lens, I moved fometimes towards the Lens, fometimes from it, to find

## [16]

the places where the Images of the blew and red parts of the coloured Paper appeared moft diftinct. Thofe places I eafily knew by the Images of the black Lines which I had made by winding the Silk about the Paper. For the Images of thofe fine and flender Lines (which by reafon of their blacknefs were like Shadows on the Colours) were confufed and fearce vifible, unlefs when the Colours on either fide of each Line were terminated moft diftinctly. Noting therefore, as diligently as I could, the places where the Images of the red and blew halfs of the coloured Pa per appeared moft diftinct, I found that where the red half of the Paper appeared diftinct, the blew half appeared confufed, fo that the black Lines drawn upon it could fcarce be feen; and on the contrary where the blew half appeared moft diftinct the red half appeared confured, fo that the black Lines upon it were farce vifible. And between the two places where thefe Images appeared diftinct there was the diftance of an Inch and a half : the diftance of the white Paper from the Lens, when the Image of the red half of the coloured Paper appeared moft diftinct, being greater by an Inch and an half than the diftance of the fame white Paper from the Lens when the Image of the blew half appeared moft diftinct. In like Incidences therefore of the blew and red upon the Lens, the blew was refracted more by the Lens than the red, fo as to converge fooner by an Inch and an half, and therefore is more refrangible.
Fig. 12. Illuftration. In the Twelfth Figure, DE fignifies the coloured Paper, D G the blew half, FE the red half, M N the Lens, HJ the white Paper in that place where the red half with its black Lines appeared diftinct, and $b i$ the fame Paper in that place where the blew half appeared diftinct. The place $b i$ was nearer to the Lens $M N^{\prime}$ than the place HJ by an Inch and an half.

## [17]

Scholium. The fame things fucceed notwithftanding that fome of the Circumftances be varied : as in the firf Experiment when the Prifm and Paper are any ways inclined to the Horizon, and in both when coloured Lines are drawn upon very black Paper. But in the Defcription of thefe Experiments, I have fet down fuch Circumftances by which either the Phænomenon might be rendred more confpicuous, or a Novice might more eafily try them, or by which I did try them only. The fame thing I have of en done in the following Experiments: Concerning all which this one Admonition may fuffice. Now from thefe Experiments it follows not that all the Light of the blew is more Refrangible than all the Light of the red; For both Lights are mixed of Rays differently Refrangible, So that in the red there are fome Rays not lefs Refrangible than thofe of the blew, and in the blew there are fome Rays not more Refrangible than thofe of the red; But thefe Rays in Proportion to the whole Light are but few, and ferve to diminifh the Event of the Experiment, but are not able to deftroy it. For if the red and blew Colours were more dilute and weak, the diftance of the Images would be lefs than an Inch and an half; and if they were more intenfe and full, that diftance would be greater, as will appear hereafter. Thefe Experiments may fuffice for the Colours of Natural Bodies. For in the Colours made by the Refraction of Prifms this Propofition will appear by the Experiments which are now to follow in the next Propofition.

## [18]

## $P R O P$. II. Theor. II.

The Light of the Swn confifs of Rays differently Refrangible.
The Proof by Experiments.
Exper. 3. N a very dark Chamber at a round hole about one third part of an Inch broad made in the Shut of a Window, I placed a Glafs Prifm, whereby the beam of the Sun's Light which came in at that hole might be refracted upwards toward the oppofite Wall of the Chamber, and there form a coloured Image of the Sun. The Axis of the Prifm (that is the Line paffing through the middle of the Prifm from one end of it to the other end Parallel to the edge of the Refracting Angle) wás in this and the following Experiments perpendicular to the incident Rays. About this Axis I turned the Prifm flowly, and faw the refracted Light on the Wall or coloured Image of the Sun firft to defcend and then to afcend. Between the Defcent and Afcent when the Image feemed Stationary, I ftopt the Prifm, and fixt it in that Pofture, that it fhould be moved no more. For in that pofture the Refractions of the Light at the two fides of the Refracting Angle, that is at the entrance of the Rays into the Prifm and at their going out of it, were equal to one another. So alfo in other Experiments as often as I would have the Refractions on both fides the Prifm to be equal to one another, I noted the place where the Image of the Sun formed by the refracted Light ftood ftill between its two contrary Motions, in the common Period of its progrefs andregrefs; and when the Image fell upon that place, I made faft the Prifm. And in this pofture, as

## [19]

the moft convenient, it is to be underftood that all the Prifms are placed in the following Experiments, unlefs where fome other pofture is defcribed. The Prifm therefore being placed in this pofture, I let the refracted Light fall perpendicularly upon a Sheet of white Paper at the oppofite Wall of the Chamber, and obferved the Figure and Dimenfions of the Solar Image formed on the Paper by that Light. This Image was Oblong and not Oval, but terminated with two Rectilinear and Parallel Sides, and two Semiciroular Ends. On its Sides it was bounded pretty diftinctly? but on its Ends very confufedly and indiftinctly, the Light there decaying and vanifhing by degrees. The breadth of this Image anfwered to the Sun's Diameter, and was about two Inches and the eighth part of an Inch, including the Penumbra. For the Image was eighteen Feet and an half diftant from the Prifm, and at this diftance that breadth, if diminifhed by the Diameter of the hole in the Window- fhut, that is by a quarter of an Inch, fubtended an Angle at the Prifm of about half a Degree, which is the Sun's apparent Diameter. But the length of the Image was about ten Inches and a quarter, and the length of the Rectilinear Sides about eight Inches; And the refracting Angle of the Prifm whereby fo great a length was made, was 64 degr. With a lefs Angle the length of the Image was lefs, the breadth remaining the fame. If the Prifm was turned about its Axis that way which made the Rays emerge more obliguely out of the fecond refracting Surface of the Prifm, the Image foon became an Inch or two longer, or more; and if the Prifm was turned about the contrary way, fo as to make the Rays fall more obliquely on the firft refracting Surface, the Image foon became an Inch or two fhorter. And therefore in trying this Experiment, I was as curious as I could be in pla. cing the Prifm by the above-mentioned Rule exactly in
fuch a pofture that the Refractions of the Rays at their emergence out of the Prifm might be equal to that at their incidence on it. This Prifm had fome Veins running along within the Glafs from one end to the other, which fcattered fome of the Sun's Light irregularly, but had no fenfible effect in encreafing the length of the coloured Spectrum. For I tried the fame Experiment with other Prifms with the fame Succefs. And particularly with a Prifm which feemed free from fuch Veins, and whofe refracting Angle was $62 \frac{1}{2}$ Degrees, I found the length of the Image $9 \frac{3}{4}$ or 10 Inches at the diftance of $18 \frac{1}{2}$ Feet from the Prifm, the breadth of the hole in the Window-flhut being $\frac{1}{4}$ of an Inch as before. And becaufe it is eafie to commit a miftake in placing the Prifm in its due pofture, I repeated the Experiment four or five times, and always found the length of the Image that which is fet down above. With another Prifm of clearer Glafs and better Pollifh, which feemed free from Veins and whofe refracting Angle was $63 \frac{1}{2}$ Degrees, the length of this Image at the lame diftance of $18 \frac{1}{2}$ Feet was alfo about 10 Inches, or $10 \frac{1}{8}$. Beyond thefe Meafures for about $\frac{1}{4}$ or $\frac{1}{3}$ of an Inch at either end of the Spectrum the Light of the ${ }^{3}$ Clouds feemed to be a little tinged with red and violet, but fo very faintly that I furpected that tincture might either wholly or in great meafure arife from fome Rays of the Spectrum fcattered irregularly by fome inequalities in the Subftance and Polifh of the Glafs, and therefore I did not include it in thefe Meafures. Now the different Magnitude of the hole in theW indow-fhut, and different thicknefs of the Prifm where the Rays paffed through it, and different inclinations of the Prifm to the Horizon, made no fenfible changes in the length of the Image. Neither did the different matter of

## $[2 I]$

the Prifms make any : for in a Veffel made of polifhed Plates of Glafs cemented together in the fhape of a Prifm and filled with Water, there is the like Succefs of the Experiment according to the quantity of the Refraction. It is further to be obferved, that the Rays went on in right Lines from the Prifm to the Image, and therefore at their very going out of the Prifm had all that Inclination to one another from which the length of the Image proceeded, that is the Inclination of more than two Degrees and an half. And yet according to the Laws of Opticks vulgarly received, they could not poffibly be fo much inclined to one another. For let EG reprefent the Window- Fig. 13. . fhut, F the hole made therein through which a beam of the Sun's Light was tranfmitted into the darkned Chamber, and $A B C$ a Triangular Imaginary Plane whereby the Prifm is feigned to be cut tranfverfly through the middle of the Light. Or if you pleafe, let ABC reprefent the Prifm it felf, looking directly towards the Spectator's Eye with its nearer end: And let X Y be the Sun, M N the Paper upon which the Solar Image or Spectrum is caft, and P T the Image it felf whofe fides tovvards $\forall$ and $W$ are Rectili- $v \sim$ near and Parallel, and ends tovvards $P$ and $T$ Semicircular. YKHP and X LJ T are two Rays, the firft of which comes from the lower part of the Sun to the higher part of the Image, and is refracted in the Prifm at K and H , and the latter comes from the higher part of the Sun to the lower part of the Image, and is refracted at L and J . Since the Refractions on both fides the Prifm are equal to one another, that is the Refraction at K equal to the Refraction at J , and the Refraction at L equal to the Refraction at H , fo that the Refractions of the incident Rays at K and L taken together are equal to the Refractions of the emergent Rays at H and J taken toge.-
ther : it follows by adding equal things to equal things, that the Refractions at K and H taken together, are equal to the Refractions at J and L taken together, and therefore the two Rays being equally refracted have the fame Inclination to one another after Refraction which they had before, that is the Inclination of half a Degree anfwering to the Sun's Diameter. For fo great was the Inclination of the Rays to one another before Refraction. So then, the length of the Image P T would by the Rules of Vulgar Opticks fubtend an Angle of half a Degree at the Prifm, and by confequence be equal to the breadth $\nu w$; and therefore the Image would be round. Thus it would be were the two Rays XLJ T and YK HP and all the reft which form the Image P क $\mathrm{T} v$, alike Refrangible. And therefore feeing by Experience it is found that the Image is not round but about five times longer than broad, the Rays which going to the upper end P of the Image fuffer the greateft Refraction, mult be more Refrangible than thofe which go to the lower end $T$, unlefs the inequality of Refraction be cafual.

This Image or Spectrum P T was coloured, being red at its leaft refracted end $T$, and wiolet at its moft refracted end $P$, and yellow green and blew in the intermediate fpaces. Which agrees with the firft Propofition, that Lights which differ in Colour do alfo differ in Refrangibility. The length of the Image in the foregoing Experiments II meafured from the fainteft and outmoft red at one end, to the faintelt and outmoft blew at the other end.

Exper. 4. In the Sun's beam which was propagated into the Room through the hole in the Window-flut, at the diftance of fome Feet from the hole, I held the Prifm in fuch a pofture that its Axis might be perpendicular to that beam. Then I looked through the Prifm upon the hole,

## [23]

hole, and turning the Prifm to and fro about its Axis to make the Image of the hole afcend and defcend, when between its two contrary Motions it feemed ftationary, I ftopt the Prifm that the Refractions on both fides of the refracting Angle might be equal to each other as in the former Experiment. In this Situation of the Prifm viewing through it the faid hole, I obferved the length of its refracted Image to be many times greater than its breadth, and that the moft refracted part thereof appeared violet, the leaft refracted red, the middle parts blew green and yellow in order. The fame thing happened when I removed the Prifm out of the Sun's Light, and looked through it upon the hole fhining by the Light of the Clouds beyond it. And yet if the Refraction were done regularly according to one certain Proportion of the Sines of Incidence and Refraction as is vulgarly fuppofed, the refracted Image ought to have appeared round.

So then, by thefe two Experiments it appears that in equal Incidences there is a confiderable inequality of Refractions: But whence this inequality arifes, whether it be that fome of the incident Rays are refracted more and others lefs, conftantly or by chance, or that one and the fame Ray is by Refraction difturbed, fhattered, dilated, and as it were fplit and fpread into many diverging Rays, as Grimaldo fuppofes, does not yet appear by thefe Experiments, but will appear by thofe that follow.

Exper. 5. Confidering therefore, that if in the third Experiment the Image of the Sun flould be drawn out into an oblong form, either by a Dilatation of every Ray, or by any other cafual inequality of the Refractions, the fame oblong Image would by a fecond Refraction made Sideways be drawn out as much in breadth by the like Dilatation of the Rays or other caftual inequality of the Re-
fractions Sideways, I tried what would be the Effects of Such a fecond Refraction. For this end I ordered all things as in the third Experiment, and then placed a fecond Prifm immediately after the firft in a crofs Pofition to it, that it might again refract the beam of the Sun's Light which came to it through the firf Prifm. In the firf Prifm this beam was refracted upwards, and in the fecond Sideways. And I found that by the Refraction of the fecond Prifm the breadth of the Image was not increafed, but its fuperior part which in the firf Prifm fuffered the greater Refraction and appeared violet and blew, did again in the fecond Prifm fuffer a greater Refraction than its inferior part, which appeared red and yellow, and this without any Dilation of the Image in breadth.
Eig. 14. Illuftration. Let $S$ reprefent the Sun, F the hole in the Window, A B C the firlt Prifm, D H the fecond Prifm, Y the round Image of the Sun made by a direct beam of Light when the Prifms are taken away, P T the oblong Image of the Sun made by that beam paffing through the firf Prifm alone when the fecond Prifm is taken away, and $p t$ the Image made by the crofs Refractions of both Prifms together. Now if the Rays which tend towards the feveral Points of the round Image Y were dilated and fpread by the Refraction of the firf Prifm, fo that they fhould not any longer go in fingle Lines to fingle Points, but that every Ray being fplit, fhattered, and changed from a Linear Ray to a Superficies of Rays diverging from the Point of Refraction, and lying in the Plane of the Angles of Incidence and Refraction, they fhould go in thofe Planes to fo many Lines reaching almoft from one end of the Image P T to the other, and if that Image fhould thence become oblong: : thofe Rays and their feveral parts tending towards the feveral Points of

## [25]

the Image P T ought to be again dilated and fpread Sideways by the tranfverfe Refraction of the fecond Prifm, fo as to compofe a fourfquare Image, fuch as is reprefented at $\pi 7$. For the better underftanding of which, let the Image $P T$ be diftinguifhed into five equal Parts $P Q K, K Q R L$, LRSM, MSVN, NVT. And by the fame irregularity that the Orbicular Light Y is by the Refraction of the firft Prifm dilated and drawn out into a long Image P T, the the Light P QK which takes up a fpace of the fame length and breadth with the Light Y ought to be by the Refraction of the fecond Prifm dilated and drawn out into the long Image $\pi q k p$, and the Light K QRL into the long Image $k q r l$, and the Lights LRSM, MS VN, NVT into fo many other long Images $l r s m, m s \nu n, n \vee t \eta$; and all thefe long Images would compofe the fourfquare Image 77. Thus it ought to be were every Ray dilated by Refraction, and fpread into a triangular Superficies of Rays diverging from the Point of Refraction. For the fecond Refraction would fpread the Rays one way as much as the firt doth another, and fo dilate the Image in breadth as much as the firft doth in length. And the fame thing ought to happen, were fome Rays cafually refracted more than others. But the Event is otherwife. The Image P T was not made broader by the Refraction of the fecond Prifm, but only became oblique, as 'tis reprefented at $p t$, its upper end P being by the Refraction tranflated to a greater difance than its lower end T. So then the Light which went towards the upper end $P$ of the Image, was (at equal Incidences) more refracted in the fecond Prifm than the Light which tended towards the lower end T , that is the blew and violer, than the red and yellow ; and therefore was more Refrangible. The fame Light was by the Refraction of the firft Prifm tranflated further from the

## [26]

place Y to which it tended before Refraction; and therefore fuffered as well in the firf Prifm as in the fecond a greater Refraction than the reft of the Light, and by confequence was more Refrangible than the reft, even before its incidence on the firft Prifm.

Sometimes I placed a third Prifm after the fecond, and fometimes alfo a fourth after the third, by all which the Image might be often refracted fideways : but the Rays which were more refracted than the reft in the firf Prifm were alfo more refracted in all the reft, and that without any Dilatation of the Image fideways : and therefore thofe Rays for their conftancy of a greater Refraction are defervedly reputed more Refrangible.
Fig. 15. But that the meaning of this Experiment may more clearly appear, it is to be confidered that the Rays which are equally Refrangible do fall upon a circle anfwering to the Sun's Difque. For this was proved in the third Experiment. By a circle I underftand not here a perfect Geometrical Circle, but any Orbicular Figure whofe length is equal to its breadth, and which, as to fenfe, may feem circular. Let therefore A G reprefent the circle which all the moft Refrangible Rays propagated from the whole Difque of the Sun, would illuminate and paint upon the oppofite Wall if they were alone; E L the circle which all the leaft Refrangible Rays would in like manner illuminate and paint if they were alone; $\mathrm{B} \mathrm{H}, \mathrm{CJ}, \mathrm{DK}$, the circles which fo many intermediate forts of Rays would fucceffively paint upon the Wall, if they were fingly propagated from the Sun in fucceffive Order, the reft being always intercepted; And conceive that there are other intermediate Circles without number which innumerable other intermediate forts of Rays would fucceffively paint upon the Wall if the Sun Chould fucceffively emit every fort apart.

And feeing rhe Sun emits all thefe forts at once, they muit all together illuminate and paint innumerable equal circles, of all which, being according to their degrees of Refrangibility placed in order in a continual feries, that oblong Spectrum P T is compofed which I defcribed in the third Experiment. Now if the Sun's circular Image Y which is made by an unrefracted beam of Light was by any dilatation of the fingle Rays, or by any other irregularity in the Refraction of the firft Prifm, converted into the Oblong Spectrum, P T: then ought every circle A G, B H, C J, ©c. in that Spectrum, by the crofs Refraction of the fecond Prifm again dilating or otherwife fcattering the Rays as before, to be in like manner drawn out and cransformed into an Oblong Figure, and thereby the breadth of the Image P T would be now as much augmented as the length of the Image Y was before by the Refraction of the firt Prifm ; and thus by the Refractions of both Prifms together would be formed a fourfquare Figure $p \pi t 1$ as I defcribed above. Wherefore fince the breadth of the Spectrum P T is not increafed by the Refraction fideways, it is certain that the Rays are not fplit or dilated, or otherways irregularly feattered by that Refraction, but that every circle is by a regular and uniform Refraction tranflated entire into another place, as the circle A G by the greateft Refraction into the place ag, the circle B H by a lefs Refraction into the place $b b$, the circle C J by a Refraction ftill lefs into the place $c i$, and fo of the reft; by which means a new Spectrum $p t$ inclined to the former P T is in like manner compofed of circles lying in a right Line; and thefe circles muft be of the fame bignefs with the former, becaufe the breadths of all the Spectrums Y, P T and $p t$ at equal diftances from the Prifms are equal.

I confidered further that by the breadth of the hole $F$ through which the Light enters into the Dark Chamber, there is a Penumbra made in the circuit of the Spectrum $Y$, and that Penumbra remains in the rectilinear Sides of the Spectrums P T and pt. I placed therefore at that hole a Lens or Object-glafs of a Telefcope which might caft the Image of the Sun diftinctly on Y without any Penumbra at all, and found that the Penumbra of the Rectilinear Sides of the oblong Spectrums P T and pt was alfo thereby taken away, fo that thofe Sides appeared as diftinctly defined as did the Circumference of the firf Image Y. Thus it happens if the Glafs of the Prifms be free from veins, and their Sides be accurately plane and well polifhed without thofe numberlefs waves or curles which ufually arife from Sand-holes a little fmoothed in polifhing with Putty. If the Glafs be only well polifhed and free from veins and the Sides not accurately plane but a little Convex or Concave, as it frequently happens; yet may the three Spectrums Y, P T and pt want Penumbras, but not in equal diftances from the Prifms. Now from this want of Penumbras, I knew more certainly that every. one of the circles was refracted according to fome moft regular, uniform, and conftant law. For if there were. any irregularity in the Refraction, the right Lines A E and G L which all the circles in the Spectrum P T do touch, could not by that Refraction be tranflated into the Lines $a e$ and $g l$ as diftinct and fraight as they were before, but there would arife in thofe tranflated Lines fome Penumbra. or crookednefs or undulation, or other fenfible Perturbation contrary to what is found by Experience. Whatfoever Penumbra or Perturbation fhould be made in the circles by the crofs Refraction of the fecond Prifm, all that Penumbra or Perturbation would be confpicuous in
the right Lines $a e$ and $g l$ which touch thofe circles. And therefore fince there is no fuch Penumbra or Perturbation in thofe right Lines there muft be none in the circles. Since the diftance between thofe Tangents or breadth of the Spectrum is not increafed by the Refractions, the Diameters of the circles are not increafed thereby. Since thofe Tangents continue to be right Lines, every circle which in the firft Prifm is more or lefs refracted, is exactly in the fame Proportion more or lefs refracted in the fecond. And feeing all thefe things continue to fucceed after the fame manner when the Rays are again in a third Prifm, and again in a fourth refracted Sideways, it is evident that the Rays of one and the fame circle as to their degree of Refrangibility continue always Uniform and Homogeneal to one another, and that thofe of feveral circles do differ in degree of Refrangibility, and that in fome certain and conftant Proportion. Which is the thing I was to prove.

There is yet another Circumftance or two of this Ex-Fig. 16. periment by which it becomes fill more plain and convincing. Let the fecond Prifm DH be placed not immeately after after the firft, but at fome diftance from it ${ }_{\text {; }}$ Suppofe in the mid-way between it and the Wall on which the oblong Spectrum P T is caft, fo that the Light from the firft Prifm may fall upon it in the form of an oblong Spectrum, $\pi 1$ Parallel to this fecond Prifm, and be refracted $\ell$ Sideways to form the oblong Spectrum pt upon the Wall. And you will find as before, that this Spectrum $p t$ is inclined to that Spectrum P T, which the firf Prifm forms alone without the fecond; the blew ends $P$ and $p$ being further diftant from one another than the red ones T and $t_{\text {, }}$ and by confequence that the Rays which go to the blew end $\pi$ of the Image $\pi 1$ and which therefore fuffer the greateft Refraction in the firt Prifm, are again in the fecond Prifm more refracted than the reft.

## [30]

Fig. 17. The fame thing I try'd alfo by letting the Sun's Lighit into a dark Room through two little round holes F and $\varphi$ made in the Window, and with two Parallel Prifms ABC and $a_{\beta \gamma}$ placed at thofe holes (one at each) refracting thofe two beams of Light to the oppofice Wall of the Chamber, in fuch manner that the two colour'd Images P T and MN which they there painted were joyned end to end and lay in one ftraight Line, the red end $T$ of the one touching the blew end $m$ of the other. For if thefe two refracted beams were again by a third Prifm DH placed croft to the two firf, refracted Sideways, and the Spectrums thereby tranflated to fome other part of the Wall of the Chamber, fuppofe the Spectrum P T to $p t$ and the Spectrum M N to $m n$, there tranflated Spectrums $p t$ and $m n$ would not lie in one ftraight Line with their ends contiguous as before, but be broken off from one another and become Parallel, the blew end of the Image $m n$ being by a greater Refraction tranflated farther from its former place M T, than the red end $t$ of the other Image $p t$ from the fame place MT, which puts the Propofition paft difpute. And this happens whether the third Prifm D H be placed immediately after the two firft or at a great diftance from them, fo that the Light refracted in the two firft Prifms be either white and circular, or coloured and oblong when it falls on the third.

Exper. 6. In the middle of two thin Boards I made round holes a third part of an Inch in Diameter, and in the Window- Thut a much broader hole, being made to let into my darkned Chamber a large beam of the Sun's Light; I placed a Prifm behind the Shut in that beam to refract it towards the oppofite Wall, and clofe behind the Prifm I fixed one of the Boards, in fuch manner that the middle of the refracted Light might pafs through the hole made

## $[31]$

made in it, and the reft be intercepted by the Board. Then at the diffance of about twelve Feet from the firft Board I fixed the other Board, in fuch manner that the middle of the refracted Light which came through the hole in the firft Board and fell upon the oppofite Wall might pals through the hole in this other Board, and the relt being intercepted by the Board might paint upon it the coloured Spectrum of the Sun. And clofe behind this Board I fixed another Prifm to refract the Light which came through the hole. Then I recurned fpeedily to the firft Prifm, and by turning it flowly to and fro about its Axis, I caufed the Image which fell upon the fecond Board to move up and down upon that Board, that all its parts might fucceffively pafs through the hole in that Board and fall upon the Prifm behind it. And in the mean time, I noted the places on the oppofite Wall to which that Light after its Refraction in the fecond Prifm did pafs; and by the difference of the places I found that the Light which being moft refracted in the firf Prifm did go to the blew end of the Image, was again more refracted in the fecond Prifm than the Light which went to the red end of that Image, which proves as well the firf Propofition as the fecond. And this happened whether the Axis of the two Prifms were parallel, or inclined to one another and to the Horizon in any given Angles.

Illuftration. Let F be the wide hole in the Window-fhut, Fig. 18. through which the Sun fhines upon the firf Prifm A B C, and let the refracted Light fall upon the middle of the Board DE, and the middle part of that Light upon the hole $G$ made in the middle of that Board. Let this trajected part of the Light fall again upon the middle of the fecond Board $d e$ and there paint fuch an oblong coloured Image of the Sun as was defcribed in the third Experiment.

## $[32]$

By turning the Prim A B C flowly to and fro about its Axis this Image will be made to move up and down the Board $d e$, and by this means all its parts from one end to the other may be made to pafs fucceffively through the hole $g$ which is made in the middle of that Board. In the mean while another Prifm $a b c$ is to be fixed next after that hole $g$ to refract the trajected Light a fecond time. And thefe things being thus ordered, I marked the places M and N of the oppofite Wall upon which the refracted Light fell, and found that whilft the two Boards and fecond Prifm remained unmoved, thofe places by turning the firft Prifm about its Axis were changed perpetually. For when the lower part of the Light which fell upon the fecond Board $d e$ was caft through the hole $g$ it went to a lower place $M$ on the Wall, and when the higher part of that Light was caft through the fame hole $g$, it went to a higher place N on the Wall, and when any intermediate part of the Light was caft through that hole it went to fome place on the Wall between $M$ and $N$. The unchanged Pofitiont of the holes in the Boards, made the Incidence of the Rays upon the fecond Prifm to be the fame in all cafes. And yet in that common Incidence fome of the Rays were more refracted and others lefs. And thofe were more refracted in this Prifm which by a greater Refraction in the firft Prifm were more turned out of the way, and therefore for their conftancy of being more refracted are defervedly called more Refrangible.

Exper. 7. At two holes made near one another in my Window-fhut I placed two Prifms, one at each, which might caft upon the oppofite Wall (after the manner of the third Experiment ) two oblong coloured Images of the Sun. And at a little diftance from the Wall I placed a long flender Paper with ftraight and parallel edges, and ordered

## [33]

ordered the Prifms and Paper fo, that the red Colour of one Image might fall directly upon one half of the Paper, and the violet colour of the other Image upon the other half of the fame Paper; fo that the Paper appeared of two Colours, red and violet, much after the manner of the painted Paper in the firft and fecond Experiments. Then with a black Cloth I covered the Wall behind the Paper, that no Light might be reflected from it to difturb the Experiment, and viewing the Paper through a third Prifm held parallel to it, I faw that half of it which was illuminated by the Violet-light to be divided from the other half by a greater Refraction, efpecially when I went a good way off from the Paper. For when I viewed it too near at hand, the two halfs of the Paper did not appear fully divided from one another, but feemed contiguous at one of their Angles like the painted Paper in the firf Experiment. Which alfo happened when the Paper was too broad.

Sometimes inftead of the Paper I ufed a white Thred, and this appeared through the Prifm divided into two Pa rallel Threds as is reprefented in the 19th Figure, where Fig. 19.
D G denotes the Thred illuminated with violet Light from $D$ to $E$ and with red Light from $F$ to $G$, and $d e ~ f o g$ are the parts of the Thred feen by Refraction. If one half of the Thred be conftantly illuminated with red, and the other half be illuminated with all the Colours fucceffively, (which may be done by caufing one of the Prifms to be turned about its Axis whilft the other remains unmoved) this other half in viewing the Thred through the Prifm, will appear in a continued right Line with the firft half when illuminated with red, and begin to be a little divided from it when illuminated with Orange, and remove further from it when illuminated with Yellow, and ftill

## [34]

further when with Green, and further when with Blew, and go yet further off when illuminated with Indigo, and furtheft when with deep Violet. Which plainly fhews, that the Lights of feveral Colours are more and more Refrangible one than another, in this order of their Colours, Red, Orange, Yellow, Green, Blew, Indigo, deep Violet; and fo proves as well the firt Propofition as the fecond.
Fig. 17. I caufed alfo the coloured Spectrums P T and M N made in a dark Chamber by the Refractions of two Prifms to lye in a right Line end to end, as was defrribed above in the fifth Experiment, and viewing them through a third Prifm held Parallel to their length, they appeared no longer in a right Line, but became broken from one another, as they are reprefented at $p t$ and $m n$, the violet end $m$ of the Spectrum $m n$ being by a greater Refraction tranflated further from its former place M T than the red end $t$ of the other Spectrum $p t$.
Fig. 20. I further caufed thofe two Spectrums P T and MN to become co-incident in an inverted order of their Colours, the red end of each falling on the violet end of the other, as they are reprefented in the oblong Figure P TMN; and then viewing them through a Prifm DH held Parallel to their length, they appeared not co-incident as when viewed with the naked Eye, but in the form of two diftinct Spectrums $p t$ and $m n$ croffing one another in the middle after the manner of the letter X . Which fhews that the red of the one Spectrum and violet of the other, which were co-incident at $P \mathrm{~N}$ and $\mathrm{M} T$, being parted from one another by a greater Refraction of the violet to $p$ and $m$ than of the red to $n$ and $t$, do differ in degrees of Refrangibility.

I illuminated alfo a little circular piece of white Paper all over with the Lights of both Prifms intermixed, and when

## [35]

when it was illuminated with the red of one Spectrum and deep violet of the other, fo as by the mixture of thofe Colours to appear all over purple, I viewed the Paper, firft at a lefs diftance, and then at a greater, through a third Prifm; and as I went from the Paper, the refracted Image thereof became more and more divided by the unequal Refraction of the two mixed Colours, and at length parted into two diftinct Images, a red one and a violet one, whereof the violet was furtheft from the Paper, and therefore fuffered the greateft Refraction. And when that Prifm at the Window which caft the violet on the Paper was taken away, the violet Image difappeared; but when the other Prifm was taken away the red vanifhed : which fhews that there two Images were nothing elle than the Lights of the two Prifms which had been intermixed on the purple Pa per, but were parted again by their unequal Refractions made in the third Prifm through which the Paper was viewed. This alfo was obfervable that if one of the Prifms at the Window, fuppofe that which caft the violet on the Paper, was turned about its Axis to make all the Colours in this order, Violet, Indigo, Blew, Green, Yellow, Orange, Red, fall. fucceffively on the Paper from that $\downarrow$ Red Prifm, the violet Image changed Colour accordingly, and eved in changing Colour came nearer, to the red ene until when it was alfo red they both became fully co-incident.

I placed alfo two paper circles very near one another, the one in the red Light of one Prifm, and the other in the violet Light of the other. The circles were each of them an Inch in Diameter, and behind them the Wall was dark that the Experiment might not be difturbed by any Light coming from thence. Thefe circles thus illuminated, I viewed through a Prifm fo held that the Refraction might be made towards the red circle, and as I went from them

## [36]

they came nearer and nearer together, and at length became co-incident; and afterwards when I went ftill futther off, they parted again in a contraty order, the violet by a greater Refration being carried beyond the red.

Exper. 8. In Summer when the Sun's Light ufes to be ftrongef, I placed a Prifm at the hole of the Windowfhut, as in the third Experiment, yet fo that its Axis might be Parallel to the Axis of the World, and at the oppofite Wall in the Sun's refracted Light, I placed an open Book. Then going Six Feet and tvvo Inches from the Book, I placed there the abovementioned Lens,by vwhich the Light reflected from the Book might be made to converge and meet again at the diftance of fix Feet and tvvo Inches behind the Lens, and there paint the Species of the Book upon a flyeet of vvhite Paper much after the manner of the fecond Experiment. The Book and Lens being made faft, I noted the place vvhere the Paper vvas, vvhen the Letters of the Book, illuminated by the fulleft red Light of the Solar Image falling upon it, did caft their Species on that Paper moft diftinetly; And then Iftay'd till by the Motion of the Sun and confequent Motion of his Image on the Book, all the Colours from that red to the middle of the blew pafs'd over thofe Letters; and when thofe Letters were illuminated by that blew, I noted again the place of the Paper when they caft their Species moft diftinctly upon it : And I found that this laft place of the Paper was nearer to the Lens than its former place by about two Inches and an half, or two and three quarters. So much fooner therefore did the Light in the violet end of the Image by a greater Refraction converge and meet, than the Light in the red end. But in trying this the Chamber was as dark as I could make it. For if thefe Colours be diluted and weakned by the mixture of any adventitious Light, the diftance.

## [37]

between the places of the Paper will not be fo great. This diftance in the fecond Experiment where the Colours of natural Bodies were made ufe of, was but an Inch and a half, by reafon of the imperfection of thofe Colours. Here in the Colours of the Prifm, which are manifeftly more full, intenfe, and lively than thofe of natural Bodies, the diftance is two Inches and three quarters. And were the Colours ftill more full, I queftion not but that the diftance would be confiderably greater. For the coloured Light of the Prifm, by the interfering of the Circles defribed in the $t^{2}+$ th Figure of the fifth Experiment, and alfo by the Light of the very bright Clouds next the Sun's Body intermixing with thefe Colours, and by the Light fcattered by the inequalities in the polifh of the Prifm, was fo very much compounded, that the Species which thofe faint and dark Colours, the Indigo and Violet, caft upon the Paper were not diftinct enough to be well obferved.

Exper. 9. A Prifm, whofe two Angles at its Bafe were equal to one another and half right ones, and the third a right one, I placed in a beam of the Sun's Light let into a dark Chamber through a hole in the Window-fhut as in the third Experiment. And turning the Prifm flowly about its Axis until all the Light which went through one of its Angles and was refracted by it began to be reflected by its Bafe, at which till then it went out of the Glafs, I obferved that thofe Rays, which had fuffered the greateft Refraction were fooner reflected than the reft. I conceived therefore that thofe Rays of the reflected Light, which were moft Refrangible, did firft of all by a total Reflexion become more copious in that Light than the reft, and that aferwards the reft alfo, by a total Reflexion, became as copious as thefe. To try this, I made the reflected Light pafs through another Prifm, and being refrasted

## [ $3^{8}$ ]

cted by it to fall afterwards upon a fheet of white Paper placed at fome diftance behind it, and there by that Refraction to paint the ufual Colours of the Prifm. And then caufing the firf Prifm to be turned about its Axis as above, I obferved that when thofe Rays which in this Prifm had fuffered the greateft Refraction and appeared of a blew and violet Colour began to be totally reflected, the blew and violet Light on the Paper which was moft refracted in the fecond Prifm received a fenfible increafe above that of the red and yellow, which was leaft refracted; and afterwards when the reft of the Light which was green, yellow and red began to be totally reflected in the firft Prifm, the light of thofe Colours on the Paper received as great an increafe as the violet and blew had done before. Whence 'tis manifeft, that the beam of Light reflected by the Bafe of the Prifm, being augmented firf by the more Refrangible Rays and afterwards by the lefs Refrangible ones, is compounded of Rays differently Refrangible. And that all fuch reflected Light is of the fame Nature with the Sun's Light, before its Incidence on the Bafe of the Prifm, no Man ever doubted : it being generally allowed, that Light by fuch Reflexions fuffers no Alteration in its Modifications and Properties. I do not here take notice of any Refractions made in the Sides of the firft Prifm, becaufe the Light enters it perpendicularly at the firft Side, and goes out perpendicularly at the fecond Side, and therefore fuffers none. So then, the Sun's incident Light being of the fame temper and conftitution with his emergent Light, and the laft being compounded of Rays differently Refrangible, the firt muft be in like manner compounded.
Fig. 21. Illuffration. In the 21th Figure, ABC is the firf Prifm, B C its Bafe, B and C its equal Angles at the Bafe, each
of 45 degrees, A its Rectangular Vertex, FM a beam of the Sun's Light let into a dark Room through a hole F one third part of an Inch broad, $M$ its Incidence on the Bafe of the Prifm, M G a lefs refracted Ray, M H a more refracted Ray, M N the beam of Light reflected from the Bafe, V X Y the fecond Prifm by which this beam in paffing through it is refracted, $\mathrm{N} t$ the lefs refracted Light of this beam, and $\mathrm{N} p$ the more refracted part thereof. When the firft Prifm A B C is turned about its Axis according to the order of the Letters A B C, the Rays M H emerge more and more obliquely out of that Prifm, and at length after their moft oblique Emergence are reflected towards N, and going on to $p$ do increafe the number of the Rays $\mathbf{N} p$. Aftervvards by continuing the motion of the firft Prifm, the Rays MG are alfo reflected to N and increafe the number of the Rays $\mathrm{N} t$. And therefore the Light M N admits into its Compofition, firft the more Refrangible Rays, and then the lefs Refrangible Rays, and yet after this Compofition is of the fame Nature vvith the Sun's immediate Light F M, the Reflexion of the fpecular Bafe B C caufing no Alteration therein.

Exper. 10. Two Prifms, which were alike in fhape, I tied fo together, that their Axes and oppofite Sides being Parallel, they compofed a Parallelopiped. And, the Sun fhining into my dark Chamber through a little hole in the Window-fhut, I placed that Parallelopiped in his beam at fome diftance from the hole, in fuch a pofture that the Axes of the Prifms might be perpendicular to the incident Rays, and that thofe Rays being incident upon the firf Side of one Prifm, might go on through the two contiguous Sides of both Prifms, and emerge out of the laft Side of the fecond Prifm. This Side being Parallel to the firft Side of the firf Prifm, caufed the emerging Light to be Parallel

## [40]

to the Incident. Then, beyond thefe two Prifms I placed a third, which might refract that emergent Light, and by that Refraction caft the ufual Colours of the Prifm upon the oppofite Wall, or upon a fheet of white Paper held at a convenient diftance behind the Prifm for that refracted Light to fall upon it. After this I turned the Parallelopiped about its Axis, and found that when the contiguous Sides of the two Prifms beeame fo oblique to the incident Rays that thofe Rays began all of them to be reflected, thofe Rays which in the third Prifm had fuffered the greatefl Refraction and painted the Paper with violet and blew, were firf of all by a total Reflexion taken out of the tranfmitted Light, the reft remaining and on the Paper painting their Colours of Green, Yellow, Orange, and Red as before; and afterwards by continuing the motion of the two Prifms, the reft of the Rays alfo by a total Reflexion vanifhed in order, according to their degrees of Refrangibility. The Light therefore which emerged out of the two Prifms is compounded of Rays differently Refrangible, feeing the more Refrangible Rays may be taken out of it while the lefs Refrangible remain. But this Light being trajected only through the Parallel Superficies of the two Prifms, if it fuffered any change by the Refraction of one Superficies it loft that impreffion by the contrary Refraction of the other Superficies, and fo being reftored to its priftine conflitution became of the fame nature and condition as at firft before its Incidence on thofe Prifms; and therefore, before its Incidence, was as much compounded of Rays differently Refrangible as afeerwards.
Fig. 22. Illuftration. In the 22th Figure A B C and B C D are the the two Prifms tied together in the form of a Parallelopiped, their Sides $B C$ and $C B$ being contiguous, and their Sides A B and C D Parallel. And HJ K is the third Prifm,

## [4I]

Prifm, by which the Sun's Light propagated through the hole F into the dark Chamber, and there paffing through thofe fides of the Prifms $A B, B C, C B$ and $C D$, is refracted at O to the white Paper P T, falling there partly upon $P$ by a greater Refraction, partly upon $T$ by a lefs Refraction, and partly upon R and other intermediate places by intermediate Refractions. By turning the Parallelopiped A CBD about its Axis, according to the order of the Letters $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{B}$, at length when the contiguous Planes BC and CB become fufficiently oblique to the Rays FM , which are incident upon them at M , there will vanifh totally out of the refracted Light OP T, firft of all the moft refracted Rays OP, (the reft OR and OT remaining as before) then the Rays OR and other intermediate ones, and laftly, the leaft refracted Rays O T. For when the Plane B C becomes fufficiently oblique to the Rays incident upon it, thofe Rays will begin to be totally reflected by it towards N ; and firft the moft Refrangible Rays will be totally reflected (as was explained in the preceding experiment) and by confequence muft firft difappear at $P$, and afterwards the reft as they are in order totally reflected to N , they muft difappear in the fame order at R and T. So then the Rays which at O fuffer the greateft Refraction, may be taken out of the Light MO whilft the reft of the Rays remain in it, and therefore that Light MO is Compounded of Rays differently Refrangible. And becaufe the Planes A B and CD are parallel, and therefore by equal and contrary Refractions deftroy one anothers Effects, the incident Light F M muft be of the fame kind and nature with the emergent Light MO , and therefore doth alfo confift of Rays differently Refrangible. Thefe two Lights FM and MO, before the moft refrangible Rays are feparated out of the emergent Light MO agree in $\mathrm{Co}-$

## [42]

lour, and in all other properties fo far as my obferyation reaches, and therefore are defervedly reputed of the fame Nature and Conftitution, and by confequence the one is compounded as well as the other. But after the moft Refrangible Rays begin to be totally reflected, and thereby feparated out of the emergentLightMO, that Light changes its Colour from white to a dilute and faint yellow, a precty good orange, ${ }^{4}{ }^{2}$ very full red fucceffively and then totally vanifhes. For after the moft Refrangible Rays which paint the Paper at P with a Purple Colour, are by a total reflexion taken out of the Beam of light MO, the reft of the Colours which appear on the Paper at R and T being mixed in the light MO compound there a faint yellow, and after the blue and part of the green which appear on the Paper between $P$ and $R$ are taken away, the reft which appear between $R$ and $T$ (that is the Yellow, Orange, Red and a little Green) being mixed in the Beam MO compound there an Orange; and when all the Rays are by reflexiontaken out of the Beam MO, except the leaft Refrangible, which at $T$ appear of a full Red, their Colour is the fame in that Beam MO as afterwards at T, the Refraction of the Prifm HJK ferving only to feparate the differently RefrangibleRays, without making any alteration in their Colours, as fhall be more fully proved hereafter. All which confirms as well the firf Propofition as the fecond.

Scholium. If this Experiment and the former be conjoyned Fig. 22. and made one, by applying a fourth Prifm VXY to refract the reflected Beam MN towards $t p$, the conclufion will be clearer. For then the light $N p$ which in the 4 th Prifm is more refracted, will become fuller and ftronger when the Light OP, which in the third Prifm HJ K is, more refracted, vanithes at P ; and afterwards when the lefs refracted.

## [43]

refracted Light OT vanifhes at $T$, the lefs refracted Light $\mathbf{N} t$ will become encreafed whilft the more refracted Light at $p$ receives no further encreafe. And as the trajected Beam MO in vanifhing is always of fuch a Colour as ought to refult from the mixture of the Colours which fall upon the Paper P T, fo is the reflected Beam MN always of fuch a Colour as ought to refult from the mixture of the Colours which fall upon the Paper pt. For when the moft refrangible Rays are by a total Reflexion taken out of the Beam MO, and leave that Beam of an Orange Colour, the excefs of thofe Rays in the reflected Light, does not only make the Violet, Indigo and Blue at p more full, but alfo makes the Beam MN change from the yellowifh Colour of the Sun's Light, to a pale white inclining to blue, and afterward recover its yellowifh Co lour again, fo foon as all the reft of the tranfmitted light MOT is reflected.

Now feeing that in all this variety of Experiments, whether the trial be made in Light reflected, and that either from natural Bodies, as in the firft and fecond Experiment, or Specular, as in the Ninth; or in Light refracted, and that either before the unequally refracted Rays are by diverging feparated from one another, and lofing their whitenefs which they have altogether, appear feverally of feveral Colours, as in the fifth Experiment; or after they are feparated from one another, and appear Coloured as in the fixth, feventh, and eighth Experiments ; or in Light trajected through Parallel fuperficies, deftroying each others Effects as in the 1 oth Experiment; there are always found Rays, which at equal Incidences on the fame Medium fuffer unequal Refractions, and that without any fplitting or dilating of fingle Rays, or contingence in the inequality of the Refractions, as is proved in the fifth and fixth Ex-

## [44]

periments $;$ And feeing the Rays which differ in Refrangibility may be parted and forted from one another, and that either by Refraction as in the third Experiment, or by Reflexion as in the tenth, and then the feveral forts apart at equal Incidences fuffer unequal Refractions, and thofe forts are more refracted than others after feparation, which were more refracted before it, as in the fixth and following Experiments, and if the Sun's Light be trajected through three or more crofs Prifms fucceffively, thofe Rays which in the firft Prifm are refracted more than others are in all the following Prifms, refracted more then others in the fame rate and proportion, as appears by the fifth Experiment; it's manifert that the Sun's Light is an Heterogeneous mixture of Rays, fome of which are conftantly more Refrangible then others, as was be propofed.

## PROP. III. Theor. III.

The Sun's Light confifts of Rays differing in Reflexibility, and thofe Rays are more Reflexible than others which are more Refrangible.

THIS is manifeft by the ninth and tenth Experiments : For in the ninth Experiment, by turning the Prifm about its Axis, until the Rays within it which in going out into the Air were refracted by its Bafe, became fo oblique to that Bafe, as to begin to be totally reflected thereby; thofe Rays became firt of all totally reflected, which before at equal Incidences with the reft had fuffered the greateft Refraction. And the fame thing happens in the Reflexion made by the commonBale of the two Prifms in the tenth Experiment.

## [45]

## PROP. IV. Prob. I.

To Separate from one another the Heterogeneous Rays of Compound Light.

THE Heterogeneous Rays are in fome meafure feparated from one another by the Refraction of the Prifm in the third Experiment, and in the fifth Experiment by taking away the Penumbra from the Rectilinear fides of the Coloured Image, that feparation in thofe very Rectilinear fides or ftraight edges of the Image becomes perfect. But in all places between thofe rectilinear edges, thofe innumerable Circles there defcribed, which are feverally illuminated by Homogeneral Rays, by interfering with one another, and being every where commixt, do render the Light fufficiently Compound. But if thefe Circles, whilft their Centers keep their diftances and pofitions, could be made lefs in Diameter, their interfering one with another and by confequence the mixture of the Heterogeneous Rays would be proportionally diminifhed. In the 23 th Fig. 23: Figure let A G, B H, CJ, DK, EL, F M be the Circles which fo many forts of Rays flowing from the fame Difque of the Sun, do in the third Experiment illuminate ; of all which and innumerable other intermediate ones lying in a continual Series between the two Rectilinear and Parallel edges of the Sun's oblong Image P T, that Image is compofed as was explained in the fifth Experiment. And let $a g, b h, c i, d k, c l, f m$ be fo many lefs Circles lying in a like continual Series between two Parallel right Lines af and $g m$ with the fame diftances between their Centers, and illuminated by the fame forts of Rays, that is the Circle $a \mathrm{~g}$ with the fame fort by which the correfponding Circle

## [46]

Circle AG was illuminated, and the Circle $b b$ with the fame fort by which the correfponding Circle BH was illuminated, and the reft of the Circles $c i, d k$ el, fm refpectively, with the fame forts of Rays by which the feveral correrponding Circles CJ, DK, EL, FM were illuminated. In the Figure P T compofed of the greater Circles, three of thofe Circles A G, B H, CJ, are fo expanded into one another, that the three forts of Rays by which thofe Circles are illuminated, together with other innumerable forts of intermediate Rays, are mixed at QR in the middle of the Circle B H. And the like mixture happens throughout almoft the whole length of the Figure P T. But in the Figure $p t$ compofed of the lefs Circles, the three lefs Circles ag, $b b, c i$, which anfwer to thofe three greater, do not extend into one another; nor are there any where mingled fo much as any two of the three forts of Rays by which thofe Circles are illuminated, and which in the Figure P T are all of them intermingled at BH .

Now he that fhall thus confider it, will eafily underftand that the mixture is diminifhed in the fame Proportion with the Diameters of the Circles. If the Diameters of the Circles whilft their Centers remain the fame, be made three times lefs than before, the mixture will be alfo three times lefs; if ten times lefs, the mixture will be ten times lefs, and fo of other Proportions. That is, the mixture of the Rays in the greater Figure P T will be to their mixture in the lefs $p t$, as the Latitude of the greater Figure is to the Latitude of the lefs. For the Latitudes of thefe Figures are equal to the Diameters of their Circles. And hence it eafily follows, that the mixture of the Rays in the refracted Spectrum $p t$ is to the mixture of the Rays in the direct and immediate Light of the Sun, as the breadth of that Spectrum is to the difference between the length and breadth of the fame Spectrum.

## [47]

So then, if we would diminifh the mixture of the Rays, we are to diminifh the Diameters of the Circles. Now thefe would be diminifhed if the Sun's Diameter to which they anfwer could be made lefs than it is, or (which comes to the fame purpofe) if without Doors, at a great diftance from the Prifm towards the Sun, fome opake body were placed, with a round hole in the middle of it, to intercept all the Sun's Light, excepting fo much as coming from the middle of his Body could pafs through that hole to the Prifm. For fo the Circles A G, B H and the reft, would not any longer anfwer to the whole Difque of the Sun, but only to that part of it which could be feen from the Prifm through that hole, that is to the apparent magnitude of that hole viewed from the Prifm. But that thefe Circles may anfwer more diftinctly to that hole a Lens is to be placed by the Prifm to caft the Image of the hole, (that is, every one of the Circles A G, B H, erc.) diftinctly upon the Paper at P T, after fuch a manner as by a Lens placed at a Window the Species of Objects abroad are caft diftinctly upon a Paper within the Room, and the Rectilinear Sides of the oblong folar Image in the fifth Experiment became diftinct without any Penumbra. If this be done it will not be neceffary to place that hole very far off, no not beyond the Window. And therefore inftead of that hole, I ufed the hole in the Window-fhut as follows.

Exper. 11. In the Sun's Light let into my darkned Chamber through a fmall round hole in my Windowthut, at about 10 or 12 Feet from the Window, I placed a Lens, by which the Image of the hole might be diftinctly caft upon a theet of white Paper, placed at the diftance of fix, eight, ten or twelve Feet from the Lens. For according to the difference of the Lenfes I ufed various diftances,

## [48]

diftances, which I think not worth the while to defcribe. Then immediately after the Lens I placed a Prifm, by which the trajected Light might be refracted either:upwards or fideways, and thereby the round Image which the Lens alone did caft upon the Paper might be drawn out into a long one with Parallel Sides, as in the third Experiment. This oblong Image I let fall upon another Paper at about the fame diftance from the Prifm as before, moving the Paper either towards the Prifm or from it, until I found the juft diftance where the Rectilinear Sides of the Image became moft diftinct. For in this cafe the circular Images of the hole which compofe that Image after the fame manner that the Circles $a g, b b, c i, \& c$. do Fig. 23. the Figure $p t$, were terminated moft diftinctly without any Penumbra, and therefore extended into one another the leaft that they could, and by confequence the mixture of the Heterogeneous Rays was now the leaft of all. By this
Fig. 23, means I ufed to form an oblong Image (fuch as is $p t$ ) of
and 24. circular Images of the hole (fuch as are $a g, b b, c i, \& c$.) and by ufing a greater or lefs hole in the Window-fhut, I made the circular Images $a g, b b, c i, \& c$. of which it was formed, to become greater or lefs at pleafure, and thereby the mixture of the Rays in the Image $p t$ to be as much or as little as I defired.
Fig. 24. Illuftration. In the 24 th Figure, $F$ reprefents the circular hole in the Window-fhut, M N the Lens whereby the Image or Species of that hole is caft diftinctly upon a Paper at J, A B C the Prifm whereby the Rays are at their emerging out of the Lens refracted from J towards another Paper at $p t$, and the round Image at J is turned into an oblong Image $p t$ falling on that other Paper. This Image $p t$ confifts of Circles placed one after another in a Rectilinear order, as was fufficiently explained in the fifth

Experiment; and there Circles are equal to the Circle I, and confequently anfwer in Magnitude to the hole F; and therefore by diminifhing that hole they may be at pleafure diminifhed, whil't their Centers remain in their places. By this means I made the breadth of the Image $p t$ to be forty times, and fometimes fixty or feventy times lefs than its length. As for inflance, if the breadth of the hole F be $\frac{1}{10}$ of an Inch, and MF the diftance of the Lens from the hole be 12 Feet; and if $p \mathrm{~B}$ or $p \mathrm{M}$ the diftance of the Image $p t$ from the Prifm or Lens be 10 Feet, and the refracting Angle of the Prifm be 62 degrees, the breadth of the Image $p t$ will be $\frac{1}{12}$ of an Inch and the length about fix Inches, and therefore the length to the breadth as 72 to 1, and by confequence the Light of this Image 71 times lefs compound than the Sun's direct Light. And Light thus far Simple and Homogeneal, is fufficient for trying all the Experiments in this Book about fimple Light. For the compofition of Heterogeneal Rays is in this Light fo little that it is fcarce to be difcovered and perceived by fenfe, except perhaps in the Indigo and Violet; for thefe being dark Colours, do eafily fuffer a fenfible allay by that little fcattering Light which ufes to be refracted irregularly by the inequalite is of the Prifm.

Yet inftead of the circular hole F, 'tis better to fubftitute an oblong hole fhaped like a long Parallelogram with its length Parallel to the Prifm A B C. For if this hole be an Inch or two long, and but a tenth or twentiech part of an Inch broad or narrower : the Light of the Image $p t$ will be as Simple as before or fimpler, and the Image will become much broader, and therefore more fit to have Experiments tried in its Light than before.

Inftead of this Parallelogram-hole may be fubflitured a Triangular one of equal Sides, whofe Bare for inftance is

## [50]

about the tenth part of an Inch, and its height an Inch or more. For by this means, if the Axis of the Prifm be Parallel to the Perpendicular of the Triangle, the Image Fig. 25. $p t$ will now be formed of Equicrural Triangles $a g, b b, c i$, $d k, e l, f m, \& c c$. and innumerable other intermediate ones anfwering to the Triangular hole in Chape and bignefs, and lying one after another in a continual Series between two Parallel Lines of and $g m$. Thefe Triangles are a little intermingled at their Bales but not at their Vertices, and therefore the Light on the brighter fide af of the Image where the Bafes of the Triangles are is a little compounded, but on the darker fide $g m$ is altogether uncompounded, and in all places between the fides the Compofition is Proportional to the diftances of the places from that obfcurer fide $g \mathrm{~m}$. And having a Spectrum $p t$ of fuch a Compofition, we may try Experiments either in its Atronger and lefs fimple Light near the fide a $f$, or in its weaker and fimpler Light near the other fide bgm, as it fhall feem moft convenient.

But in making Experiments of this kind the Chamber ought to be made as dark as can be, leaft any forreign Light mingle it felf with the Light of the Spectrum $p$ t, and render it compound; efpecially if we would try Experiments in the more fimple Light next the fide $g m$ of the Spectrum; which being fainter, will have a lefs Proportion to the forreign Light, and fo by the mixture of that Light be more troubled and made more compound. The Lens alfo ought to be good, fuch as may ferve for Optical Ufes, and the Prifm ought to have a large Angle, fuppofe of 70 degrees, and to be well wrought, being made of Glafs free from Bubbles and Veins, with its fides not a little Convex or Concave as ufually happens but cruly Plane, and its pollifh elaborate, as in working Optickglaffes,

## $[51]$

glaffes, and not fuch as is ufually wrought with Putty, whereby the edges of the Sand-holes being worn away, there are left all over the Glafs a numberlefs company of very little Convex polite rifings like Waves. The edges alfo of the Prifm and Lens fo far as they may make any irregular Refraction, muft be covered with a black Paper glewed on. And all the Light of the Sun's beam let into the Chamber which is ufelefs and unprofitable to the Experiment, ought to be intercepted with black Paper or other black Obftacles. For otherwife the ufelefs Light being reflected every way in the Chamber, will mix with the oblong Spectrum and help to difturb it. In trying thefe things fo much Diligence is not altogether neceffary, but it will promote the fuccefs of the Experiments, and by a very frrupulous Examiner of things deferves to be applied. It's difficult to get glafs Prifms fit for this purpofe, and and therefore I ufed fometimes Prifmatick Veffels made with pieces of broken Looking-glaffes, and filled with rain Water. And to increafe the Refraction, I fometimes impregnated the Water ftrongly with Saccharum Saturni.

## PROP. V. Theor. IV.

Homogeneal Light is refracted regularly witbout any Dilatation Splitting or Shattering of the Rays, and the confufed Vifion of Objects Seen through Refracting Bodies by Heterogeneal Light arifes from the different Refrangibility of Several forts of Rays.

T
H E firf Part of this Propofition has been already fufficiently proved in the fift Experiment, and will further appear by the Experiments which follow.

## $[52]$

Exper. 12. In the middle of a black Paper I made a round hole about a fifh or fixth part of an Inch in Diameter. Upon this Paper I caufed the Spectrum of Homogeneal Light defcribed in the former Propofition, fo to fall, that fome part of the Light might pafs through the hole of the Paper. This tranfmitted part of the Light I refracted with a Prifm placed behind the Paper, and letting this refracted Light fall perpendicularly upon a white Paper two or three Feet diftant from the Prifm, I found that the Spectrum formed on the Paper by this Light was not oblong, as when 'tis made (in the third Experiment) by Refracting the Sun's compound Light, but was (fo far as I could judge by my Eye) perfectly circular, the length being no greater than the breadth. Which fhews that this Light is refracted regularly without any Dilatation of the Rays.

Exper. 13. In the Homogeneal Light I placed a Caprole of $\frac{1}{4}$ of an Inch in Diameter, and in the Sun's unrefracted Heterogeneal white Light I placed another Paper Circle of the fame bignefs. And going from the Papers to the diftance of fome Feet, I viewed both Circles through a Prifm. The Circle illuminated by the Sun's Heterogeneal Light appeared very oblong as in the fourth Experiment, the length being many times greater than the breadth : but the other Circle illuminated with Homogeneal Light appeared Circular and diftinctly defined as when 'tis viewed with the naked Eye. Which proves the whole Propofition.

Exper. 14. In the Homogeneal Light I placed Flies and fuch like Minute Objects, and viewing them through a Prifm, I faw their Parts as diftinctly defined as if I had viewed them with the naked Eye. The fame Objects placed in the Sun's unrefracted Heterogeneal Light which was white I viewed alfo through a Prifm, and faw them moft

## [53]

confufedly defined, fo that Icould not diftinguift their fmals ler Parts from one another. I placed alfo the Letters of a fmall Print one while in the Homogeneal Light and then in the Heterogeneal, and viewing them through a Prifm, they appeared in the latter cafe fo confufed and indiftinct that I could not read them; but in the former they appeared fo diftinct that I could read readily, and thought I faw them as diftinct as when I viewed them with my naked Eye. In both cafes I viewed the fame Objects through the fame Prifm at the fame diftance from me and in the fame Situation. There was no difference but in the Light by which the Objects were illuminated, and which in one cafe was Simple and in the other Compound, and therefore the diftinct Vifion in the former cafe and confufed in the latter could arife from nothing elfe than from that difference of the Lights. Which proves the whole Propofition.

And in thefe three Experiments it is further very remarkable, that the Colour of Homogeneal Light was never changed by the Refraction.

## PROP. VI. Theor. V.

The Sine of Incidence of every Ray confidered apart, is to its Sime of Refraction in a given Ratio.

TH A T every Ray confidered apart is conftant to it felf in fome certain degree of Refrangibility, is fufficiently manifeft out of what has been faid. Thofe Rays which in the firf Refraction are at equal Incidences moft refracted, are alfo in the following Refractions at equal Incidences moft refracted ; and fo of the leaft Refrangible, and the reft which have any mean degree of Refran-

## [54]

Refrangibility, as is manifeft by the $5 \mathrm{th}, 6$ th, 7 th, 8 th, and 9 th Experiments. And thofe which the firft time at like Incidences are equally refracted, are again at like Incidences equally and uniformly refracted, and that whether they be reffacted before they be feparated from one another as in the 5 th Experiment, or whether they be refracted apart, as in the 12 th, 13 th and 14 th Experiments. The Refraction therefore of every Ray apart is regular, and what Rule that Refraction obferves we are now to fhew.

The late Writers in Opticks teach, that the Sines of Incidence are in a given Proportion to the Sines of RefraCtion, as was explained in the 5 th Axiom; and fome by Inftruments fitted for meafuring Refractions, or otherwife experimentally examining this Proportion, do acquaint us that they have found it accurate. But whilft they, not undertanding the different Refrangibility of feveral Rays, conceived them all to be refracted according to one and the fame Proportion, 'tis to be prefumed that they adapted their Meafures only to the middle of the refracted Light; fo that from their Meafures we may conclude only that the Rays which have a mean degree of Refrangibility, that is thofe which when feparated from the reft appear green, are refracted according to a given Proportion of their Sines. And therefore we are now to thew that the like given Proportions obtain in all the reft. That it fhould be fo is very reafonable, Nature being ever conformable to her felf : but an experimental Proof is defired. And fuch a Proof will be had if we can fhew that the Sines of Refraction of Rays differently Refrangible are one to another in a given Proportion when their Sines of Incidence are equal. For if the Sines of Refraction of all the Rays are in given Proportions to the Sine of Refraction

## [55]

of a Ray which has a mean degree of Refrangibility, and this Sine is in a given Proportion to the equal Sines of Incidence, thofe other Sines of Refraction will alfo be in given Proportions to the equal Sines of Incidence. Now when the Sines of Incidence are equal, it will appear by the following Experiment that the Sines of Refraction are in a given Proportion to one another.

Exper. 15. The Sun flining into a dark Chamber through a little round hole in the Window-fhut, let S re-Fig. 26. prefent his round white Image painted on the oppofite Wall by his direct Light, P T his oblong coloured Image made by refracting that Light with a Prifm placed at the Window; and $p t$, or $2 p 2 t$, or $3 p 3 t$, hisoblong coloured Image made by refracting again the fame Light fideways with a fecond Prifm placed immediately after the firf in a crofs Pofition to it, as was explained in the fifth Experiment : that is to fay, pt when the Refraction of the fecond Prifm is fmall, $2 p 2 t$ when its Refraction is greater, and $3 p 3 t$ when it is greateft. For fuch will be the diverfity of the Refractions if the refracting Angle of the fecond Prifm be of various Magnitudes; fuppofe of fifteen or twenty degrees to make the Image $p t$, of thirty or forty to make the Image $2 p 2 t$, and of fixty to make the Image $3 p 3 t$. But for want of folid Glafs Prifms with Angles of convenient bigneffes, there may be Veffels made of polifhed Plates of Glafs cemented together in the form of Prifms and filled with Water. Thefe things being thus ordered, I obferved that all the folar Images or coloured Spectrums P T, pt, 2p $2 t, 3 p 3 t$ did very nearly converge to the place $S$ on which the direct Light of the Sun fell and painted his white round Image when the Prifms were taken away. The Axis of the Spectrum PT, that is the Line drawn through the middle of it Parallel to

## [ $5^{6}$ ]

its Rectilinear Sides, did when produced pafs exactly through the middle of that white round Image S. And when the Refraction of the fecond Prifm was equal to the Refraction of the firt, the refracting Angles of them both being about 60 degrees, the Axis of the Spectrum $3 p 3 t$ made by that Refraction, did when produced pals alfo through the middle of the fame white round Image S. But when the Refraction of the fecond Prifm was lefs than that of the firf, the produced Axes of the Spectrums $t p$ or $2 t 2 p$ made by that Refraction did cut the produced Axis of the Spestrum TP in the Points $m$ and $n$, a little beyond the Center of that white round Image S. Whence the Proportion of the Line $3 t \mathrm{~T}$ to the Line $3 p \mathrm{P}$ was a little greater than the Proportion of $2 t \mathrm{~T}$ to $2 p \mathrm{P}$, and this Proportion a little greater than that of $t \mathrm{~T}$ to $p \mathrm{P}$. Now when the Light of the Spectrum P T falls perpendicularly upon the Wall, thofe Lines $3 t \mathrm{~T}, 3 p \mathrm{P}$, and $2 t \mathrm{~T}, 2 p \mathrm{P}$ and $t \mathrm{~T}, p \mathrm{P}$, are the T angents of the Refractions; and therefore by this Experiment the Proportions of the Tangents of the Refractions are obtained, from whence the Proportions of the Sines being derived, they come out equal, fo far as by viewing the Spectrums and ufing fome Mathematical reafoning I could Eftimate. For I did not make an Accurate Computation. So then the Propofition holds true in every Ray apart, fo far as appears by Experiment. And that it is accurately true may be demonftrated upon this Suppofition, That Bodies refract Light by acting upon its Rays in Lines Perpendicular to their Surfaces. But in order to this Demonftration, I muft diftinguifh the Motion of every Ray into two Motions, the one Perpendicular to the refracting Surface, the other Pa rallel to it, and concerning the Perpendicular Motion lay down the following Propofition.

## [57]

If any Motion or moving thing whatfoever be incident with any velocity on any broad and thin Space terminated on both fides by two Parallel Planes, and in its paffage through that fpace be urged perpendicularly towards the further Plane by any force which at given difances from the Plane is of given quantities ; the perpendicular Velocity of that Motion or Thing, at its emerging out of that fpace, fhall be always equal to the Square Root of the Summ of the Square of the perpendicular Velocity of that Motion or Thing at its Incidence on that face; and of the Square of the perpendicular Velocity which that Motion or Thing would have at its Emergence, if at its Incidence its perpendicular Velocity was infinitely little.

And the fame Propofition holds true of any*Motion or Thing perpendicularly retarded in its paffage through that fpace, if inftead of the Summ of the two Squares you take their difference. The Demonftration Mathematicians will eafily find out, and therefore I fhall not trouble the Reader with it.

Suppofe now that a Ray coming moft obliquely in the Fig. 1. Line MC be refracted at C by the Plane RS into the Line CN , and if it be required to find the Line CE into which any other Ray AC fhall be refracted; let $M C, A D$, be the Sines of incidence of the two Rays, and NG, EF, their Sines of Refraction, and let the equal Motions of the Incident Rays be reprefented by the equal Lines MC and AC, and the Motion MC being confidered as parallel to the refracting Plane, let the other Motion AC be diftinguifhed into two Motions AD and DC , one of which $A D$ is parallel, and the other $D C$ perpendicular to the refracting Surface. Ifi like manner, let the Motions of the emeting Rays be diftinguifh'd into two, whereof the per-
perpendicular ones are $\frac{M C}{N G} C G$ and $\frac{A D}{E F} C F$. And if the force of the refracting Plane begins to act upon the Rays either in that Plane or at a certain diftance from it on the one fide, and ends at a certain diftance from it on the other fide, and in all places between thofe two Limits acts upon the Rays in Lines perpendicular to that rafracting Plane, and the Actions upon the Rays at equal diftances from the refracting Plane be equal, and at unequal ones either equal or unequal according to any rate whatever; that motion of the Ray which is Parallel to the refracting Plane will fuffer no alteration by that force; and that motion which is perpendicular to it will be altered according to the rule of the foregoing Propofition. If therefore for the perpendicular Velocity of the emerging Ray CN you write $\frac{M C}{N G} C G$ as above, then the perpendicular Velocity of any other emerging Ray CE which was $\frac{A D}{\overline{E F}} \mathrm{CF}$, will be equal to the fquare Root of $\mathrm{CD} q+\frac{M C q}{N G q} \mathrm{CG} q$. And by fquaring thefe equals, and adding to them the Equals $\mathrm{AD} q$ and $\mathrm{MC} q--\mathrm{CD} q$, and dividing the Summs by the Equals $C E q+E F q$ and $C G q+N G q$, you will have $\frac{A D q}{E F q}$ equal to $\frac{M C q}{N G q}$. Whence $A D$, the Sine of Incidence, is to EF the Sine of Refraction, as MC to NG, that is, in a given ratio. And this Demonftration being general, without determining what Light is, or by what kind of force it is refracted, or affuming any thing furcher than that the refracting Body acts upon the Rays in Lines perpendicular to its Surface; I take it to be a very convincing Argument of the full Truth of this Propofition.

## [59]

So then, if the ratio of the Sines of Incidence and Refraction of any fort of Rays be found in any one Cafe, 'tis given in all Cafes; and this may be readily found by the Method in the following Propofition.

## $P R O P$. VII. Theor. VI.

The Perfection of Telefcopes is impeded by the different Refrangibility of the Rays of Light.

THE imperfection of Telefcopes is vulgarly attributed to the fpherical Figures of the Glaffes, and therefore Mathematicians have propounded to Figure them by the Conical Sections. To fhew that they are miftaken, I have inferted this Propofition; the truth of which will appear by the meafures of the Refractions of the feveral forts of Rays; and thefe meafures I thus determine.

In the third experiment of the firft Book, where the refracting Angle of the Prifm was $62_{2}^{1}$ degrees, the half of that Angle $31 \mathrm{deg}, 15 \mathrm{~min}$. is the Angle of Incidence of the Rays at their going out of the Glafs into the Air; and the Sine of this Angle is 5188 , the Radius being 10000. When the Axis of this Prilm was parallel to the Horizon, and the Refraction of the Rays at their Incidence on this Prifm equal to that at their Emergence out of it, I obferved with a Quadrant the Angle which the mean refrang;ble Rays (that is, thofe which wento the middle of the Sun's coloured Image ) made with the Horizon and by this Angle and the Sun's altitude obferved at the fame time, I found the Angle which the emergent Rays contained with the incident to be 44 deg. and 40 min . and the half of this Angle added to the Angle of Incidence 31 deg .15 min . makes the

## [ 60 ]

Angle of Refraction, which is therefore 53 deg .35 min . and its sine 8047 . Thefe are the Sines of Incidence and Refraction of the mean reffangible Rays, and their proportion in round numbers is 20 to 31 . This Glafs was of a colour inclining to green. The laft of the Prifms mentioned in the third Experiment was of clear white Glafs. Its refracting Angle $63_{2}^{\frac{1}{2}}$ degrees. The Angle which the emergent Rays contained, with the incident 45 deg. 50 min . The Sine of half the firlt Angle 5262 . The Sine of half the Summ of the Angles 8157 . And their proportion in round numbers 20 to 31 as before.

From the Length of the Image, which was about $9 \frac{3}{4}$ or ro Inches, fubduct its Breadth, which was $2 \frac{1}{8}$ Inches, and the Remainder $7_{4}^{3}$ Inches would be the length of the Image were the Sun but a point, and therefore fubtends the Angle which the moft and leaft refrangible Rays, when incident on the Prifm in the fame Lines, do contain with one another after their Emergence. Whence this Angle is 2 deg. $0 . .^{\prime} 7$." For the diffance between the Image and the Prifm where this Angle is made, was $18 \frac{1}{2}$ Feet, and at that diftance the Chord $7 \frac{3}{4}$ Inches fubtends an Angle of 2 deg. 0. 7." Now half this Angle is the Angle which there emergent Rays contain with the emergent mean refrangible Rays, and a quarter thereof, that is 30 .' 2 ." may be accounted the Angle which they would contain whith the fame emergent mean refrangible Rays, were they co-incident to them within the Glafs and fuffered no other Refraction then that at their Emergence. For if two equal Refractions, the one at the incidence of the Rays on the Prifm, the other at their Emergence, make half the Angle 2 deg. o.' 7." then one of thofe Refractions will make about a quarter of that Angle, and this quarter added to

## [6I ]

and fubducted from the Angle of Refraction of the mean refrangible Rays, which was 53 deg . $35^{\prime}$, gives the Angles of Refraction of the moft and leaft refrangible Rays $54 \mathrm{deg} .5^{\prime} 2^{\prime \prime}$, and 53 deg. $4^{\prime} 58^{\prime \prime}$, whofe Sines are 8099 and 7995, the common Angle of Incidence being 31 deg. $15^{\prime}$ and its Sine 5188 ; and thefe Sines in the leaft round numbers are in proportion to one another as 78 and 77 to 50 .

Now if you fubduct the common Sine of Incidence 50 from the Sines of Refraction 77 and 78 , the remainders 27 and 28 fhew that in fmall Refractions the Refraction of the leaft refrangible Rays is to the Refraction of the moft refrangible ones as 27 to 28 very nearly, and that the difference of the Refractions of the leaft refrangible and moft refrangible Rays is about the $27 \frac{1}{2}$ th part of the whole Refraction of the mean refrangible Rays.

Whence they that are skilled in Opticks will eafily underftand, that the breadth of the leaft circular fpace into which Object-Glaffes of Telefcopes can collect all forts of Parallel Rays, is about the $27 \frac{1}{2}$ th part of half the aperture of the Glafs, or 55 th part of the whole aperture; and that the Focus of the moft refrangible Rays is nearer to the Object-Glafs than the Focus of the leaft refrangible ones, by about the $27_{2}^{\text {'th }}$ part of the diftance between the ObjectGlafs and the Focus of the mean refrangible ones.

And if Rays of all forts, flowing from any one lucid point in the Axis of any convex Lens, be made by the Refraction of the Lens to converge to points not too remote from the Lens, the Focus of the moft refrangible Rays fhall be nearer to the Lens than the Focus of the leaft refrangible ones, by a diftance which is to the $27 \frac{1}{2}$ th part of the diftance of the Focus of the mean refrangible Rays from the Lens as the diftance between that Focus and the lucid

point

## [62]

point from whence the Rays flow is to the diftance between that lucid point and the Lens very nearly.

Now to examine whether the difference between the Refractions which the moft refrangible and the leant refrangible Rays flowing from the fame point fuffer in the Ob -ject-Glaffes of Telefcopes and fuch like Glaffes, be fo great as is here defcribed, I contrived the following Experiment.

Exper. 16. The Lens which I ufed in the fecond and eighth Experiments, being placed fix Feet and an Inch diftant from any Object, collected the Species of that Object by the mean refrangible Rays at the diftance of fix Feet and an Inch from the Lens on the other fide. And therefore by the foregoing Rule it ought to collect the Species of that Object by the leaft refrangible Rays at the diftance of fix Feet and $3 \frac{2}{3}$ Inches from the Lens, and by the moft re, frangible ones at the diftance of five Feet and $10 \frac{2}{3}$ Inches from it : So that between the two Places where thefe leaft and moft refrangible Rays collect the Species, there may be the diftance of about $5^{\frac{1}{3}}$ Inches. For by that Rule, as fix Feet and an Inch (the diftance of the Lens from the lucid Object) is to twelve Feet and two Inches (the diftance of the lucid Object from the Focus of the mean refrangible Rays) that is, as one is to cwo, fo is the $27_{2}^{1}$ th part of fix Feet and an Inch (the diftance between the Lens and the fameFocus ) to the diftance between the Facus of the moft refrangible Rays and the Focus of the leaft refrangible ones, which is therefore $5 \frac{17}{55}$ Inches, that is very nearly $5 \frac{1}{3}$ Inches. Now to know whether this meafure was true, I repeated the fecond and eighth Experiment of thisBook with coloured Light, which was lefs compounded than that I there made ufe of: For I now feparated the

## [ $\sigma_{3}$ ]

heterogeneous Rays from one another by the Method I defcribed in the 11 th Experiment, fo as to make a coloured Spectrum about twelve or fifteen times longer than broad. This Spectrum I caft on a printed book, and placing the above-mentioned Lens at the diftance of fix Feet and an Inch from this Spectrum to collect the Species of the illuminated Letters at the fame diffance on the other fide, I found that the Species of the Letters illuminated with Blue were nearer to the Lens than thofe illuminated with deep Red by about three fiches or three and a quarter: but the Species of the Letters illuminated with Indigo and Viofet appeared fo confurfed and indiftinct, that I could not read them : Whereupon viewing the Prifm, I found it was full of Veins running from one end of the Glafs to the other ; fo that the Refraction could not be regular. I took another Prifm therefore which was free from Veins, and inftead of the Letters I ufed two or three Parallel black Lines a little broader than the ftroakes of the Letters, and cafting the Colours upon thefe Lines in fuch manner that the Lines ran along the Colours from one end of the Spectum to the other, I found that the Focus where the Indigo, or confine of this colour and Violet caft the Species of the black Lines moft diftinctly, to be about 4 Inches or $4_{4}^{4}$ nearer to the Lens than the Focus where the deepeft Red caft the Species of the fame black Lines moft diftinctly. The violet was fo faint and dark, that I could noo difcern the Species of the Lines diftinctly by that $\mathbf{C o -}$ lour ; and therefore confidering that the Prifm was made of a dark coloured Glafs inclining to Green, I took another Pifm of clear white Glafs; but the Spectrum of Colours which this Prifm made had long white Streams of faine Light flooting out from both ends of the Colours, which made me conclude that fomething was annifs; and view-

## [64]

ing the Prifm, I found two or three little Bubbles in the Glafs which refracted the Light irregularly. Wherefore I covered that part of the Glafs with black Paper, and letting the Light pafs through another part of it which was free from fuch Bubles, the Spectrum of Colours became free from thofe irregular Streams of Light, and was now fuch as I defired. But Aill I found the Violet fo dark and faint, that I could fcarce fee the Species of the Lines by the Violet, and not at all by the deepeft part of it, which was next the end of the Spectrum. I fufpected therefore that this faint and dark Colour might be allayed by that fcattering Light which was refracted, and reflected irregularly partly by fome very fmall Bubbles in the Glaffes and partly by the inequalities of their Polifh: which Light, tho' it was but little, yet it being of a White Colour, might fuffice to affect the Senfe fo ftrongly as to difturb the Phænomena of that weak and dark Colour the Violet, and therefore I tried, as in the 12 th, 13 th, ${ }_{1} 4$ th Experiments, whether the Light of this Colour did not confift of a fenfible mixture of heterogeneous Rays, but found it did not. Nor did the Refractions caufe any other fenfible Colour than Violet to emerge out of this Light, as they would have done out of White Light, and by confequence out of this Violet Light had it been fenfibly compounded with White Light. And therefore I concluded, that the reafon why I could not fee the Species of the Lines diftinctly by this Colour, was only the darknefs of this Colour and Thinness of its Light, and its diftance from the Axis of the Lens; I divided therefore thofe Parallel Black Lines into equal Parts, by which I might readily know the diftances of the Colours in the Spectrum from one another, and noted the diftances of the Lens from the Foci of fuch Colours as caft the Species of the

## [65]

Lines diftinctly, and then confidered whether the difference of thofe diftances bear fuch proportion to $5_{3}^{1}$ Inches, the greateft difference of the diftances which the Foci of the deepeft Red and Violet ought to have from the Lens, as the diftance of the obferved Colours from one another in the Spectrum bear to the fike diftance of the deepeft Red and Violet meafured in the rectilinear fides of the Spectrum, that is, to the length of thofe fides or excefs of the length of the Spectrum above its breadth. And my Obfervations were as follows.

When I obferved and compared the deepeft fenfible Red, and the Colour in the confine of Green and Blue, which at thåt rectilinearfides of the Spectrum was diftant from it half the length of thofe fides, the Focus where the confine of Green and Blue caft the Species of the Lines diftinctly on the Paper, was nearer to the Lens then the Focus where the Red caft thofe Lines dictinctly on it by about $2 \frac{1}{2}$ or $2{ }_{4}^{3}$ Inches. For fometimes the Meafures were a little greater, fometimes a little lefs, but feldom varied from one another above $\frac{1}{3}$ of an Inch. For it was very difficult to define the Places of the Foci, without fome little Errors. Now if the Colours diftant half the length of the Image, (meafured at its rectilinear fides) give $2 \frac{1}{2}$ or $2 \frac{3}{4}$ difference of the diftances of their Foci from the Lens, then the Colours diftant the whole length ought to give 5 or $5 \frac{1}{2}$ Inches difference of thofe diftances.

But here it's to be noted, that I could not fee the Red to the full End of the Spectrum, but only to the Center of the Semicircle which bounded that End, or a little farther ; and therefore I compared this Red not with that Colour which was exactly in the middle of the Spectrum, or confine of Green and Blue, but with that which verged a little more to the Blue than to the Green : And as I reck-

## [66]

oned the whole length of the Colours not to be the whole length of the Speatrum, but the length of its rectilinear fides, fo completing the Semicirlar Ends into Circles, when either of the obferved Colours fell within thofe Gircles, I meafured the diftance of that Colour from the End of the Spectrum, and fubduefing half thy diftarice from the meafured diftance of the ${ }_{A}$ Colours, I took the remainder for their corrected diftance; and in thefe Obfervations fet down this corrected diftance for the difference of the diflances, from the Lens. For asthe length of the rectilinear fides of the Spectrum would be the whole length of all the Colours, were the Circles of which (as we fhewed) that Spectrum confifts contracted and reduced to Phyfical Points, fo in that Cafe this corrected diftance would be the real diftance of the ono obferved Colours.

When therefore I further obferved the deepeff fenfible Red, and that Blue whofe corrected diftance from it was $\frac{7}{12}$ parts of the length of the rectilinear fides of the Spectrum, the difference of the diffances of their Foci from the Lens was about $3 \frac{1}{4}$ Inches, and as 7 to 12 fo is $3 \frac{1}{4}$ to $5 \frac{4}{9}$.

When I obferved the deepeff fenfible Red, and that Indigo whofe corrected diftance was $\frac{8}{12}$ or $\frac{2}{3}$ of the length of the rectilinear fides of the Spectrum, the difference of the diftances of their Foci from the Lens, was about $3{ }_{3}^{2}$ Inches, and as 2 to 3 fo is $3_{3}^{2}$ to $5 \frac{1}{2}$.

When I obferved the deepeft fenfible Red, and that deep Indigo whofe corrected diftance from one another was $\frac{9}{12}$ or ${ }_{4}^{3}$ of the length of the rectilinear fides of the Spectum, the difference of the diftances of their Foci from the Lens was about 4 Inches; and as 3 to 4 fo is 4 to $5 \frac{1}{3}$.

When I obferved the deepeft fenfible Red, and that part of the Violet next the Indigo whofe corrected diftance from the Red was $\frac{10}{12}$ or 5 of the length of the rectilinear fides of

## [67]

the Spectrum, the difference of the diftances of their Foci from the Lens was about $4 \frac{1}{2}$ Inches; and as 5 to 6, fo is $4 \frac{1}{2}$ to $5 \frac{2}{5}$. For fometimes when the Lens was advantagioully placed, fo that its Axis refpected the Blue, and all things elfe were well ordered, and the Sun fhone clear, and I held my Eye very near to the Paper on which the Lens caft the Species of the Lines, I could fee pretty diftinctly the Species of thofe Lines by that part of the Violet which was next the Indigo ; and fometimes I could fee them by above half the Violet. For in making thefe Experiments I had obferved, that the Species of thofe Colours only appeared diftinct which were in or near the Axis of the Lens: So that if the Blue or Indigo were in the Axis, I could fee their Species diftinctly; and then the Red appeared much lefs diftinct than before. Wherefore I contrived to make the Spectrum of Colours fhorter than before, fo that both its Ends might be nearer to the Axis of the Lens. And now its length was about $2 \frac{1}{2}$ Inches and breadth about $\frac{1}{5}$ or $\frac{1}{6}$ of an Inch. Alfo inftead of the black Lines on which the Spectrum was caft, I made one black Line broader than thofe, that I might fee its Species more eafily; and this Line I divided by fhort crofs Lines into equal Parts, for meafuring the diftances of the obferved Colours. And now I could fometimes fee the Species of this Line with its divifions almoft as far as the Centerp of the Semicircular Violet End of the Spectrum, and made thefe further Obfervations.
When I obferved the deepert fenfible Red, and that part of the Violet whofe corrected diftance from it was about $\frac{8}{9}$ Parts of the rectilinear fides of the Spectrum the difference of the diftances of the Foci of thofe Colours from the Lens, was one time $4 \frac{2}{3}$, another time $4 \frac{3}{4}$, anothertime $4 \frac{2}{5}$, Inches, and as 8 to 9 , fo are $4 \frac{2}{3}, 4 \frac{3}{4}, 4 \frac{7}{8}$, to $5 \frac{1}{4}, 5 \frac{12}{\frac{1}{32} 5}, \frac{31}{64}$ refpectively.

## [68]

When I obferved the deepeft fenfible Red, and deepeft fenfible Violet, (the corrected diftance of which Colours. when all things were ordered to the beft advantage, and the Sun thone very clear, was about $\frac{11}{12}$ or $\frac{15}{16}$ parts of the length of the rectilinear fides of the coloured Spectrum, ) I found the difference of the diftances of their Foci from the Lens fometimes $4 \frac{3}{4}$ fometimes $5 \frac{1}{4}$, and for the moft part 5 Inches. or thereabouts: and as 11 to 12 or 15 to 16 , fo is five Inches to $5_{2}^{\frac{1}{2}}$ or $5 \frac{1}{3}$ Inches.

And by this progreffion of Experiments I fatisfied my felf, that had the light at the very Ends of the Spectrum been ftrong enough to make the Species of the black Lines appear plainly on the Paper, the Focus of the deepeft Violet would have been found nearer to the Lens, than the Focus of the deepeft Red, by about $5_{3}^{\frac{1}{3}}$ Inches at leaft. And this is a further Evidence, that the Sines of Incidence and Refraction of the feveral forts of Rays, hold the fame proportion to one another in the fmalleft Refractions which they do in the greateft.

My progrefs in making this nice and troublefome Experiment I have fet down more at large, that they that fhall cry it after me may be aware of the Circumfpection requifite to make it fucceed well. And if they cannot make it fucceed fo well as I did, they may notwithftanding collect by the Proportion of the diftance of the Colours in the Spectrum, to the difference of the diftances of their Foci from the Lens, what would be the fuccefs in the more diftant Colours by a better Trial. And yet if they ufe a broader Lens than I did, and fix it to a long ftreight Staff by means of which it may be readily and truly directed to the Colour whofe Focus is defired, I queftion not but the Experiment will fucceed better with them than it did with me. For I directed the Axis as nearly as I could to the middle

## [ $\sigma g$ ]

middle of the Colours, and then the faint Ends of the Spectrum being remotefrom the Axis, caft their Species lefs diftinctly on the Paper than they would have done had the Axis been fucceffively directed to them.

Now by what has been faid its certain, that the Rays which differ in refrangibility do not converge to the fame Focus, but if they flow from a lucid point, as far from the Lens on one fide as their Foci are one the other, the Focus of the moft refrangible Rays fhall be nearer to the Lens than that of the leaft refrangible, by above the fourteenth part of the whole diftance: and if they flow from a lucid point, fo very remote from the Lens that before their Incidence they may be accounted Parallel, the Focus of the mof refrangible Rays fhall be nearer to the Lens than the Facus of the leaif refrangible, by about the 27 th or 28 th part of their whole diftance from it. And the Diameter of the Circle in the middle face between thofe two Foci which they illuminate when they fall there on any Plane, perpendicular to the Axis (which Circle is the leaft into which they can all be gathered) is about the 55 th part of the Diameter of the aperture of the Glafs. So that 'tis a wonder that Telefcopes reprefent Objects fo diftinct as they do. But were all the Rays of Light equally refrangible, the Error arifing only from the fphericalnefs of the Figures of Glaffes would be many hundred times lefs. For if the ObjectGlafs of a Telefcope be Plano-convex, and the Plane fide be turned towards the Object, and the Diameter of the Sphere whereof this Glafs is a fegment, be called D, and the Semidiameter of the aperture of the Glafs be called $S$, and the Sine of Incidence out of Glafs into Air, be to the Sine of Refraction as I to R: the Rays which come Parallel to the Axis of the Glafs, fhall in the Place where the Image of the Object is moft diftinctly made, be fattered all over a little

## [70]

Circle whore Diameter is $\frac{R}{I} \times \frac{S \text { cub. }}{D \text { quad. }}$ very nearly, as I gathee by computing the Errors of the Rays by the method of infinite Series, and rejecting the Terms whole quantitities are inconfiderable. As for inftance, if the Sine of Incidence I, be to the Sine of Refraction R, as 20 to 31, and if $D$ the Diameter of the Sphere to which the Convex fine of the Glass is ground, be 100 Feet or 1200 Inches, and $S$ the Semidiameter of the aperture be two Inches, the Diameter of the little Circle ( that is $\frac{R \times S \text { cub. }}{I \times D \text { quad. }}$ ) will be $\frac{31 \times 8}{20 \times 1200 \times 1200}$ (or $\frac{31}{3600000}$ ) parts of an Inch. But the Diameter of the little Circle through which there Rays are flattered by unequal refrangibility, will be about the 55 th part of the aperture of the Object-Glafs which here is four Inches. And therefore the Error arifing from the Spherical Figure of the Glafs, is to the Error arifing from the different Refrangibility of the Rays, as $\frac{3 t}{350000}$ to $\frac{4}{55}$ that is as : to 8151 : and therefore being in Comparifon fo very little, deferves not to be confidered.

But you will fay, if the Errors caufed by the different refrangibility be fo very great, how comes it to pals that Objects appear through Telefcopes fo diftinct as they do ? I anfwer, 'ti becaufe the erring Rays are not flattered uniformly over all that circular face, but collected infinitely more denfely in the Center than in any other part of the Circle, and in the way from the Center to the Circumference grow continually rarer and rarer, fo as at the Circumference to become infinitely rare; and by reason of their rarity are not flong enough to be vifible, unlefs in the Center and wery near it. Let ADE reprefent one of thole Circles defribed with the Center $\mathbf{C}$ and Semidiameter AC, and let BFG be a faller Circle concentric to the former, cutting

## [71]

with its Circumference the Diameter AC in B , and befect AC in N , and by my reckoning the denfity of the Light in any place $B$ will be to its denfity in $N$, as $A B$ to $B C$; and the whole Light within the leffer Circle BFG, will be to the wholeLight within the greater AED, as the Excefs of the Square of $A C$ above the Square of $A B$, is to the Square of $A C$. As if $B C$ be the fifth part of $A C$, the Light will be four times denfer in B than in N, and the whole Light within the lefs Circle, will be to the whole Light within the greater, as nine to twenty five. Whence it's evident that the Light within the lefs Circle, muft ftrike the fenfe much more ftrongly, than that faint and dilated light round about between it and the Circumference of the greater.

But its further to be noted, that the moft luminous of the prifmatick Colours are the Yellow and Orange. Thefe affect the Senfes more ftrongly than all the reft together, and next to thefe in ftrength are the Red and Green. The Blue compared with thefe is a faint and dark Colour, and the Indigo and Violet are much darker and fainter, fo that thefe compared with the ftronger Colours are little to be regarded. The Images of Objects are therefore to be placed, not in the Focus of the mean refrangible Rays which are in the confine of Green and Blue, but in the Focus of thofe Rays, which are in the middle of the Orange and Yellow; there where the Colour is moft luminous and fulgent, that is in the brighteft Yellow, that Yellow which inclines more to Orange than to Green. And by the Refraction of thefe Rays (whofe Sines of Incidence and Refraction in Glafs: are as 17 and 11) the Refraction of Glafs and Cryftal for optical ufes is to be meafured. Let us therefore place the Image of the Object in the Focus of there Rays, and all the Yellow and Orange will fall within a Circle, whofe Diameter is about the 250 th part of the Diameter of the aper-

## [72]

ture of the Glafs. And if you add the brighter half of the Red, (that half which is next the Orange, and the brighter half of the Green, (that half which is next the Yellow,) about three fifth parts of the Light of thefe two Colours will fall within the fame Circle, and two fifth parts will fall without it round about; and that which falls without will be fpread through almoft as much more fpace as that which falls within, and $f_{0}$ in the grofs be almoft three times rarer. Of the other half of the Red and Green, (that is of the deep dark Red and Willow Green) about one quarter will fall within this Circle, and three quarters without, and that which falls without will be fpread through about four or five times more fpace than that which fallswithin; and $\mathrm{fo}_{0}$ in the grofs be rarer, and if compared with the whole Light within it, willbe about 25 times rarer than all that taken in the grofs; or rather more than 30 or 40 times rarer, becaule the deep red in the end of the Spectrum of Colours made by a Prifm is very thin and rare, and the Willow Green is fomething rarer than the Orange and "Yellow. The Light of thefe Colours therefore being fo very much rarer than that within the Circle, will fcarce affect the Senfe efpecially fince the deep Red and Willow Green of this Light, are much darker Colours then the reft. And for the fame reafon the Blue and Violet being much darker Colours than thefe, and much more rarified, may be neglected. For the denfe and bright Light of the Circle, will obfcure the rare and weak Light of thefedark Colours round about it, and render them almoft infenfible. The fenfible Image of a lucid point is therefore fcarce broader than a Circle whofe Diameter is the 250 oth part of the diameter of the aperture of the Object Glafs of a good Telefcope, or not much broader, if you except a faint and dark mifty light round about it, which a Spectator will fcarce regard. And therefore in a Telefcope
whofe aperture is four Inches, and length an hundred Feet, it exceeds not $2^{\prime \prime} 45^{\prime \prime}$, or $3^{\prime \prime}$. And in a Telefcope whofe aperture is two Inches, and length 20 or 30 Feet, it may be $5^{\prime \prime}$ or $6 "$ and fcarce above. And this Anfwers well to Experience : For fome Aftronomers have found the Diameters of the fixt Stars, in Telefcopes of between twenty and fixty Feet in length, to be about $4^{\prime \prime}$ or $5^{\prime \prime}$ or at moft $6^{\prime \prime}$ in Diameter. But if the Eye-Glafs be tincted faintly with the fmoke of a Lamp or Torch, to obfcure the Light of the Star, the fainter Light in the circumference of the Star ceafes to be vifible, and the Star (if the Glafs be fufficiently foiled with fmoke) appears fomething more like a Mathematical Point. And for the fame reafon, the enormous part of the Light in the Circumference of every lucid Point ought to be lefs difcernable in fhorter Telefcopes than in longer, becaufe the fhorter tranfmit lefs Light to the Eye.

Now if we fuppofe the fenfible Image of a lucid point,
 Rays, its breadth in an 100 Foot Telefcope whofe aperture is 4 Inches would be but $\frac{31}{3600000}$ parts of an Inch, as is manifeft by the foregoing Computation. And therefore in this Cafe the greateft Errors arifing from the fpherical Figure of the Glafs, would be to the greateft fenfible Errors arifing from the different refrangibility of the Rays as $\frac{31}{360000}$ to $\frac{4}{250}$ at moft, that is only as 1 to 1826 . And this fufficiently fhews that it is not the fpherical Figures of Glaffes but the different refrangibility of the Rays which hinders the perfection of Telefcopes.

There is another Argument by which it may appear that the different refrangibility of Rays, is the true Caufe of the imperfection of Telefcopes. For the Errors of the Rays arifing from the fpherical Figures of Object-Glaffes, are as K
the

## [74]

the Cubes of the apertures of the Object-Glaffes; and therice to make Telefcopes of various lengths, magnify with equal diftinctnefs, the apertures of the Object-Glaffes, and the Charges or magnifying Powers, ought to be as the Cubes of the fquare Roots of their lengths; which doth not anfwer to Experience. But the errors of the Rays arifing from the different refrangibility, are as the apertures of the Ob -ject-Glaffes, and thence to make Telefcopes of various lengths, magnify with equal diftinctnefs, their apertures and charges ought to be as the fquare Roots of their lengths; and this anfwers to experience as is well known. For inftance, a Telefcope of 64 Feet in length, with an aperture of $2 \frac{2}{3}$ Inches, magnifies about 120 times, with as much diftinctnefs as one of a Foot in length, with $\frac{1}{3}$ of an Inch apercure, magnifies is times.

Now were it not for this different refrangibility of Rays, Telefcopes might be brought to a greater Perfection than we have yet defcribed, by compofing the Object-Glafs of two Glaffes with Water between them. Let ADFC repre-
Fig. 28. fent the Object-Glafs compofed of two Glaffes ABED and and BEFC, alike convex on the outfides AGD and CHF, and alike concave on the infides BME, BNE, with Water in the concavity BMEN. Let the Sine of Incidence out of Glafs into Air be as I to $R$ and out of Water into Air as K to $R$, and by confequence out of Glafs into Water, as I to K: and let the Diameter of the Sphere to which the convex fides AGD and CHF are ground be D, and the Diameter of the Sphere to which the concave fides BME and BNE are ground be to D , as the Cube Root of $\mathrm{KK}-\mathrm{KI}$ to the Cube Root of RK-RI: and the Refractions on the concave fides of the Glaffes, will very much correct the Errors of the Refractions on the convex fides, fo far as they arife from the fphericalnefs of the Figure. And by this means might

## [75]

might Telefcopes be brought to fufficient perfection, were it not for the different refrangibility of feveralfors of Rays. But by reafon of this different refrangibility, I do not yet fee any other means of improving Telefcopes by Refractions alone than that of increafing their lengths, for which end the late contrivance of Hugenius feems well accommodated. For very long Tubes are cumberfome, and fcarce to be readily managed, and by reafon of their length are very apt to bend, and fhake by bending fo as to caufe a continual trembling in the Objects, whereby it becomes difficult to fee them diftinctly: whereas by his contrivance the Glaffes are readily manageable, and the Object-Glafs being fixt upon a ftrong upright Pole becomes more fteddy.

Seeing therefore the improvement of Telefcopes of given lengths by Refractions is defperate; I contrived heretofore a Perfective by reffexion, ufing inftead of an Object Glafs a concave Metal. The diameter of the Sphere to which the Metal was ground concave was about 25 Englifh Inches, and by confequence the length of the Inftrument about fix Inches and a quarter. The Eye-Glafs was plano-convex, and the Diamerer of the Sphere to which the convex fide was ground was about $\frac{1}{5}$ of an Inch, or a little lefs, and by confequence it magnified between 30 and 40 times. By another way of meafuring I found that it magnified about 35 times. The Concave Metal bore an aperture of an Inch and a third part ; but the aperture was limited not by ant opake Circle, covering the Limb of the Metal round about, but by an opake circle placed between the Eye-Glafs and the Eye, and perforated in the middle with a little round hole for the Rays to pafs through to the Eye. For this Circle by being placed here, ftopt much of the erroneous Light, which ortherwife would have difturbed the Viffon. By comparing it with a pretty good Perfpective of four Feet in K 2 length,
length, made with a concave Eye-Glafs, I could read at a greater diftance with my own Inftrument than with the Glafs. Yet Objects appeared much darker in it than in the Glafs, and that partly becaufe more Light was loft by reflexion in the Metal, then by refraction in the Glafs, and partly becaufe my Inftrument was overcharged. Had it magnified but 30 or 25 times it would have madethe Object appear more brisk and pleafant. Two of thefe Imade about 16 Years ago, and have one of them fill by me by which I can prove the truth of what I write. Yet it is not fo good as at the firft. For the concave has been divers times tarnifhed and cleared again, by rubbing it with very foft Leather. When I made thefe, an Artift in London undertook to imitate it; but ufing another way of polifhing them than I did, he fell much fhort of what I had attained to, as I afterwards underftood by difcourfing the under-Workman he had imployed. The Polifh I ufed was on thismanner. I had two round Copper Plates each fix Inches in Diameter, the one convex the other concave, ground very true to one another. On the convex I ground the Ob-ject-Metal or concave which was to be polifh'd, till it had taken the Figure of the convex and was ready for a Polifh. Then I pitched over the convex very thinly, by dropping melted pitch upon it and warming it to keep the pitch foft, whilf I ground it with the concave Copper wetted to make it fpread evenly all over the convex. Thus by working it well I made it as thin as a Groat, and after the convex was cold I ground it again to give it as true a Figure as I could. Then I took Putty which I had made very fine by wafhing it from all its groffer Particles, and laying a little of this upon the pitch, I ground it upon the Pitch with the concave Copper till it had done making a noife; and then upon the Pitch I ground the Object-Metal with a brisk

## [77]

Motion, for about two or three Minutes of time, leaning hard upon it. Then I put frefh Putty upon the Pitch and ground it again till it had done making a noife, and afterwards ground the Object Metal upon it as before. And this Work I repeated till the Metal was polifhed, grinding it the laft time with all my ftrength for a good while togetherf, and frequently breathing upon the Pitch to keep it moift without laying on any more frefh Putty. The Ob-ject-Metal was two Inches broad and about one third part of an Inch thick, to keep it from bending. I had two of there Metals, and when I had polifhed them both I tried which was beft, and ground the other again to fee if I could make it better than that which I kept. And thus by many Trials I learnt the way of polifhing, till I made thofe two reflecting Pefpectives I fpake of above. For this Art of polifhing will be better learnt by repeated Practice than by my defcription. Before I ground the Object Metal on the Pitch, I always ground the Putty on it with the concave Copper till it had done making a noife, becaufe if the Particles of the Putty were not by this means made to ftick faft in the Pitch, they would by rolling up and down grate and fret the Object Metal and fill it full of little holes.

But becaufe Metal is more difficult to polift than Glafs and is afterwards very apt to be fpoiled by tarnifhing, and reflects not fo much Light as Glafs quick-filvered over does: I would propound to ufe inftead of the Metal, a Glafs ground concave on the forefide, and as much convex on the backfide, and quick-filvered over on the convex fide. The Glafs muft be every where of the fame thicknefs exactly. Otherwife it will make Objects look coloured and indiftinct. By fuch a Glafs I tried about five or fix Years ago to make a reflecting Telefcope of four Feet in length to magnify about 150 times, and I fatisfied my felf that there wants no-

## [78]

thing but a good Artift to bring the defign to Perfection. For the Glafs being wrought by one of our London Artifts after fuch a manner as they grind Glaffes for Telefcopes, tho it feemed as well wrought as the Object Glaffes ufe to be, yet when it was quick-filvered, the reflexion difcovered innumerable Inequalities all over the Glafs. And by reafon of thefe Inequalities, Objects appeared indiftinct in this Inftrument. For the Errors of reflected Rays caufed by any Inequality of the Glafs, are about fix times greater than the Errors of refracted Rays caufed by the like Inequalities. Yet by this Experiment I fatisfied my felf that the reflexion on the concave fide of the Glafs, which I feared would difturb the vifion, did no fenfible prejudice to it, and by confequence that nothing is wanting to perfect thefe Telefcopes, but good Workmen who can grind and polifh Glaffes truly fpherical. An Object-Glafs of a fourteen Foot Telefcope, made by one of our London Artificers, I once mended confiderably, by grinding it on Pitch with Putty, and leaning very eafily on it in the grinding, left the Putty fhould fcratch it. Whether this way may not do well enough for polifhing thefe reflecting Glaffes, I have not yet tried. But he that fhall try either this or any other way of polifhing which he may think better, may do well to make his Glaffes ready for polifhing by grinding them without that violence, wherewith our London Workmen prefs their Glaffes in grinding. For by fuch violent preffure, Glaffes are apt to bend a little in the grinding, and fuch bending will certainly fooil their Figure. To recommend therefore the confideration of thefe reflecting Glaffes, to fuch Artifts as are curious in figuring Glaffes, I fhall defcribe this Optical Inftrument in the following Propofition.

## [79]

## $P R O P$. VII. Prob. II.

To ghorten Telefcopes.
E T ABDC reprefent a Glafs fpherically concave on Fig. 29. the forefide $A B$, and as much convex on the backfide $C D$, $f$ o that it be every where of an equal thicknefs. Let it not be thicker on one fide than on the other, left it make Objects appear coloured and indiftinct, and let it be very truly wrought and quick-filvered over on the backfide; and fet in the Tube VXYZ which muft be very black within. Let EFG reprefent a Prifm of Glafs or Cryital placed near the other end of the Tube, in the middle of it, by means of a handle of Brafs or Iron FGK, to the end of which made flat it is cemented. Let this Prifm be rectangular at E , and let the other two Angles at F and G be accurately equal to each other, and by confequence equal to half right ones, and let the plane fides FE and GE be fquare, and by confequence the third fideFG a rectangular parallelogram, whofe length is to its breath in a fubduplicate proportion of two to one. Let it be fo placed in the Tube, that the Axis of the Speculum may pafs through the middle of the fquare fide EF perpendicularly, and by confequence through the middle of the fide F G at an Angle of 45 degrees, and let the fide EF be turned towards the Speculam, and the diftance of this Prifm from the Speculum be fuch that the Rays of the light PQ, RS, \&c. which are incident apon the Speculum in Lines Parallel to the Axis thereof, may enter the Prifm at the fide EF, and be rellected by the fide F G, and thence go out of it through the fide GE, to the point $T$ which mult be the common Focus of the Speculnm ABDC, and of a Plano-convex Eye-Glafs H, through which thofe Rays mult pafs to the Eye. And let the Rays at their coming

## [80]

out of the Glafs pafs through a fmall round hole, or aperture made in a little Plate of Lead, Brafs, or Silver, wherewith the Glafs is to be covered, which hole muft be no bigger than is neceffary for light enough to pafs through. For fo it will render the Object diftinct, the Plate in which 'tis made intercepting all the erroneous part of the Light which comes from the Verges of the Speculum AB. Such an Inftrument well made if it be 6 Foot long, (reckoning the length from the Speculum to the Prifm, and thence to the Focus T) will bear an aperture of 6 Inches at the Speculum, and magnify between two and three hundred times. But the hole H here limits the aperture with more advantage, then if the aperture was placed at the Speculum. If the Inftrument be made longer or fhorter, the aperture muft be in proportion as the Cube of the fquare Root of the length, and the magnifying as the aperture. But its convenient that the Speculum be an Inch or two broader than the aperture at the leaft, and that the Glafs of the Speculum be thick, that it bend not in the working. The Prifm EFG muft be no bigger than is neceffary, and its back fide FG muft not be quick-filvered over. For without quick-filver it will reflect all the Light incident on it from the Speculum.

In this Inftrument the Object will be inverted, but may be erected by making the fquare fides EF and EG of the Prifm EFG not plane but fpherically convex, that the Rays may crofs as well before they come at it as afterwards between it and the Eye-Glafs. If it be defired that the Inftrument bear a larger aperture, that may be alfo done by compofing the Speculum of two Glaffes with Water between them.


Fig: 3.


Fig. 5.


Book I. Plate II. Part I.



Fig: 9 .



Fig: 12.


Book I. Plate III. Part I.


Book,I.Plate,IV. Part,I.


Fig:19.



Fig: 25.


10


Fig: 26.


Fig: 28


## THE

# FIRST BOOK 

0 F

# O P T I C K S. 

## P A R T II.

PROP.I. THEOR.I.

The Pbanomena of Colours in refracted or reflected Light are not caufed by nere modifications of the Light varioufly impreft, according to the various terminations of the Light and Sbadore.

## The Proof by Experiments.

EXPER. I.

FOR if the Sun Chine into a very dark Chamber Fig. I. through an oblong Hole F, whofe breadth is the fixth or eighth part of an Inch, or fomething lefs; and his Bearm FH do afterwards pafs firft through a very large Prifm $A B C$, diftant about 20 Feet from the L Hole,

## [ 8z]

Hole, and parallel to it, and then (with its white part) through an oblong Hole H, whofe breadth is about the fortieth or fixtieth part of an Inch, and which is made in a black opake Body GI, and placed at the diftance of two or three Feet from the Prifm, in a parallel fituation both to the Prifm and to the former Hole, and if this white Light thus tranfmitted through the Hole $H$, fall afterwards upon a white Paper pt , placed after that Hole $H$, at the diftance of three or four Feet from it, and there paint the ufual Colours of the Prifm, fuppofe red at $t$, yellow at $s$, green at $r$, blue at q , and violet at p ; you may with an iron Wire, or any fuch like flender opake Body, whofe breadth is about the tenth part of an Inch, by intercepting the rays at $\mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}$ or o , take away any one of the Colours at $t, s, r, q$ or $p$, whilft the other Colours remain upon the Paper as before; or with an obftacle fomething bigger you may take away any two, or three, or four Colours together, the reft remaining: So that anyone of the Colours as well as violet may become outmof in the confine of the fhadow towards $p$, and any one of them as well as red may become outmoft in the confine of the fhadow towards $t$, and any one of them may allo border upon the fhadow made within the Colours by the obftacle R intercepting fome intermediate part of the Light ; and, laftly, any one of them by being left alone may border upon the fhadow on either hand. All the Colours have themfelves indifferently to any confines of fhadow, and therefore the differences of thefe Colours from one another, do not arife from the different confines of fhadow, whereby Light is varioufly modified as has hitherto been the Opinion of Philofo-
phers. In trying thefe things 'tis to be obferved, that by how much the Holes F and H are narrower, and the intervals between them, and the Prifin greater, and the Chamber darker, by fo much the better doth the Experiment fucceed ; provided the Light be not fo far diminifhed, but that the Colours at pt be fufficiently vifible. To procure a Prifm of folid Glafs large enough for this Experiment will be difficult, and therefore a prifmatick Veffel muft be made of polifhed Glafs-plates cemented together, and filled with Water.

EXPER. II.

The Sun's Light let into a dark Chamber through Fig. 2. the round Hole F, half an Inch wide, paffed firft through the Prifm A BC placed at the Hole, and then through a Lens PT fomething more than four Inches broad, and about eight Feet diftant from the Prifm, and thence converged to O the Focus of the Lens diftant from it about three Feet, and there fell upon a white Paper DE. If that Paper was perpendicular to that Light incident upon it, as 'tis reprefented in the pofture DE , all the Colours upon it at O appeared white. But if the Paper being turned about an Axis parallel to the Prifm, became very much inclined to the Light as 'tis reprefented in the pofitions de and $\delta_{s}$; the fame Light in the one cafe appeared yellow and red, in the other blue. Here one and the fame part of the Light in one and the fame place, according to the various inclinations of the Paper, appeared in one cafe white, in another yellow or red, in a third blue, whilft the confine of Light and L. 2 Shadow,

## [84]

Shadow, and the refractions of the Prifin in all thefe cafes remained the fame.

## EXPER. III.

Fig. 3. Such another Experiment may be more eafily tried as follows. Let a broad beam of the Sun's Light coming into a dark Chamber through a Hole in the Window Thut be refracted by a large Prifm $A B C$, whofe refracting Angle C is more than 60 degrees, and fo foon as it comes out of the Prifim let it fall upon the white Paper DE glewed upon a ftiff plane, and this Light, when the Paper is perpendicular to it, as 'tis reprefented in DE, will appear perfectly white upon the Paper, but when the Paper is very much inclined to it in fuch a manner as to keep always parallel to the Axis of the Priifm, the whitenefs of the whole Light upon the Paper will according to the inclination of the Paper this way, or that way, change cither into yellow and red, as in the pofture $d e$, or into blue and violet, as in the pofture ds: And if the Lighe before it fall upon the Paper be twice refracted the fame way by two parallel Prifms, thefe Colours will become the more cons fpicuous. Hereall the middle parts of the broad bean of white Light which fell upon the Paper, did without any confine of fhadow to modify it, become coloured all over with one uniform Colour, the Colour being alt ways the fame in the middle of the Paper as at the elges, and this Colour changed according the various obliquity of the reflecting Paper, without any change in the refractions or fhadow, or in the Light which 6.ll upon the Paper. And therefore thefe Colours are

## [85]

to be derived from fome other caufe than the new modifications of Light by refractions and thadows.

If it be asked, What then is their caufe? I anfwer, That the Paper in the pofture de, being more oblique to the more refrangible rays than to the lefs refrangible ones, is more ftrongly illuminated by the latter than by the former, and therefore the lefs refrangible rays are predominant in the reflected Light. And wherever they are predominant in any Light they tinge it with red or yellow, as may in fome meafure appear by the firf Propofition of the firt Book, and will more fully appear hereafter. And the contrary happens in the pofture of the Paper ots, the more refrangible rays being then predominant which always tinge Light with blues and violets.

## EXPER. IV.

The Colours of Bubbles with which Children play are various, and change their fituation varioufly, without any refpect to any confine of fhadow. If fuch a Bubble be covered with a concave Glafs, to keep it from being agitated by any wind or motion of the Air, the Colours will flowly and regularly change their fituation, even whilft the Eye, and the Bubble, and all Bodies which emit any Light, or caft any fhadow, remain unmoved. And therefore their Colours arife from fome regular caufe which depends not on any confine of fhadow. What this caufe is will be fhewed in the next Book.

## [86]

To thefe Experiments may be added the tenth Experiment of the firt Book, where the Sun's Light in a dark Room being trajected through the parallel fuperficies of two Prifms tied together in the form of a Parallelopide, became totally of one uniform yellow or red Colour, at its emerging out of the Prifms. Here, in the production of thefe Colours, the confine of fhadow can have nothing to do. For the Light changes from white to yellow,orange and red fucceffively, without any alteration of the confine of fhadow: And at both edges of the emerging Light where the contrary confines of fhadow ought to produce different effects, the Colour is one and the fame, whether it be white, yellow, orange or red : And in the middle of the emerging Light, where there is no confine of fhadow at all, the Colour is the very fame as at the edges, the whole Light at its very firft emergence being of one uniform Colour, whether white, yellow, orange or red, and going on thence perpetually without any change of Colour, fuch as the confine of fhadow is vulgarly fuppofed to work in refracted Light after its emergence. Neither can thefe Colours arife from any new modifications of the Light by refractions, becaufe they change fucceffively from white to yellow, orange and red, while the refractions semain the fame, and alfo becaufe the refractions are made contrary ways by parallel fuperficies which deftroy one anothers effects. They arife not therefore from any modifications of Light made by refractions and fhadows, but have fome other caufe. What that caufe is we fhewed above in this tenth Experiment, and need not here repeat it.

## [87]

There is yet another material circumftance of this Experiment. For this emerging Light being by a third Fig. 22.. Prifin HI K refracted towards the Paper PT, and there Part 1 . painting the ufual Colours of the Prifm, red, yellow, green, blue, violet : If thefe Colours arofe from the refractions of that Prifm modifying the Light, they wonld not be in the Light before its incidence on that Prifm. And yet in that Experiment we found that when by turning the two firt Prifins about their common Axis all the Culours were made to vanifh but the red ; the Light which makes that red being left alone, appeared of the very fame red Colour before its incidence on the third Prifm. And in general we find by other Experiments that when the rays which differ in yefrangibility are feparated from one another, and any one fort of them is confidered apart, the Colour of the Light which they compofe cannot be changed by any refraction or reflexion whatever, as it ought to be were Colours nothing elfe than modifications of Light caufed by refractions, and reflexions, and fhadows. This unchangeablenefs of Colour I am now to defcribe in the following Propofition.

## PROP. II. THEOR.II.

All bomogeneal Ligbt bas its proper Colour anfwering to its degree of refrangibility, and that Colour camnot be cbanged by reflexions and refractions.

In the Experiments of the 4th Propofition of the firft Book, when I had feparated the heterogeneous rays from one another, the Spectrum pt formed by the fepa-

## [88]

rated rays, did in the progrefs from its end $p$, on which the moft refrangible rays fell, unto its other end $t$, on which the leaft refrangible rays fell, appear tinged with this Series of Colours, violet, indico, blue, green, yellow, orange, red, together with all their intermediate degrees in a continual fucceffion perpetually varying: So that there appeared as many degrees of Colours, as there were forts of rays differing in refrangibility.

## EXPER. V.

Now that thefe Colours could not be changed by refraction, I knew by refracting with a Prifm fometimes one very little part of this Light, fometimes another very little part, as is defcribed in the 12 th Experiment of the firft Book. For by this refraction the Colour of the Light was never changed in the leaft. If any part of the red Light was refracted, it remained totally of the fame red Colour as before. No orange, no yellow, no green, or blue, no other new Colour was produced by that refraction. Neither did the Colour any ways change by repeated refractions, but continued always the fame red entirely as at firft. The like conftancy and immutability I found alfo in the blue, green, and other Colours. So alfo if I looked through a Prifm upon any body illuminated with any part of this homogeneal Light, as in the 14th Experiment of the firft Book is defcribed; I could not perceive any new $\mathrm{C}_{0}$ lour generated this way. All Bodies illuminated with compound Light appear through Prifims confufed (as was faid above) and tinged with various new Colours, but thofe illuminated with homogeneal Light appeared through

## [89]

through Prifms neither lefs diftinct, nor otherwife coloured, than when viewed with the naked Eyes. Their Colours were not in the leaft changed by the refraction of the interpofed Prifm. I fpeak here of a fenfible change of Colour : For the Light which I here call homogeneal, being not abfolutely homogeneal, there ought to arife fome little change of Colour from its heterogeneity. But if that heterogeneity was fo little as it might be made, by the faid Experiments of the fourth Propofition, that change was not fenfible, and therefore, in Experiments where fenfe is judge, ought to be accounted none at all.

## EXPER: VI.

And as thefe Colours were not changeable by refraCtions, fo neither were they by reflexions. For all white, grey, red, yellow, green, blue, violet Bodies, as Paper, Afhes, red Lead, Orpiment, Indico, Biee, Gold, Silver, Copper, Grafe, blue Flowers, Violets, Bubbles of Water tinged with various Colours, Peacock's Feathers, the tincture of Lignum Nepbriticum, and fuch like, in red homogeneal Light appeared totally red, in blue Light totally blue, in green Light totally green, and fo of other Colours. In the homogeneal Light of of any Colour they all appeared totally of that fame Colour, with this only difference, that fome of them reflected that Light more frongly, others more faintly. I never yet found any Body which by reflecting homogeneal Light could fenfibly change its Colour.

## [90]

From all which it is manifeft, that if the Sun's Light confifted of but one fort of rays, there would be but one Colour in the whole World, nor would it be poffible to produce any new Colour by reflexions and refractions, and by confequence that the variety of Co lours depends upon the compofition of Light.

## D EFINITION.

The homogeneal light and rays which appear red, or rather make Objects appear fo, I call rubrific or red-makng ; thofe which make Objects appear yellow, green, blue and violet, I call yellow-making, green-making, blue-making, violet-making, and fo of the reft. And if at any time I feak of light and rays as coloured or endued with $\mathrm{C}_{0}$ lours, I would be underftood to fpeak not philofophically and properly, but groily, and according to fuch conceptions as vulgar People in feeing all thefe Experiments would be apt to frame. For the rays to fpeak properly are not coloured. In them there is nothing elfe than a certain power and difpofition to ftir up a fenfation of this or that Colour. For as found in a Bell ori mufical String, or other founding Body, is nothing but a trembling Motion, and in the Air nothing but that Motion propagated from the Object, and in the Senforium 'tis a fenfe of that Motion under the form of found ; fo Colours in the Object are nothing but a difpofition to reflect this or that fort of rays more copioully than the reft; in the rays. they are nothing but their difpofitions to propa-

## [91]

gate this or that Motion into the Senforium, and in the Senforium they are fenfations of thofe Motions under the forms of Colours.

## PROP. III. PROB.I.

To define the refrangibility of the feveral forts of bomo. geneal Ligbt anfwering to the feveral Colours.

For determining this Problem I made the following Experiment.

EXPER. VII.

When I had caufed the rectilinear line fides A F, G M, Fig. 4. of the Spectrum of Colours made by the Prifm to be diftinctly defined, as in the fifth Experiment of the firft baor is defcribed, there were found in it all the homogeneal Colours in the fame order and fituation one among another as in the Spectrum of fimple Light, defcribed in the fourth Ephersingent of that Book: For the Circles of which the Spectrum of compound Light PT is compofed, and which in the middle parts of the Spectrum interfere and are intermixt with one another, are not intermixt in their outmoft parts where they touch thofe rectilinear fides AF and GM. And therefore in thofe rectilinear fides when diftinctly defined, there is no new Colour generated by refraction. I obferved alfo, that if any where between the two outmoft Circles TMF and PGA a right line, as $\gamma^{\circ}$, was crofs to the Spectrum, fo as at both ends to fall perpendicularly upon its rectilinear fides, there appeared

## [92]

one and the fame Colour and degree of Colour from one end of this line to the other. I delineated therefore in a Paper the perimeter of the Spectrum FAPGMT, and in trying the third Experiment of the firt Book, I held the Paper fo that the Spectrum might fall upon this delineated Figure, and agree with it exactly, whilft an Affitant whofe Eyes for diftinguifhing Colours were more critical than mine, did by right lines $\alpha \beta, y \%, \xi\}, c_{0} \sigma_{0}$. drawn croo's the Spectrum, note the confines of the Colours that is of the red $M \alpha \beta$ F of the orange $\alpha \gamma \Delta \beta$, of the yellow $\gamma:\{ \}^{\circ}$, of the green $s n \theta \xi$, of the blue $n, x \theta$, of the indico $1 \lambda \mu x$, and of the violet $\lambda \mathrm{GA} \mu$. And this operation being divers times repeated both in the fame and in feveral Papers, I found that the Obfervations agreed well enough with one another, and that the rectilinear fides MG and FA were by the faid crofs lines divided after the manner of a mufical Chord. Let GM be produced to X , that MX may be equal
 MX, to be in proportion to one another, as the numbers $\mathrm{I}, \frac{8}{9}, \frac{5}{6}, \frac{3}{3}, \frac{2}{3}, \frac{3}{5}, \frac{9}{10}, \frac{1}{2}$, and fo to reprefent the Chords of the Key, and of a Tone, a third Minor, a fourth, a fifth, a fixth Major, a feventh, and an eighth above that Key: And the intervals $\mathrm{M} \approx$, a $\gamma, \gamma$, $, n,{ }^{n}$, $2 \lambda$, and $\lambda \mathrm{G}$, will be the fpaces which the feveral $\mathrm{Con}_{0}$ lours (red, orange, yellow, green, blue, indico, violet) take up.

Now thefe intervals or fpaces fubtending the differences of the refractions of the rays going to the limits of thofe Colours, that is, to the points $\mathrm{M}, a, \gamma, \frac{s}{2}, n, r, \lambda, \mathrm{G}$, may without any fenfible. Error be accounted proportional to the differences of the fines of refrattion of thofe

## [93]

rays having one common fine of incidence, and therefore fince the common fine of incidence of the moft and leaft refrangible rays out of Glafs into Air was, (by a method defcribed above) found in proportion to their fines of refraction, as 50 to 77 and $7^{8}$, divide the difference between the fines of refraction 77 and 78 , as the line $G M$ is divided by thofe intervals, you will have $77,77 \frac{1}{8}, 77_{\frac{1}{5}}^{2}, 77 \frac{1}{3}, 77 \frac{1}{2}, 77_{3}^{2}, 77_{9}^{\frac{7}{9}}, 78$, the fines of refraction of thofe rays out of Glafs into Air, their common fine of incidence being 50 . So then the fines of the incidences of all the red-making rays out of Glafs into Air, were to the fines of their refractions, not greater than 50 to 77 , nor lefs than 50 to $77_{8,}^{\frac{1}{8}}$ but they varied from one another according to all intermediate Proportions. And the fines of the incidences of the green-making rays were to the fines of their refractions in all proportions from that of 50 to $77 \frac{1}{3}$, unto that of 50 to $77^{\frac{1}{2}}$. And by the like limits above-mentioned were the refractions of the rays belonging to the reft of the Colours defined, the fines of the red-making rays extending from 77 to $77 \frac{1}{8}$, thofe of the orange-making from $77 \frac{1}{8}$ to $77 \frac{1}{3}$, thofe of the yel-low-making from $77 \frac{1}{5}$ to $77 \frac{1}{3}$, thofe of the green-making from $77 \frac{1}{3}$ to $77 \frac{1}{2}$, thofe of the blue-making from $77 \frac{1}{2}$ to $77 \frac{2}{3}$, thofe of the indico-making from $77_{\frac{2}{3}}^{2}$ to $77_{\frac{7}{9}}^{\frac{7}{2}}$, and thofe of the violet from $77 \frac{7}{9}$ to 78 .

Thefe are the Laws of the refractions made out of Glasinte Air, and thence by the thired Axioms of the frift Book the Laws of the refractions made out of Air into Glafs are eafily derived.

## [94]

## EXPER. VIII.

I found moreover that when Light goes out of Air through feveral contiguous refracting Mediums as through Water and Glafs, and thence goes out again into Air, whether the refracting fuperficies be parallel or inclined to one another, that Light as often as by contrary refractions 'tis fo corrected, that it emergeth in lines parallel to thofe in which it was incident, continues ever after to be white. But if the emergent rays be inclined to the incident, the whitenefs of the emerging Light will by degrees in paffing on from the place of emergence, become tinged in its edges with Colours. This I tryed by refracting Light with Prifms of Glafs within a prifmatick Veffel of Water. Now thofe Colours argue a diverging and feparation of the heterogeneous rays from one another by means of their unequal refractions, as in what follows will more fully appear. And, on the contrary, the permanent whitenels argues; that in like incidences of the rays there is no fuch feparation of the emerging rays, and by confequence no inequality of their whole refractions. Whence I feem to gether the two following Theorems.

1. The Exceffes of the fines of refraction of feveral forts of rays above their common fine of incidence when the refractions are made out of divers denfer mediums immediately into one and the fame rarer mediuin of $A$, are to one another in a given Proportion.

## [95]

2. The Proportion of the fine of incidence to the fine of refraction of one and the fame fort of rays out of one medium into another, is compofed of the Proportion of the fine of incidence to the fine of refraction out of the firft medium into any third medium, and of the Proportion of the fine of incidence to the fine of refraction out of that third medium into the fecond medium.

By the firft Theorem the refractions of the rays of every fort made out of any medium into Air are known by having the refraction of the rays of any one fort. As for inftance, if the refractions of the rays of every fort out of Rain-water into Air be defired, let the common fine of incidence out of Glafs into Air be fubducted from the fines of refraction, and the Exceffes will be $27,27 \frac{1}{8}, 27 \frac{1}{3}, 27 \frac{1}{3}, 27_{\frac{1}{2}}^{2}, 27_{\frac{2}{3}}^{3}, 27_{\frac{7}{2}}^{2}, 28$. Suppofe now that the fine of incidence of the leaft refrangible rays be to their fine of refraction out of Rain-water into Air as three to four, and fay as I the difference of thofe fines is to 3 the fine of incidence, fo is 27 the leaft of the Excefles above-mentioned to a fourth number 81 ; and 81 will be the common fign of incidence out of Rainwater into Air, to which fine if you add all the abovementioned Exceffes you will have the defired fines of the refractions $108,108 \frac{1}{\frac{1}{2}}, 108 \frac{1}{\frac{1}{2}}, 108_{\frac{1}{3}}^{2}, 108 \frac{1}{\frac{1}{2}}, 108 \frac{2}{3}$, ro $8 \frac{3}{3}$, 109.
By the latter Theorem the refraction out of one medium into another is gathered as often as you have the refractions out of them both into any third medium. As if the fine of incidence of any ray out of Glafs into Air be to its fine of refraction as 20 to 3. ${ }^{1}$, and the fine of incidence of the fame ray out of Air into Water, be

## [96]

to its fine of refraction as four to three; the fine of incidence of that ray out of Glass into Water will be to its fine of refraction as 20 to 31 and 4 to 3 joyntly, that is, as the Factum of 20 and 4 to the Factum of 31 and 3 , or as 80 to 93 .

And thee Theorems being admitted into Opticks, there would be fcope enough of handling that Science voluminoufly after a new manner ; not only by teaching thole things which tend to the perfection of vifion, but alfo by determining mathematically all kinds of Phænomen of Colours which could be produced by refraactions. For to do this, there is nothing elfe requifite than to find out the reparations of heterogeneous rays, and their various mixtures and proportions in every mixture. By this way of arguing I invented almoft all the Phænomena defcribed in thee Books, befide forme others leis neceffary to the Argument ; and by the fucceffes I met with in the trials, I dare promife, that to him who thall argue truly, and then try all things with good Glaffes and fufficient circumfpection, the expected event will not be wanting. But he is firft to know what Colours will arife from any others mixt in any affigned Proportion.

## PROP. IV. THEOR. III.

Colours may be produced by compofition which foul be like to the Colour's of bomogeneal Light as to the appearance of Colour, but not as to the immutability of Colour and conftitution of Light. And tho fe Colours by bow much they are more compounded by fo much are they lefs full and inteufe, and by too much composition they may be
diluted aud weakened till they cafe. There may be alpo Colours produced by composition, reich are not fully like any of the Colours of bomogeneal Light.

For a mixture of homogeneal red and yellow compounds an orange, like in appearance of Colour to that orange which in the fries of unmixed prifmatick Colours lies between them; but the Light of one orange is homogeneal as to refrangibility, that of the other is heterogeneal, and the Colour of the one, if viewed through a Prifm, remains unchanged, that of the other is changed and refolved into its component Colours red and yellow. And after the fame manner other neighbouring homogeneal Colours may compound new Colours, like the intermediate homogeneal ones, as yellow and green, the Colour between them both, and afterwards, if blue be added, there will be made a green the middle Colour of the three which enter the compofition. For the yellow and blue on either hand, if they are equal in quantity they draw the intermediate green equally towards themfelves in compofition, and fo keep it as it were in equilibrio, that it verge not more to the yellow on the one hand, than to the blue on the other, but by their mist actions remain fill a middle Colour. To this mixed green there may be further added come red and violet, and yet the green will not prefentby cafe but only grow leis full and vivid, and by increafing the red and violet it will grow more and more dilute, until by the prevalence of the added Colours it be overcome and turned into whitenefs, or come other Colour. So if to the Colour of any homogeneal Light, the Sun's white Light compoled of all forts of rays be

## [98]

added, that Colour will not vanifh or change its feecies but be diluted, and by adding more and more white it will be diluted more and more perpetually. Latly, if red and violet be mingled, there will be generated according to their various Proportions various Purples, fuch as are not like in appearance to the Colour of any homogeneal Light, and of thee Purples mist with yellow and blue may be made other new Colours.

## PROPR. THEOR. IV.

Whitene $\int_{s}$ and all grey Colours between white and black, may be compounded of Colours, and the whiteness of the Sun's Light is compounded of all the primary Colours mist in a due proportion.

## The Proof by Experiments.

EXPER. IX.

Fig. 5.
The Sun fining into a dark Chamber through a little round Hole in the Window fhut, and his Light being there refracted by a Prim to aft his coloured Image PT upon the oppofite Wall : I held a white Paper $V$ to that Image in fuch manner that it might be illuminated by the coloured Light reflected from thence, and yet not intercept any part of that Light in its parfage from the Prifin to the Spectrum. And I found that when the Paper was held nearer to any Colour than to the reft, it appeared of that Colour to which it ap. proached neareit ; but when it was equally or almoft equally
equally diftant from all the Colours, fo that it might be equally illuminated by them all it appeared white. And in this laft fituation of the Paper, if fome Colours were intercepted, the Paper loft its white Colour, and appeared of the Colour of the reft of the Light which was not intercepted. So then the Paper was illuminated. with Lights of various Colours, namely, red, yellow, green, blue and violet, and every part of the Light retained its proper Colour, until it was incident on the Paper, and became reflected thence to the Eye ; fo that if it had been either alone (the reft of the Light being intercepted) or if it had abounded moft and been predominant in the Light reflected from the Paper, it would have tinged the Paper with its own Colour; and yet being mixed with the reft of the Colours in a due proportion, it made the Paper look white, and therefore by a compofition with the reft produced that Colour. The feveral parts of the coloured Light reflected from the Spectrum, whilft they are propagated from thence thro' the Air, do perpetually retain their proper Colours, becaufe wherever they fall upon the Eyes of any Spectator, they make the feveral parts of the Spectrum to appear under their proper Colours. They retain therefore their proper Colours when they fall upon the Paper $V$, and fo by the confufion and perfect mixture of thofe Colours compound the whitenefs of the Light reflected from thence.

> EXPER. X.

Let that Spectrum or folar Image P T fall now upon Fig. 6. the Lens MN above four Inches broad, and about fix

## [ 100 ]

Feet diftant from the Prifm A BC, and fo figured that it may caufe the coloured Light which divergeth from the Prifm to converge and meet again at its Focus $G$, about fix or eight Feet diftant from the Lens, and there to fall perpendicularly upon a white Paper DE. And if you move this Paper to and fro, you will perceive that near the Lens, as at de, the whole folar Image (fuppofe at pt ) will appear upon it intenfly coloured after the manner above-explained, and that by receding from the Lens thofe Colours will perpetually come towards one another, and by mixing more and more dilute one another continually, until at length the Paper come to the Focus $G$, where by a perfect mixture they will wholly vanifh and be converted into whitenefs, the whole Light appearing now upon the Paper like a little white Circle. And afterwards by receding further from the Lens, the rays which before converged will now crofs one another in the Focus $G$, and diverge from thence, and thereby make the Colours to appear again, but yet in a contrary order; fuppofe at $d_{\varepsilon}$, where the red $t$ is now above which before was below, and the violet $p$ is below which before was above.

Let us now ftop the Paper at the Focus G where the Light appears totally white and circular, and let us confider its whitenefs. I fay, that this is compofed of the converging Colours. For if any of thofe Colours be intercepted at the Lens, the whitenefs will ceafe and degenerate into that Colour which arifeth from the compofition of the other Colours which are not intercepted. And then if the intercepted Colours be let pafs and fall upon that compound Colour, they mix with it, and by their mixture reftore the whitenefs.

So if the violet, blue and green be intercepted, the remaining yellow, orange and red will compound upon the Paper an orange, and then if the intercepted Colours be let pafs they will fall upon this compounded orange, and together with it decompound a white. So alfo if the red and violet be intercepted, the remaining yellow, green and blue, will compound a green upon the Paper, and then the red and violet being let pafs will fall upon this green, and together with it decompound a white. And that in this compofition of white the feveral rays do not fuffer any change in their colorific qualities by acting upon one another, but are only mixed, and by a mixture of their Colours produce white, may further appear by thefe Arguments.

If the Paper be placed beyond the Focus G, fuppofe at os, and then the red Colour at the Lens be alternately intercepted, and let pafs again, the violet Colour on the Paper will not fuffer any change thereby, as it ought to do if the feveral forts of rays acted upon ore another in the Focus G, where they crofs. Neither will the red upon the Paper be changed by any alternate fopping, and letting pafs the violet which croffeth it.

And if the Paper be placed at the Focus G, and the white round Image at $G$ be viewed through the Prifm HIK, and by the refraction of that Prifm be tranflated to the place rv , and there appear tinged with various Colours, namely, the violet at v and red at r , and others between, and then the red Colour at the Lens be often ftopt and let pais by turns, the red at r will accordingly difappear and return as often, but the violet at v will not thereby fuffer any change. And fo by ftopping and letting pals alternately the blue at the Lens,

## [102]

Iens, the blue at $\%$ will accordingly difappear and return, without any change made in the red at r . The red therefore depends oneone fort of rays, and the blue on another fort, which in the Focus $G$ where they are commixt do not act on one another. And there is the fame reafon of the other Colours.

I confidered further, that when the moft refrangible rays $P \mathrm{P}$, and the leaft refrangible ones Tt , are by converging inclined to one another, the Paper, if held very oblique to thofe rays in the Focus G, might reflect one fort of them more copioufly than the other fort, and by that means the reflected Light would be tinged in that Focus with the Colour of the predominant rays, provided thofe rays feverally retained their Colours or colorific qualities in the compofition of white made by them in that Focus. But if they did not retain them in that white, but became all of them feverally endued there with a difpofition to frike the fenfe with the perception of white, then they could never lofe their whitenet's by fuch reflexions. I inclined therefore the Paper to the rays very obliquely, as in the fecond Experiment of this Book, that the moft refrangible rays might be more copioufly reflected than the reft, and the whitenefs at length changed fucceffively into blue, indico and violet. Then I inclined it the contrary way, that the leaft refrangible rays might be more copious in the reflected Light than the reft, and the whitenefs turned fucceffively to yellow, orange and red.

Laftly, I made an Inftrument XY in fafhion of a Comb, whofe Teeth being in number fixteen were about an Inch and an half broad, and the intervals of the Teeth about two Inches wide. Then by interpofing fuc.

## $[103]$

fucceffively the Teeth of this Inftrument near the Lens, I intercepted part of the Colours by the interpofed Tooth, whilft the reft of them went on through the interval of the Teeth to the Paper D E, and there painted a round folar Image. But the Paper I had firft placed fo, that the Image might appear white as often as the Comb was taken away; and then the Comb being as was faid interpofed, that whitenefs by reafon of the intercepted part of the Colours at the Lens did always change into the Colour compounded of thofe Colours which were not intercepted, and that Colour was by the motion of the Comb perpetually varied fo, that in the paffing of every Tooth over the Lens all thefe Colours red, yellow, green, blue and purple, did always fucceed one another. I caufed therefore all the Teeth to pafs fucceffively over the Lens, and when the motion was flow, there appeared a perpetual fucceffion of the Colours upon the Paper: But if I fo much accelerated the motion, that the Colours by reafon of their quick fucceffion could not be diftinguifhed from one another, the appearance of the fingle Colours ceafed. There was no red, no yellow, no green, no blue, nor purple to be feen any longer, but from a confution of them all there arofe one uniform white Colour. Of the Light which now by the mixture of all the Colours appeared white, there was no part really white. One part was red, another yellow, a third green, a fourth blue, a fifth purple, and every part retains its proper Colour till it ftrike the Senforium. If the impreffions follow one another flowly, fo that they may be feverally perceived, there is made a diftinct fenfation of all the Colours one after another in a continual fucceffion.

## $[104]$

But if the impreffions follow one another fo quickly that they cannot be feverally perceived, there arifeth out of them all one common fenfation, which is neither of this Colour alone nor of that alone, but hath it felf indifferently to 'em all, and this is a fenfation of whitenefs. By the quicknefs of the fucceffions the impreffions of the feveral Colours are confounded in the Senforium, and out of that confufion arifeth a mixt fenfation. If a burning Coal be nimbly moved round in a Circle with Gyrations continuatly repeated, the whole Circle will appear like fire ; the reafon of which is, that the fenfation of the Coal in the feveral places of that Circle remains impreft on the Senforium, until the Coal return again to the fame place. And fo in a quick confecution of the Colours the impreffion of every Colour remains in the Senforium, until a revolution of all the Colours be compleated, and that firft Colour return again. The impreffions therefore of all the fucceffive Colours are at once in the Senforium, and joyntly ftir up a fenfation of them all; and fo it is manifeft by this Experiment, that the commixt impreffions of all the Colours do ftir up and beget a fenlation of white, that is, that whitenefs is compounded of all the Colours.

And if the Comb be now taken away, that all the Colours may at once pafs from the Lens to the Paper, and be there intermixed, and together reflected thence to the Spectators Eyes ; their impreffions on the Senforium being now more fubtily and perfectly commixed there, ought much more to ftir up a fenfation of whitenefs.

You may inftead of the Lens ufe two Prifins HIK and LMN, which by refracting the coloured Light the contrary way to that of the firlt refraction, may make the diverging rays converge and meet again in $G$, as you fee it reprefented in the feventh Figure. For Fig. 7. where they meet and mix they will compofe a white Light as when a Lens is ufed.

## EXPER. XI.

Let the Sun's coloured Image PT fall upon the Wall Fig. 8. of a dark Chamber, as in the third Experiment of the firft Book, and let the fame be viewed through a Prifm abc, held parallel to the Prifm A BC, by whofe refraCtion that lmage was made, and let it now appear lower than before, fuppofe in the place S over againft the red colour T. And if you go near to the Image PT, the Spectrum S will appear oblong and coloured like the Image PT ; but if you recede from it, the Colours of the Spectrum S will be contracted more and more, and at length vanifh, that Spectrum S becoming perfectly round and white ; and if you recede yet further, the Colours will emerge again, but in a contrary order. Now that Spectrum $S$ appears white in that cafe when the rays of feveral forts which converge from the feveral parts of the Image PT, to the Prifim abc , are fo refracted unequally by it, that in their paffage from the Prifin to the Eye they may diverge from one and the fame point of the Spectrum S, and fo fall afterwards upon one and the fame point in the bottom of the Eye, and there be mingled.

## [106]

And further, if the Comb be here made ufe of, by whofe Teeth the Colours at the Image P T may be fucceffively intercepted; the Spectrum $S$ when the Comb is moved flowly will be perpetually tinged with fucceffive Colours: But when by accelerating the motion of the Comb, the fucceffion of the Colours is fo quick that they cannot be feverally feen, that Spectrum S, by a confufed and mixt fenfation of them all, will appear white.

## EXPER. XII.

Fig. 9. The Sun fhining through a large Prifm ABC upon a Comb X Y, placed immediately behind the Prifm, his Light which paffed through the interftices of the Teeth fell upon a white Paper DE. The breadths of the Teeth were equal to their interftices, and feven Teeth together with their interftices took up an Inch in breadth. Now when the Paper was about two or three Inches diftant from the Comb, the Light which paffed through its feveral interftices painted fo many ranges of Colours $\mathrm{k} 1, \mathrm{mn}$, op, $\mathrm{qr}, \mathcal{O}^{\circ} c$. which were parallel to one another and contiguous, and without any mixture of white. And thefe ranges of Colours, if the Comb was moved continually up and down with a reciprocal motion, afcended and defcended in the Paper, and when the motion of the Comb was fo quick, that the Colours could not be diftinguifhed from one another, the whole Paper by their confufion and mixture in the Senforium appeared white.

Let the Comb now reft, and let the Paper be removed further from the Prifm, and the feveral ranges of Colours will be dilated and expanded into one another more and more, and by mixing their Colours will dilute one another, and at length, when the diftance of the Paper from the Comb is about a Foot, or a little more (fuppofe in the place 2 D 2 E ) they will fo far dilute one another as to become white.

With any Obftacle let all the Light be now ftopt which paffes through any one interval of the Teeth, fo that the range of Colours which comes from thence may be taken away, and you will fee the Light of the reft of the ranges to be expanded into the place of the range taken away, and there to be coloured. Let the intercepted range pafs on as before, and its Colours falling upon the Colours of the other ranges, and mixing with them, will reftore the whitenefs.

Let the Paper 2D 2 E be now very much inclined to the rays, fo that the moft refrangible rays may be more copioufly reflected than the reft, and the white Colour of the Paper through the excefs of thofe rays will be changed into blue and violet. Let the Paper be as much inclined the contrary way, that the leaft refrangible rays may be now more copioufly reflected than the reft, and by their excefs the whitenefs will be changed into yellow and red. The feveral rays therefore in that white Light do retain their colorific qualities, by which thofe of any fort, when-ever they become more copious than the reft, do by their excefs and predominance caufe their proper Colour to appear.

And by the fame way of arguing, applied to the third Experiment of this Book, it may be concluded, that the white Colour of all refracted Light at its very firft emergence, where it appears as white as before its incidence, is compounded of various Colours.

## EXPER. XIII.

In the foregoing Experiment the feveral intervals of the Teeth of the Comb do the office of fo many Prifms, every interval producing the Phænomenon of one Prifm. Whence inftead of thofe intervals ufing feveral Prifms, I try'd to compound whitenefs by mixing their Colours,and did it by ufing only three Prifms, as alfo by ufing only Fig. 10. two as follows. Let two Prifms A BC and abc, whofe refracting Angles B and b are equal, be fo placed paralle! to one another, that the refracting Angle $B$ of the one may touch the Angle $c$ at the bafe of the other, and their planes $C B$ and $c b$, at which the rays emerge, may lye in directum. Then let the Light trajected throughr them fall upon the Paper $M$, diftant about 8 or 12 Inches from the Prifms. And the Colours generated by the interior limits B and c of the two Prifims, will be mingled at PT , and there compound white. For if either Prifm be taken away, the Colours made by the other will appear in that place PT, and when the Priilm is reftored to its place again, fo that its Colours may there fall upon the Colours of the other, the mixture: of them both will refture the whitenels.

$$
[109]
$$

This Experiment fucceeds alfo, as I have tryed, when the Angle b of the lower Prifm, is a little greater than the Angle B of the upper, and between the interior Angles B and c, there intercedes fome fpace Bc, as is reprefented in the Figure, and the refracting planes BC and bc , are neither in directum, nor parallel to one another. For there is nothing more requifite to the fuccefs of this Experiment, than that the rays of all forts may be uniformly mixed upon the Paper in the place PT. If the moft refrangible rays coming from the fuperior Prifm take up all the face from $M$ to $P$, the rays of the fame fort which come from the inferior Prifm ought to begin at $P$, and take up all the reft of the fpace from thence towards N . If the leaft refrangible rays coming from the fuperior Prifin take up the face MT, the rays of the fante kind which come from the other Prifm ought to begin at $T$, and take up the remaining fpace T N. If one fort of the rays which have intermediate degrees of refrangibility, and come from the fuperior Prifm be extended through the fpace $M Q$, and another fort of thofe rays through the fpace $M R$, and a third fort of them through the face MS, the fame forts of rays coming from the lower Prifm, ought to illuminate the remaining fpaces $\mathrm{QN}, \mathrm{RN}, \mathrm{SN}$ refpectively. And the fame is to be undertood of all the other forts of rays. For thus the rays of every fort will befcattered uniformly and evenly through the whole fpace $M N$, and fo being every where mixt in the fame proportion, they muft every where produce the fame Colour. And therefore fince by this mixture they produce white in the exterior fpaces MP and TN, they: muft alfo produce white in the interior fpace PT. This

## [110]

is the reafon of the compofition by which whitenefs was produced in this Experiment, and by what other way foever I made the like compofition the refult was whitenefs.

Laftly, If with the Teeth of a Comb of a due fize, the coloured Lights of the two Prifms which fall upon the fpace PT be alternately intercepted, that fpace PT, when the motion of the Comb is flow, will always appear coloured, but by accelerating the motion of the Comb fo much, that the fucceffive Colours cannot be diftinguifhed from one another, it will appear white.

## EXPER. XIV.

Hitherto I have produced whitenefs by mixing the Colours of Prifms. If now the Colours of natural Bodies are to be mingled, let Water a little thickned with Soap be agitated to raife a froth, and after that froth has ftood a little, there will appear to one that fhall view it intently various Colours every where in the furfaces of the feveral Bubbles; but to one that fhall go fo far off that he cannot diftinguifh the Colours from one another, the whole froth will grow white with a perfect whitenefs.
EXPER. XV.

Laftly, in attempting to compound a white by mixing the coloured Powders which Painters ufe, I confidered that all coloured Powders do fupprefs and fop in them a very confiderable part of the Light by which they
they are illuminated. For they become coloured by reflecting the Light of their own Colours more copioufly, and that of all other Colours more faringly, and yet they do not reflect the Light of their own Colours fo copioufly as white Bodies do. If red Lead, for inftance, and a white Paper, be placed in the red Light of the coloured Spectrum made in a dark Chamber by the refraction of a Prifim, as is defcribed in the third Eperiment of the firt Book ; the Paper will appear more lucid than the red Lead, and therefore reflects the redmaking rays more copioufly than red Lead doth. And if they be held in the Light of any other Colour, the Light reflected by the Paper will exceed the Light reflected by the red Lead in a much greater proportion. And the like happens in Powders of other Colours. And therefore by mixing fuch Powders we are not to expect a ftrong and full white, fuch as is that of Paper, but fome dusky obfcure one, fuch as might arife from a mixture of light and darknefs, or from white and black, that is, a grey, or dun, or ruffet brown, fuch as are the Colours of a Man's Nail, of a Moufe, of Afhes, of ordinary Stones, of Mortar, of Duft and Dirt in Highways, and the like. And fuch a dark white I have often produced by mixing coloured Powders. For thus one part of red Lead, and five parts of Viride Erris, compofed a dun Colour like that of a Moufe. For thefe two Colours were feverally fo compounded of others, that in both together were a mixture of all Colours ; and there was lefs red Lead ufed than Viride Eris, becaufe of the fulnefs of its Colour. Again, one part of red Lead, and four parts of blue Bife, compofed a dun Colour verging a little to purple, and by adding to this a
certain mixture of Orpiment and Viridi Aris in a due proportion, the mixture loft its purple tincture, and became perfectly dun. But the Experiment fucceeded beft without Minium thus. To Orpiment I added by little and little a certain full bright purple, which Painters ufe until the Orpiment ceafed to be yellow, and became of a pale red. Then I diluted that red by adding a little Viride Firis, and a little more blue Bife than $V_{i-}$ ridi Eris, until it became of fuch a grey or pale white, as verged to no one of the Colours more than to another. For thus it became of a Colour equal in whitenefs to that of Afhes or of Wood newly cut, or of a Man's Skin. The Orpiment reflected more Light than did any other of the Powders, and therefore conduced more to the whitenefs of the compounded Colour than they. To affign the proportions accurately may be difficult, by reafon of the different goodnefs of Powders of the fame kind. Accordingly as the Colour of any Powder is more or lefs full and luminous, it ought to be ufed in a lefs or greater proportion.

Now confidering that thefe grey and dun Colours may be alfo produced by mixing whites and blacks, and by confequence differ from perfect whites not in Species of Colours but only in degree of luminoufnefs, it is manifeft that there is nothing more requifite to make them perfectly white than to increafe their Light fufficiently; and, on the contrary, if by increafing their Light they can be brought to perfect whitenefs, it will thence allo follow, that they are of the fame Species of Colour with the beft whites, and differ from them only in the quantity of Light. And this I tryed as follows. I took the third of the above-mentioned grey mixtures

## [113]

(that which was compounded of Orpiment, Purple, Bife and Viride Eiris) and rubbed it thickly upon the Hoor of my Chamber, where the Sun thone upon it through the opened Cafement; and by it, in the fhadow, I laid a piece of white Paper of the fame bignefs. Then going from them to the diftance of 12 or 18 Feet, fo that I could not difcern the unevennefs of the furface of the Powder, nor the little fhadows let fall from the gritty particles thereof; the Powder appeared intenfly white, fo as to tranfcend even the Paper it felf in whitenefs, efpecially if the Paper were a little fhaded from the Light of the Clouds, and then the Paper compared with the Powder appeared of fuch a grey Colour as the Powder had done before. But by laying the Paper where the Sun fhines through the Glafs of the Window, or by fhutting the Window that the Sun might fhine through the Glafs upon the Powder, and by fuch other fit means of increafing or decreafing the Lights wherewith the Powder and Paper were illuminated, the Light wherewith the Powder is illuminated may be made ftronger in fuch a due proportion than the Light wherewith the Paper is illuminated, that they fhall both appear exactly alike in whitenefs. For when I was trying this, a Friend coming to vifit me, I ftopt him at the door, and before I told him what the Colours were, or what I was doing; I askt him, Which of the two whites were the beft, and wherein they differed? And after he had at that diftance viewed them well, he anfwered, That they were both good whites, and that he could not fay which was beft, nor wherein their Colours differed. Now if you confider, that this white of the Powder in the Sun-fhine was compounded of the

Colours

## [ II 4 ]

Colours which the component Powders (Orpiment, Purple, Bife, and Viride A.ris) have in the fame Sunthine, you muft acknowledge by this Experiment, as well as by the former, that perfect whitenefs may be compounded of Colours.

From what has been faid it is alfo evident, that the whitenefs of the Sun's Light is compounded of all the Colours wherewith the feveral forts of rays whereof that Light confifts, when by their feveral refrangibilities they are feparated from one another, do tinge Paper or any other white Body whereon they fall. For thofe Colours by Prop. 2. are unchangeable, and whenever all thofe rays with thofe their Colours are mixt again, they reproduce the fame white Light as before.

## PROP. VI, PROB. II.

In a mixture of primary Colours, the quantity and quality. of each being given, to knore the Colour of the compound.

Fig. . I . With the Center O and Radius OD defcribe a Circle ADF , and diftinguifh its circumference into feven parts DE, EF, FG, GA, AB, BC, C.D, proportional to the feven mufical Tones or latervals of the eight Sounds, Sol, la, fa, fol, la, mi, fa, fol, contained in an Eight, that is, proportional to the numbers $\frac{1}{9}, \frac{1}{16}, \frac{1}{10}, \frac{1}{9}, \frac{1}{10}, \frac{1}{16}$, $\frac{1}{\%}$. Let the firft part DE reprefent a red Colour, the fecond EF orange, the third FG yellow, the fourth GH green, the fifth AB -blue, the fixth BC indico, and the feventh CD violet. And conceive that thefe are all the Colours of uncompounded Light gradually paffing

## [115]

paffing into one another, as they do when made by Prifins ; the circumference DEFGABCD, reprefenting the whole feries of Colours from one end of the Sun's coloured Image to the other, fo that from D to E be all degrees of red, at $E$ the mean Colour between red and orange, from E to F all degrees of orange, at F the mean between orange and yellow, from $F$ to $G$ all degrees of yellow, and fo on. Let $p$ be the center of gravity of the Arch DE, and $q, r, s, t, v, x$, the centers of gravity of the Arches EF, FG, GA, AB, BC and CD refpectively, and about thofe centers of gravity let Circles proportional to the number of rays of each Colour in the given mixture be defcribed; that is, the circle p proportional to the number of the red-making rays in the mixture, the Circle q proportional to the number of the orange-making rays in the mixture, and fo of the reft. Find the common center of gravity of all thofe Circles $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{v}, \mathrm{x}$. Let that center be Z ; and from the center of the Circle A DF, through $Z$ to the circumference, drawing the right line $O Y$, the place of the point Y in the circumference fhall fhew the Colour arifing from the compofition of all the Colours in the given mixture, and the line OZ fhall be proportional to the fulnefs or intenfenefs of the Colour, that is, to its diftance from whitenefs. As if Y fall in the middle between $F$ and $G$, the compounded Colour thall be the beft yellow; if Y verge from the middle towards F or G , the compounded Colour fhall accordingly be a yellow, verging towards orange or green. If $\mathbf{Z}$ fall upon the circumference the Colour fhall be intenfe and florid in the higheft degree; if it fall in the mid way between the circumference and center, it fhall be
but half fo intenfe, that is, it thall be fuch a Colour as would be made by diluting the intenfeft yellow with an equal quantity of whitenefs; and if it fall upon the center O , the Colour thall have lof all its intenfenefs, and become a white. But it is to be noted, That if the point $Z$ fall in or near the line $O D$, the main ingredients being the red and violet, the Colour compounded fhall not be any of the prifmatic Colours, but a purple, inclining to red or violet, accordingly as the point Z lieth on the fide of the line DO towards E or towards $C$, and in general the compounded violet is more bright and more fiery than the uncompounded. Alfo if only two of the primary Colours which in the Circle are oppofite to one another be mixed in an equal proportion, the point $Z$ fhall fall upon the center $O$, and yet the Co lour compounded of thofe two thall not be perfectly white, but fome faint anonymous Colour. For I could never yet by mixing only two primary Colours produce a perfect white. Whether it may be compounded of a mixture of three taken at equal diftances in the circumference I do not know, but of four or five I do not much queftion but it may. But thefe are curiofities of little or no moment to the underftanding the Phænomena of nature. For in all whites produced by nature, there ufes to be a mixture of all forts of rays, and by confequence a compofition of all Colours.

To give an inftance of this Rule; fuppofe a Colour is compounded of thefe homogeneal Colours, of violet I part, of indico I part, of blue 2 parts, of green 3 parts, of yellow 5 parts, of orange 6 parts, and of red 10 parts. Proportional to thefe parts I defcribe the Circles $x, v, t$, $s, r, q, p$ refpectively, that is, fo that if the Circle $x$
be I, the Circle v may be I, the Circle t 2, the Circle s 3, and the Circles r, q and p, 5, 6 and 10. Then I find $Z$ the common center of gravity of thefe Circles, and through $Z$ drawing the line OY , the point Y falls upon the circumference between E and F , fome thing nearer to E than to F , and thence I conclude, that the Colour compounded of thefe ingredients will be an orange, verging a little more to red than to yellow. Alfo I find that $\mathrm{O} Z$ is a little lefs than one half of OY, and thence I conclude, that this orange hath a little lefs than half the fulnefs or intenfenefs of an uncompounded orange; that is to fay, that it is fuch an orange as may be made by mixing an homogeneal orange with a good white in the proportion of the line $O Z$ to the line $Z \mathrm{Y}$, this proportion being not of the quantities of mixed orange and white powders, but of the quantities of the lights reflected from them.

This Rule I conceive accurate enough for practife, though not mathematically accurate; and the truth of it may be fufficiently proved to fenfe, by ftopping any of the Colours at the Lens in the tenth Experiment of this Book. For the reft of the Colours which are not ftopped, but pafs on to the Focus of the Lens, will there compound either accurately or very nearly fuch a Colour as by this Rule ought to refult from their. mixture.

## [118]

## PROP. VII. THEOR. V.

All the Colours in the Univerfe which are made by Light, and depend not on the power of imagination, are either the Colours of bomogeneal Ligbts, or compounded of the fe and that either accurately or very nearly, ac. cording to the Rule of the foregoing Problem.
'For it has been proved (in Prop.I. Parf. 2.) that the changes of Colours made by refractions do not arife from any new modifications of the rays impreft by thofe refractions, and by the various terminations of light and fhadow, as has been the conftant and general opinion of Philofophers. It has alfo been proved that the feveral Colours of the homogeneal rays do conftantly anfwer to their degrees of refrangibility, (Prop. I. Lab.I. and Prop.2.2 2. 2.) and that their degrees of refrangibility cannot be changed by refractions and reflexions, (Prop.2? Ther ) and by confequence that thofe their Colours are likewife immutable. It has alfo been proved directly by refracting and reflecting homogeneal Lights apart, that their Colours cannot be changed, (Prop.2.E2.2.) It has been proved alfo, that when the feveral forts of rays are mixed, and in croffing pafs through the fame fpace, they do not act on one another fo as to change each others colorifick qualities, (Exper. 10. Pnt 2.) but by mixing their actions in the Senforium beget a fenfation differing from what either would do apart, that is a fenfation of a mean Colour between their proper Colours ; and particularly when by the soncourfe and mixtures of all forts of rays, a white

## [119]

Colour is produced, the white is a mixture of all the Colours which the rays would have apart, (Prop. 5. Leq. 2. ) The rays in that mixture do not lofe or alter their feveral colorifick qualities, but by all their various kinds of actions mixt in the Senforium, beget a fenfation of a middling Colour between all their Colours which is whitenefs. For whitenefs is a mean between all Colours, having it felf indifferently to them all, fo as with equal facility to be tinged with any of them. A red Powder mixed with a little blue, or a blue with a little red, doth not prefently lofe its Colour, but a white Powder mixed with any Colour is prefently tinged with that Colour, and is equally capable of being tinged with any Colour what-ever. It has been fhewed alfo, that as the Sun's Light is mixed of all forts of rays; fo its whiteners is a mixture of the Colours of all forts of rays ; thofe rays having from the beginning their feveral colorific qualities as well as their leveral refrangibilities, and retaining them perpetually unchang'd notwithftanding any refractions or reflexions they may at any time fuffer, and that when-ever any fort of the Sun's rays is by any means (as by reflexion in Exper. 9 and 10 . Eeg. I. or by refraction as happens in all refractions ) feparated from the reft, they then manifeft their proper Colours. Thefe things have been proved, and the fum of all this amounts to the Propofition here to be proved. For if the Sun's Light is mixed of feveral forts of rays, each of which have originally their feveral refrangibilities and colorifick qualities, and notwithftanding their refractions and reflections, and their. various feparations or mixtures, keep thofe their original properties perpetually, the fame without altera-
tion ; then all the Colours in the World muft be fuch as conftantly ought to arife from the original colorific qualities of the rays whereof the Lights confift by which thofe Colours are feen. And therefore if the reafon of any Colour what-ever be required, we have nothing elfe to do then to confider how the rays in the Sun's Light have by reflexions or refractions, or other caufes been parted from one another, or mixed together; or otherwile to find out what forts of rays are in the Light by which that Colour is made, and in what proportion ; and then by the laft Problem to learn the Colour which ought to arife by mixing thofe rays (or their Colours) in that proportion. I fpeak here of Colours fo far as they arife from Light. For they appear fometimes by other caufes, as when by the power of phantafy we fee Colours in a Dream, or a mad Man fees things before him which are not there; or when we fee Fire by ftriking the Eye, or fee Colours like the Eye of a Peacock's Feather, by preffing our Eyes in either corner whilft we look the other way. Where thefe and fuch like caufes interpofe not, the Colour always anfwers to the fort or forts of the rays whereof the Light confifts, as I have conftantly found in what-ever Phænomena of Colours I have hitherto been able to examin. If fhall in the following Propofitions give inftances of this in the Phenomena of chiefeft note.

## [12I]

## PROP. VIII. PROB. III.

## By the difcovered Properties of Ligbt to explain the Colours made by Prijms.

Let ABC reprefent a Priim refracting the Light of Fig. 12. the Sun, which comes into a dark Chamber through a Hole F $\varphi$ almoft as broad as the Prifm, and let M N reprefent a white Paper on which the refracted Light is caft, and fuppofe the moft refrangible or deepeft violet making rays fall upon the fpace $\mathrm{P}_{\pi}$, the leaft refrangible or deepeft red-making rays upon the fpace T? the middle fort between the Indico-making aud bluemaking rays upon the fpace $\mathrm{Q}_{\chi}$, the middle fort of the green-making rays upon the face $\mathrm{R}_{\rho}$, the middle fort between the yellow-making and orange-making rays upon the face $S_{\sigma}$, and other intermediate forts upon intermediate fpaces. For fo the fpaces upon which the feveral forts adequately fall will by reafon of the different refrangibility of thofe forts be one lower than another. Now if the Paper MN be fo near the Prifm that the fpaces P T and $\pi$ do not interfere with one another, the diftance between them $\mathrm{T} \pi$ will be illuminated by all the forts of rays in that proportion to one another which they have at their very firft coming out of the Prifm, and confequently be white. But the faces PT and $\pi 7$ on either hand, will not be illuminated by them all, and therefore will appear coloured. And particularly at P , where the outmoft violet-making rays fall alone, the Colour muft be the deepeft violet. At Q where the violet-making and indico-making rays are mixed, it muft

## $[122]$

mult be a violet inclining much to indico. At R where the violet-making, indico-making, blue-making, and one half of the green-making rays are mixed, their $\mathrm{Co}_{0}$ lours muft (by the conftruction of the fecond Problem) compound a middle Colour between indico and blue. At $S$ where all the rays are mixed except the red-making and orange-making, their Colours ought by the fame Rule to compoind a faint blue, verging more to green than indie. And in the progrefs from S to T, this blue will grow more and more faint and dilute, till at T , where all the Colours begin to be mixed, it end in whitenefs.

So again, on the other fide of the white at $\overrightarrow{1}$, where the leat refrangibleor utmoft red-making $r$ ays are alone the Colour muft be the deepeft red. At $\sigma$ the mixture of red and orange will compound a red inclining to orange. At $\rho$ the mixture of red, orange, yellow, and one half of the green mint compound a middle Colour between orange and yellow. At $x$ the mixture of all Colours but violet and indico will compound a faint yellow, verging more to green than to orange. And this yellow will grow more faint and dilute continually in its progrefs from $\chi$ to $\pi$, where by a mixture of all forts of rays it will become white.

Thefe Colours ought to appear were the Sun's Light perfectly white: But becaufe it inclines to yellow, the excefs of the yellow-making rays whereby 'tis tinged with that Colour, being mixed with the faint blue between S and T , will draw it to a faint green. And fo the Colours in order from P to ought to be violet, indico, blue, very faint green, white, faint yellow, orange, red. Thus it is by the computation : And they that pleafe to

## [ 123 ]

view the Colours made by a Prifin will find it fo in Nature.

Thefe are the Colours on both fides the white when the Paper is held between the Prifim, and the point X where the Colours meet, and the interjacent white vanifhes. For if the Paper be held ftill farther off from the Prifm, the moft refrangible and leaft refrangible rays will be wanting in the middle of the Light, and the reft of the rays which are found there, will by mixture produce a fuller green than before. Alfo the yellow and blue will now become lefs compounded, and by confequence more intenfe than before. And this alfo agrees with experience.

And if one look through a Prifm upon a white Object encompaffed with blacknefs or darknefs, the reafon of the Colours arifing on the edges is much the fame, as will appear to one that fhall a little confider it. If a black Object be encompaffed with a white one, the Colours which appear through the Prifm are to be derived from the Light of the white one, fpreading into the Regions of the black, and therefore they appear in a contrary order to that, in which they appear when a white Object is furrounded with black. And the fame is to be underfood when an Object is viewed, whofe parts are fome of them lefs.luminous than others. For in the Borders of the more and lefs luminous parts, Colours ought always by the fame Principles to arife from the excefs of the Light of the more luminous, and to be of the fame kind as if the darker parts were black, but yet to be more faint and dilute.

## [124]

What is faid of Colours made by Prifms may be eafily applied to Colours made by the Glaffes of Telefcopes, or Microfcopes, or by the humours of the Eye. For if the Object-glafs of a Telefcope be thicker on one fide than on the other, or if one half of the Glafs, or one half of the Pupil of the Eye be covered with any opake fubftance: the Object-glafs, or that part of it or of the Eye which is not covered, may be confidered as a Wedge with crooked fides, and every Wedge of Glafs, or other pellucid fubftasce, has the effect of a Prifm in refracting the Light which paffes through it.

How the Colours in the gth and roth Experiments of the firft Part arife from the different reflexibility of Light, is evident by what was there faid. But it is obfervable in the gth Experiment, that whilft the Sun's direct Light is yellow, the excefs of the blue-making rays in the reflected Beam of Light MN, fuffices only to bring that yellow to a pale white inclining to blue, and not to tinge it with a manifeftly blue Colour. To obtain therefore a better blue, I ufed inftead of the yellow Light of the Sun the white Light of the Clouds, by varying a little the Experiment as follows.

## EXPER. XVI.

Fig. 13. Let HFG reprefent a Prifm in the open Air, and S the Eye of the Spectator, viewing the Clouds by their Light coming into the Priim at the plane fide FIGK, and reflected in it by its bafe HEIG, and thence going out through its plain fide HEFK to the Eye. And when the Prifm and Eye are conveniently placed, fo that the Angles of incidence and reflexion at the bafe
may be about 40 degrees, the Spectator will fee a Bow MN of a bluc Colour, running from one end of the bafe to the other, with the concave fide towards him, and the part of the bafe IMNG beyond this Bow will be brighter than the other part EMNH on the other fide of it. This blue Colour MN being made by nothing elfe than by reflexion of a fpecular fuperficies, feems fo odd a Phænomenon, and fo unaccountable for by the vulgar Hypothefis of Philofophers, that I could not but think it deferved to be taken notice of. Now for underftanding the reafon of it, fuppofe the plane $A B C$ to cut the plane fides and bafe of the Prifin perpendicularly. From the Eye to the line $B C$, wherein that plane cuts the bafe, draw the lines Sp and St , in the Angles Spc 50 degr. $\frac{1}{5}$, and Stc 49 degr. $\frac{1}{88}$, and the point $p$ will be the limit beyond which none of the moft refrangible rays can pafs through the bafe of the Prifm, and be refracted, whofe incidence is fuch that they may be reflected to the Eye; and the point $t$ will be the like limit for the leaft refrangible rays, that is, beyond which none of them can pals through the bafe, whofe incidence is fuch that by reflexion they may come to the Eye. And the point r taken in the middle way between p and t , will be the like limit for the meanly refrangible rays. And therefore all thear refrangible rays which fall. upon the bafe beyond t , that is, between t and B , and can come from thence to the Eye will be reflected thither : But on this fide $t$, that is, between $t$ and $c$, many of thefe rays will be tranfmitted through the bafe. And all the moft refrangible rays which fall upon the bafe beyond P , that is, between p and B , and can by xeflexion come from thence to the Eye, will be reflected thither,

## [126]

thither, but every where between and $c$, many of thefe rays will get through the bafe and be refracted; and the fame is to be underftood of the meanly refrangible rays on either fide of the point r . Whence it follows, that the bafe of the Prifm muft every where between $t$ and B, by a total reflexion of all forts of rays to the Eye, look white and bright. And every where between $p$ and $C$, by reafon of the tranfimiffion of many rays of every fort, look more pale, obfcure and dark. But at $r$, and in other places between $p$ and $t$, where all the more refrangible rays are reflected to the Eye, and many of the lefs refrangible are tranfmitted, the excefs of the moft refrangible in the reflected Light will tinge that Light with their Colour, which is violet and blue. And this happens by taking the line Cprt B any where between the ends of the Prifm H G and E I.

## PROP. IX. PROB.IV.

By the difcovered Properties of Light to explain the Colours of the Rain-bow.

This Bow never appears but where it Rains in the Sun-fhine, and may be made artificially by fouting up Water which may break aloft, and fcatter into Drops, and fall down like Rain. For the Sun thining upon thefe Drops certainly caufes the Bow to appear to a Spectator 1tanding in a due pofition to the Rain and Sun. And hence it is now agreed upon, that this Bow is made by refraction of the Sun's Light in Drops of falling Rain. This was underftood by fome of the Ancients, and of Late more fully difcovered and explained by the Famous

Antonius de Dominis Archbifhop of Spllato, in his Book De Radiis Vi fus Uo Lucis, publifhediby his Friend Bartolus at Venice, in the Year 1611 , and written above twenty Years before. For he teaches there how the interior Bow is made in round Drops of Rain by two refractions of the Sun's Light, and one reflexion between them, and the exterior by two refractions and two forts of reflexions between them in each Drop of Water, and proves his Explications by Experiments made with a Phial full of Water, and with Globes of Glafs filled with Water, and placed:in the Sun to make the Colours of the two Bows appear in them. The fame Explication Des-Cartes hath purfued in his Meteors, and mended that of the exterior Bow. But whilft they underfood not the true origin of Colours, it's neceffary to purfue it here a little further, For underfanding therefore how the Bow is made, let a Drop of Rain or any other fpherical tranfparent Body be reprefented by the Sphere BNFG, defcribed with the Center C, and Fig. Iq. Semi-diameter CN. And let AN be one of the Sun's rays incident upon it at N , and thence refracted to F , where let it either go out of the Sphere by refraction towards $V$, or be reflected to $G$; and at $G$ let it either go out by refraction to R , or be reflected to H ; and at H let it go out by refraction towards S , cutting the incident ray in $Y$; produce $A N$ and $R G$, till they meet in X , and upon AX and NE let fall the perpendiculars CD and CE, and produce CD till it fall upon the circumference at L. Parallel to the incident ray A N draw the Diameter $B Q$, and let the fine of incidence out of Air into Water be to the fine of refraction as I to R. Now if you fuppofe the point of incidence N to move

## [ 128 ]

move from the point B , continually till it come to L , the Arch QF will firft increafe and then decreafe, and fo will the Angle A XR which the rays AN and GR contain ; and the Arch QF and Angle AXR will be biggett when ND is to CN as $\kappa \overline{\bar{I}-\mathrm{RR}}$ to $\nu 3 \mathrm{RR}$, in which cafe NE will be to ND as 2 R to I. Alfo the Angle A YS which the rays A N and HS contain will firft decreare, and then increafe and grow leaft when ND is to CN as $/ \overline{\mathrm{II}-\mathrm{RR}}$ to $/ / 8 \mathrm{RR}$, in which cafe NE will be to ND as 3 R toI. And fo the Angle which the next emergent ray (that is, the emergent ray after three reflexions) contains with the incident ray AN will come to its limit when ND is to CN as $\ulcorner 1 \overline{11-\mathrm{RR}}$ to $V{ }_{15} \mathrm{RR}$, in which cafe NE will be to ND as 4 R to I , and the Angle which the ray next after that emergent, that is, the ray emergent after four reflexions, contains with the incident will come to its limit, when ND is to $\mathrm{CN} /$ as $\zeta \overline{\mathrm{II}-\mathrm{RR}}$ to $/ 24 \mathrm{RR}$, in which cale NE will be to ND as 5 R to I ; and fo on infinitely, the numbers $3,8,15,24, \mho^{c} c$. being gathered by continual addition of the terms of the arithmetical progreffion $3,5,7,9,6 c$. The truth of all this Mathematicians will eafily examine.

Now it is to be obferved, that as when the Sun comes to his Tropicks, days increafe and decreafe but a very little for a great while together ; fo when by increafing the diftance $C D_{2}$ thefe Angles come to their limits, they vary their quantity but very little for fome time together, and therefore a far greater number of the rays which fall upon all the points N in the Quadrant BL, fhall emerge in the limits of thefe Angles, then in any other inclinations. And further it is

## [129]

to be obferved, that the rays which differ in refrangibility will have different limits of their Angles of emergence, and by confequence according to their different degrees of refrangibility emerge moft copiounly in different Angles, and being feparated from one another appear each in their proper Colours. And what thofe Angles are may be eafily gathered from the foregoing Theorem by computation.

For in the leaft refrangible rays the fines $I$ and $R$ (as was found above) are 108 and 8 r , and thence by computation the greateft Angle AXR will be found 42 degrees and 2 minutes, and the leaft Angle A YS, 50 degr. and 57 minutes. And in the moft refrangible rays the fines I and R are 109 and 8 I , and thence by computation the greateft Angle AXR will be found 40 degrees and 17 minutes, and the leaft Angle AYS 54 degrees and 7 minutes.

Suppofe now that O is the Spectator's Eye, and OPa line Fig. I5. drawn parallel to the Sun's rays, and let POE, POF, $\mathrm{POG}, \mathrm{POH}$, be Angles of 40 degr. 17 min .42 degr. 2 min .50 degr. 57 min . and 54 degr. 7 min . refpectively, and thefe Angles turned about their common fide O P , fhall with their other fides $\mathrm{OE}, \mathrm{OF}$; $\mathrm{OG}, \mathrm{OH}$ dedefcribe the verges of two Rain-bows AFBE and CHDG. For if E, F, G, H, be Drops placed any where in the conical fuperficies defcribed by $\mathrm{OE}, \mathrm{OF}$, $\mathrm{OG}, \mathrm{OH}$, and be illuminated by the Sun's rays SE , $\mathrm{SF}, \mathrm{SG}, \mathrm{SH}$; the Angle SEO being equal to the Angle POE or 40 degr. I 7 min . fhall be the greateft Angle in which the moft refrangible rays can after one reflexion be refracted to the Eye, and therefore all the Drops in the line OE fhall fend the moft refrangible

## [ 130 ]

rays moit copioufly to the Eyc, and thereby ftrike the fenfes with the deepeft violet Colour in that region. And in like manner the Angle SFO being equal to the Angle P OF, or 42 deg. 2 min . fhall be the greateft in which the leaft refrangible rays after one reflexion can emerge out of the Drops, and therefore thofe rays fhall come moft copioully to the Eye from the Drops in the line OF, and ftrike the fenfes with the deepeft red Colour in that region. And by the fame argument, the rays which have intermediate degrees of refrangibility fhall come moft copioufly from Drops between E and F , and frike the fenfes with the intermediate Colours in the order which their degrees of refrangibility require, that is, in the progrefs from E to F , or from the infide of the Bow to the outfide in this order, violet, indico, blue, green, yellow, orange, red. But the violet, by the mixture of the white Light of the Clouds, will appear faint and incline to purple.

Again, the Angle $S G O$ being equal to $A n g l e O_{\text {, }}$, or $50 \mathrm{gr} .5^{1} \mathrm{~min}$. fhall be the leaft Angle in which the leaft refrangible rays can after two reflexions emerge out of the Drops, and therefore the leaft refrangible rays fhall come moft copioufly to the Eye from the Drops in the line OG, and ftrike the fenie with the deepeft red in that region. And the Angle SHO being equal to the Angle POH or 54 gr .7 min . fhall be the leatt Angle in which the moft refrangible rays after two reflections can emerge out of the Drops, and therefore thofe rays fhall come moft copiouly to the Eye from the Drops in the line OH , and ftrike the fenfes with the deepeft violet in that region. And by the fame argument, the Drops in the regions between G and H fhall frike the fenfe with the
the intermediate Colours in the order which their degrees of refrangibility require, that is, in the progrefs from $G$ to $H$, or from the infide of the Bow to the outfide in this order, red, orange, yellow, green, blue, indico, violet. And fince thele four lines OE, OF, OG. OH , may be fituated any where in the above-mentioned conical fuperficies, what is faid of the Drops and Colours in thele lines is to be underftood of the Drops and Colours every where in thofe fuperficies.

Thus fhall there be made two Bows of Colours, an interior and ftronger, by one reflexion in the Drops, and an exterior and fainter by two ; for the Light becomes fainter by every reflexion. And their Colours thall ly in a contrary order to one another, the red of both Bows bordering upon the fpace GF which is between the Bows. The breadth of the interior Bow EOF meafured crofs the Colours fhall be I degr. 45 min . and the breadth of the exterior GOH thall be 3 degr. 10 min . and the diftance between them GOF thall be 8 gr .55 min . the greateft Semi-diameter of the innermuft, that is, the Angle POF being 42 gr .2 min . and the leaftSemi-diameter of the outermoft POG, being 50 gr .57 min . Thefe are the meafures of the Bows, as they would be were the Sun but a point; for by the breadth of his Body the breadth of the Bows will be increafed and their diftance decreafed by half a degree, and fo the breadth of the interior Iris will be 2 degr. 15 min . that of the exterior 3 degr. 40 min . their diftance 8 degr. 25 min . the greateft Semi-diameter of the interior Bow 42 degr. 17 min . and the leaft of the exterior 50 degr. 42 min . And fuch are the dimenfions of the Bows in the Heavens found to be very nearly,
when their Colours appear ftrong and perfect. For once, by fuch means as I then had, I meafured the greateft Semi-diameter of the interior Iris about 42 degrees, the breadth of the red, yellow and green in that Iris 63 or 64 minutes, befides the outmolt faint red obfcured by $\%$ brightnefs of the Clouds, for which we may allow 3 or 4 minutes more. The breadth of the blue was about 40 minutes more befides the violet, which was fo much obfcured by the brightnefs of the Cloads, that I could not meafure its breadth. But fuppofing the breadth of the blue and violet together to equal that of the red, yellow and green together, the whole breadth of this Iris will be about $2 \frac{1}{4}$ degrees as above. The leaft diftance between this Iris and the exterior Iris was about 8 degrees and 30 minutes. The ex. terior Iris was broader than the interior, but fo faint, efpecially on the blue fide, that I could not meafure its breadth diftinctly. At another time when both Bows appeared more diftinct, I meafured the breadth of the interior Iris 2 gr .10 , and the breadth of the red, yellow and green in the exterior Iris, was to the breadth of the fame Colours in the interior as 3 to 2 .

This Explication of the Rain-bow is yet further confirmed by the known Experiment (made by Antonius de Dominis and Des-Cartes) of hanging up any where in the Sun-hhine a Glafs-Globe filled with Water, and viewing it in fuch a pofture that the rays which come from the Globe to the Eye may contain with the Sun's rays an Angle of either 42 or 50 degrees. For if the Angle be about 42 or 43 degrees, the Spectator (fuppofe at O) fhall fee a full red Colour in that fide of the Globe oppofed to the Sun as 'tis reprefented at F , and
if that Angle become lefs (fuppofe by depreffing the Globe to E) there will appear other Coloms, yellow, green and blue fucceffively in the fame fide of the Globe. But if the Angle be made about 50 degrees (fuppofe by lifting up the Globe to $G$ )there will appear a red Colour in that fide of the Globe towards the Sun, and if the Angle be made greater (fuppofe by lifting up the Globe to H ) the red will turn fucceffively to the other Colours. yellow, green and blue. The fame thing I have tried by letting a Globe reft, and raifing or depreffing the Eye ${ }_{\text {, }}$, or otherwife moving it to make the Angle of a juft. magnitude.

I have heard it reprefented, that if the Light of a Candle be refracted by a Prifm to the Eye ; when the blue Colour falls upon the Eye the Spectator fhall fee red in the Prifm, and when the red falls upon the Eye he fhall fee blue ; and if this were certain, the Colours of the Globe and Rain-bow ought to appear in a contrary order to what we find. But the Colours of the Candle being very faint, the miftake feems to arife from the difficulty of difcerning what Colours fall on the Eye. For, on the contrary, I have fometimes had occafion to obferve in the Sun's Light refracted by a Prifm, that the Spectator always fees that Colour in the Prifm which falls upon his Eye. And the fame I have found true alfo in Candle-Light. For when the Prifm is moved flowly from the line which is drawn directly from the Candle to the Eye, the red appears firft in the Prifm and then the blue, and therefore each of them is feen when. it falls upon the Eye. For the red paffes over the Eye firft, and then the blue.

## [134]

The Light which comes through Drops of Rain by two refractions without any reflexion, ought to appear ftrongeft at the diftance of about 26 degrees from the Sun, and to decay gradually both ways as the diftance from him increafes and decreafes. And the fame is to be underfood of Light tranfmitted through fpherical Hail-ftones. And if the Hail be a little flatted, as it often is, the Light tranfmitted may grow fo ftrong at a little lefs diftance than that of 26 degrees, as to form a Halo about the Sun or Moon ; which Halo, as often as the Hail-ftones are duly figured may be coloured, and then it muft be red within by the leaft refrangible rays, and blue without by the moft refrangible ones, efpecially if the Hail-ftones have opake Globules of Snow in their center to intercept the Light within the Halo (as Hugenius has obferved) and make the infide thereof more diffinctly defined than it would otherwife be. For fuch Hail-ftones, though fpherical, by terminating the Light by the Snow, may make a Halo red within and colourlefs without, and darker in the red than without, as Halos ufe to be. For of thofe rays which pals. clofe by the Snow the rubriform will be leaft refracted, and fo come to the Eye in the directeft lines.

The Light which paffes through a Drop of rain after two refractions, and three or more reflexions, is fcarce ftrong enough to caufe a fenfible Bow; but in thofeCylinders of Ice by which Hugenius explains the Parbelia, it may perhaps be fenfible.

## [135]

## PROP. X. PROB.V.

By the difcovered Properties of Ligbt to explain the permanent Colours of natural Bodies.

Thefe Colours arife from hence, that fome natural Bodies reflect fome forts of rays, others other forts more copioufly than the reft. Minium refleets the leaft refrangible or red-making rays moft copioufly, and thence appears red. Violets reflect the moft refrangible, moft copioufly, and thence have their Colour, and fo of other Bodies. Erecy Body reflects the rays of its own Colour more copioully than the reft, and from their excefs and predominance in the reflected Light has its Colour.

## EXPER. XVII.

For if the homogeneal Lights obtained by the folution of the Problem propofed in the 4 th Propofition of the firt Book you place Bodies of feveral Colours, you will find, as I have done, that every Body looks moft fplendid and luminous in the Light of its own Colour. Cinnaber in the homogeneal red Light is moft refplendent, in the green Light it is manifertly lefs refplendent, and in the blue Light ftill lef's. Indico in the violet blue Light is moft refplendent, and its fplendor is gradually diminifhed as it is removed thence by degrees through the green and yellow Light to the red. By a Lcek the green Light, and next that the blue and yellow which compound green, are more ftrongly reflected

## [ 136 ]

flected than the other Colours red and violet, and fo of the reft. But to make thefe Experiments the more manifeft, fuch Bodies ought to be chofen as have the fulleft and moft vivid Colours, and two of thofe Bodies are to be compared together. Thus, for inftance, if Cinnaber and ultra marine blue, or fome other full blue be held together in the homogeneal Light, they will both appear red, but the Cinnaber will appear of a ftrongly luminous and refplendent red, and the ultra marine blue of a faint oblcure and dark red; and if they be held together in the blue homogeneal Light they will both appear blue, but the ultra marine will appear of a ftrongly luminous and refplendent blue, and the Cinnaber of a faint and dark blue. Which puts it out of difpute, that the Cinnaber reflects the red Light much more copioully than the ultra marine doth, and the ultra marine reflects the blue Light much more copioufly than the Cinnaber doth. The fame Experiment may be tryed fuccesfully with red Lead and Indico, or with any other two coloured Bodies, if due allowance be made for the different ftrength or weaknefs of their Colour and Light.

And as the reafon of the Colours of natural Bodies is evident by thefe Experimenrs, to it is further confirmed and put paft difpute by the two firft Experiments of the firf Book, whereby 'twas proved in fuch Bodies that the reflected Ligh w which differ in Colours do differ alfo in degrees of refrangibility. For thence it's certain, that fome Bodies reflect the more refrangible, others the lefs refrangible rays more copioufly.

## [137]

And that this is not only a true reafon of thefe Colours, but even the only reafon may appear further from this confideration, that the Colour of homogeneal Light cannot be changed by the reflexion of natural Bodies.

For if Bodies by reflexion cannot in the leaft change the Colour of any one fort of rays, they cannot appear coloured by any other means than by reflecting thofe which either are of their own Colour, or which by mixture muft produce it.

But in trying Experiments of this kind care muft be had that the Light be fufficiently homogeneal. For if Bodies be illuminated by the ordinary prifmatick Colours, they will appear neither of their own day-light Colours, nor of the Colour of the Light caft on them, but of fome middle Colour between both, as I have found by Experience. Thus red Lead (for inftance) illuminated with the ordinary prifmatick green will not appear either red or green, but orange or yellow, or between yelloyy and green, accordingly $y_{x}$ as the green Light by which 'tis illuminated is more or lefs compounded. For becaufe red Lead appears red when illuminated with white Light, wherein all forts of rays are equally mixed, and in the green Light all forts of rays are not equally mixed, the excefs of the yellowmaking, green-making and blue-making rays in the incident green Light, will caufe thofe rays to abound fo much in the reflected Light as to draw the Colour from red towards their Colour. And becaufe the red Lead refleets the red-making rays moft copioufly in proportion to their number, and next after them the orange-making and yellow-making rays; thefe rays in

S the
the reflected Light will be more in proportion to the Light than they were in the incident green Light, and thereby will draw the reflected Light from green towards their Colour. And therefore the red Lead will appear neither red nor green, but of a Colour between both. In tranfparently coloured Liquors 'tis obfervable, that their Colour ufes to vary with their thicknefs. Thus, for inftance, a red Liquor in a conical Glafs held between the Light and the Eye, looks of a pale and dilute yellow at the bottom where 'tis thin, and a little higher where 'tis thicker grows orange, and where 'tis ftill thicker becomes red, and where 'tis thickeft the red is deepeft and darkeft. For it is to be conceived that fuch a Liquor ftops the indico-making and violetmaking rays moft eafily, the blue-making rays more difficultly, the green-making rays ftill more difficultly, and the red-making moft difficultly: And that if the thicknefs of the Liquor be only fo much as fuffices to ftop a competent number of the violet-making and in-dico-making rays, without diminifhing much the number of the reft, the reft muft (by Prop. 6. Eat.2.) compound a pale yellow. But if the Liquor be fo much thicker as to ftop alfo a great number of the blue-making rays, and fome of the green-making, the reft muft compound an orange ; and where it is fo thick as to fop alfo a great number of the green-making and a confiderable number of the yellow-making, the reft muft begin to compound a red, and this red muft grow deeper and darker as the yellow making and orange-making rays are more and more ftopt by increafing the thicknefs of the Liquor, fo that few rays befides the redmaking can get through.

## [139]

Of this kind is an Experiment lately related to me by Mr. Halley, who, in diving deep into the Sea, found in a clear Sun-fhine day, that when he was funk many, Fathoms deep into the Water, the upper part of his Hand an which the Sun thane directly through the Water looked of a red Colour, and the under part of his Hand illuminated by Light reflected from the Water below looked green. For thence it may be gathered, that the Sea-water reflects back the violet and bluemaking rays mot eafily, and lets the red-making rays pass moot freely and copioully to great depths. For thereby the Sun's direct Light at all great depths, by reafon of the predominating red-making rays, mut appear red; and the greater the depth is, the fuller and intenfer muft that red be. And at fuch depths as the violet-making rays farce penetrate unto, the bluemaking, green-making and yellow-making rays being reflected from below more copioufly than the red-making ones, mut compound a green. An ac lat 2 ,

Now if there be two Liquors of full Colours, foppore a red and a blue, and both of them fo thick as fuffices to make their Colours fufficiently full; though either Liquor be fufficiently tranfparent apart, yet


- like blat of a

Damage Rose will you not be able to fee through both together. For if only the red-making rays pals through one Liquor, and only the blue-making through the other, no rays can pars through both. This Mr. Hook tried cafually with Glafs-wedges filled with red and blue Liquors, and was furprized at the unexpected event, the reafon of it being then unknown; which makes me truft the more to his Experiment, though I have not treed it my felf. But he that would repeat it, mut take care the Liquors be of very good and full Colours.

## [140]

Now whilft Bodies become coloured by reflecting or tranfmitting this or that fort of rays more copiouly than the reft, it is to be conceived that they fop and fiffe in themfelves the rays which they do not reflect or tranfinit. For if Gold be foliated and held between your Eye and the Light, the Light look ks lue, and therefore mafy Gold lets into its Body the blue-making rays to be reflected to and fro within it till they be ftopt and fifled, whilft it reflects the yellow-making outwards, and thereby looks yellow. And much after the fame manner that Leaf-gold is yellow by reflected, and blue by tranfinitted Light, and maffy Gold is yellow in all pofitions of the Eye; there are fome Liquors as the tincture of Lignum Nepbriticum, and fome forts of Glafs which tranfmit one fort of Light moft copiounly, and reflect another fort, and thereby look of feveral Colours, according to the pofition of the Eye to the Light. But if thefe Liquors or Glaffes were fo thick and maffy that no Light could get through them, I queftion not but that they would like all other opake Bodies appear of one and the fame Colour in all pofitions of the Eye, though this I cannot yet affirm by experience. For all coloured Bodies, fo far as my Obfervation reaches, may be feen through if made fufficiently thin, and therefore are in fome meafure tranfparent, and differ only in degrees of tranfparency from tinged tranfparent Liquors; there Liquors, as well as thole Bodies, by a fufficient thicknefs becoming opake. A tranfparent Body which looks of any Colour by tranfmitted Light, may alfo look of the fame Colour by reflected Light, the Light of that Colour being retlected by the further furface of the Body, or by the Air beyond it. And then the reflected Colour will be diminifhed, and perhaps ceafe, by making

## [141]

making the Body very thick, and pitching it on the back-fide to diminifh the reflexion of its further furface, fo that the Light reflected from the tinging particles may predominate. In fuch cafes, the Colour of the reflected Light will be apt to vary from that of the Light tranfmitted. But whence it is that tinged Bodies and Liquors reflect fome fort of rays, and intrumit or tranfmit other forts, fhall be faid in the next Book. In this Propofition I content my felf to have put it paff difpute, that Bodies have fuch Properties, and thence appear coloured.

## PROP. XI. PROB. VI.

By mixing coloured Ligbts to compound a Beam of Ligbt of the Jame Colour and Nature with a Beam of the Sun's. direit Ligbt, and therein to experience the trutb of the foregoing Propofitions.
Let A B Cabc reprefent a Prifm by which the Sun's Fig.. i6: Light let into a dark Chamber through the Hole F, may be refracted towards the Lens $M N$, and paint upon it at $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$ and t , the ufual Colours violet, blue, green, yellow and red, and let the diverging rays by the refraction of this Lens converge again towards X , and there, by the mixture of all thole their Colours, compound a white according to what was fhewn above. Then let another Prifm DEGdeg, parallel to the former, be placed at X, to refract that white Light upwards towards Y. Let the refracting Angles of the Prifms, and their diftances from the Lens be equal, fo that the rays which converged from the Lens towards X, and without refraction, would there have croffed and diverged again, may by the refraction of the fecond Prifm be

## [142]

reduced into Parallelifm and diverge no more. For then thofe rays will recompofe a Beam of white Light XY. If the refracting Angle of either Prifm be the bigger, that Prifm mult be fo much the nearer to the Lens. You will know when the Prifms and the Lens are well fet together by obferving if the Beam of Light XY which comes out of the fecond Prifm be perfectly white to the very edges of the Light, and at all diftances from the Prifin continue perfectly and totally white like a Beam of the Sun's Light. For till this happens, the pofition of the Prifms and Lens to one another muft be corrected, and then if by the help of a long Beam of Wood, as is reprefented in the Figure, or by a Tube, or fome other fuch inftrument made for that purpofe, they be made faft in that fituation, you may try all the fame Experiments in this compounded Beam of Light XY, which in the foregoing Experiments have been made in the Sun's direct Light. For this compounded Beam of Light has the fame appearance, and is endowed with all the fame Properties with a direct Beam of the Sun's Light, fo far as my Obfervation reaches. And in trying Experiments in this Beam you may by ftopping any of the Colours $\mathrm{p}, \mathrm{q}, \mathrm{r}$, s and t , at the Lens, fee how the Colours produced in the Experiments are no other than thofe which the rays had at the Lens before they entered the compofition of this Beam : And by confequence that they arife not from any new modifications of the Light by refractions and reflexions, but from the various feparations and mixtures of the rays originally endowed with their colour-making qualities.

So, for inflance, having with a Lens $4 \frac{1}{9}$ Inches broad, and two Prifms on either Hand $6 \frac{1}{4}$ Feet diftant from the Lens, made fuch a Beam of compounded Light : to
examin the reafon of the Colours made by Prifins, $I$ refracted this compounded Beam of Light XY with another Prifm HIKk h, and thereby caft the ufual prifmatick Colours PQR S T upon the Paper LV placed behind. And then by ftopping any of the Colours p, q, $r, s, t$, at the Lens, I found that the fame Colour would vanifh at the Paper. So if the purple $P$ was fopped at the Lens, the purple $P$ upon the Paper would vanifh, and the reft of the Colours would remain unaltered, unlefs perhaps the blue, fo far as fome purple latent in it at the Lens might be feparated from it by the following refractions. And fo by intercepting the greens upon the Lens, the green $R$ upon the Paper would vanifh, and fo of the reft ; which plainly fhews, that as the white Beam of Light X Y was compounded of feveralLights varioufly coloured at the Lens, fo the Colours which afterwards emerge out of it by new refraEtions are no other than thofe of which its whitenefs was compounded. The refraction of the Prifm HIK kh generates the Colours PQRST upon the Paper, not by changing the colorific qualities of the rays, but by feparating the rays which had the very fame colorific qualities before they entered the compofition of the refracted Beam white of Light XY. For otherwife the rays which were of one Colour at the Lens might be of anoa ther upon the Paper, contrary to what we find.

So again, to examin the reafon of the Colours of natural Bodies, I placed fuch Bodies in the Beam of Light XY, and found that they all appeared there of thofe their own Colours which they have in Day-light, and that thofe Colours depend upon the rays which had the fame Colours at the Lens before they entred the compo-

## [ 144 ]

fition of that Beam. Thus, for inftance, Cinnaber illuminited by this Beam appears of the fame red Colour as in Day-light ; and if at the Lens you intercept the greenmaking and blue-making rays, its rednefs will become more full and lively: But if you there intercept the redmaking rays, it will not any longer appear red, but become yellow or green, or of fome other Colour, according to the forts of rays which you do not intercept. So Gold in this Light X Y appears of the fame yellow Colour as in Day-light, but by intercepting at the Lens a due quantity of the yellow-making rays it will appear white like Silver (as I have tryed) which fhews that its yellownefs arifes from the excefs of the intercepted rays tinging that whitenefs with their Colour when they are let pals. So the infufion of Lignum Nepbriticum (as I have alfo tryed) when held in this Beam of Light X Y, looks blue by the reflected part of the Light, and yellow by the tranfmitted part of it, as when'tis viewed in Daylight, but if you intercept the blue at the Lens the infufion will lofe its. reflected blue Colour, whilft its tranfmitted red remains perfect and by the lofs of fome bluemaking rays wherewith it was allayed becomes more intenfeand full. And, on the contrary, if the red and orangemaking rays be intercepted at Lens, the infufion will lofe its tranfmitted red, whilf its blue will remain and become more full and perfect. Which fhews, that the infufion does not tinge the rays with blue and yellow, but only tranfinit thofe moft copioully which were red-making before, and reflects thofe moft copioully which were blue-making before. And after the fame manner may the reafons of other Phænomena be examined, by trying them in this artificial Beam of Light X Y.

Book I. Part II. Plate I.

120.4


Fig: 5


Book I. Part II. Plate II.

so



L


$$
\text { Fig } 16 .
$$



## [I]

# THE <br> SECOND BOOK 

0 F

# O P T I C K S. 

## P A R T I.

Obfervations concerning the Reflexions, Refractions, and Colours of thin tran parent Bodies.

IT has been obferved by others that tranfparent Subftances, as Glafs, Water, Air, $\mathfrak{J} c$. when made very thin by being blown into Bubbles, or otherwife formed into Plates, do exhibit various Colours according to their various thinnefs, although at a greater thicknefs they appear very clear and colourlefs. In the former Book I forbore to treat of thefe Colours, becaufe they feemed of a more difficult confideration, and were not neceffary for eftablifhing the Properties of Light there difcourfed of. But becaufe they may conduce to further difcoveries for completing the Theory of Light, efpecially as to the conttitution of the parts of natural Bodies, on which their Colours or Tranfparency depend ; I have here fet down an ac. count of them. To render this Difcourfe fhort and diftinct, I have firft defcribed the principal of my A a

Obfervations, and then confidered and made ufe of them. The Obfervations are thefe.

## O B S. I.

Compreffing two Prifms hard together that their Sides (which by chance were a very little convex)might fomewhere touch one another: I found the place in which they touched to become abfolutely tranfparent, as if they had there been one continued piece of Glafs. For when the Light fell fo obliquely on the Air, which in other places was between them, as to be all reflected; it feemed in that place of contact to be wholly tranfmitted, infomuch that when looked upon, it appeared like a black or dark Spot, by reafon that little or no fenfible Light was reflected from thence, as from other places; and when looked through it feemed (as it were) a hole in that. Air which was formed into a thin Plate, by being compreffed between the Glaffes. And through this hole Objects that were beyond might be feen diftinctly, which could not at all be feen through other parts of the Glaffes where the Air was interjacent. Although the Glaffes were a little convex, yet this tranfparent Spot was of a confiderable breadth, which breadth feemed principally to proceed from the yielding inwards of the parts of the Glaffes, by reafon of their mutual preffure. For by preffing them very hard together it would become much broader than otherwife.

## [3]

## O B S. II.

When the Plate of Air, by turning the Prifms about their common Axis, became fo little inclined to the incident Rays, that fome of them began to be tranfmitted, there arofe in it many flender Arcs of Colours which at firft were fhaped almoft like the Conchoid, as you fee them delineated in the firft Figure. And Fig. I. by continuing the motion of the Prifms, thefe Arcs increafed and bended more and more about the faid tranfparent Spot, till they were completed into Circles or Rings incompaffing it, and afterwards continually grew more and more contracted.

Thefe Arcs at their firft appearance were of a violet and blue Colour, and between them were white Arcs of Circles, which prefently by continuing the motion of the Prifms became a little tinged in their inward Limbs with red and yellow, and to their outward Limbs the blue was adjacent. So that the order of thefe Colours from the central dark Spot, was at that time white, blue, violet ; black; red, orange, yellow, white, blue, violet, $\mathcal{J c}$. But the yellow and red were much fainter than the blue and violet.

The motion of the Prifms about their Axis being continued, thefe Colours contracted more and more,ftrinking towards the whitenefs on either fide of it, until they totally vanifhed into it. And then the Circles in thofe parts appeared black and white, without any other Colours intermixed. But by further moving the Prifms about, the Colours again emerged out of the whitenefs, the violet and blue as its inwardimb, and at its out-
ward Limb the red and yellow. So that now their order from the central Spot was white, yellow, red ; black; violet, blue, white, yellow, red, $\mathcal{G c}$. contrary to what it was before.

## O B S. III.

When the Rings or fome parts of them appeared only black and white, they were very diftinct and well defined, and the backnefs feemed as intenfe as that of the central Spot. Alfo in the borders of the Rings, where the Colours began to emerge out of the whitenefs, they were pretty diftinct, which made them vifible to a very great Multitude. I have fometimes numbred above thirty Succeffions (reckoning every black and white Ring for one Succeffion) and feert more of them, which by reafon of their fmalnefs I could not number. But in other Pofitions of the Prifms, at which the Rings appeared of many Colours; I could not diftinguifh above eight or nine of them, and the exterior of thofe were very confufed and dilute.

In thefe two Obfervations to fee the Rings diftinct, and without any other Colour than black and white, 1 found it neceffary to hold my Eye at a good diftance from them. For by approaching nearer, although in the fame inclination of my Eye to the plane of the Rings, there emerged a blueifh Colour out of the white, which by dilating it felf more and more into the black rendred the Circles lefs diftinct, and left the white a little tinged with red and yellow. I found alfa by looking through a flit or oblong hole, which was narrower than the Pupil of my Eye, and held clofe to
it parallel to the Prifms, I could fee the Circles much diftincter and vifible to a far greater number than otherwife.

## O B S. IV.

To obferve more nicely by the order of the Colours: which arofe out of the white Circles as the Rays became lefs and lefs inclined to the plate of Air; I took two Object Glaffes, the one a Plano-convex for a four-teen-foot Telefcope, and the other a large double convex for one of about fifty-foot; and upon this, laying the other with its its plane-fide downwards, I preffed them flowly together, to make the Colours fucceffively emerge in the middle of the Circles, and then flowly lifted the upper Glafs from the lower to make them fucceffively vanifh again in the fame place. The Colour, which by preffing the Glaffes together emerged laft in the middle of the other Colours, would upon its firft appearance look like a Circle of a Colour almoft uniform from the circumference to the center, and by compreffing the Glaffes ftill more, grow continually broader until a new Colour emerged in its center, and thereby it became a Ring encompaffing that new Colour. And by compreffing the Glaffes ftill more, the Diameter of this Ring would encreafe, and the breadth of its Orbit or Perimeter decreafe until another new Colour emerged in the center of the laft: And fo on until a third, a fourth, a fifth, and other following new Colours fucceffively emerged there, and became Rings encompaffing the innermoft Colour, the laft of which was the black Spot. And, on the contrary, by
lifting up the upper Glafs from the lower, the diameter of the Rings would decreafe, and the breadth of their Orbit encreafe, until their Colours reached fucceffively to the center ; and then they being of a confiderable breadth, I could more eafily difcern and diftinguifh their Species than before. And by this means I obferved their Succeffion and Quantity to be as followeth.

Next, to the pellucid central Spot made by the contact of the Glaffes fucceeded blue, white, yellow, and red, the blue was fo little in quantity that I could not difcern it in the circles made by the Prifms, nor could I well diftinguifh any violet in it, but the yellow and red were pretty copious, and feemed about as much in extent as the white, and four or five times more than the blue. The next Circuit in order of Colours immediately encompaffing thefe were violet, blue, green, yellow, and red, and thefe were all of them copious and vivid, excepting the green, which was very little in quantity, and feemed much more faint and dilute than the other Colours. Of the other four, the violet was the leaft in extent, and the blue lefs than the yellow or red. The third Circuit or Order was purple, blue, green, yellow, and red; in which the purple feemed more reddifh than the violet in the former Circuit, and the green was much more confpicuous, being as brifque and copious as any of the other Colours, except the yellow; but the red began to be a little faded, inclining very much to purple. After this fucceeded the fourth Circuit of green and red. The green was very copious and lively, inclining on the one fide to blue, and on the other fide to yellow. But in
this

## [7]

this fourth Circuit there was neither violet, blue, nor yellow, and the red was very imperfect and dirty. Alfo the fucceeding Colours became more and more imperfect and dilute, till after three or four Revolutions they ended in perfect whitenefs. Their Form, when the Glaffes were moft compreffed fo as to make the black Spot appear in the Center, is delineated in the Second Figure; where $a, b, c, d, e: f, g, b, i, k: l, m, n, a, p: q, r:$ Fig. 2。 $s, t: v, x: y$ denote the Colours reck'ned in order from the center, black, blue, white, yellow, red : violet, blue, green, yellow, red : purple, blue, green, yellow, red: green, red: greenifh blue, red: greenith blue, pale red: greenifh blue, reddith white.

## O B S. V.

To determine the interval of the Glaffes, or thicknefs of the interjacent Air, by which each Colour was produced, I meafured the Diameters of the firft fix Rings at the moft lucid part of their Orbits, and fquaring them, I found their Squares to be in the Arithmetical Progreffion of the odd Numbers, 1.3.5.7.9. I 1. And fince one of thefe Glaffes was Plain, and the other Spherical, their Intervals at thofe Rings muft be in the fame Progreffion. I meafured alfo the Diameters of the dark or faint Rings between the more lucid Colours, and found their Squares to be in the Arithmetical Progreffion of the even Numbers, 2.4.6.8.10. 12. And it being very nice and difficult to take thefe meafures exactly; I repeated them at divers times at divers parts of the Glaffes, that by their Agreement I might be confirmed in them. And the fame Method I ufed in deter-
determining fome others of the following Obfervations.

## O B S. V I.

The Diameter of the fixth Ring at the moft lucid part of its Orbit was $\frac{58}{100}$ parts of an Inch, and the Diameter of the Sphere on which the double convex Ob-ject-Glafs was ground was about 102 Feet, and hence 1 gathered the thicknefs of the Air or Aereal Interval of the Glaffes at that Ring. But fome time after, fufpecting that in making this Obfervation I had not determined the Diameter of the Sphere with fufficient accuratenefs, and being uncertain whether the Planoconvex Glafs was truly plain, and not fomething concave or convex on that fide which I accounted plain; and whether I had not preffed the Glaffes together, as I often did, to make them touch (for by preffing fuch Glaffes together their parts eafily yield inwards, and the Rings thereby become fenfibly broader than they would be, did the Glaffes keep their Figures) I repeated the Experiment, and found the Diameter of the fixth lucid Ring about $\frac{55}{100}$ parts of an Inch. I repeated the Experiment alfo with fuch an Object-Glafs of another Telefcope as I had at hand. This was a double convex ground on both fides to one and the fame Sphere, and its Focus was diftant from it $83 \frac{2}{3}$ Inches. And thence, if the Sines of incidence and refraction of the bright yellow Light be affumed in proportion as II to 17, the Diameter of the Sphere to which the Glafs was figured will by computation be found 182 Inches. This Glafs I laid upon a flat one, fo that the black

## [9]

black Spot appeared in the middle of the Rings of Colours without any other preffure than that of the weight of the Glafs. And now meafuring the Diameter of the fifth dark Circle as accurately as I could, I found it the fifth part of an Inch precifely. This meafure was taken with the points of a pair of Compafles on the upper furface on the upper Glafs, and my Eye was about eight or nine Inches diftance from the Glafs, almoft perpendicularly over it, and the Glafs was $\frac{1}{6}$ of an Inch thick, and thence it is ealy to collect that the true Diameter of the Ring between the Glaffes was greater than its meafured Diameter above the Glaffes in the proportion of 80 to 79 or thereabouts, and by confequence equal to $\frac{16}{1 / 2}$ parts of an Inch, and its true Semi-diameter equal to $\frac{8}{19}$ parts. Now as the Diameter of the Sphere ( 182 Inches) is to the Semi-diameter of this fifth dark Ring ( $\frac{8}{2 p}$ parts of an Inch) fo is this Semi-diameter to the thicknefs of the Air at this fifth dark Ring; which is therefore $\frac{3 z}{5\left(2 z^{2} 5^{2}\right.}$ or $\frac{100}{1774 p^{4} 4}$ parts of an Inch, and the fifth part thereof; viz: the $\frac{1}{81729}$ th part of an Inch, is the thicknefs of the Air at the firft of thefe dark Rings.

The fame Experiment I repeated with another double convex Object-glafs ground on both fides to one and the fame Sphere. Its Focus was diftant from it $168 \frac{1}{2}$ Inches, and therefore the Diameter of that Sphere was 184 Inches. This Glafs being laid upon the fame plain Glafs, the Diameter of the fifth of the dark Rings, when the black Spot in their center appeared plainly without preffing the Glaffes, was by the meafure of the Compaffes upon the upper Glafs $\frac{10}{60}$ parts of an Inch, and by confequence between the Glaffes it was $\frac{1232}{6002}$. For the upper Glafs was $\frac{\frac{1}{8}}{}$ of an Inch thick, B b

## [ 10 ]

and my Eye was diftant from it 8 Inches. And a third proportional to half this from the Diameter of the Sphere is $\frac{8.5}{8 s_{5} 0}$ parts of an Inch. This is therefore the thicknefs of the Air at this Ring, and a fifth part thereof, viz. the $\frac{1}{\text { arsso }}$ th pairt of an Inch is the thicknefs thereof at the firft of the Rings as above.

I tryed the fame thing by laying thefe Object-Glaffes upon flat pieces of a broken Looking-glafs, and found the fame meafures of the Rings: Which makes me rely upon them till they can be determined more accurately by Glaffes ground to larger Spheres, though in fuch Glaffes greater care muft be taken of a true plain.

Thefe Dimenfions were taken when my Eye was placed almoft perpendicularly over the Glaffes, being about an Inch, or an Inch and a quarter, diftant from the incident rays, and eight Inches diftant from the Glafs ; fo that the rays were inclined to the Glafs in an Angle of about 4 degrees. Whence by the following Obfervation you will underftand, that had the rays been perpendicular to the Glaffes, the thicknefs of the Air at thefe Rings would have been lefs in the proportion of the Radius to the fecant of 4 degrees, that is of $10000^{103}$ Let the thickneffes found be therefore diminifhed in this proportion, and they will become $\frac{1}{\operatorname{sig} 9{ }^{2}}$ and $\frac{1}{2003}$, or (to ufe the neareft round number) the gime part of an Inch. This is the thicknefs of the Air at the darkeft part of the firft dark Ring made by perpendicular rays, and half this thicknefs multiplied by the progreffion, $1,3,5,7,9,11, \mathfrak{U}^{c} c$. gives the thicknefles of the Air at the moft luminous parts of all the brighteft
 means

## [ II ]

means $\frac{2}{178000} \frac{a}{173000}, \frac{6}{178000}, \mathcal{G} c$. being its thickneffes at the darkeft parts of all the dark ones.

O B S. VII.

The Rings were leaft when my Eye was placed perpendicularly over the Glaffes in the Axis of the Rings : And when I viewed them obliquely they became bigger, continually fwelling as I removed my Eye further from the Axis. And partly by meafuring the Diameter of the fame Circle at feveral obliquities of my Eye, partly by other means, as alfo by making ufe of the two Prifms for very great obliquities. I found its Diameter, and confequently the thicknefs of the Air at its perimeter in all thofe obliquities to be very nearly in the proportions expreffed in this Table.

| Angle of Incidence on the Air. | Angle of Refraction into the Air. | Diameter of the Ring. | Thicknefs of the Air. |
| :---: | :---: | :---: | :---: |
| deg. min. | ThJ ourll 21 | $\square 5$ | 305 |
| 0000 | 0000 | 10 | 10 |
| 0626 | 1000 | $10 . \frac{1}{13}$ | 2110 $10 \frac{2}{13}$ |
| 1245 | 2000 | $10 \frac{1}{3}$ | $10 \frac{2}{3}$ |
| 1849 | 30100 | . $210 \frac{3}{4}$ | I $1 \frac{1}{2}$ |
| 2430 | 4000 | 115 | 13 |
| 2937 | 5000 | $12 \frac{1}{2}$ | $15 \frac{1}{2}$ |
| $335^{8}$ | 6000 | 1514 | 20 |
| $35 \quad 47$ | 6500 | $15^{\frac{1}{4}}$ | + $23 \frac{1}{4}$ |
| 3719 | 7000 | $16 \frac{4}{5}$ | $28 \frac{1}{4}$ |
| 3833 | 7500 | $19 \frac{1}{4}$ | 37 |
| $39 \quad 27$ | $80 \quad 00$ | $22 \frac{6}{7}$ | $52 \frac{1}{4}$ |
| 4000 | 8500 | 29 | $84 \frac{1}{10}$ |
| 4011 | 9000 | 35 | $122 \frac{1}{2}$ |

## [ 12 ]

- In the two firf Columns are expreffed the obliquities of the incident and emergent rays to the plate of the Air, that is, their angles of incidence and refraction. In the third Column the Diameter of any coloured Ring at thofe obliquities is expreffed in parts, of which ten conftitute that Diameter when the rays are perpendicular. And in the fourth Column the thicknefs of the Air at the circumference of that Ring is expreffed in parts of which alfo ten conflitute thicknels when the rays are perpendicular.

And from thefe meafures I feem to gather this Rule : That the thicknefs of the Air is proportional to the fecant of an angle, whofe Sine is a certain mean proportional between the Sines of incidence and refraction. And that mean proportional, fo far as by thefe meafures I can determine it, is the firft of an hundred and fix arithmetical mean proportionals between thofe Sines counted from the Sine of refraction when the refraCtion is made out of the Glafs into the plate of Air, or from the Sine of incidence when the refraction is made out of the plate of Air into the Glafs.

## O B S. VIII.

The dark Spot in the middle of the Rings increafed alfo by the obliquation of the Eye, although almoft infenfibly. But if inftead of the Object-Glaffes the Prifms were made ufe of, its increafe was more manifeft when viewed fo obliquely that no Colours appeared about it. It was leaft when the rays were incident moft obliquely on the interjacent Air, and as the obliquity decreafed it increafed more and more until the coloured Rings ap-

## [13]

peared, and then decreafed again, but not fo much as it increafed before. And hence it is evident, that the tranfparency was not only at the abfolute contact of the Glaffes, but alfo where they had fome little interval. I have fometimes obferved the Diameter of that Spot to be between half and two fifth parts of the Diameter of the exterior circumference of the red in the firft circuit or revolution of Colours when viewed almoft perpendicularly; whereas when viewed obliquely it hath wholly vanifhed and become opake and white like the other parts of the Glafs; whence it may be collected that the Glaffes did then fcarcely, or not at all, touch one another, and that their interval at the perimeter of that Spot when viewed perpendicularly was about a fifth or fixth part of their interval at the circumference of the faid red.

## O B S. IX.

By looking through the two contiguous ObjectGlaffes, I found that the interjacent Air exhibited Rings of Colours, as well by tranfinitting Light as by reflecting it. The central Spot was now white, and from it the order of the Colours were yellowifh red; black; violet, blue, white, yellow, red ; violet, blue, green, yellow, red, $\mathcal{J} c$. But thefe Colours were very faint and dilute unlefs when the Light was trajected very obliquely through the Glaffes: For by that means they became pretty vivid. Only the firft yellowifh red, like the blue in the fourth Obfervation, was fo little and faint as fcarcely to be difcerned. Comparing the coloured Rings made by reflexion, with there made by tranf:

## [14]

 tranfmiffion of the Light ; I found that white was oppofite to black, red to blue, yellow to violet, and green to a compound of red and violet. That is, thofe parts of the Glafs were black when looked through, which when looked upon appeared white, and on the contrary. And fo thofe which in one cafe exhibited blue, did in the other cafe exhibit red. And the like of theFig. 3. other Colours. The manner you have reprefented in the third Figure, where AB, CD, are the furfaces of the Glaffes contiguous at E , and the black lines between them are their diftances in arithmetical progreffion, and the Colours written above are feen by reflected Light, and thofe below by Light tranfmitted.

## O B S. X.

Wetting the Object-Glaffes a little at their edges, the water crept in flowly between them, and the Circles thereby became lefs and the Colours more faint: Infomuch that as the water crept along one half of them at which it firft arrived would appear broken off from the other half, and contracted into a lefs room. By meafuring them I found the proportions of their Diameters to the Diameters of the like Circles made by Air to be about feven to eight, and confequently the intervals of the Glaffes at like Circles, caufed by thofe two mediums Water and Air, are as about three to four. Perhaps it may be a general Rule, That if any other medium more or lefs denfe than water be compreffed between the Glaffes, their intervals at the Rings caufed thereby will be to their intervals caufed by interjacent

## [ 15 ]

Air, as the Sines are which meafure the refraction made out of that medium into Air.

## O B S. XI.

When the water was between the Glaffes, if I preffed the upper Glafs varioufly at its edges to make the Rings move nimbly from one place to another, a little white Spot would immediately follow the center of them, which upon creeping in of the ambient water into that place would prefently vanifh. Its appearance was fuch as interjacent Air would have caufed, and it exhibited the fame Colours. But it was not Air, for where any bubbles of Air were in the water they would not vanifh. The reflexion muft have rather been caufed. by a fubtiler medium, which could recede through the Glaffes at the creeping in of the water.

## O B S. XII.

Thefe Obfervations were made in the open Air. But further to examin the effects of coloured Light falling, on the Glaffes, I darkened the Room, and viewed them by reflexion of the Colours of a Prifm caft on a Sheet of white Paper, my Eye being fo placed that I could. fee the coloured Paper by reflexion in the Glaffes, as in a Looking-glafs. And by this means the Rings became diftincter and vifible to a far greater number than in the open Air. I have fometimes feen more than twenty of them, whereas in the open Air I could not difcern above eight or nine.
O.BS,

## O B S. XIII.

Appointing an affiftant to move the Prifm to and fro about its Axis, that all the Colours might fucceffively fall on that part of the Paper which I faw by reflexion from that part of the Glaffes, where the Circles appeared, fo that all the Colours might be fucceffively reflected from the Circles to my Eye whilft I held it immovable, I found the Circles which the red Light made to be manifeftly bigger than thofe which were made by the blue and violet. And it was very pleafant to fee them gradually fwell or contract according as the Colour of the Light was changed. The interval of the Glaffes at any of the Rings when they were made by the utmoft red Light, was to their interval at the fame Ring when made bythe utmoft violet, greater than as 3 to 2 , and lefs than as 13 to 8 , by the moft of my Obfervations it was as 14 to 9: And this proportion feemed very nearly the fame in all obliquities of my Eye; unlefs when two Prifms were made ufe of inftead of the Object-Glaffes. For then at a certain great obliquity of my Eye, the Rings made by the feveral Colours feemed equal, and at a greater obliquity thofe made by the violet would be greater than the fame Rings made by the red. The refraction of the Prifm in this cafe caufing the moft refrangible rays to fall more obliquely on that plate of the Air than the leaft refrangible ones. Thus the Experiment fucceeded in the coloured Light, which was fufficiently ftrong and copious to make the Rings fenfible. And thence it may be gathered, that if the moft refrangible and leaft refran-

## $[17]$

refrangible rays had been copious enough to make the Rings fenfible without the mixture of other rays, the proportion which here was 14 to 9 would have been a little greater, fuppofe $14 \div$ or 14 ; to 9 .

## O B S. XIV.

Whilft the Prifm was turn'd about its Axis with an uniform motion, to make all the feveral Colours fall fucceffively upon the Object-Glaffes, and thereby to make the Rings contract and dilate: The contraction or dilation of each Ring thus made by the variation of its Colour was fwiftett in the red, and floweft in the violet, and in the intermediate Colours it had intermediate degrees of celerity. Comparing the quantity of contraction and dilation made by all the degrees of each Colour, I found that it was greateft in the red; lefs in the yellow, ftill lefs in the blue, and leaft in the violet. And to make as juft an eftimation as I could of the proportions of their contractions or dilations, I obferved that the whole contraction or dilation of the Diameter of any Ring made by all the degrees of red, was to that of the Diameter of the fame Ring made by all the degrees of violet, as about four to three, or five to four, and that when the Light was of the middle Colour between yellow and green, the Diameter of the Ring was very nearly an arithmetical mean between the greateft Diameter of the fame Ring made by the outmoft red, and the leaft Diameter thereof made by the outmoft violet: Contrary to what happens in the Colours of the oblong Spectrum made by the refraction of a Prifm, where the red is moft contracted, the violet moft expanded, and
in the midft of all the Colours is the confine of green and blue. And hence I feem to collect that the thick neffes of the Air between the Glaffes there, where the Ring is fucceffively made by the limits of the five principal Colours (red, yellow, green, blue, violet) in order (that is, by the extreme red, by the limit of red and yellow in the middle of the orange, by the limit of yellow and green, by the limit of green and blue, by the limit of blue and violet in the middle of the indigo, and by the extreme violet ) are to one another very nearly as the fix lengths of a Chord which found the notes in a fixth Major, fol, la, mi, fa, fol, la. But it agrees fomething better with the Obfervation to fay, that the thickneffes of the Air between the Glaffes there, where the Rings are fucceffively made by the limits of the feven Colours, red, orange, yellow, green, blue, indigo, violet in order, are to one another as the Cuberoots of the Squares of the eight lengths of a Chord, which found the notes in an eighth, fol, la, fo, fol, la, $m i, f a, f o l$; that is, as the Cube-roots of the Squares of the Numbers, $1,{ }_{9} 9 \frac{5}{6}, \frac{3}{4} 9, \frac{2}{3}, \frac{3}{5}, \frac{9}{16}, \frac{1}{2}$.

## O B S. XV.

Thefe Rings were not of various Colours like thofe made in the open Air, but appeared all over of that prifmatique Colour only with which they were illuminated. And by projecting the prifmatique Colours immediately upon the Glaffes, I found that the Light which fell on the dark Spaces which were between the coloured Rings, was tranfmitted through the Glaffes without any variation of Colour. For on a white
white Paper placed behind, it would paint Rings of the fame Colour with thofe which were reflected, and of the bignefs of their immediate Spaces. And from thence the origin of thefe Rings is manifeft; namely, That the Air between the Glaffes, according to its vatious thicknefs, is difpofed in fome places to reflect, and in others to tranfmit the Light of any one Colour (as you may fee reprefented in the fourth Figure) Fig. 4. and in the fame place to reflect that of one Colour where it tranfinits that of another.

## O B S. XVI.

The Squares of the Diameters of thefe Rings made by any prifmatique Colour were in arithmetical progreffion as in the fifth Oblervation. And the Diameter of the fixth Circle, when made by the citrine yellow, and viewed almoft perpendicularly, was about $\frac{58}{100}$ parts of an Inch, or a little lefs, agreeable to the fixth Ob fervation.

The precedent Obfervations were made with a rarer thin medium, terminated by a denfer, fuch as was Air or Water compreffed between two Glaffes. In thofe that follow are fet down the appearances of a denfer medium thin'd within a rarer, fuch as are plates of Mufcovy-glafs, Bubbles of Water, and fome other thin fubftances terminated on all fides with Air.

Dd 2

## O B S. XVII.

If a Bubble be blown with Water firft made tenacious by diffolving a little Soap in it, 'tis a common Obfervation, that after a while it will appear tinged with a great variety of Colours. To defend thefe Bubbles from being agitated by the external Air (whereby their Colours are irregularly moved one among another, fo that no accurate Obfervation can be made of them, ) as foon as I had blown any of them I covered it with a clear Glafs, and by that means its Colours emerged in a very regular order, like fo many concentrick Rings incompaffing the top of the Bubble. And as the Bubble grew thinner by the continual fubfiding of the Water, thefe Rings dilated flowly and over-fpread the whole Bubble, defcending in order to the bottom of it, where they vanifhed fucceffively. In the mean while, after all the Colours were emerged at the top, there grew in the Center of the Rings a fmall round black Spot, like that in the firft Obfervation, which continually dilated it felf till it became fometimes more than $\frac{x}{2}$ or $\frac{3}{4}$ of an Inch in breadth before the Bubble broke. At firft I thought there had been no Light reflected from the Water in that place, but obferving it more curioufly, I faw within it feveral fmaller round Spots, which appeared much blacker and darker than the reft, whereby I knew that there was fome reflexion at the other places which were not fo dark as thofe Spots. And by further tryal I fouud that I could fee the Images of fome things (as of a Candle or the Sun) very faintly reflected, not only from the great black Spot, but
alfo from the little darker Spots which were within it.

Befides the aforefaid coloured Rings there would often appear fimall Spots of Colours, afcending and defcending up and down the fides of the Bubble, by reafon of fome inequalities in the fubfiding of the Water. And fometimes fmall black Spots generated at the fides would afcend up to the larger black Spot at the top of the Bubble, and unite with it.

## O B S. XVIII.

Becaufe the Colours of thefe Bubbles were more extended and lively than thofe of the Air thin'd between two Glaffes, and fo more eafy to to diftinguifhed, I fhall here give you a further defcription of their order, as they were obferved in viewing them by reflexion of the Skies when of a white Colour, whilft a black Subftance was placed behind the Bubble. And they were thefe, red, blue; red, blue; red, blue; red, green ; red, yellow, green, blue, purple; red, yellow, green, blue, violet; red, yellow, white, blue, black.

The three firt Succeffions of red and blue were very dilute and dirty, efpecially the firt, where the red feemed in a manner to be white. Among thefe there was fcarce any other Colour fenfible befides red and blue, only the blues (and principally the fecond blue) inclined a little to green.

The fourth red was alfo dilute and dirty, but not fo much as the former three; after that fucceeded little or no yellow, but a copious green, which at firft inclined a little to yellow, and then became a pretty brifque and

## [22]

and good willow green, and afterwards changed to a bluifh Colour; but there fucceeded neither blue ror violet.

The fifth red at firft inclined very much to purple, and afterwards became more bright and brifque, but yet not very pure. This was fucceeded with a very bright and intenfe yellow, which was but little in quantity, and foon changed to green: But that green was copious and fomething more pure, deep and lively, than the former green. After that followed an excellent blue of a bright sky-colour, and then a purple, which was lefs in quantity than the blue, and much inclined to red.

The fixth Red was at firt of a very fair and lively Scarlet, and foon after of a brighter Colour, being very pure and brifque, and the beft of all the reds. Then after a lively orange followed an intenfe bright and copious yellow, which was alfo the beft of all the yellows, and this changed firt to a greenifh yellow, and then to a greenifh blue; but the green between the yellow and the blue, was very little and dilute, feeming rather a greenifh white than a green. The blue which fucceeded became very good, and of a very fair bright sky-colour, but yet fomething inferior to the former blue ; and the violet was intenfe and deep with little or no rednefs in it. And lefs in quantity than the blue.

In the laft red appeared a tincture of fcarlet next to violet, which foon changed to a brighter Colour, inclining to an orange; and the yellow which followed was at firft pretty good and lively, but afterwards it grew more dilute, until by degrees it ended in perfect white-

## [23]

whitenefs. And this whitenefs, if the Water was very tenacious and well-tempered, would flowly fpread and dilate it felf over the greater part of the Bubble; continually growing paler at the top, where at length it would crack in many places, and thofe cracks, as they dilated, would appear of a pretty good, but yet obfcure and dark sky-colour; the white between the blue Spots diminifhing, until it refembled the threds of an irregular Net-work, and foon after vanifhed and left all the upper part of the Bubble of the faid dark blue Colour. And this Colour, after the aforefaid manner, dilated it felf downwards, until fometimes it hath overfpread the whole Bubble. In the mean while at the top, which was of a darker blue than the bottom, and appeared alfo full of many round blue Spots, fomething darker than the reft, there would emerge one or more very black Spots, and within thofe other Spots of an intenfer blacknefs, which I mentioned in the former Obfervation; and thefe continually dilated themfelves until the Bubble broke.

If the Water was not very tenacious the blackSpots would break forth in the white, without any fenfible intervention of the blue. And fometimes they would break forth within the precedent yellow, or red, or perhaps within the blue of the fecond order, before the intermediate Colours had time to difplay themfelves.

By this defcription you may perceive how great an affinity thefe Colours have with thofe of Air defcribed in the fourth Obfervation, although fet down in a contrary order, by reafon that they begin to appear when the Bubble is thickeft, and are moft conveniently

## [24]

niently reckoned from the lowett and thickeft part of the Bubble upwards.

## O B S. XIX.

Viewing in feveral oblique pofitions of my Eye the Rings of Colours emerging on the top of the Bubble, I found that they were fenfibly dilated by increafing the obliquity, but yet not fo much by far as thofe made by thin'd Air in the feventh Obfervation. For there they were dilated fo much as, when viewed moft obliquely, to arrive at a part of the plate more than twelve times thicker than that where they appeared when viewed perpendicularly; whereas in this cafe the thicknefs of the Water, at which they arrived when viewed moft obliquely, was to that thicknefs which exhibited them by perpendicular rays, fomething lefs than as 8 to 5 . By the beft of my Obfervations it was between 15 and $15 \frac{1}{2}$ to 10 , an increafe about 24 times lefs than in the other cafe.
Sometimes the Bubble would become of an uniform thicknel's all over, except at the top of it near the black Spot, as I knew, becaufe it would exhibit the fame appearance of Colours in all pofitions of the Eye. And then the Colours which were feen at its apparent circumference by the obliqueft rays, would be different from thofe that were feen in other places, by rays lefs oblique to it. And divers Spectators might fee the fame part of it of differing Colours, by viewing it at very differing obliquities. Now obferving how much the Colours at the lame places of the Bubble, or at divers places of equal thicknefs, were varied by the feveral

## [25]

Several obliquities of the rays; by the affiftance of the 4 th, 14 th, 16 th and 18 th Obfervations, as they are hereafter explained, I collect the thicknefs of the Water requifite to exhibit any one and the fame Colour, at feveral obliquities, to be very nearly in the proportion expreffed in this Table.


In the two frt Columns are expreffed the obliquities of the rays to the fuperficies of the Water, that is, their Angles of incidence and refraction. Where I fuppofe that the Sines which meafure them are in round numbers as 3 to 4 , though probably the diffolution of Soap in the Water, may a little alter its refractive Vertue. In the third Column the thickness of the Bubble, at which any one Colour is exhibited in thofe feveral obliquities, is expreft in parts, of which ten conftitute thicknefs when the rays are perpen-
 ${ }^{4 p}$ have Sometimes observed, that the Colours which arife on polifhed Steel by heating it, or on Bell-metal, and come other metalline fubftances, when melted and Es es, poured Es es, poured
lour at perviral - Pliquities of the rus is proportional to y" recant of an anal
arithmetical mean proportionals Brethren the sins of incidence of refraction
count i from the Cusp r sine, that is, from
the fine of refraction when incidence

## [26]

poured on the ground, where they may cool in the open Air, have, like the Colours of Water-bubbles, been a little changed by wiewing them at divers obliquities, and particularly that a deep blue, or violet, when viewed very obliquely, hath been changed to a deep red. But the changes of thefe Colours are not fo great and fenfible as of thofe made by Water. For the Scoria or vitrified part of the Metal, which moft Metals when heated or melted do continually protrude, and fend out to their furface, and which by covering the Metalls in form of a thin glafly skin, caufes thefe Colours, is much denfer than Water ; and I find that the change made by the obliquation of the Eye is leaft in Colouis of the denfeft thin fubftances.

## OBS. XX.

As in the ninth Obfervation, fo here, the Bubble, by tranfmitted Light, appeared of a contrary Colour to that which it exhibited by reflexion. Thus when the Bubble being looked on by the Light of the Clouds reflected from it, feemed red at its apparent circumference, if the Clouds at the fame time, or immediately after, were viewed through it, the Colour at its circumference would be blue. And, on the contrary, when by reflected Light it appeared blue, it would appear red by tranfmitted Light.

## OBS. XXI.

By wetting very thin plates of Mufcovy-glafs, whofe thinnefs made the like Colours appear, the Colours
became more faint and languid ; efpecially by wetting the plates on that fide oppofite to the Eye: But I could not perceive any variation of their fpecies. So then the thicknefs of a plate requifite to produce any Ca lour, depends only on the denfity of the plate, and not on that of the ambient medium: And hence, by the 1oth and 16th Obfervations, may be known the thicknefs which Bubbles of Water, or Plates of Mufcovyglafs, or other fubftances, have at any Colour produced by them.

## O B S. XXII.

A thin tranfparent Body, which is denfer than its ambient medium, exhibits more brifque and vivid Colours than that which is fo much rarer ; as I have particularly obferved in the Air and Glafs. For blowing Glafs very thin at a Lamp-furnace, thofe plates incompaffed with Air did exhibit Colours much more vivid than thofe of Air made thin between two Glaffes.

O B S. XXIII.
Comparing the quantity of Light reflected from the feveral Rings, I found that it was moft copious from the firft or inmoft, and in the exterior Rings be came gradually lefs and lefs. Alfo the whitenefs of the firt Ring was ftronger than that reflected from thofe parts of the thinner medium which were without the Rings; as I could manifeftly perceive by viewing at a dittance the Rings made by the two Object-

Ee ${ }^{2}$
Glaffes,

Glaffes; or by comparing two Bubbles of Water blown at diftant times, in the firft of which the whitenefs appeared, which fucceeded all the Colours, and in the other, the whitenefs which preceded them all.

## OBS. XXIV.

When the two Object-Glaffes were lay'd upon one another, fo as to make the Rings of the Colours appear, though with my naked Eye I could not difcern. above 8 or 9 of thofe Rings, yet by viewing them through a Prifm I have feen a far greater multitude, infomuch that I could number more than forty, befides many others, that were fo very fmall and clofe together, that I could not keep my Eye fteddy on them feverally fo as to number them, but by their extent I have fometimes eftimated them to be more than a hundred. And I believe the Experiment may be improved to the difcovery of far greater numbers. For they feem to be really unlimited, though vifible only fo far as they can be feparated by the refraction, as I fhall hereafter explain.

But it was but one fide of thefe Rings, namely, that towards which the refraction was made, which by that refraction was rendered diftinct, and the other fide became more confufed than when viewed by the naked Eye, infomuch that there I could not difcern above one or two, and fometimes none of thofe Rings, of which I could difcern eight or nine with my naked Eye. And their Segments or Arcs, which on the other fide appeared fo numerous, for the moft part

## [29]

exceeded not the third part of a Circle. If the Refraction was very great, or the Prifm very diftant from the Object-Glaffes, the middle part of thole Arcs became alfo confused, fo as to difappear and conftitute an even whiteness, whilft on either fide their ends, as aldo the whole Arcs furtheft from the center, became diftincter than before, appearing in the form as you fee them defigned in the fifth Figure.

The Arcs, where they feemed diftincteft, were only white and black fucceffively, without any other Colours intermixed. But in other places there appeared Colours, whole order was inverted by the refraction in fuch manner, that if I firft held the Prifm very near the Object-Glaffes, and then gradually removed it further off towards my Eye, the Colours of the ad, 3 d , $4^{\text {th }}$, and following Rings Shrunk towards the white that emerged between them, until they wholly vanifhed into it at the middle of the Arcs, and afterwards emerged again in a contrary order. But at the ends of the Arcs they retained their order unchanged.

I have fometimes fo lay'd one Object-Glafs uponthe other, that to the naked Eye they have all over feemed uniformly white, without the leaft appearance of any of the coloured Rings; and yet by viewing them through a Prifm, great multitudes of thole Rings. have difcovered themfelves. And in like manner plates of Mufcovy-glafs, and Bubbles of Glass blown at a Lamp-furnace, which were not fo thin as to exhibit any Colours to the naked Eye, have through the Prim: exhibited a great variety of them ranged irregularly up and down in the form of waves. And fo Bubbles

Bubbles of Water, before they began to exhibit their Colours to the naked Eye of a By-ftander, have appeared through a Prifm, girded about with many parallel and horizontal Rings; to produce which effect, it was neceffary to hold the Prifm parallel, or very nearly parallel to the Horizon, and to difpofe it fo that the rays might be refracted upwards.

THE

## [31]

## THE

## SECOND BOOK

O F
O P TIC K S.

## PARTII.

Remarks upon the foregaing Obfervations.

HAving given my Obfervations of thefe Colours, before I make ufe of them to unfold the Caufes of the Colours of natural Bodies, it is convenient that by the fimpleft of them, fuch as are the $2 \mathrm{~d}, 3 \mathrm{~d}, 4$ th, 9 th, 12 th, 18 th, 20 th, and 24 th, I fift explain the more expounded. And fixt to thew how the Colours in the fourth and eighteenth Obfervations are produced, let there be taken in any right line from the point Y, the lengths YA, YB, Y C, YD, YE, YF, YG, Fig.G. YH , in proportion to one another, as the Cube-roats of the Squares of the numbers, $\frac{1}{2}, \frac{9}{66}, \frac{3}{3}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \frac{8}{9}, 1$, where by the lengths of a mufical Chord to found all the Notes in an Eighth are reprefented; that is, in the proportion of the numbers $6300,6814,7114,7631,8255$, $885.5,9243,10000$. And at the points $A, B, C, D$,

## [32]

$\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, let perpendiculars $\mathrm{A} \alpha, \mathrm{B} \beta, \mho^{\circ} c$. be erected, by whofe intervals the extent of the feveral Colours fet underneath againft them, is to be reprefented. Then divide the line $\mathrm{A} \alpha$ in fuch proportion as the numbers $1,2,3,5,6,7,9,10,11, \mho^{\circ} c$. fet at the points of divifion denote. And through thofe divifions from $Y$ draw lines I $\mathrm{I}, 2 \mathrm{~K}, 3 \mathrm{~L}, 5 \mathrm{M}, 6 \mathrm{~N}, 7 \mathrm{O}, \overparen{\text { ® }}$ c.

Now if $\mathrm{A}_{2}$ be fuppofed to reprefent the thicknefs of any thin tranfparent Body, at which the outmoft violet is moft copioufly reflected in the firft Ring, or Series of Colours, then by the $13^{\text {th }}$ Obfervation H K, will reprefent its thicknefs, at which the utmoft red is moft copioufly reflected in the fame Series. Alfo by the 5th and 16th Obfervations, A 6 and HN will denote the thickneffes at which thofe extreme Colours are moft copioufly reflected in the fecond Series, and A 10 and HQ the thickneffes, at which they are moft copioufly reflected in the third Series, and fo on. And the thicknefs at which any of the intermediate Colours are reflected moft copioully, will, according to the 14 th Obfervation, be defined by the diftance of the line $A H$ from the intermediate parts of the lines 2 K , $6 \mathrm{~N}, 10 \mathrm{Q}, \mathscr{6} c$. againft which the names of thofe Co. lours are written below.

But further, to define the latitude of thefe Colours in each Ring or Series, let A I defign the leaft thicknefs, and $A_{3}$ the greateft thicknefs, at which the extreme violet in the firft Series is reflected, and let HI, and H L, defign the like limits for the extreme red, and let the intermediate Colours be limited by the intermediate parts of the lines I I, and 3 L, againft which the names of thofe Colours are written, and fo on: But

## [33]

yet with this caution, that the reflections be fuppofed itrongeft at the intermediate Spaces, $2 \mathrm{~K}, 6 \mathrm{~N}, 10 \mathrm{Q}, \mathcal{J} c$. and from thence to decreafe gradually towards thefe li. mits, $1 \mathrm{I},{ }_{3} \mathrm{~L}, 5 \mathrm{M}, 7 \mathrm{O}, \dot{\mathcal{O}} \mathrm{c}$. on either fide; where you muft not conceive them to be precifely limited, but to decay indefinitely. And whereas I have affigned the fame latitude to every Series, I did it, becaufe although the Colours in the firt Series feem to be a little broader than the reft, by reafon of a ftronger reflexion there, yet that inequality is fo infenfible as fcarcely to be determined by Obfervation.

Now according to this defcription, conceiving that the rays originally of feveral Colours are by turns reflected at the Spaces iI $\mathrm{L}_{3}, 5 \mathrm{MO}_{7,9} \mathrm{PR}_{11}, \mathrm{~J}_{c}$. and tranfmitted at the Spaces AHI, $3 \mathrm{LM}_{5,7} \mathrm{OPP}_{9}$, $\ddagger c$ it is eafy to know what Colour muft in the open Air be exhibited at any thicknefs of a tranfparent thin body. For if a Ruler be applied parallel to AH , at that diftance from it by which the thicknefs of the body is reprefented, the alternate Spaces IIL 3, $5 \mathrm{MO} 7, \mathrm{~V}^{\circ} \mathrm{c}$. which it croffeth will denote the reflected original Colours, of which the Colour exhibited in the open Air is compounded. Thus if the conftitution of the green in the third Series of Colours be defired, apply the Ruler as you feeat $\pi \rho^{\sigma} \rho$, and by its paffing through fome of the blue at $\pi$ and yellow at $\sigma$, as well as through the green at $\rho$, you may conclude that the green exhibited at that thicknefs of the body is principally conftituted of original green, but not without a mixture of fome blue and yellow.

By this means you may know how the Colours from the center of the Rings outward ought to fucceed in order as they were defcribed in the 4 th and 18 th Ob fervations. For if you move the Ruler gradually from AH through all diftances, having paft over the firft fpace which denotes little or no reflexion to be made by thinneft fubftances, it will firft arrive at I the violet, and then very quickly at the blue and green, which together with that violet compound blue, and then at the yellow and red, by whofe further addition that blue is converted into whitenefs, which whitenefs continues during the tranfit of the edge of the Ruler from I to 3 , and after that by the fucceffive deficience of its component Colours, turns firf to compound yellow, and then to red, and laft of all the red ceafeth at L. Then begin the Colours of the fecond Series, which fucceed in order during the tranfit of the edge of the Ruler from 5 to O , and are more lively than before, becaufe more expanded and fevered. And for the fame reafon, inftead of the former white there intercedes between the blue and yellow a mixture of orange, yellow, green, blue and indico, all which together ought to exhibit a dilute and imperfect green. So the Colours of the third Series all fucceed in order ; firf, the violet, which a little interferes with the red of the fecond order, and is thereby inclined to a reddifh purple; then the blue and green, which are lefs mixed with other Colours, and confequently more lively than before, efpecially the green: Then follows the yellow, fome of which towards the green is diftinct and good, but that part of it towards the fucceeding red, as alfo that red is mixed with the violet and blue of the fourth Se-

## [35]

ries, whereby various degrees of red very much inclin ning to purple are compounded. This violet and blue, which fhould fucceed this red, being mixed with, and hidden in it, there fucceeds a green. And this at firft is much inclined to blue, but foon becomes a good green, the only unmixed and lively Colour in this fourth Series. For as it verges towards the yellow, it begins to interfere with the Colours of the fifth Series, by whofe mixture the fucceeding yellow and red are very much diluted and made dirty, efpecially the yellow, which being the weaker Colour is fcarce able to fhew it felf. After this the feveral Series interfere more and more, and their Colours become more and more intermixed, till after three or four more revolutions (in which the red and blue predominate by turns) all forts of Colours are in all places pretty equally bended, and compound an even whitenefs.

And fince by the 15 th Obfervation the rays indued with one Colour are tranfmitted, where thofe of another Colour are reflected, the reafon of the Colours made by the tranfmitted Light in the 9 th and 20 th Ob . fervations is from hence evident.

If not only the order and fpecies of thefe Colours, but alfo the precife thicknefs of the plate, or thin body at which they are exhibited, be defired in parts of an Inch, that may be alfo obtained by affiftance of the 6th or 16 th Obfervations. For according to thofe Obfervations the thicknefs of the thinned Air, which between two Glaffes exhibited the moft luminous parts of the firft fix Rings were $\frac{1}{178000}, \frac{3}{170000}, \frac{5}{1780000}, \frac{7}{178000}, \frac{9}{1780000}, \frac{11}{1785000}$ parts of an Inch. Suppofe the Light reflected moft copiounly at thefe thickneffes be the bright citrine yellow, or cono
fine of yellow and orange, and there thickneffes will
$F_{\mu}, F_{j}, F_{3}, F_{0}, F_{7}$ be $\mathcal{G} \mu, \mathcal{G} v, \mathbb{G} \xi, \mathcal{G}, \mathcal{G} 7$. And this being known, it is leafy to determine what thicknefs of Air is reprefented by $G \rho$, or by any other diftance of the ruler from AH.

But further, fince by the isth Observation the thicknets of Air was to the thicknefs of Water, which between the fame Glaffes exhibited the fame Colour, as 4 to 3, and by the 21 th Obfervation the Colours of thin bodies are not varied by varying the ambient medium ; the thicknefs of a Bubble of Water, exhibiting any Colour, will be $\frac{3}{4}$ of the thickness of Air producing the fame Colour. And fo according to the lame roth and 21 th Observations the thickness of a plate of Glass, whole refraction of the mean refrangible ray, is meafured by the proportion of the Sines 31 to 20 , may be $\frac{20}{51}$ of the thickness of Air producing the fame Colours; and the like of other mediums. I do not affirm, that this proportion of 20 to 3 I , holds in all the rays; for the Sines of other forts of rays have other proportions. But the differences of thole proportions are fo little that I do not here confider them. On there Grounds I have compofed the following Table, wherein the thicknefs of Air, Water, and Gilafs, at which each Colour is mot intenfe and fpecifick, is expreffed in parts of an Inch divided into Ten hundred thoufand equal parts.

The tbicknefs of coloured Plates and Particles of


## [38]

Now if this Table be compared with the 6th Scheme, you will there fee the conftitution of each Colour, as to its Ingredients, or the original Colours of which it is compounded, and thence be enabled to judge of its intenfenefs or imperfection; which may fuffice in explication of the $4^{\text {th }}$ and 18th Obfervations, unlefs it be further defired to delineate the manner how the Colours appear, when the two Object-Glaffes are lay'd upon one another. To do which, let there be defcribed a large Arc of a Circle, and a ftreight Line which may touch that Arc, and parallel to that Tangent feveral occult Lines, at fuch diftances from it, as the numbers fet againft the feveral Colours in the Table denote. For the Arc, and its Tangent, will reprefent the fuperficies of the Glaffes terminating the interjacent Air; and the places where the occult Lines cut the Arc will fhow at what diftances from the Center, or Point of contact, each Colour is reflected.

There are alfo other ufes of this Table: For by its affiftance the thicknefs of the Bubble in the 19 th Ob fervation was determined by the Colours which it exhibited. And fo the bignefs of the parts of natural Bodies may be conjectured by their Colours, as fhall be hereafter fhewn. Alfo, if two or more very thin plates be lay'd one upon another, fo as to compofe one plate equalling them all in thicknefs, the refulting Colour may be hereby determined. For inftance, Mr. Hook in his Mifcrograpbia obferves, that a faint yellow plate of Mufcovy-glafs lay'd upon a blue one, conftituted a very deep purple. The yellow of the firft Order is a faint one, and the thicknefs of the plate exhibiting it, according to the Table is $4 \frac{3}{3}$, to which add 9 , the thick-
nefs exhibiting blue of the fecond Order, and the fum will be $13^{\frac{3}{2}}$, which is the thicknefs exhibiting the purple of the third Order.

To explain, in the next place, the Circumftances of the 2 d and 3 d Obfervations; that is, how the Rings of the Colours may (by turning the Prifins about their common Axis the contrary way to that expreffed in thofe Obfervations) be converted into white and black Rings, and afterwards into Rings of Colours again, the Colours of each Ring lying now in an inverted order; it muft be remembred, that thofe Rings of Colours are dilated by the obliquation of the rays to the Air which intercedes the Glaffes, and that according to the Table in the 7th Obfervation, their dilatation or increafe of their Diameter is moft manifeft and fpeedy when they are obliqueft. Now the rays of yellow being more refracted by the firft fuperficies of the faid Air than thofe of red, are thereby made more oblique to the fecond fuperficies, at which they are reflected to produce the coloured Rings, and confequently the yellow Circle in each Ring will be more dilated than the red; and the excefs of its dilatation will be fo much the greater, by how much the greater is the obliquity of the rays, until at laft it become of equal extent with the red of the fame Ring. And for the fame reafon the green, blue and violet, will be alfo. fo much dilated by the ftill greater obliquity of their rays, as to become all very nearly of equal extent with the red, that is, equally diftant from the center of the Rings. And then all the Colours of the fame Ring muft be coincident, and by their mixture exhibit a white Ring. And thefe white Rings muft have black and dark Rings between them, beeaufe they do not fpread
ipread and interfere with one another as before. And for that reafon alfo they muft become diftincter and vifible to far greater Numbers. But yet the violet being obliqueft will be fomething more dilated in proportion to its extent then the other Colours, and fo very apt to appear at the exterior verges of the white.

Afterwards, by a greater obliquity of the rays, the violet and blue become more fenfibly dilated than the red and yellow, and fo being further removed from the center of the Rings, the Colours muft emerge out of the white in an order contrary to that which they had before, the violet and blue at the exterior limbs of each Ring, and the red and yellow at the interior. And the violet, by reafon of the greateft obliquity of its rays, being in proportion moft of all expanded, will fooneft appear at the exterior limb of each white Ring, and become more confpicuous than the reft. And the feveral Series of Colours belonging to the feveral Rings, will, by their unfolding and fpreading, begin again to interfere, and thereby render the Rings lefs diftinct, and not vifible to fo great numbers.

If inftead of the Prifms the Object-glaffes be made ufe of, the Rings which they exhibit become not white and diftinct by the obliquity of the Eye, by reafon that the rays in their paffage through that Air which intercedes the Glaffes are very nearly parallel to thofe Lines in which they were firft incident on the Glaffes, and confequently the rays indued with feveral Colours are not inclined one more than another to that Air, as it happens in the Prifms.
There is yet another circumftance of thefe Experiments to be confidered, and that is why the black and white

## [4I]

Rings which when viewed at a diftance appear diftinct, fhould not only become confufed by viewing them near at hand, but alfo yield a violet Colour at both the edges of every white Ring. And the reafon is, that the rays which enter the Eye at feveral parts of the Pupil, have feveral obliquities to the Glaffes, and thofe which are moft oblique, if confidered apart, would reprefent the Rings bigger than thofe which are the leaft oblique. Whence the breadth of the perimeter of every white Ring is expanded outwards by the obliquelt rays, and inwards by the leaft oblique. And this expanfion is fo much the greater by how much the greater is the difference of the obliquity ; that is, by how much the Pupil is wider, or the Eye nearer to the Glaffes. And the breadth of the violet muft be moft expanded, becaufe the rays apt to excite a fenfation of that Colour are moft oblique to a fecond, or further fuperficies of the thin'd Air at which they are reflected, and have alfo the greateft variation of obliquity, which makes that Colour fooneft emerge out of the edges of the white. And as the breadth of every Ring is thus augmented, the dark intervals muft be diminifhed, until the neighbouring Rings become continuous, and are blended, the exterior firft, and then thofe nearer the Center, fo that they can no longer be diftinguifh'd apart, but feem to conftitute an even and uniform whitencts.

Among all the Obfervations there is none accompanied with fo odd circumftances as the 24 th. Of thofe the principal are, that in thin plates, which to the naked Eye feem of an even and uniform tranfparent

## [42]

whitenefs, without any terminations of fhadows, the refraction of a Prifin fhould make Rings of Colours appear, whereas it ufually makes Objects appear coloured only there where they are terminated with fhadows, or have parts unequally luminous; and that it fhould make thofe Rings exceedingly diftinct and white, although it ufually renders Objects confufed and coloured. The caufe of thefe things you will underftand by confidering, that all the Rings of Colours are really in the plate, when viewed with the naked Eye, although by reafon of the great breadth of their circumferences they fo much interfere and are blended together, that they feem to conflitute an even whitenefs. But when the rays pafs through the Prifm to the Eye, the orbits of the feveral Colours in every Ring are refracted, fome more than others, according to their degrees of refrangibility : By which means the Colours on one fide of the Ring (that is on one fide of its Center) become more unfolded and dilated, and thofe on the other fide more complicated and contracted. And where by a due refraction they are fo much contracted, that the fevral Rings become narrower than to interfere with one another, they muft appear diftinct, and alfo white, if the conflituent Colours be fo much contracted as to be wholly coincident. But, on the other fide, where the orbit of every Ring is made broader by the further unfolding of its $\mathrm{C}_{0}$ lours, it muft interfere more with other Rings than before, and fo become lefs diftinct.

To explain this a little further, fuppofe the concenFig. 7. trick Circles A V, and BX, reprefent the red and violet of any order, which, together with the intermediate

## [43]

Colours, conftitute any one of thefe Rings. Now thefe being viewed through a Prifm, the violet Circle BX, will by a greater refraction be further tranflated from its place than the red $A V$, and fo approach nearer to it on that fide, towards which the refractions are made. For inftance, if the red be tranflated to av, the violet may be tranilated to $b x$, fo as to approach nearer to it at $x$ than before, and if the red be further tranlated to av, the violet may be fo much further tranflated to bx as to convene with it at x , and if the red be yet further tranflated to $\alpha \mathrm{r}$, the violet may be fill fo much further tranflated to $\beta \xi$ as to pafs beyond it at $\xi$, and convene with it at $e$ and $f$. And this being underfood not only of the red and violet, but of all the other intermediate Colours, and alfo of every revolution of thofe Colours, you will eafily perceive how thofe of the fame revolution or order, by their nearnefs at $x v$ and $r \xi$, and their coincidence at $\times \mathrm{v}, e$ and $f$, ought to conftitute pretty diftinct Arcs of Circles, efpecially at xv , or at $e$ and $f$, and that they will appear feverally at $x v$, and at $\mathrm{x} v$ exhibit whitenefs by their coincidence, and again appear feveral at $\mathrm{r} \xi$, but yet in a contrary order to that which they had before, and fill retain beyond $e$ and $f$. But, on the other fide, at $a b, a b$, or $\alpha \beta$, thefe Colours muft become much more confufed by being dilated and fpread fo, as to interfere with thofe of other Orders. And the fame confufion will happen at $\mathrm{r} \xi$ between $e$ and $f$, if the refraction be very great, or the Prifm very diftant from the Object-Glaffes: In which cafe no parts of the Rings will be feen, fave only two little Arcs at $e$ and $f$, whofe diftance from one

$$
\mathrm{Gg}_{2} \quad \text { another, }
$$

## [44]

another will be augmented by removing the Prifm ftill further from the Object-Glaffes: And thefe little Arcs muft be diftincteft and whiteft at their middle, and at their ends, where they begin to grow confufed they muft be coloured. And the Colours at one end of every Arc muft be in a contrary order to thofe at the other end, by reafon that they crofs in the intermediate white; namely their ends, which verge towards $\Upsilon \xi$, will be red and yellow on that fide next the Center, and blue and violet on the other fide. But their other ends which verge from ${ }^{\Upsilon} \xi$ will on the contrary be blue and violet on that fide towards the Center, and on the other fide red and yellow.

Now as all thefe things follow from the Properties of Light by a mathematical way of reafoning, fo the truth of them may be manifefted by Experiments. For in a dark room, by viewing thefe Rings through a Prifm, by reflexion of the feveral prifmatique Colours, which an affiftant caufes to move to and fro upon a Wall or Paper from whence they are reflected, whilft the SpeCtator's Eye, the Prifm and the Object-Glaffes (as in the 13th Obfervation) are placed fteddy : the pofition of the Circles made fucceffively by the feveral Colours, will be found fuch, in refpect of one another, as I have defcribed in the Figures $a b \propto v$, or $a b x v$, or $\alpha \beta \xi \Upsilon$. And by the fame method the truth of the Explications of other Obfervations may be examined.

By what hath been faid the like Phænomina of Water, and thin plates of Glafs may be underftood. But in fmall fragments of thofe plates, there is this further
further obfervable, that where they lye flat upon a Tableand are turned about their Centers whilft they are viewed through a Prifm, they will in fome poftures exhibit waves of various Colours, and fome of them exhibit thefe waves in one or two pofitions only, but the moft of them do in all pofitions exhibit them, and make them for the moft part appear almoft all over the plates. The reafon is, that the fuperficies of fuch plates are not even, but have many cavities and fwellings, which how fhallow foever do a little vary the thicknefs of the plate. For at the feveral fides of thofe cavities, for the reafons newly defcribed, there ought to be produced waves in feveral poftures of the Prifm. Now though it be but fome very fimall, and narrower parts of the Glafs, by which thefe waves for the moft part are caufed, yet they may feem to extend themfelves over the whole Glafs, becaufe from the narroweft of thofe parts there are Colours of feveral Orders that is of feveral Rings, confufedly reflected, which by refraction of the Prifm are unfolded, feparated, and according to their degrees of refraction, difperfed to feveral places, fo as to conftitute fo many feveral waves, as there were divers orders of Colours promifcuoully reflected from that part of the Glafs.

Thefe are the principal Phænomena of thin Plates or Bubbles, whole explications depend on the properties of Light, which I have heretofore delivered: And thefe you fee do neceffarily follow from them, and agree with them, even to their very leaft circumftances; and not only fo, but do very much tend to their proof. Thus, by the 24 th Obfervation, it appears, that the

## [46]

rays of feveral Colours made as well by thin Plates or Bubbles, as by refractions of a Prifm, have feveral degrees of refrangibility, whereby thofe of each order, which at their reflexion from the Plate or Bubble are intermixed with thofe of other orders, are feparated from them by refraction, and affociated together fo as to become vifible by themfelves like Arcs of Circles. For if the rays were all alike refrangible, 'tis impoffible that the whitenefs, which to the naked fence appears uniform, fhould by refraction have its parts tranfpofed and ranged into thofe black and white Arcs.

It appears alfo that the unequal refractions of dif. form rays proceed not from any contingent irregularities; fuch as are veins, an uneven polifh, or fortuitous pofition of the pores of Glafs; unequal and cafual motions in the Air or Æther; the fpreading, breaking, or dividing the fame ray into many diverging parts, or the like. For, admitting any fuch irregularities, it would be impoffible for refractions to render thofe Rings fo very diftinct, and well defined, as they do in the 24 th Oblervation. It is neceffary therefore that every ray have its proper and conftant degree of refrangibility connate with it,according to which its refraction is ever juftly and regularly performed, and that feveral rays have feveral of thofe degrees.

And what is faid of their refrangibility may be alfo underftood of their reflexibility, that is of their difpofitions to be reflected fome at a greater, and others at a lefs thicknefs, of thin Plates or Bubbles, namely, that thofe difpofitions are alfo connate with the rays, and immutable; as may appear by the $13^{\text {th }}$, 14 th, and

## [47]

I 5 th Obfervations compared with the fourth and eightheenth

By the precedent Obfervations it appears alfo, that whitenefs is a diffimilar mixture of all Colours, and that Light is a mixture of rays indued with all thofe Colours. For confidering the multitude of the Rings of Colours, in the $3 \mathrm{~d}, 12$ th and 24 th Obfervations, it is manifeft that although in the 4 th and 18 th Obfervations there appear no more than eight or nine of thofe Rings, yet there are really a far greater number, which fo much interfere and mingle with one another, as after thofe eight or nine revolutions to dilute one another wholly, and conftitute an even and fenfibly uniform whitenefs. And confequently that whitenefs muft be allowed a mixture of all Colours, and the Light which conveys it to the Eye muft be a mixture of rays indued with all thofe Colours.

But further, by the 24th Obfervation, it appears, that there is a conftant relation between Colours and Refrangibility, the moft refrangible rays being violet, the leaft refrangible red, and thofe of intermediate Colours having proportionably intermediate degrees of refrangibility. And by the 13th, 14th and I5th Obfervations, compared with the 4 th or 18 th, there appears to be the fame conftant relation between Colour and Reflexibility, the violet being in like circumftances re flected at leaft thickneffes of any thin Plate or Bubble, the red at greateft thickneffes, and the intermediate Colours at intermediate thickneffes. Whence it follows, that the colorifique difpofitions of rays are alfo connate with them and immutable, and by confequence. that

## [48]

that all the productions and appearances of Colours in the World are derived not from any phyfical change caufed in Light by refraction or reflexion, but only from the various mixtures or feparations of rays, by virtue of their different Refrangibility or Reflexibility, And in this refpect the Science of Colours becomes a Speculation as truly mathematical as any other part of Optiques. I mean fo far as they depend on the nature of Light, and are not produced or altered by the power of imagination, or by ftriking or preffing the Eyes.

Fig: 1.



Fig. 4.

Fig: 6.


Fig: 7.



## [49]

# THE <br> <br> SECOND BOOK 

 <br> <br> SECOND BOOK}

0 F

# O P T I C K S. 

## P A R T III.

Of the permanent Colours of natural Bodies, and the Analogy between them and the Colours of thin tranfo parent Plates.

IAm now come to another part of this Defign, which is to confider how the Phænomena of thin tranfparent Plates ftand related to thofe of all other natural Bodies. Of thefe Bodies I have already told you that they appear of divers Colours, accordingly as they are difpofed to reflect moft copioufly the rays originally indued with thofe Colours. But their Conßtitutions, whereby they reflect fome rays more copioufly than others, remains to be difcovered, and thefe I fhall endeavour to manifeft in the following Propofitions.

## [50]

## P R O P. I.

Thofe fuperficies of tranfparent Bodies reflect the greateft quantity of Ligbt, wich bave the greateft refractino power; that is, waich intercede mediums that differ moft in their refractive denfities. And in the confines of equally refracting mediums there is no reflexion.

The Analogy between reflexion and refraction will appear by confidering, that when Light paffeth obliquely out of one medium into another which refracts from the perpendicular, the greater is ${ }^{\text {pex }}$ difference of their refractive denfity, the lefs obliquity is requifite to caufe a total reflexion. For as the Sines are which meafure the refraction, fo is the Sine of incidence at which the total reflexion begins, to the radius of the Circle, and confequently that, incidence is leaft where there is the greateft difference of the Sines. Thus in the paffing of Light out of Water into Air, where the refraction is meafured by the Ratio of the Sines 3 to 4 , the total reflexion begins when the Angle of incidence is about 48 degrees 35 minutes. In paffing out of Glafs into Air, where the refraction is meafured by the Ratio of the Sines 20 to 3 , the total reflexion begins when the Angle of incidence is 40 deg. 10 min . and fo in paffing out of cryftal, or more ftrongly refracting mediums into Air, there is ftill a lefs obliquity requifite to caufe a total reflexion. Superficies therefore which refract moft do fooneft reflect all the Light which is incident on them, and fo muft be allowed moft ftrongly reflexive.

## [51]

But the truth of this Propofition will further appear by obferving, that in the fuperficies interceding two tranfparent mediums, fuch as are (Air, Water, Oyl, Coms mon-Glafs, Cryftal, Metalline-Glaffes, Illand-Glaffes, white tranfparent Arfnick, Diamonds, J̌c. ) the reflexion is ftronger or weaker accordingly, as the fuperficies hath a greater or lefs refracting power. For in the confine of Air and Sal-gemm 'tis ftronger than in the confine of Air and Water, and fill ftronger in the confine of Air and Common-Glafs or Cry Ctal , and ftronger in the confine of Air and a Diamond. If any of thefe, and fuch like tranfparent Solids, be immerged in Water, its reflexion becomes much weaker than before, and ftill weaker if they be immerged in the more ftrongly refracting Liquors of well-rectified oyl of Vitriol or fpirit of Turpentine. If Water be diftinguifhed into two parts, by any imaginary furface, the reflexion in the confine of thofe two parts is none at all. In the confine of Water and Ice'tis very little, in that of Water and Oyl 'tis fomething greater, in that of Water and Sal-gemm ftill greater, and in that of Witer and Glafs, or Cryital, or other denfer fubftances ftill greater, accordingly as thofe mediums differ more or lefs in their refraiting powers. Hence in the confine of Common-Glafs and Cryftal, there ought to be a weak reflexion, and a ffronger reflexion in the confine of Common and Metalline-Glafs, though I have not yet tried this. But, in the confine of two Glaffes of equal denfity, there is not any fenfible reflexion, as was fhewn in the firt Obfervation. And the fame may be underftood of the fuperficies interceding two Cryitals, or two Liquors, or any other Subr ftances in which no refraction is caufed. So then the

[^0]
## [52]

reafon why uniform pellucid mediums, (fuch as Water, Glafs, or Cryftal) have no fenfible reflexion but in their external fuperficies, where they are adjacent to other mediums of a different denfity, is becaufe all their contiguous parts have one and the fame degree of denfity.

## PROP. II.

The leaft parts of almoft all natural Bodies are in fome meafure tranfparent: And the opacity of thofe Bodies arijeth from the multitude of reflexions caufed in their internal Parts.

That this is fo has been obferved by others, and will eafily be granted by them that have been converfant with Mifcrofcopes. And it may be alfo tryed by applying any fubftance to a Hole through which fome Light is immitted into a dark room. For how opake foever that fubftance may feem in the open Air, it will by that means appear very manifefly tranfparent, if it be of a fufficient thinnefs. Only white metalline Bodies muft be excepted, which by reafon of their exceffive denfity feem to reflect almof all the Light incident on their firft fuperficies, unlefs by folution in menftruums they be reduced into very fmall particles, and then they become tranfparent.

## PROP. III.

Between the parts of opake and coloured Bodies are many Spaces, eitber empty or replenifbed, weith mediums of otber denjities; as Water between the tinging corpufcles zooberezerith any Liquor is impregnated, Air between the
aqueous globules that conftitute Cloud's or Mifts; and for the moft part $\int$ paces void of botb Air and Water, but yet perbaps not wbolly woid of all fubftance, between the parts of bard Bodies.

The truth of this is evinced by the two precedent Propofitions: For by the fecond Propofition there are many reflexions made by the internal parts of Bodies, which, by the firf Propofition, would not happen if the parts of thofe Bodies were continued without any fuch interftices between them, becaufe reflexions are caufed only in fuperficies, which intercede mediums of a differing denfity by Prop. I.

But further, that this difcontinuity of parts is the principal caufe of the opacity of Bodies, will appear by confidering, that opake fubitances become tranfparent by filling their pores with any fubftance of equal or almoft equal denfity with their parts. Thus Paper dip, ped in Water or Oyl, the Oculus mundi Stone fteep'd in: Water, Linnen-cloth oyled or varnifhed, and many other fubftances foaked in fuch Liquors as will intimately pervade their little pores, become by that means more tranfparent than otherwife; fo, on the contrary, the moft tranfparent fubftances may by evacuating their pores, or feparating their parts, be rendred fufficiently opake, as Salts or wet Paper, or the Oculus mundi Stone by being dried, Horn by being fcraped, Glafs by being reduced to powder, or otherwife flawed, Turpentine by being ftirred about with Water till they mix imperfectly, and Water by being formed into many fmall Bubbles, either alone in the form of froth, or by fhaking it together with Oyl of Turpentine, or with fome other convenient Liquor, with which it will
not perfectly incorporate. And to the increafe of the opacity of thefe Bodies it conduces fomething, that by the 23 th Obfervation the reflexions of very thin tranfparent fubftances are confiderably ftronger than thofe made by the fame fubftances of a greater thicknefs.

## PROP. IV.

The parts of Bodies and their Interftices muft not be lefs than of fome definite bignefs, to render them opake and coloured.

For the opakeft Bodies, if their parts be fubtily divided, (as Metals by being diffolved in acid menftruums, $\mho^{\circ} c$.) become perfectly tranfparent. And you may alfo remember, that in the eighth Obfervation there was no fenfible reflexion at the fuperficies of the Object-Glaffes where they were very near one another, though they did not abfolutely touch. And in the 17 th Obfervation the reflexion of theWater-bubble where it became thinneft was almoft infenfible, fo as to caufe very black Spots to appear on the top of the Bubble by the want of reflected Light.

On thefe grounds I perceive it is that Water, Salt, Glafs, Stones, and fuch like fubftances, are tranfparent. For, upon divers confiderations, they feem to be as full of pores or interftices between their parts as other Bodies are, but yet their parts and interftices to be too fmall to caufe reflexions in their common furfaces.

## [55]

## PROP. V.

The tranfparent parts of Bodies according to their feveral fixes muft reflect rays of one Colour, and tranfmit thofe of anotber, on the fame grounds that thin Plates or Bubbles do reflect or tranfmit thofe rays. And this I take to be the ground of all their Colours.

For if a thin'd or plated Body, which being of an even thicknefs, appears all over of one uniform Colour, fhould be llit into threds, or broken into fragments, of the fame thicknefs with the plate; I fee no reafon why every thred or fragment fhould not keep its Colour, and by confequence why a heap of thofe threds. or fragments fhould not conftitute a mafs or powder of the fame Colour, which the plate exhibited before it was broken. And the parts of all natural Bodies being like fo many fragments of a Plate, mult on the fame grounds exhibit the fame Colours.

Now that they do $\mathrm{fo}_{\text {, }}$ will appear by the affinity of their properties. The finely coloured Feathers of fome Birds, and particularly thofe of Peacocks Tails, do in the very fame part of the Feather appear of feveral Colours in feveral pofitions of the Eye, after the very fame manner that thin Plates were found to do in the 7 th: and 19th Obfervations, and therefore arife from the thinnefs of the tranfparent parts of the Feathers ; that is, from the flendernefs of the very fine Hairs, or Capillamenta, which grow out of the fides of the groffer lateral branches or fibres of thofe Feathers. And to the fame purpofe it is, that the Webs of fome Spiders by being

## [56]

being fpun very fine have appeared coloured, as fome have obferved, and that the coloured fibres of fome filks by varying the pofition of the Eye do vary their $\mathrm{C}_{0}$. lour. Alfo the Colours of filks, cloths, and other fub. ftances, which Water or Oyl can intimately penetrate, become more faint and obfcure by being immerged in thofe liquors, and recover their vigor again by being dried, much after the manner declared of thin Bodies in the roth and 21 th Obfervations. Leaf-gold, fome forts of painted Glafs, the infufion of Lignum Nepbriticum, and fome other fubftances reflect one Colour, and tranfmit another, like thin Bodies in the gth and 20th Obfervations. And fome of thofe coloured pow. ders which Painters ufe, may have their Colours a little changed, by being very elaborately and finely ground. Where I fee not what can be juftly pretended for thofe changes, befides the breaking of their parts into lefs parts by that contrition after the fame manner that the Colour of a thin Plate is changed by varying its thicknefs. For which reafon alfo it is that the coloured flowers of Plants and Vegitables by being bruifed ufually become more tranfparent than before, or at leaft in fome degree or other change their Colours. Nor is it much lefs to my purpofe, that by mixing divers liquors very odd and remarquable productions and changes of Co lours may be effected, of which no caufe can be more obvious and rational than that the faline corpufcles of one liquor do varioufly act upon or unite with the tinging corpufcles of another, fo as to make them fwell, or thrink (whereby not only their bulk but their denfity alfo may be changed) or to divide them into fmaller corpufcles, (whereby a coloured liquor may be-

## [57]

come tranfparent) or to make many of them affociate into one clufter, whereby two tranfparent liquors may compofe a coloured one. For we fee how apt thofe faline menftruums are to penetrate and diffolve fubftances to which they are applied, and fome of them to precipitate what others diffolve. In like manner, if we confider the various Phænomena of the Atmofphære, we may obferve, that when Vapors are firft raifed, they hinder not the tranfparency of the Air, being divided into parts too fmall to caufe any reflexion in their fuperficies. But when in order to compofe drops of rain they begin to coalefce and conftitute globules of all intermediate fizes, thofe globules when they become of a convenient fize to reflect fome Colours and tranfmit others, may conftitute Clouds of various Colours according to their fizes. And I fee not what can be rationally conceived in fo tranfparent a fubftance as Water for the production of thefe Colours, befides the various fizes of its fluid and globuler parcels.

## PROP. VI.

The parts of Bodies on which their Colours depend, are denfer than the medium, which pervades their in. terfices.

This will appear by confidering, that the Colour of a Body depends not only on the rays which are incident perpendicularly on its parts, but on thofe alfo which are incident at all other Angles. And that aca cording to the 7 th Obfervation, a very little variation of obliquity will change the reflected Colour where the thin body or fmall particle is rarer than the ambient

## [58]

medium, infomuch that fuch a fmall particle will at diverlly oblique incidences reflect all forts of Colours, in fogreat a variety that the Colour refulting from them all, confufedly reflected from a heap of fuch particles, muft rather be a white or grey than any other Colour, or at beft it muft be but a very imperfect and dirty Colour. Whereas if the thin body or fmall particle be much denfer than the ambient medium, the Colours according to the 19 th Obfervation are fo little changed by the variation of obliquity, that the rays which are reflected leaft obliquely may predominate over the reft fo much as to caufe a heap of fuch particles to appear very intenfly of their Colour.

It conduces alfo fomething to the confirmation of this Propofition, that, according to the 22 th Obfervation, the Colours exhibited by the denfer thin body within the rarer, are more brifque than thofe exhibited by the raver within the denfer.

## PROP. VII.

The bignefs of the component parts of natural Bodies may be conjectured by their Colours.

For fince the parts of thefe Bodies by Prop. 5. do moft probably exhibit the fame Colours with a Plate of equal thicknets, provided they have the fame refractive denfity ; and fince their parts feem for the moft part to have much the fame denfity with Water or Glafs, as by many circumftances is obvious to collect ; to determinie the fizes of thofe parts you need only have recourfe to the precedent Tables, in which the thickniefs of Water or Glafs exhibiting any Colour is exprefled. Thus

## [59]

if it be defired to know the Diameter of a corpufcle, which being of equal denfity with Glafs fhall reflect green of the third order; the number $16 \frac{1}{4}$ fhews it to be $\frac{{ }^{165}}{100000}$ parts of an Inch.

The greateft difficulty is here to know of what order the Colour of any Body is. And for this end we muft have recourfe to the 4 th and 18 th Oblervations, from whence may be collected thefe particulars.

Scarlets, and other reds, oranges and yellows, if they be pure and intenfe are moft probably of the fecond order. Thofe of the firft and third order alfo may be pretty good, only the yellow of the firf order is faint, and the orange and red of the third order have a great mixture of violet and blue.

There may be good greens of the fourth order, but the pureft are of the third. And of this order the green of all vegitables feem to be, partly by reafon of the intenfenefs of their Colours, and partly becaufe when they wither fome of them turn to a greenifh yellow, and others to a more perfect yellow or orange, or perhaps to red, paffing firft through all the aforefaid intermediate Colours. Which changes feem to be effected by the exhaling of the moifture which may leave the tinging corpufcles more denfe, and fomething augmented by the accretion of the oyly and earthy part of that moifture. Now the green without doubt is of the fame order with thofe Colours into which it changeth, becaufe the changes are gradual, and thofe Colours, though ufually not very full, yet are often too full and lively to be of the fourth order.

## [60]

Bluesand purples may be either of the fecond or third order, but the beft are of the third. Thus the Colour of violets feems to be of that order, becaufe their Syrup by acid Liquors turns red, and by urinous and alcalizale turns green. For fince it is of the nature of Acids to diffolve or attenuate, and of Alcalies to precipitate or incraffate, if the purple Colour of the Syrup was of the fecond order, an acid Liquor by attenuating its tinging corpufcles would change it to a red of the firft order, and an Alcaly by incraffating them would change it to a green of the fecond order; which red and green, efpecially the green, feem too imperfect to be the $\mathrm{Co}_{0}$ lours produced by thefe changes. But if the faid purple be fuppofed of the third order, its change to red of the fecond, and green of the third, may without any inconvenience be allowed.

If there be found any Body of a deeper and lefs reddifh purple than that of the violets, its Colour moft probably is of the fecond order. But yet their being no Body commonly known whofe Colour is conftantly more deep than theirs, I have made ufe of their name to denote the deepeft and leaft reddifh purples, fuch as manifeftly tranicend their Colour in purity.

The blue of the firft order, though very faint and little, may poffibly be the Colour of fome fubftances; and particularly the azure Colour of the Skys feems to be of this order. For all vapours when they begin to condenfe and coalefce into fmall parcels, become firt of that bignefs whereby fuch an Azure muft be retlected before they can conflitute Clouds of other Colours. And fo this being the firft Colour which vapors begin to reflect, it ought to be the Colour of the fineft and moft

## [6I ]

tranfparent Skys in which vapors are not arrived to that grofnefs requifite to reflect other Colours, as we find it is by experience.

Wbitene $\int_{s}$, if moft intenfe and luminous, is that of the firft order, if lefs ftrong and luminous a mixture of the Colours of feveral orders. Of this laft kind is the whitenefs of Froth, Paper, Linnen, and moft white fubftances ; of the former I reckon that of white metals to be. For whilft the denfeft of metals, Gold, if foliated is tranfparent, and all metals become tranfparent if diffolved in menftruums or vitrified, the opacity of white metals arifeth not from their denfity alone. They being lefs denfe than Gold would be more tranfparent than it, did not fome other caufe concur with their denfity to make them opake. And this caufe I take to be fuch a bignefs of their particles as fits them to reflect the white of the firft order. For if they be of other thickneffes they may reflect other Colours, as is manifeft by the Colours which appear upon hot Steel in tempering it, and fometimes upon the furface of melted metals in the Skin or Scoria which arifes upon them in their cooling. And as the white of the firft order is the ftrongeft which can be made by Plates of tranfparent fubftances, fo it ought to be ftronger in the denfer fubftances of metals than in the rarer of Air, Water and Glafs. Nor do I fee but that metallic fubftances of fuch a thicknefs as may fit them to reflect the white of the firtt order, may, by reafon of their great denfity (according to the tenour of the firft of thefe Propofitions) rea. flect all the Light incident upon them, and fo be as opake and fplendent as its poffible for any Body to be. Gold, or Copper mixed with lefs than half their weight of

## [62]

of Silver, or Tin, or Regulus of Antimony, in fufion or amalgamed with a very little Mercury become white; which thews both that the particles of white metals have much more fuperficies, and fo are fmaller, than thofe of Gold and Copper, and alfo that they are fo opake as not to fuffer the particles of Gold or Copper to fhine through them. Now it is fcarce to be doubted, but that the Colours of Gold and Copper are of the fecond or third order, and therefore the particles of white metals cannot be much bigger than is requifite to make them reflect the white of the firf order. The volatility of Mercury argues that they are not much bigger, nor may they be much lefs, leaft they lofe their opacity, and become either tranfparent as they do when attenuated by vitrification, or by' folution in menftruums, or black as they do when ground fmaller, by rubbing Silver, or Tin, or Lead, upon other fubftances to draw black Lines. The firft and only Colour which white metals take by grinding their particles fmaller is black, and therefore their white ought to be that which borders upon the black Spot in the center of the Rings of Colours, that is, the white of the firt order. But if you would hence gather the bignefs of metallic particles, you muft allow for their denfity. For were Mercury tranfparent, its denfity is fuch that the Sine of incidence upon it (by my computation) would be to the fine of its refraction, as 71 to 20 , or 7 to 2 . And therefore the thicknefs of its particles, that they may exhibit the fame Colours with thofe of Bubbles of Water, ought to be lefs than the thicknefs of the Skin of thofe Bubbles in the proportion of 2 to 7 . Whence its poffible that the particles of Mercury may be as little
as the particles of fome tranfparent and volatile fluids, and yet reflect the white of the firft order.

Laftly, for the production of black, the corpufcles muft be lefs than any of thofe which exhibit Colours. For at all greater fizes there is too much Light refleEted to conftitute this Colour. But if they be fuppofed a little lefs than is requifite to reflect the white and very faint blue of the firtt order, they will, according to the 4 th, 8 th, 17 th and 18 th Obfervations, refleet fo very little as to appear intenfly black, and yet may perhaps varioufly reffact it to and fro within themfelves fo long, until it happen to be fiffled and loft, by which means they will appear black in all pofitions of the Eye without any tranfparency. And from hence may be underftood why Fire, and the more fubtile diffolver Putrefaction, by dividing the particles of fubftances, turn them to black, why fmall quantities of black fubitances impart their Colour very freely and intenfly to other fubitances to which they are applied; the minute particles of thefe, by reafon of their very great number, eafily overfpreading the grofs particles of others; why Glafs ground very elaborately with Sand on a copper Plate, 'till it be well polifhed, makes the Sand, together with what is worn off from the Glafs and Copper, become very black : why black fubitances do foonelt of all others become hot in the Sun's Light and burn, (which effect may proceed partly from the multitude of refractions in a little room, and partly from the eafy commotion of fo very fmall corpufcles; ) and why blacks are ufually a little inclined to a bluifh Colour. For that they are fo may be feen by illuminating white Paper by Light retlected from black fub. ftances.

## [64]

ftances. For the Paper will ufually appear of a bluifh white; and the reafon is, that black borders on the obicure blue of the firft order defcribed in the 18th Obfervation, and therefore reflects more rays of that Colour than of any other.

In thefe Defcriptions I have been the more particular, becaufe it is not impoffible but that Mifcrofcopes may at length be improved to the difcovery of the particles of Bodies on which their Colours depend, if they are not already in fome meafure arrived to thatdegree of perfection. For if thofe Inftruments are or can be fo far improved as with fufficient diftinctnefs to reprefent Objects five or fix hundred times bigger than at a Foot diftance they appear to our naked Eyes, I fhould hope that we might be able to difcover fome of the greateft of thofe corpufcles. And by one that would magnify three or four thoufand times perhaps they might all be difcovered, but thofe which produce blacknels. In the mean while I fee nothing material in this Difcourfe that may rationally be doubted of excepting this Pofition, That tranfparent corpufcles of the fame thicknefs and denfity with a Plate, do exhibit the fame Colour. And this I would have underfood not without fome latitude, as well becaufe thofe corpufcles may be of irregular Figures, and many rays muft be obliquely incident on them, and fo have a fhorter way through them than the length of their Diameters, as becaufe the ftraitnefs of the medium pent in on all fides within fuch corpufcles may a little alter its motions or other qualities on which the reflexion depends. But yet I cannot much fufpect the laft, becaufe I have obferved of Come fmall Plates of Mufcovy-Glafs which were of an

## [65]

even thicknefs, that through a Mifcrofcope they have appeared of the fame Colour at their edges and corners where the included medium was terminated, which they appeared of in other places. However it will add much to our fatisfaction, if thofe corpufcles could be difcovered with Mifcrofcopes; which if we thall at length attain to, I fear it will be the utmoft improvement of this fenfe. For it feems impoffible to fee the more fecret and noble works of nature within the corpufcles by reafon of their tranfparency.

## PROP. VIII.

The caufe of Reflexion is not the impinging of Ligbt on the Solid or impervious parts of Bodies, as is commonly believed.

This will appear by the following Confiderations. Firf, That in the paffage of Light out of Glafs into Air there is a reflexion as ftrong as in its paffage out of Air into Glafs, or rather a little ftronger, and by many degrees ftronger than in its paffage out of Glafs into Water. And it feems not probable that Air fhould have more reflecting parts than Water or Glafs. But if that fhould poffibly be fuppofed, yet it will avail nothing; for the reflexion is as ftrong or ftronger when the Air is drawn away from the Glafs, (fuppofe in the Air-pump invented by Mr. Boyle) as when it is adjacent to it. Secondly, If Light in its paffage out of Glafs into Air be incident more obliquely than at an Angle of 40 or 41 degrees it is wholly reflected, if lefs obliquely it is in great meafure tranfmitted. Now it is not to be imagined that Light at one degree of obliquity fhould meet K k

## [66]

with pores enough in the Air to tranfmit the greater part of it, and at another degree of obliquity fhould meet with nothing but parts to reflect it wholly, efpecially confidering that in its paffage out of Air into Glafs, how oblique foever be its incidence, it finds pores enough in the Glafs to tranfmit greatelt part of it. If any Man fuppofe that it is not reflected by the Air, but by the outmoft fuperficial parts of the Glafs, there is ftill the fame difficulty : Befides, that fuch a Suppofition is unintelligible, and will alfo appear to be falfe by applying Water behind fome part of the Glafs inftead of Air. For fo in a convenient obliquity of the rays fuppofe of 45 or 46 degrees, at which they are all reflected where the Air is adjacent to the Glafs, they fhall be in great meafure tranfmitted where the Water is adjacent to it; which argues, that their reflexion or tranfmiffion depends on the conftitution of the Air and Water behind the Glafs, and not on the friking off the rays upon the parts of the Glafs. Thirdly, If the Colours made by a Prifm placed at the entrance of a beam of Light into a darkened room be fucceffively caft on a fecond Prifm placed at a greater diftance from the former, in fuch manner that they are all alike incident upon it, the fecond Prifin may be fo inclined to the incident rays, that thofe which are of a blue Colour fhall be all reflected by it, and yet thofe of a red Colour pretty copioufly tranimitted. Now if the reflexion be caufed by the parts of Air or Glafs, I would ask, why at the fame obliquity of incidence the blue fhould wholly impinge on thofe parts fo as to be all reflected, and yet the red find pores enough to be in great meafure tranfmitted. Fourthly, where two Glafles touch one another,

## [67]

another, there is no fenfible reflexion as was declared in the firtt Obfervation; and yet I fee no reafon why the rays fhould not impinge on the parts of Glafs as much when contiguous to other Glafs as when contiguous to Air. Fifthly, When the top of a Waterbubble (in the 17 th Obfervation) by the continual fubfiding and exhaling of the Water grew very thin, there was fuch a little and almoft infenfible quantity of Light reflected from it, that it appeared intenlly black ; whereas round about that black Spot, where the Water was thicker, the reflexion was fo ftrong as to make the Water feem very white. Nor is it only at the leaft thicknefs of thin Plates or Bubbles, that there is no manifeft reflexion, but at many other thickneffes continually greater and greater. For in the 15th Obfervation the rays of the fame Colour were by turns tranifmitted at one thicknefs, and reflected at another thicknefs, for an indeterminate number of fucceffions. And yet in the fuperficies of the thinned Body, where it is of any one thicknefs, there are as many parts for the rays to impinge on, as where it is of any other thicknefs. Sixthly, If reflexion were caufed by the parts of reflecting Bodies, it would be impoffible for thin Plates or Bubbles at the fame place to reflect the rays of one Colour and tranfimit thofe of another, as they do according to the 13th and $15^{\text {th }}$ Obfervations. For it is not to be imagined that at one place the rays which for inftance exhibit a blue Colour, fhould have the fortune to dafh upon the parts, and thofe which exhibit a red to hit upon the pores of the Body ; and then at another place, where the Body is either a little thicker, or a little thinner, that on the contrary the blue fhould K k 2
hit

## [68]

hit upon its pores, and the red upon its parts. Laftly, were the rays of Light reflected by impinging on the folid parts of Bodies, their reflexions from polifhed Bodies could not be fo regular as they are. For in polifhing Glafs with Sand, Putty or Tripoly, it is not to be imagined that thofe fubftances can by grating and fretting the Glafs bring all its leaft particles to an accurate polifh ; fo that all their furfaces fhall be truly plain or truly fpherical, and look all the fame way, fo as together to compofe one even furface. The fmaller the particles of thofe fubftances are, the fmaller will be the fcratches by which they continually fret and wear away the Glafs until it be polifhed, but be they never fo fimall they can wear away the Glafs no otherwife than by grating and fcratching it, and breaking the proturberances, and therefore polifh it no otherwife than by bringing its roughnefs to a very fine Grain, fo that the fcratches and frettings of the furface become too fmall to be vifible. And therefore if Light were reflected by impinging upon the folid parts of the Glafs, it would be fcattered as much by the moft polifhed Glafs as by the rougheft. So then it remains a Problem, how Glafs polifhed by fretting fubftances can reflect Light foregularly as it does. And this Problem is fcarce otherwife to be folved than by faying, that the reflexion of a ray is effected, not by a fingle point of the reflecting Body, but by fome power of the Body which is evenly diffufed all over its furface, and by which it acts upon the ray without immediate contact. For that the parts of Bodies do act upon Light at a diflance fhall be fhewn hereafter.

Now if Light be reflected not by impinging on the folid parts of Bodies, but by fome other principle; its probable that as many of its rays as impinge on the folid parts of Bodies are not reflected but ftifled and loft in the Bodies. For otherwife we muft allow two forts of reflexions. Should all the rays be reflected which impinge on the internal parts of clear Water or Cryital, thofe fubftances would rather have a cloudy Colour than a clear tranfparency. To make Bodies look black, its neceffary that many rays be ftopt, retained and loft in them, and it feems not probable that any rays can be ftopt and ftifled in them which do not impinge on their parts.

And hence we may underftand that Bodies are much more rare and porous than is commonly believed. Water is ig times lighter, and by confequence 19 times rarer than Gold, and Gold is fo rare as very readily and without the leaft oppofition to tranfmit the magnetick Effluvia, and eafily to admit Quick-filver into its pores, and to let Water pafs through it. For a concave Sphere of Gold filled with Water, and fodered up, has upon preffing the Sphere with great force, let the Water fqueeze through it, and ftand all over its outfide in multitudes of fmall Drops, like dew, without burfting or cracking the Body of the Gold as I have been informed by an Eye-witnefs. From all which we may conclude, that Gold has more pores than folid parts, and by confequence that Water has above fortytimes more pores than parts. And he that fhall find out an Hypothefis, by which Water may be fo rare, and yet not be capable of compreffion by force, may doubtlefs by the fame Hypothefis make Gold and Water, and all
other

## [70]

other Bodies as much raret as he pleafes, fo that Light may find a ready paffage through tranfparent fubftances.

## PROP. IX.

Bodies reflect and refract Ligbt by one and the fame power varioufly exercifed in various circumftances.

This appears by feveral Confiderations. Firf, Becaufe when Light goes out of Glafs into Air, as obliquely as it can poffibly do, if its incidence be made ftill more oblique, it becomes totally reflected. For the power of the Glafs after it has refracted the Light as obliquely as is poffible if the incidence be ftill made more oblique, becomes too ftrong to let any of its rays go through, and by confequence caufes total reflexions. Secondly, Becaufe Light is alternately reflected and tranfmitted by thin Plates of Glafs for many fucceffions accordingly, as the thicknefs of the Plate increafes in an arithmetical Progreffion. For here the thicknefs of the Glafs determines whether that power by which Glafs acts upon Light fhall caufe it to be reflected, or fuffer it to be tranfmitted. And, Thirdly, becaufe thofe furfaces of tranfparent Bodies which have the greateft refracting power, reflect the greateft quantity of Light, as was fhewed in the firt Propofition.

## PROP. X.

If Ligbt be froifter in Bodies than in Vacuo in the proportion of the Sines which meafure the refraction of the Bodies, the forces of the Bodies to reflect and refract Ligbt,

## [71]

are very nearly proportional to the denfities of the fame Bodies, excepting that unctuous and fulphureous Bodies re. fract more than otbers of this fame denfity.

Let A B reprefent the refracting plane furface of any Body, and IC a ray incident very obliquely upon the


Body in C, fo that the Angle ACI may be infinitely little, and let CR be the refracted ray. From a given point $B$ perpendicular to the refracting furface erect $B R$ meeting with the refracted ray $C R$ in $R$, and if $C R$ reprefent the motion of the refracted ray, and this motion be diftinguifhed into two motions CB and $B R$, whereof CB is a parallel to the refracting plane, and BR perpendicular to it: CB fhall reprefent the motion of the incident ray, and BR the motion generated by the refraction, as Opticians have of late explained.

Now if any body or thing in moving through any fpace of a giving breadth terminated on both fides by two parallel plains, be urged forward in all parts of that fpace by forces tending directly forwards towards the laft plain, and before its incidence on the firtt plane, had no motion towards it, or but an infinitly little one ; and if the forces in all parts of that fpace, between the planes be at equal diftances from the planes equal to one another, but at feveral diftances be bigger or lefs in any given proportion, the motion generated by the forces in the whole paffage of the body or thing through
through that fpace fhall be in a fubduplicate proportion of the forces, as Mathematicians will eafily underftand. And therefore if the fpace of activity of the refracting fuperficies of the Body be confidered as fuch a fpace, the motion of the ray generated by the refracting force of the Body, during its paffage through that fpace that is the motion BR muft be in a fubduplicate proportion of that refracting force: I fay therefore that the fquare of the Line $B R$, and by confequence the refracting force of the Body is very nearly as the denfity of the fame Body. For this will appear by the following Table, wherein the proportion of the Sines which meafure the refraxions of feveral Bodies, the fquare of $B R$ fuppofing $C B$ an unite, the denfities of the Bodies eftimated by their fpecifick gravities, and their refractive power in refpect of their denfities are fet down in feveral Columns.

## [73]

The refracting Bodies.

|  | yellow Light. | dy is propor tionate. |  | of its den- fity。 |
| :---: | :---: | :---: | :---: | :---: |
| A Pfeudo-T |  |  |  |  |
| ing a natural,pellucid, brittle, hairy Stone, of | 23 to 14 | I'699 | $4^{\prime} 27$ | 3979 |
| a yellow Colour |  |  |  |  |
| Air | 3851 to 3850 | -'000 52 | ${ }^{\circ} \mathrm{O} 0012.5$ | 486 |
| Glafs of Antimony | 17 to 9 | $2^{\prime} 568$ | $5^{\prime}, 28$ | 4864 |
| ${ }_{\text {A }}^{\text {A Selenitis }}$ | $\begin{array}{ll}61 & \text { to } \\ 31 & 41 \\ \text { to } & 20\end{array}$ | I'213 I'402 |  | 5386 5436 |
| Cryftal of the Rock | 31 to <br> 25 <br> to | 1,44 | ${ }_{2}{ }_{2} 65$ | 5436 |
| Ifland Cryftal | 5 to | I'778 | $2^{\prime} 72$ | 6536 |
| Sal Gemmx | 17 to 111 | I'388 | ${ }^{2}$ '143 | 6477 |
| Alume | 35 to 24 | 1'1267 | $\mathrm{I}^{\prime} 714$ | 6570 |
| Borax | to 15 | r'151I | 1'714 | 6716 |
| Niter | 32 to 21 | r'345 |  | 7079 |
| Dantzick Vitriol | 303 to 200 | I'295 | I'715 | 7551 |
| Oyl of Vitriol | 10 to | $1{ }^{\prime} 041$ | I'7 | 6124 |
| Rain Water | 529 to 396 | o'7845 |  | 7845 |
| Gumm Arabic | 31 to | I'179 | I'375 | 8574 |
| Spirit of Wine well rectified | 100 to 73 | -'8765 | -'866 | 10121 |
| Camphire | 3 to | I'25 |  |  |
| Oyl Olive | 22 to 15 | I'rin | $0^{\circ} 913$ | 12507 |
| Lintfeed Oyl | 40 to 27 | I'1948 | -'932 | 12819 |
| Spirit of Turpentine | 25 to 17 | $\mathrm{I}^{\prime} 1626$ | -'874 | 13222 |
| Ambar | 14 to 9 | $\mathrm{r}^{\prime} 42$ | r'04 | 13654 |
| A Diamond | 100 to 41 | 4'949 | $3^{\prime} 4$ | 14556 |

The refraction of the Air in this Table is determined by that of the Atmofphere obferved by Aftronomers. For if Light pafs through many refracting fubftances or mediums gradually denfer and denfer, and terminated

## [74]

with parallel furfaces, the fumm of all the refractions will be equal to the fingle refraction which it would have fuffered in paffing immediately out of the firft medium into the laft. And this holds true, though the number of the refracting fubftances be increafed to infinity, and the diftances from one another as much decreafed, fo that the Light may be refracted in every point of its paffage, and by continual refractions bent into a curve Line. And therefore the whole refraction of Light in paffing through the Atmofphere from the higheft and rareft part thereof down to the loweft and denfeft part, muft be equal to the refraction which it would fuffer in paffing at like obliquity out of a Vacuum immediately into Air of equal denfity with that in the loweft part of the Atmofphere.

Now, by this Table, the refractions of a Pfeudo-Topaz, a Selenitis, Rock Cryftal, Ifland Cryftal, Vulgar Glafs ( that is, Sand melted together ) and Glafs of Antimony, which are terreftrial ftony alcalizate concretes, and Air which probably arifesfrom fuch fubftances by fermentation, though thefe be fubftances very differing from one another in denfity, yet they have their refradive powers almoft in the fame proportion to one another as their denfities are, excepting that the refraction of that ftrange fubftance Illand-Cryftal is a little bigger than the reft. And particularly Air, which is 3400 times sarer than the Pfeudo-Topaz, and 4200 times rarer than Glafs of Antimony, has notwithftanding its rarity the fame refractive power in refpect of its denfity which thofe two very denfe fubftances have in refpect of theirs, excepting fo far as thofe two differ from one another.

## [75]

Again, the refration Camphire, Oyl-Olive, Lint feed Oyl, Spirit of Turpentine and Amber, which are fat fulphureous unctuous Bodies, and a Diamond, which probably is an unctuous fubftance coagulated, have their refractive powers in proportion to one another as their denfities without any confiderable variation. But the refractive power of thefe unctuous fubftances is two or three times greater in refpect of their denfities than the refractive powers of the former fubftances in refpect of theirs.

Water has a refractive power in a middle degree between thofe two forts of fubftances, and probably is of a middle nature. For out of it grow all vegetable and animal fubftances, which confift as well of fulphureous fat and inflamable parts, as of earthy lean and alcalizate ones.

Salts and Vitriols have refractive powers in a middle degree between thofe of earthy fubftances and Water, and accordingly are compofed of thofe two forts of fubftances. For by diftillation and rectification of their Spirits a great part of them goes into Water, and a great part remains behind in the form of a dry fixt earth capable of vitrification.

Spirit of Wine has a refractive power in a middle degree between thofe of Water and oyly fubftances, and accordingly feems to be compofed of both, united by fermentation ; the Water, by means of fome faline Spirits with which 'tis impregnated, diffolving the Oyl, and volatizing it by the action. For Spirit of Wine is inflamable by means of its oyly parts, and being diftilled often from Salt of Tartar, grows by every diftillation more and more aqueous and flegmatick. And

## [76]

Chymifts obferve, that Vegitables (as Lavender, Rue, Marjoram, $\mathfrak{V}^{c}$.) diftilled per $\sqrt{\text { e }}$, before fermentatiorr yield Oyls without any burning Spirits, but after fermentation yield ardent Spirits without Oyls: Which fhews, that their Oyl is by fermentation converted into Spirit. They find alfo, that if Oyls be poured in fmall quantity upon fermentating Vegetables, they diftil over after fermentation in the form of Spirits.

So then, by the foregoing Table, all Bodies feem to have their refractive powers proportional to their denfities, (or very nearly; ) excepting fo far as they partake more or lefs of fulphurous oyly particles, and thereby have their refractive power made greater or lefs. Whence it feems rational to attribute the refraCtive power of all Bodies chiefly, if not wholly, to the fulphurous parts with which they abound. . For it's probable that all Bodies abound more or lefs with Sulphurs. And as Light congregated by a Burning-glafs acts moft upon fulphurous Bodies, to turn them into fire and flame; fo, fince all action is mutual, Sulphurs ought to act moft upon Light. For that the action between Light and Bodies is mutual, may appear from this Confideration, That the denfeft Bodies which refract and reflect Light moft ftrongly grow hotteft in the Summer-Sun, by the action of the refracted or reflected Light.

I have hitherto explained the power of Bodies to reHect and refract, and thewed, that thin tranfparent plates, fibres and particles do, according to their feveral thickneffes and denfities, reflect feveral forts of rays, and thereby appear of feveral Colours, and by coniequence that nothing more is requifite for producing all

## [77]

the Colours of natural Bodies than the feveral fizes and denfities of their tranfparent particles. But whence it is that thefe plates, fibres and particles do, according to their feveral thickneffes and denfities, reflect feveral forts of rays, I have not yet explained. To give fome infight into this matter, and make way for underftanding the next Part of this Book, I fhall conclude this Part with a few more Propofitions. Thofe which preceded refpect the nature of Bodies, thefe the nature of Light: For both muft be underftood before the reafon of their actions upon one another can be known. And becaufe the laft Propofition depended upon the velocity of Light, I will begin with a Propofition of that kind.

## PROP. XI.

Light is propagated from luminous Bodies in time, and fpends about feven or eigbt minutes of an bour in paffino. from the Sun to the Earth.

This was obferved firft by Romer, and then by others ${ }_{3}$ by means of the Eclipfes of the Satellites of Fupiter. For thefe Eclipfes, when the Earth is between the Sun and 'Fupiter, happen about feven or eight minutes fooner: than they ought to do by the Tables, and when the Earth. is beyond the Sun they happen about feven or eight minutes later than they ought to do; the reafon being , that the Light of the Satellites has farther to go in the latter cafe than in the former by the Diameter of the Earth's Orbit. Some inequalities of time may arife from the excentricities of the Orbs of the Satellites ; but thofe cannot anfwer in all the Satellites, and at all times

## [78]

to the pofition and diftance of the Earth from the Sun. The mean motions of 'Fupiter's Satellites is alfo fwifter in his defcent from his Aphelium to his Perihelium, than in his afcent in the other half of his Orb : But this inequality has no refpect to the pofition of the Earth, and in the three interior Satellites is infenfible, as I find by computation from the Theory of their gravity.

## PROP. XII.

Every ray of Ligbt in its paffage througb any refra. cting furface is put into a certain tranfient confitution or ftate, which in the progrefs of the ray returns at equal intervals, and difpofes the ray at every return to be eafily tranfmitted througb the next refracting fur. face, and between the returns to be eafily reflected by $i t$.

This is manifeft by the 5 th, 9 th, 12 th and 15 th Ob fervations. For by thofe Obfervations it appears, that one and the fame fort of rays at equal Angles of incidence on any thin tranfparent plate, is alternately refleEted and tranfmitted for many fucceffions accordingly, as the thicknefs of the plate increafes in arithmetical progreffion of the numbers $0,1,2,3,4,5,6,7,8, \vartheta c$. fo that if the firft reflexion (that which makes the firft or innermoft of the Rings of Colours there defcribed) be made at the thicknefs I , the rays fhall be tranfmitted at the thickneffes $0,2,4,6,8,10,12, \dot{1} c$. and thereby make the central Spot and Rings of Light, which appear by tranfmiffion, and be reflected at the thicknefs $1,3,5,7,9,11,15 c$. and thereby make the Rings which appear

## [79]

appear by reflexion. And this alternate reflexion and tranfmiffion, as I gather by the 24 th Obfervation, contimues for above an hundred viciffitudes, and by the the Obfervations in the next part of this Book, for many thoufands, being propagated from one furface of a Glafsplate to the other, though the thicknefs of the plate be a quarter of an Inch or above: So that this alternation feems to be propagated from every refracting furface to all diftances without end or limitation.

This alternate reflexion and refraction depends on both the furfaces of every thin plate, becaufe it depends on their diftance. By the 2 Ith Obfervation, if either furface of a thin plate of Mufcovy-Glafs be wetted, the Colours caufed by the alternate reflexion and refraction grow faint, and therefore it depends on them both.

It is therefore performed at the fecond furface, for if it were performed at the firft, before the rays arrive at the fecond, it would not depend on the fecond.

It is alfo influenced by fome action or difpofition, propagated from the firft to the fecond, becaufe otherwife at the fecond it would not depend on the firf. And this action or difpofition, in its propagation, intermits and returns by equal intervals, becaufe in all its progrefs it inclines the ray at one diftance from the firft furface to be reflected by the fecond, at another to be tranfmitted by it, and that by equal intervals for innumerable viciffitudes. And becaufe the ray is difpofed to reflexion at the diftances $1,3,5,7,9, \mathfrak{b} c$. and to tranfmiffion at the diftances $0,2,4,6,8,10, \forall c c$, (for its tranfmiffion through the firf furface, is at the diftance

## [80]

ftance 0 , and it is tranfmitted through both together, if their diftance be infinitely little or much lefs than I) the difpofition to be tranfmitted at the diftances $2,4,6,8,10, \mathfrak{J} c$. is to be accounted a return of the fame difpofition which the ray firft had at the diftanceo, that is at its tranfmiffion through the firft refracting furface. All which is the thing I would prove.

What kind of action or difpofition this is? Whether it confift in a circulating or a vibrating motion of the ray, or of the medium, or fomething elfe? I do not here enquire. Thofe that are averfe from affenting to any new difcoveries, but fuch as they can explain by an Hypothefis, may for the prefent fuppofe, that as Stones by falling upon Water put the Water into an undulating motion, and all Bodies by percuffion excite vibrations in the Air; fo the rays of Light, by impinging on any refracting or reflecting furface, excite vibrations in the refracting or reflecting medium or fubftance, and by exciting them agitate the folid parts of the refracting or reflecting Body, and by agitating them caufe the Body to grow warm or hot ; that the vibrations thus excited are propagated in the refracting or reflecting medium or fubftance, much after the manner that vibrations are propagated in the Air for caufing found, and move fafter than the rays fo as to overtake them; and that when any ray is in that part of the vibration which confpires with its motion, it eafily breaks through a retracting furface, but when it is in the contrary part of the vibration which impedes its motion, it is eafily reflected ; and, by confequence, that every ray is fucceffively difpofed to be eafily reflected, or eafily tranfmitted, by every vibration which overtakes it. But whether
whether this Hypothefis be true or falfe I do not here confider. I content my felf with the bare difcovery, that the rays of Light are by fome caufe or other alternately difpofed to be reflected or refracted for many viciffitudes.

## DEFINITION.

The returns of the difpofition of any ray to be reflected I will call its Fits of eafy reflexion, and thofe of. its difpofition to be tranfmitted its Fits of eafy tranfmiffion, and the fpace it pafles between every return and the next return, the Interval of its Fits.

## PR O P. XIII.

The reafon why the furfaces of all thick tranfparent Bodies reflect part of the Ligbt incident on them, and refract the reft, is, that fome rays at their incidence are in Fits of eajy reflexion, and others in Fits of eafy tranfmiflon.

This may be gathered from the 24 th Obfervation, where the Light reflected by thin plates of Air and Glafs, which to the naked Eye appeared evenly white all over the plate, did through a Prifm appear waved with many fucceffions of Light and Darkneis made by alternate fits of eafy, reflexion and eafy tranfmiffion, the Prifm fevering and diftinguifhing the waves of which the white reflected Light was compofed, as was explained above.

And hence Light is in fits of eafy reflexion and eafy tranfiniffion, before its incidence on tranfparent Bodies. And probably it is put into fuch fits at its firft emiffion from luminous Bodies, and continues in them during all its progrefs. For thefe fits are of a lafting Nature, as will appear by the next part of this Book.

In this Propofition I fuppofe the tranfparent Bodies to be thick, becaufe if the thicknefs of the Body be much lefs than the interval of the fits of eafy reflexion and tranfmiffion of the rays, the Body lofeth its reflecting power. For if the rays, which at their entering into the Body are put into fits of eafy tranfmiffion, arrive at the furtheft furface of the Body before they be out of thofe fits they muft be tranfmitted. And this is the reafon why Bubbles of Water lofe their reflecting power when they grow very thin, and why all opake Bodies when reduced into very fmall parts become tranfparent.

## PROP. XIV.

Tho e furfaces of transparent Bodies, which if the ray be in a fit of refraction do refract it moft frongly, if the ray be in a fit of reflexion do reflect it moft eafily.

Fon we fhewed above in Prop. 8. that the caufe of reflexion is not the impinging of Light on the folid impervious parts of Bodies, but fome other power by which thofe folid parts act on Light at a diftance. We fhewed alfo in Prop. 9. that Bodies retleet and refract Light by one and the fame power varioufly exercifed in various circumftances, and in Prop. I. that the moft ftrongly refracting furfaces reflect the moft Light: All which
which compared together evince and ratify both this and the laft Propofition.

## PROP. XV.

In any one and the fame fort of rays emerging in any Angle out of any refracting furface into one and the fame medium, the interval of the following fits of eafy reflexion and tranfmiflon are either accurately or very nearly, as the Rectangle of the fecant of the Angle of refraction, and of the fecant of another Angle, whole fine is the firft of 106 aritbmetical mean proportionals, between the fines of incidence and refraction counted from the fine of refraction.

This is manifeft by the 7th Obfervation.

## PROP. XVI.

In feveral forts of rays emerging in equal Angles out of any'refracting furface into the fame medium, the intervals of the following fits of eafy reflexion and eafy tranfs miffion are either accurately, or very nearly, as the Cubee roots of the Squares of the lengths of a Chord, wobich found the notes in an Eight, fol, la, fa, fol, la, mi, fa, fol, with all their intermediate degrees anfwering to the Colowrs of thofe rays, according to the Analogy deforibed in the feo venth Experiment of the fecond Book.

This is manifeft by the $13^{\text {th }}$ and 14 th Obfervations.

## PROP. XVII.

If rays of any one fort pals perpendicularly into Several mediums, the intervals of the fits of eafy reflexion and tranfmiffion in any one medium, is to thafe intervals in any other as the fine of incidence to the fine of refraction, when the rays pals out of the firft of thole two mediums into the fecond.

This is manifeft by the 10 th Obfervation.

## PROP. XVIII.

If the rays which paint the Colour in the confine of yellow and orange pass perpendicularly out of any medium into Air, the intervals of their fits of easy reflexion are the $\frac{1}{8 g o 00}$ th part of an Inch. And of the fame length are the intervals of their fits of easy tranfmiflom.

This is manifeft by the 6th Obfervation.
From there Propofitions it is eafy to collect the intervals of the fits of early reflexion and eafy tranfmiffin of any fort of rays refracted in any Angle into any medium, and thence to know, whether the rays shall be reflected or tranfmitted at their fubfequent incidence upon any other pellucid medium. Which thing being ufeful for underftanding, the next part of this Book was here to be let down. And for the fame reason I add the two following Propofitions.

## PR OP. XIX.

If any fort of rays falling on the polite surface of any pellucid medium be reflected back, the fits of eafy reflexion which they have at the point of reflexion, foal fill continue to return, and the returns J ball be at difrances from the point of reflexion in the arithmetical progreflion of the numbers $2,4,6,8,10,12, \& c$. and between the fe fits the rays Shall be in fits of eafy transmiffron.

For fence the fits of eafy reflexion and leafy transmiffion are of a returning nature, there is no reafon why there fits, which continued till the ray arrived at the reflecting medium, and there inclined the ray to reflexion, fhould there ceafe. And if the ray at the point of reflexion was in a fit of cafy reflexion, the progreffion of the diftances of there fits from that point mut begin from 0 , and to be of the numbers $0,2,4$, $6,8, \pm c$. And therefore the progreffion of the difrances of the intermediate fits of eafy tranfmiffion reckoned from the fame point, muff be in the progreffion of the odd numbers $1,3,5,7,9, \mathfrak{Q}^{\circ} c$. contrary to what: happens when the fits are propagated from points of refraction.

## PR OP. XX.

The intervals of the fits of eafy reflexion and eafy tranfmifloon, propagated from points of reflexion into any medium, are equal to the intervals of the like fits which the fame rays would bave, if refracted into the fame
medium in Angles of refraction equal to their Angles of reflexion.

For when Light is reflected by the fecond furface of thin plates, it goes out afterwards freely at the firft furface to make the Rings of Colours which appear by reflexion, and by the freedom of its egrefs, makes the Colours of thefe Rings more vivid and ftrong than thofe which appear on the other fide of the plates by the tranfmitted Light. The reflected rays are therefore in fits of eafy tranfmiffion at their egrefs; which would not always happen, if the intervals of the fits within the plate after reflexion were not equal both in length and number to their intervals before it. And this confirms alfo the proportions fet down in the former Propofition. For if the rays both in going in and out at the firft furface be in fits of eafy tranfmiffion, and the intervals and numbers of thofe fits between the firft and fecond furface, before and after reflexion, be equal ; the diftances of the fits of eafy tranfmiffion from either furface, muft be in the fame progreffion after reflexion as before; that is, from the firft furface which tranfmitted them, in the progreffion of the even numbers $0,2,4,6,8, \forall c$. and from the fecond which reflected them, in that of the odd numbers $1,3,5,7, \mathcal{0} c$. But thefe two Propofitions will become much more evident by the Obfervations in the following part of this Book.

# THE <br> SECOND BOOK 

O F

# O P T I C K S. 

## PARTIV.

Obfervations concerning the Reflexions and Colours of tbick tranfparent polifhed Plates.

Here is no Glafs or Speculum how well foever polifhed, but, befides the Light which it refracts or reflects regularly, fcatters every way irregularly a faint Light, by means of which the polifhed furface, when illuminated in a dark Room by a beam of the Sun's Light, may be eafily feen in all pofitions of the Eye. There are certain Phænomena of this fcattered Light, which when I firft obferved them, feemed very ftrange and furprifing to me. My Obfervations were as follows.

OBS.

## O B S. I.

The Sun fhining into my darkened Chamber through a Hole $\frac{1}{3}$ of an Inch wide, I let the intromitted beam of Light fall perpendicularly upon a Glafs Speculum ground concave on one fide and convex on the other, to a Sphere of five Feet and eleven Inches Radius, and quick-filvered over on the convex fide. And holding a white opake Chart, or a Quire of Paper at the Center of the Spheres to which the Speculum was ground, that is, at the diftance of about five Feet and eleven Inches from the Speculum, in fuch manner, that the beam of Light might pafs through a little Hole made in the middle of the Chart to the Speculum, and thence be reflected back to the fame Hole: I obferved upon the Chart four or five concentric Irifes or Rings of Colours, like Rain-bows, encompaffing the Hole much after the manner that thofe, which in the fourth and following Obfervations of the firft part of this third Book appeared between the Object-Glaffes,encompaffed the black Spot, but yet larger and fainter than thofe. Thefe Rings as they grew larger and larger became diluter and fainter, fo that the fifth was fcarce vifible. Yet fometimes, when the Sun fhone very clear, there appeared faint Lineaments of a fixth and feventh. If the diftance of the Chart from the Speculum was much greater or much lefs than that of fix Feet, the Rings became dilute and vanifhed. And if the diftance of the Speculum from the Window was much greater than that of fix Feet, the reflected beam of Light would be fo broad at the diftance of fix Feet from the Speculum where the Rings

## [89]

appeared, as to obfcure one or two of the innermoft Rings. And therefore I ufually placed the Speculum at about fix Feet from the Window; fo that its Focus might there fall in with the center of its concavity at the Rings upon the Chart. And this pofture is always to be underftood in the following Oblervations where no other is expreft.

## O B S. II.

The Colours of thefe Rain-bows fucceeded one another from the center outwards, in the fame form and order with thofe which were made in the ninth Obfervation of the firf Part of this Book by Light not reflected, but tranfmitted through the two Object-Glaffes. For, firft, there was in their common center a white round Spot of faint Light, fomething broader than the reflected beam of Light ; which beam fometimes fell upon the middle of the Spot, and fometimes by a little inclination of the Speculum receded from the middle, and left the Spot white to the center.

This white Spot was immediately encompaffed with a dark grey or ruffet, and that darknefs with the Colours of the firft Iris, which were on the infide next the darknefs a little violet and indico, and next to that a blue, which on the outfide grew pale, and then fucceeded a little greenifh yellow, and after that a brighter yellow, and then on the outward edge of the Iris a red which on the outfide inclined to purple.

This Iris was immediately encompaffed with a fe. cond, whofe Colours were in order from the infide

## [90]

outwards, purple, blue, green, yellow, light red, a red mixed with purple.

Then immediately followed the Colours of the third Iris, which were in order outwards a green inclining to purple, a good green, and a red more bright than that of the former Iris.

The fourth and fifth Iris feemed of a bluifh green within, and red without, but fo faintly that it was difficult to difcern the Colours.

## O B S. III.

Meafuring the Diameters of thefe Rings upon the Chart as accurately as I could, I found them alfo in the fame proportion to one another with the Rings made by Light tranfmitted through the two ObjectGlafles. For the Diameters of the four firft of the bright Rings meafured between the brighteft parts of their orbits, at the diftance of fix Feet from the Speculum were $1_{16}^{11}, 2 \frac{3}{8}, 2 \frac{11}{12}, 3_{3}^{\frac{3}{3}}$ Inches, whofe fquares are in arithmetical progreffion of the numbers $1,2,3,4$. If the white circular Spot in the middle be reckoned amongft the Rings, and its central Light, where it feems to be moft luminous, be put equipollent to an infinitely little Ring; the fquares of the Diameters of the Rings will be in the progreffion $0,1,2,3,4, \mathfrak{b} c$. I meafured alfo the Diameters of the dark Circles between thefe luminous ones, and found their fquares in the progreffion of the numbers $\frac{1}{2}, 1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{2}, W_{c}$. the Diameters of the firft four at the diftance of fix Feet from the Speculum, being $1_{16}^{3}, 2 \frac{16}{2}, 2_{3}^{2}, 3_{20}^{\frac{2}{2}}$ Inches. If the diftance of the Chart from the Speculum was increaded

## [91 ]

creafed or diminifhed, the Diameters of the Circles were increafed or diminifhed proportionally.

## O B S. IV.

By the analogy between thefe Rings and thofe defcribed in the Obfervations of the firt Part of this Book, I fufpected that there were many more of them which fpread into one another, and by interfering mixed their Colours, and diluted one another fo that they could not be feen apart. I viewed them therefore through a Prifm, as I did thofe in the 24th Obfervation of the firf Part of this Book. And when the Prifm was fo placed as by refracting the Light of their mixed Colours to feparate them, and diftinguifh the Rings from one another, as it did thofe in that Obfervation, I could then fee them diftincter than before, and eafily number eight or nine of them, and fometimes twelve or thirteen. And had not their Light been fo very faint, I queftion not but that I might have feen many more.

## O B S. V.

Placing a Prifm at the Window to refract the intromitted beam of Light, and caft the oblong Spectrum of Colours on the Speculum: I covered the Speculum with a black Paper which had in the middle of it a Hole to let any one of the Colours pafs through to the Speculum, whilft the reft were intercepted by the Paper. And now I found Rings of that Colour only which fell upon the Speculum. If the Speculum was illuminated with red the Rings were totally red with dark interNn 2

## [92]

vals, if with blue they were totally blue, and fo of the other Colours. And when they were illuminated with any one Colour, the Squares of their Diameters meafured between their moft luminous parts, were in the arithmetical progreffion of the numbers $0,1,2,3,4$, and the Squares of the Diameters of their dark intervals in the progreffion of the intermediate numbers $\frac{1}{2}, 1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{2}$ : But if the Colour was varied they varied their magnitude. In the red they were largeft, in the indico and violet leaft, and in the intermediate Colours yellow, green and blue; they were of feveral intermediate bigneffes anfwering to the Colour, that is, greater in yellow than in green, and greater in green than in blue. And hence I knew that when the Speculum was illuminated with white Light, the red and yellow on the outfide of the Rings were produced by the leaft refrangible rays, and the blue and violet by the moft refrangible, and that the Colours of each Ring fpread into the Colours of the neighbouring Rings on either fide, after the manner explained in the firft and fecond Part of this Book, and by mixing diluted one another fo that they could not be diftinguifhed, unlefs near the center where they were leaft mixed. For in this Obfervation I could fee the Rings more diftinctly, and to a greater number than before, being able in the yellow Light to number eight or nine of them, befides a faint fhadow of a tenth. To fatisfy my felf how much the Colours of the feveral Rings fpread into one another, I meafured the Diameters of the fecond and third Rings, and found them when made by the confine of the red and orange to be fo the fame Diameters when made by the confine of blue and indico, as 9 to 8 , or thereabouts. For it was hard

## [93]

to determine this proportion accurately. Alfo the Circles made fucceffively by the red, yellow and green, differed more from one another than thofe made fucceffively by the green, blue and indico. For the Circle made by the violet was too dark to be feen. To carry on the computation, Let us therefore fuppofe that the differences of the Diameters of the Circles made by the outmoft red, the confine of red and orange, the confine of orange and yellow, the confine of yellow and green, the confine of green and blue, the confine of blue and indico, the confine of indico and violet, and outmoft violet, are in proportion as the differences of the lengths of a Monochord which found the tones in an Eight; Sol, $l a, f a, f o l, l a, m i, f a, f o l$, that is, as the numbers $\frac{T}{9,}$
 by the confine of red and orange be $9 A$, and that of the Circle made by the confine of blue and indico be 8 A as above, their difference, $\mathrm{A}-\ldots-8 \mathrm{~A}$ will be to the difference of the Diameters of the Circles made by the outmoft red, and by the confine of red and orange,
 the difference of the Circles made by the outmoft violet, and by the confine of blue and indico, as $\frac{1}{1_{8}}+\frac{1}{1} \frac{1}{2_{2}}+\frac{1}{2}+\frac{3}{2} \frac{3}{2}$ to $\frac{1}{2}+\frac{1}{2}$, that is, as $\frac{8}{2}$, to $\frac{3}{\frac{3}{4}}$, or as 16 to 5. And therefore thefe differences will be $\frac{1}{8} \mathrm{~A}$ and $\frac{5}{5} \mathrm{~A}$. Add the firft to 9 A and fubduct the laft from 8 A , and you will have the Diameters of the Circles made by the leaft and moft refrangible rays ${ }^{\frac{25}{8}} \mathrm{~A}$ and $\frac{\frac{61}{8} \frac{1}{3}}{} \mathrm{~A}$. Thefe Diameters are therefore to one another as 75 to $6 I_{\frac{1}{2}}$ or 50 to 41 , and their Squares as 2500 to 1681 , that is, as 3 to 2 very nearly. Which proportion differs not much from the proportion of the Diameters of the Circles.

## [94]

Circles made by the outmoft red and outmoft violet in the 13 th Obfervation of the firft part of this Book.

## O B S. VI.

Placing my Eye where thefe Rings appeared plaineft, I faw the Speculum tinged all over with waves of $\mathrm{Co}_{0}$ lours (red, yellow, green, blue ; ) like thofe which in the Obfervations of the firft Part of this Book appeared between the Object-Glaffes and upon Bubbles of Water, but much larger. And after the manner of thofe, they were of various magnitudes in various pofitions of the Eye, fwelling and fhrinking as I moved my Eye this way and that way. They were formed like Arcs of concentrick Circles as thofe were, and when my Eye was over againft the center of the concavity of the Speculum (that is, 5 Feet and 10 Inches diftance from the Speculum) their common center was in a right Line with that center of concavity, and with the Hole in the Window. But in other poftures of my Eye their center had other pofitions. They appeared by the Light of the Clouds propagated to the Speculum through the Hole in the Window, and when the Sun fhone through that Hole upon the Speculum, his Light upon it was of the Colour of the Ring whereon it fell, but by its fplendor obfcured the Rings made by the Light of the Clouds, unlefs when the Speculum was removed to a great diffance from the Window, fo that his Light upon it might be broad and faint. By varying the pofition of my Eye, and moving it nearer to or farther from the direct beam of the Sun's Light, the Colour of the Sun's reflected Light conftantly varied upon the Speculum,

## [95]

as it did upon my Eye, the fame Colour always appearing to a By-ftander upon my Eye which to me appeared upon the Speculum. And thence I knew that the Rings of Colours upon the Chart were made by thefe reflected Colours propagated thither from the Speculum in feveral Angles, and that their production depended not upon the termination of Light and Shaddow.

## O B S. VII.

By the Analogy of all thefe Phænomena with thofe of the like Rings of Colours defcribed in the firt Part of this Book, it feemed to me that thefe Colours were produced by this thick plate of Glafs, much after the manner that thofe were produced by very thin plates. For, upon tryal, I found that if the Quickfilver were rubbed off from the back-fide of the Speculum, the Glafs alone would caufe the fame Rings of Colours, but much more faint than before ; and therefore the Phænomenon depends not upon the Quickfilver, unlefs fo far as the Quick-filver, by the increafing the reflexion of the back-fide of the Glafs, increafes the Light of the Rings of Colours. I found alfo that a Speculum of metal without Glafs made fome years fince for optical ufes, and very well wrought, produced none of thofe Rings; and thence I underftood that thefe Rings arife not from one fpecular furface alone, but depend upon the two furfaces of the plate of Glafs whereof the Speculum was made, and upon the thicknefs of the Glafs between them. For as in the 7th and 19th Obfervations of the firft Part of this Book a thin plate

## [96]

of Air, Water, or Glafs of an even thicknefs appeared of one Colour when the rays were perpendicular to it, of another when they were a little oblique, of another when more oblique, of another when fill more oblique, and fo on ; fo here, in the fixth Obfervation, the Light which emerged out of the Glafs in feveral obliquities, made the Glafs appear of feveral Colours, and being propagated in thofe obliquities to the Chart, there painted Rings of thofeColours. And as the reafon why a thin plate appeared of feveral Colours in feveral obliquities of the rays, was, that the rays of one and the fame fort are reflected by the thin plate at one obliquity and tranfmitted at another, and thofe of other forts tranfmitted where thefe are reflected, and reflected where thefe are tranfmitted: So the reafon why the thick plate of Glafs whereof the Speculum was made did appear of various Colours in various obliquities, and in thofe obliquities propagated thofe Colours to the Chart, was, that the rays of one and the fame fort did at one obliquity emerge out of the Glafs, at another did not emerge but were reflected back towards the Quick-filver by the hither furface of the Glafs, and accordingly as the obliquity became greater and greater emerged and were reflected alternately for many fucceffions, and that in one and the fame obliquity the rays of one fort were reflected, and thofe of another tranfmitted. This is manifeft by the frfft Obfervation of this Book: For in that Obfervation, when the Speculum was illuminated by any one of the prifmatick Colours, that Light made many Rings of the fame Colour upon the Chart with dark intervals, and therefore at its emergence out of the Speculum was alternately tranfmitted, and not

## [97]

tranfmitted from the Speculun to the Chart formany fucceffions, according to the various obliquities of its emergence. And when the Colour caft on the Speculum by the Prifm was varied, the Rings became of the Colour caft on it, and varied their bignefs with their Colour, and therefore the Light was now alternately tranfmitted and not tranfmitted from the Speculum to the bent at other obliquities than before. It feemed to me therefore that thefe Rings were of one and the fame original with thofe of thin plates, but yet with this difference that thofe of thin plates are made by the alternate reflexions and tranfmiffions of the rays at the fecond furface of the plate after one paffage through it: But here the rays go twice through the plate before they are alternately reflected and tranfinitted ; firft, they go through it from the firf furface to the Quickfilver, and then return through it from the Quick-filver to the firf furface, and there are either tranfmitted to the Chart or reflected back to the Quick-filver, accordingly as they are in their fits of eafie reflexion or tranfiniffion when they arrive at that furface. For the intervals of the fits of the rays which fall perpendicularly on the Speculum, and are reflected back in the fame perpendicular Lines, by reafon of the equality of thefe Angles and Lines, are of the fame length and number within the Glafs after reflexion as before by the 19th Propofition of the third Part of this Book. And therefore fince all the rays that enter through the firft furface are in their fits of eafy tranfmiffion at theirientrance, and as many of thefe as are reflected by the fecond are in their fits of eafy reflexion there, all thefe muft be again in their fits of eafy tranfmiffion at their

## [98]

return to the firft, and by confequence there go out of the Glafs to the Chart, and form upon it the white Spot of Light in the center of the Rings. For the reafon holds good in all forts of rays, and therefore all forts mult go out promifcuoufly to that Spot, and by their mixture caute it to be whites But the intervals of the fits of thofe rays which are reflected more obdiquely than they enter, muft be greater after reflexion than before by the 15 th and 20 th Prop. And thence it may happen that the rays at their return to the firft furface, may in certain obliquities be in fits of eafy reflexion, and return back to the Quick-filver, and in other intermediate obliquities be again in fits of eafy tranfmiffion, and fo go out to the Chart, and paint on it the Rings of Colours about the white Spot. And becaufe the intervals of the fits at equal obliquities are greater and fewer in the lefs refrangible rays, and lefs and more numerous in the more refrangible, therefore the lefs refrangible at equal obliquities fhall make fewer Rings than the more refrangible, and the Rings made by thofe fhall be larger than the like number of Rings maderby thefer; that is, the red Rings fhall be larger than the yellow, the yellow than the green, the green than the blue, and the blue than the violet, as they were really found to be in the 5 th Obfervation. And therefore the fiyt Ring of all Colours incompaffing the white Spot of Light fhall be red without and violet within, and yellow, and green, and blue in the middle, as it was found in the fecond Obfervation; and thele Colours in the fecond Ring, and thofe that follow fhall be more expanded till they fpread into one another, and blend one another by interfering.

## [99]

Thefe feem to be the reafons of thele Rings in ge? neral, and this put me upon obferving the thicknefs of the Glafs, and confidering whether the dimenfions and proportions of the Rings may be truly derived from it by computation.

## O B S. VIII.

I meafured therefore the thicknefs of this concavoconvex plate of Glafs, and found it every-where $\frac{\div}{4}$ of an Inch precifely. Now, by the 6th Obfervation of the firf Part of this Book, a thin plate of Air tranfmits the brighteft Light of the firft Ring, that is the bright yellow, when its thickners is the sgooth part of an Inch, and by the roth Obfervation of the fame part, a thin plate of Glafs tranfmits the fameLight of the fame Ring when its thicknefs is lefs in proportion of the fine of refraction to the fine of incidence, that is, when its thicknefs is the $\frac{11}{[513000}$ th or ${ }_{137745}{ }^{4}$ th part of an Inch, fuppofing the fines are as II to I7. And if this thicknels be doubled it tranfmits the fame bright Light of the fecond Ring, if tripled it tranfmits that of the third, and fo on, the bright yellow Light in all thefe cafes being in its fits of tranfmiffion. And therefore if its thicknefs be multiplied 34386 times fo as to become ${ }_{4}$ of an Inch it tranfmits the fame bright Light of the 34386 th Ring. Suppofe this be the bright yellow Light tranfmitted perpendicularly from the reflecting convex fide of the Glafs through the concave fide to the white Spot in the center of the Rings of Collours on the Chart : And by a rule in the feventh Oblervations in the firf Part of thes Book, and by the 15 th and 20th Propofitions
of the third Part of this Book, if the rays be made oblique to the Glats, the thicknefs of the Glafs requifite to tranfmit the fame bright Light of the fame Ring in any obliquity is to this thicknefs of $\frac{2}{4}$ of an Inch, as the fecant of an Angle whofe fine is the firft of an hundred and fix arithmetical means between the fines of incidence and refraction, counted from the fine of incidence when the refraction is made out of any plated Body into any medium incompaffing it, that is, in this cafe, out of Glafs into Air. Now if the thicknels of the Glafs be increafed by degrees, fo as to bear to its finft thicknefs, (viz. that of a quarter of an Inch ) the proportions which 34386 (the number of fits of the perpendicular rays in going through the Glafs towards the white Spot in the center of the Rings, ) hath to $343^{8} 5,343^{8} 4$, 34383 and $343^{82}$ (the numbers of thefits of the oblique rays in going through the Glafs towards the firft, fecond, third and fourth Rings of Colours, ) and if the firft thicknefs be divided into 100000000 equal parts, the increafed thickneffes will be 100002908,100005816 , 100008725 and 100011633 , and the Angles of which thefe thickneffes are fecants will be $26^{\prime} 13^{\prime \prime} ; 37^{\prime} 5^{\prime \prime}, 45^{\prime} 6^{\prime \prime}$ and $5^{2^{\prime}} 26^{\prime \prime}$, the Radius being 100000000 ; and the fines of thefe Angles are $762,1079,1321$ and 1525 , and the proportional fines of refraction $117,2,1659,2031$ and 2345 , the Radius being 100000 . For fince the fines of incidence out of Glafs into Air are to the fines of refraction as 11 to 17 , and to the above-mentioned. fecants as II to the firft of 1.06 arithmetical means between 11 and 17 , that is as 11 to $11_{106} \frac{6}{}$, thofe fecants will be to the fines of refraction as $11 \frac{6}{106}$ to 17 , and by this Analogy will give thefe fines. So then

## [ 101 ]

if the obliquities of the rays to the concave furface of the Glafs be fuch that the fines of their refraction in paffing out of the Glafs through that furface into the Air be $1172,1659,2031,2345$, the bright Light of the 34386th Ring fhall emerge at the thickneffes of the Glafs which are to $\frac{1}{7}$ of an Inch as 34386 to 34385 ? $343^{8} 4,343^{8} 3,343^{82}$, refpectively. And therefore if the thicknefs in all thefe cales be $\frac{1}{4}$ of an Inch (as it is in the Glafs of which the Speculum was made) the bright Light of the $343^{8} 5$ th Ring fhall emerge where the fine of refraction is $\mathrm{FI} 7^{2}$, and that of the $343^{8} 4$ th, $3^{8} 43^{8} 3^{\text {th }}$ and $343^{82}$ th Ring where the fine is 1659,2031 , and 2345 refpectively. And in thefe Angles of refraction the Light of thefe Rings fhall be propagated from the Speculum to the Chart, and there paint Rings about the white central round Spot of Light which we faid was the Light of the 34386 th Ring. And the Semidiame. ters of thefe Rings thall fubtend the Angles of refraction. made at the concave furface of the Speculum, and by confequence their Diameters fhall be to the diftance of the Chart from the Speculum as thofe fines of refraction doubled are to the Radius that is as $117^{2}, 1659,203^{1}$, and 2345 , doubled are to 100000 . And therefore if the diftance of the Chart from the concave furface of the Speculum be fix Feet (as it was in the third of thefe Obfervations) the Diameters of the Rings of this bright yellow Light upon the Chart fhall be $r^{\prime} 688,2^{2} .389$, $2^{\prime} 925,3^{\prime} 375$ Inches : For thefe Diameters are to 6 Feet. as the above-mentioned. fines doubled are to the Radius. Now thefe Diameters of the bright yellow Rings, thus found by computation are the very fame with thofe found in the third of thefe Obfervations by meafuring
them,

## [ HO ]

them, (viz. with $1 \frac{17}{16}, 2 \frac{3}{5}, 2 \frac{11}{1 \frac{1}{2}}$, and $3 \frac{3}{5}$ Inches, and therefore the Theory of deriving thefe Rings from the thicknefs of the plate of Glafs of which the Speculum was made, and from the obliquity of the emerging rays agrees with the Obfervation. In this computation 1 have equalled the Diameters of the bright Rings made by Light of all Colours, to the Diameters of the Rings made by the bright yellow. For this yellow makes the brighteft part of the Rings of all Colours. If you defire the Diameters of the Rings made by the Light of any other unmixed Colour, you may find them readily by putting them to the Diameters of the bright yellow ones in a fubduplicate proportion of the intervals of the fits of the rays of thofe Colours when equally inclined to the refracting or reflecting furface which caufed thole fits, that is, by putting the Diameters of the Rings made by the rays in the extremities and limits of the feven Colours, red, orange, yellow, green, blue, indico, violet, proportional the Cube-roots of the numbers, $1, \frac{8}{9}, \frac{5}{6}, \frac{3}{4}$, $\frac{2}{3}, \frac{3}{5},{ }_{16}, \frac{1}{2}$, which exprefs the lengths of a Monochard founding the notes in an Eight : For by this means the Diameter of the Rings of thefe Colours will be found pretty nearly in the fame proportion to one another, which they ought to have by the fifth of thefe Obfervations.

And thus I fatisfied my felf that thefe Rings were of the fame kind and original with thofe of thin plates, and by confequence that the fits or alternate difpofitions of the rays to be reflected and tranfmitted are propagated to great diftances from every reflecting and refracting furface. But yet to put the matter out of doubt I added the following Obfervation.

OBS.

## [103]

## OBS. IX.

If there Rings thus depend on the thicknefs of the plate of Glafs their Diameters at equal diftances from feveral Speculums made of fuch concavo-convex plates of Glafs as are ground on the fame Sphere, ought to be reciprocally in a fubduplicate proportion of the thickneffes of the plates of Glafs. I And if this proportion be found true by experience it will amount to a demonftration that thefe Rings (like thofe formed in thin plates) do depend on the thicknefs of the Glafs. I procured therefore another concavo-convex plate of Glafs ground on both fides to the fame Sphere with the former plate: Its thicknefs was $\frac{5}{62}$ parts of an Inch; and the Diameters of the three firft bright Rings meafured between the brighteft parts of their orbits at the diftance of 6 Feet from the Glafs were $3 \cdot 4 \frac{1}{6}$. $5 \frac{1}{\frac{1}{2}}$. Inches. Now the thick. nefs of the other Glafs being $\frac{1}{4}$ of an Inch was to thick. nels of this Glafs as $\frac{1}{4}$ to $\frac{5}{62}$, that is as 31 to 10 , or 310000000 to 100000000 , and the roots of thefe numbers are 17607 and $10000, \&$ in the proportion of the firt of thefe roots to the fecond are the Diameters of the bright Rings made in this Obfervation by the thinner Glafs, 3. $4 \frac{1}{6} \cdot 5_{\frac{\frac{1}{8}}{8}}$ to the Diameters of the fame Rings made in the third of thefe Obfervations by the thicker Glafs $1 \frac{11}{16} .2 \frac{2}{8} 2 \frac{11}{12}$, that is, the Diameters of the Rings are reciprocally in a fubduplicate proportion of thickneffes of the plates of Glafs.

So then in plates of Glafs which are alike concave on: one fide, and alike convex on the other fide, and alike quick-filvered on the convex fides, and differ in nothing

## [104]

but their thicknefs, the Diameters of the Rings are reciprocally in a fubduplicate proportion of the thickneffes of the plates. And this fhews fufficiently that the Rings depend on both the furfaces of the Glafs. They depend on the convex furface becaufe they are more luminous when that furface is quick-filvered over than when it is without Quick-filver. They depend alfo upon the concave furface, becaufe without that furface a Speculum inakes them not. They depend on both furfaces and on the diftances between them, becaufe their bignefs is varied by varying only that diftance. And this dependance is of the fame kind with that which the Colours of thin plates have on the diftance of the furfaces of thofe plates, becaufe the bignefs of the Rings and their proportion to one another, and the variation of their bignefs arifing from the variation of the thicknefs of the Glafs, and the orders of their Colours, is fuch as ought to refult from the Propofitions in the end of the third Part of this Book, derived from the the Phænomena of the Colours of thin plates fet down in the firft Part.

There are yet other Phromoma of thefe Rings of Colours but fuch as follow from the fame Propofitions, and therefore confirm both the truth of thofe Propofitions, and the Analogy between thefe Rings and the Rings of Colours made by very thin plates. I fhall fubjoyn fome of them.

## [ 105 ]

## O B S. X.

When the beam of the Sun's Light was reflected back from the Speculum not directly to the Hole in the Window, but to a place a little diftant from it, the common center of that Spot, and of all the Rings of Colours fell in the middle way between the beam of the incident Light, and the beam of the reflected Light, and by confequence in the center of the fpherical concavity of the Speculum, whenever the Chart on which the Rings of Colours fell was placed at that center. And as the beam of reflected. Light by inclining the Speculum receded more and more from the beam of incident Light and from the common center of the coloured Rings between them, thofe Rings grew bigger and bigger, and fo alfo did the white round Spot, and new Rings of Colours emerged fucceffively out of their common center, and the whiteSpot became a white Ring encompaffing them ; and the incident and reflected beams of Light always fell upon the oppofite parts of this Ring, illuminating its perimeter like two mock Suns in the oppofite parts of an Iris. So then the Diameter of this Ring, meafured from the middle of its Light on one fide to the middle of its Light on the other fide, was always equal to the diftance between the middle of the incident beam of Light, and the middle of the reflected beam meafured at the Chart on which the Rings appeared: And the rays which formed this Ring were reflected by the Speculum in Angles equal to their Angles of incidence, and by confequence to their Angles of refraction at their entrance into the Glafs, but yet their Angles of

## [ 106 ]

reflexion were not in the fame planes with their Angles of incidence.

## O B S. XI.

The Colours of the new Rings were in a contrary order to thofe of the former, and arofe after this manner. The white round Spot of Light in the middle of the Rings continued white to the center till the diftance of the incident and reflected beams at the chart was about ${ }_{8}^{7}$ parts of an Inch, and then it began to grow dark in the middle. And when that diftance was about ${ }_{1} \frac{3}{16}$ of an Inch, the white Spot was become a Ring encompaffing a dark round Spot which in the middle inclined to violet and indico. And the luminous Rings incompaffing it were grown equal to thofe dark ones which in the four firft Obfervations encompaffed them, that is to fay, the white Spot was grown a white Ring equal to the firft of thofe dark Rings, and the firft of thofe luminous Rings was now grown equal to the fecond of thofe dark ones, and the fecond of thofe luminous ones to the third of thofe dark ones, and fo on. For the Diameters of the luminous Rings were now $1 \frac{2}{16}$, $2 \frac{1}{16}, 2 \frac{2}{3}, 3 \frac{3}{20}, \mho \sigma c$. Inches.

When the diftance between the incident and reflected beams of Light became a little bigger, there emerged out of the middle of the dark Spot after the indico a blue, and then out of that blue a pale green, and foon after a yellow and red. And when the Colour at the center was brighteft, being between yellow and red, the bright Rings were grown equal to thofe Rings which in the four firt Obfervations next encompaffed them;

## [107]

that is to fay, the white Spot in the middle of thofe Rings was now become a white Ring equal to the firft of thofe bright Rings, and the firt of thofe bright ones was now become equal to the fecond of thofe, and fo on. For the Diameters of the white Ring $\$$, and of the other luminous Rings incompaffing it, were now ${ }^{\frac{1}{1} \frac{1}{5}}$, $2^{\frac{1}{8}}, 2^{\frac{1}{2}}, 3^{\frac{3}{8}}, \mathcal{J} c$. or thereabouts.

When the diftance of the two beams of Light at the Chart was a little more increafed, there emerged out of the middle in order after the red, a purple, a blue, a green, a yellow, and a red inclining much to purple, and when the Colour was brighteft being between yellow and red, the former indico, blue, green, yellow and red, were become an Iris or Ring of Colours equal to the firft of thofe luminous Rings which appeared in the four firft Obfervations, and the white Ring which was now become the fecond of the luminous Rings was grown equal to the fecond of thofe, and the firft of thofe which was now become the third Ring was become the third of thofe, and fo on. For their Diameters were $1^{\frac{11}{16}}, 2^{\frac{3}{8}}, 2^{\frac{1}{12}}, 3^{\frac{3}{8}}$ Inches, the diftance of the two beams of Light, and the Diameter of the white Ring being $2 \frac{2}{3}$ Inches.

When thefe two beams became more diftant there emerged out of the middle of the purplifh red, firf a darker round Spot, and then out of the middle of that Spot a brighter. And now the former Colours (purple, blue, green, yellow, and purplifh red) were become a Ring equal to the furt of the bright Rings mentioned in the four firf Obfervations, and the Rings about this Ring were grown equal to the Rings about that re. fpectively; the diftance between the two beams of P p 2

Light

## [ 108 ]

Light and the Diameter of the white Ring (which was now become the third Ring ) being about 3 Inches.

The Colours of the Rings in the middle began now to grow very dilute, and if the diftance between the two beams was increafed half an Inch, or an Inch more, they vanifhed whilft the white Ring, with one or two of the Rings next it on either fide, continued ftill vifible. But if the diftance of the two beams of Light was fill more increafed thefe alfo vanifhed: For the Light which coming from feveral parts of the Hole in the Window fell upon the Speculum in feveral Angles of incidence made Rings of feveral bigneffes, which diluted and blotted out one another, as I knew by intercepting fome part of that Light. For if I intercepted that part which was neareft to the Axis of the Speculum the Rings would be lefs, if the other part which was remoteft from it they would be bigger.

## O B S. XII.

When the Colours of the Prifin were caff fucceffively on the Speculum, that Ring which in the two laft Obfervations was white, was of the fame bignefs in all the Colours, but the Rings without it were greater in the green than in the blue, and ftill greater in the yellow, and greateft in the red. And, on the contrary, the Rings within that white Circle were lefs in the green than in the blue, and ftill lefs in the yellow, and leaft in the red. For the Angles of reflexion of thofe rays which made this Ring being equal to their Angles of incidence, the fits of every reflected ray within the Glafs after
after reflexion are equal in length and number to the fits of the fame ray within the Glafs before its incidence on the reflecting furface; and therefore fince all the rays of all forts at their entrance into the Glafs were in a fit of tranfmiffion, they were alfo in a fit of tranfmiffion at their returning to the fame furface after reflexion ; and by confequence were tranfmitted and went out to the white Ring on the Chart. This is the reafon why that Ring was of the fame bignefs in all the Colours, and why in a mixture of all it appears white: But in rays which are reflected in other Angles, the intervals of the fits of the leaft refrangible being greateft, make the Rings of their Colour in their progrefs from this white Ring, either outwards or inwards, increafe or decreafe by the greateft fteps; fo that the Rings of this Colour without are greateft, and within leaft. And this is the reafon why in the laft Obfervation, when the Speculum was illuminated with white Light, the exterior Rings made by all Colours appeared red without and blue within, and the interior blue without and red. within.

Thefe are the Phænomena of thick convexo-concave plates of Glafs, which are every where of the fame thicknefs. There are yet other Phænomena when thefe plates are a little thicker on one fide than on the other, and others when the plates are more or lefs concave than convex, or plano-convex, or double-convex. For in all thefe cafes the plates make Rings of Colours, but after various manners; all which, fo far as I have yet obferved, follow from the Propofitions in the end of the third part of this Book, and fo confpire to confirm the truth of thofe Propofitions. But the Phæno-

## [110]

mena are too various, and the Calculations whereby they follow from thofe Propofitions too intricate to be here profecuted. I content my felf with having profecuted this kind of Phænomena fo far as to difcover their caufe, and by difcovering it to ratify the Propofitions in the third Part of this Book.

## O B S. XIII.

As Light reflected by a Lens quick-filvered on the back-fide makes the Rings of Colours above defcribed, fo it ought to make the like Rings of Colours in paffing through a drop of Water. At the firft reflexion of the rays within the drop, fome Colours ought to be tranfmitted, as in the cafe of a Lens, and other's . to be reflected back to the Eye. For inftance, if the Diameter of a fmall drop or globule of Water be about the 500th part of an Inch, fo that a red-making ray in paffing through the middle of this globule has 250 fits of eafy tranfmiffion within the globule, and that all the red-making rays which are at a certain diftance from this middle ray round about it have 249 fits within the globule, and all the like rays at a certain further diftance round about it have 248 fits, and all thofe at a certain further diftance 24.7 fits, and fo on ; thefe concentrick Circles of rays after their tranfmiffion, falling on a white Paper, will make concentrick rings of red upon the Paper, fuppofing the Light which paffes through one fingle globule ftrong enough to be fenfible. And, in like manner, the rays of other Colours will make Rings of other Colours. Suppofe now that in a fair day the Sun thines through a thin Cloud of fuch globules

## Fil ]

globules of Water or Hail, and that the globules are all of the fame bignefs, and the Sun feen through this Cloud thall appear incompaffed with the like concentrick Rings of Colours, and the Diameter of the firft Ring of red fhall be $7_{4}^{\frac{1}{4}}$ degrees, that of the fecond 10 - degrees, that of the third 12 degrees 33 minutes. And accordingly as the globules of Water are bigger or lefs, the Rings fhall be lefs or bigger. This is the Theory, and experience anfwers it. For in fune 1692. I faw by reflexion in a Veffel of ftagnating Water three Halos Crowns or Rings of Colours about the Sun, like three little Rainbows, concentrick to his Body. The Colours of the firt or innermoft Crown were blue next the Sun, red without, and white in the middle between the blue and red. Thofe of the fecond Crown were purple and blue within, and pale red without, and green in the middle. And thofe of the third were pale blue within, and pale red without ; thefe Crowns inclofed one another immediately, fo that their Colours proceeded in this continual order from the Sun outward: blue, white, red ; purple, blue, green, pale yellow and red; pale blue, pale red. The Diameter of the fecond Crown meafured from the middle of the yellow and red on one fide of the Sun, to the middle of the fame Colour on the other fide was $9 \frac{1}{3}$ degrees, or thereabouts. The Diameters of the firft and third I had not time to meafure, but that of the firft feemed to be about five or fix de. grees, and that of the third about twelve. The like Crowns appear fometimes about the Moon; for in the beginning of the year 1664, Febr. 19th at night, I faw two fuch Crowns about her. The Diameter of the firtt or innermoft was about three degrees, and that of thefecond
fecond about five degrees and an half. Next about the Moon was a Circle of white, and next about that the inner Crown which was of a bluifh green within next the white, and of a yellow and red without, and next about thefe Colours were blue and green on the infide of the outward Crown, and red on the outfide of it. At the fame time there appeared a Halo about 22 degrees $35^{\prime}$ diftant from the center of the Moon. It was Elliptical, and its long Diameter was perpendicular to the Horizon verging below fartheft from the Moon. I am told that the Moon has fometimes three or more concentrick Crowns of Colours incompaffing one another next about her Body. The more equal the globules of Water or Ice are to one another, the more Crowns of Colours will appear, and the Colours will be the more lively. The Halo at the diftance of $22 \frac{1}{2}$ degrees from the Moon is of another fort. By its being oval and remoter from the Moon below than above, I conclude, that it was made by refraction in fome fort of Hail or Snow floating in the Air in an horizontal Pofture, the refracting Angle being about 58 or 60 degrees.

## [113]

# T H E <br> <br> THIRD BOOK 

 <br> <br> THIRD BOOK}

O F

## O P T I C K S.

Obfervations concerning the Inflexions of the rays of Ligbt, and the Colours made thereby.

GRimaldo has informed us, that if a beam of the
I Sun's Light be let into a dark Room through a very fmall Hole, the fhadows of things in this Light will be larger than they ought to be if the rays went on by the Bodies in ftreight Lines, and that thefe fhadows have three parallel fringes, bands or ranks of coloured Light adjacent to them. But if the Hole be enlarged the fringes grow broad and run into one another, fo that they cannot be diftinguifhed. Thefe broad fhadows and fringes have been reckoned by fome to proceed from the ordinary refraction of the Air, but without due examination of the matter. For the circumftances of the Phænomenon, fo far as I have obferved them, are as follows.
Q q
OBS.

## [114]

## O B S. I.

I made in a piece of Lead a fmall Hole with a Pin, whofe breadth was the 42 th part of an Inch. For $2 I$ of thofe Pins laid together took up the breadth of half an Inch. Through this Hole I let into my darkened Chamber a beam of the Sun's Light, and found that the fhadows of Hairs, Thred, Pins,Straws, and fuch like flender fubftances placed in this beam of Light, were confiderably broader than they ought to be, if the rays of Light paffed on by thefe Bodies in right Lines. And particularly a Hair of a Man's Head, whofe breadth was but the 280 th part of an Inch, being held in this Light, at the diftance of about twelve Feet from the Hole, did caft a fhadow which at the diftance of four Inches from the Hair was the fixtieth part of an Inch broad, that is, above four times broader than the Hair, and at the diftance of two Feet from the Hair was about the eight and twentieth part of an Inch broad, that is, ten times broader than the Hair, and at the diftance of ten Feet was the eighth part of an Inch broad, that is 35 times broader.

Nor is it material whether the Hair be incompaffed with Air, or with any other pellucid fubftance. For I wetted a polifhed plate of Glafs, and laid the Hair in the Water upon the Glafs, and then laying another polifhed plate of Glafs upon it, fo that the Water might fill up the face between the Glaffes, I held them in the aforefaid beam of Light, fo that the Light might pafs through them perpendicularly, and the fhadow of the Hair was at the lame diftances as big as before.

## $[215]$

The fhadows of fcratches made in polifhed plates of Glafs were alfo much broader than they ought to be, and the Veins in polifhed plates of Glais did alfo caft the like broad fhadows. And therefore the great breadth of thefe fhadows proceeds from fome other caufe than the refraction of the Air.

Let the Circle X reprefent the middle of the Hair ; Fig. i. $\mathrm{ADG}, \mathrm{BEH}, \mathrm{CFI}$, three rays paffing by one fide of the Hair at feveral diftances; KNQ, LOR, MPS, three other rays paffing by the other fide of the Hair at the like diftances ; D, E, F and N, O, P, the places where the rays are bent in their paffage by the Hair; $\mathrm{G}, \mathrm{H}, \mathrm{I}$ and $\mathrm{Q}, \mathrm{R}, \mathrm{S}$, the places where the rays fall on a Paper G Q; IS the breadth of the fhadow of the Hair caft on the Paper, and T I, V S, two rays paffing to the points $I$ and $S$ without bending when the Hair is taken away. And it's manifeft that all the Light between thefe two rays AI and VS is bent in paffing by the Hair, and turned afide from the fhadow IS, becaufe if any part of this Light were not bent it would fall on the Paper within the fhadow, and there illuminate the Paper contrary to experience. And becaufe when the Paper is at a great diftance from the Hair, the fhadow is broad, and therefore the rays TI and VS are at a great diftance from one another, it follows that the Hair acts upon the rays of Light at a good diftance in their paffing by it. But the action is ftrongeft on the rays which paifs by at leaft diftances, and grows weaker and weaker accordingly as the rays pafs by at diftances greater and greater, as is reprefented in the Scheme: For thence it comes to pafs, that the fhadow of the Hair is much broader in proportion to the diftance of

## [116]

the Paper from the Hair, when the Paper is nearer the Hair than when it is at a great diftance from it.

## O B S. II.

The fhadows of all Bodies (Metals, Stones, Glafs, Wood, Horn, Ice, ḋc.) in this Light were bordered with three parallel fringes or bands of coloured Light, whereof that which was contiguous to the fhadow was broadeft and moft luminous, and that which was remoteft from it was narroweft, and fo faint, as not eafily to be vifible. It was difficult to diftinguifh the Colours unlefs when the Light fell very obliquely upon a fmooth Paper, or fome other finooth vvhite Body, fo as to make them appear much broader than they vvould otherwife do. And then the Colours were plainly vifible in this order : The firft or innermoft fringe was violet and deep blue next the fhadovv, and then light blue, green and yellovv in the middle, and red vvithout. The fecond fringe vvas almoft contiguous to the firft, and the third to the fecond, and both vvere blue vvithin and yellovv and red vvithout, but their Colours vvere very faint efpecially thofe of the third. The Colours therefore proceeded in this order from the fhadovv, violet, indico, pale blue, green, yellovv, red ; blue, yellovv, red ; pale blue, pale yellowv and red. The fhadows made by fcratches and bubbles in polifhed plates of Glafs vvere bordered vvith the like fringes of coloured Light. And if plates of Looking-glafs floop'd off near the edges vvith a Diamond cut, be held in the fame beam of Light, the Light which paffes through the parallel planes of the Glafs will be be bordered with the like fringes of Co-

## [ 117 ]

lours where thofe Planes meet with the Diamond cut, and by this means there will fometimes appear four or five fringes of Colours. Let A B, CD reprefent the Fig. 2. parallel planes of a Looking-glais, and BD the plane of the Diamond-cut, making at B a very obtufe Angle with the plane A B. And let all the Light between the rays EN I and FBM pafs directly through the parallel planes of the Glafs, and fall upon the Paper between I and M , and all the Light between the rays GO and HD be refracted by the oblique plane of the Diamond cut B D, and fall upon the Paper between K and L; and the Light which paffes directly through the parallel planes of the Glafs, and falls upon the Paper between I and M , will be bordered with three or more fringes


When the Hair was twelve Feet diftant from the Hole, and its fhadow fell obliquely upon a flat vvhite fcale of Inches and parts of an Inch placed half a Foot beyond it, and alfo when the fhadow fell perpendicularly upon the fame fcale placed nine Feet beyond it; I me red the breadth of the fhadow and fringes as accurately as I could, and found them in parts of an Inch as follows.

## [II8]

The breadth of the Shadow

| The breadth between the middles of the |
| :--- |
| brighteft Light of the innermoft fringes |
| on either fide the fhadow |


| The breadth between the middles of the |
| :--- |

brighteft Light of the middlemoft frin-
ges on either fide the fhadow

## [ II9]

Thefe meafures I took by letting the fhadow of the Hair at half a Foot diftance fall fo obliquely on the fcale as to appear twelve times broader than vvhen it fell perpendicularly on it at the fame diftance, and fetting down in this Table the twelfth part of the meafures I then took.

## O B S. IV.

When the fhadovv and fringes vvere caft obliquely upon a fmooth vvhite Body, and that Body was removed further and further from the Hair, the firt fringe began to appear and look brighter than the reft of the Light at the diftance of lefs than a quarter of an Inch from the Hair, and the dark line or fhadovv between that and the fecond fringe began to appear at a lefs difance from the Hair than that of the third part of an Inch. The fecond fringe began to appear at a diftance from the Hair of lefs than half an Inch, and the fhadow between that and the third fringe at a diftance lefs than: an Inch, and the third fringe at a diftance lefs than three Inches. At greater diftances they became much more fenfible, but kept very nearly the fame proportion of their breadths and intervals which they had at their firft appearing. For the diftance between the middle of the firft and middle of the fecond fringe, was to the diftance between the middle of the fecond and middle of the third fringe, as three to two, or ten to feven. And the laft of thefe two diftances vvas equal to the breadth of the bright Light or luminous part of the firft fringe. And this breadth vvas to the breadth of the bright Light of the fecond fringe as feven to four, and to the dark interval

## $\left[\begin{array}{ll}1 & 2\end{array}\right.$

interval of the firft and fecond fringe as three to two, and to the like dark interval between the fecond and third as two to one. For the breadths of the fringes feemed to be in the progreffion of the numbers $1,\left\langle\frac{1}{3}\right.$, $V \frac{1}{5}$ and their intervals to be in the fame progreffion vvith them ; that is, the fringes and their intervals together to be in the continual progreffion of the numbers I, $V \frac{1}{\frac{1}{2}}, V \frac{1}{3}, V \frac{1}{4}, V \frac{1}{5}$, or thereabouts. And thefe proportions held the fame very nearly at all diftances from the Hair ; the dark Intervals of the fringes being as broad in proportion to the fringes at their firft appearance as afterwards at great diftances from the Hair, though not fo dark and diftinct.

## O B S. V.

The Sun fhining into my darkened Chamber through a Hole a quarter of an Inch broad; I placed at the diftance of two or three Fect from the Hole a Sheet of Paft-board, vvhich vvas black'd all over on both fides, and in the middle of it had a Hole about three quarters of an Inch fquare for the Light to pafs through. And behind the Hole I faftened to the Paft-board vvith Pitch the blade of a fharp Knife, to intercept fome part of the Light vvhich paffed through the Hole. The planes of the Paft-board and blade of the Knife vvere parallel to one another, and perpendicular to the rays. And vvhen they vvere fo placed that none of the Sun's Light fell on the Paft-board, but all of it paffed through the Hole to the Knife, and there part of it fell upon the blade of the Knife, and part of it paffed by its edge: I let this part of the Light vvhich paffed by, fall on a vvhite
white Paper two or three Feet beyond the Knife, and there faw two ftreams of faint Light fhoot out both ways from the beam of Light into the fhadow like the tails of Comets. But becaufe the Sun's direct Light by its brightnefs upon the Paper obfcured thefe faint ftreams, fo that I could fcarce fee them, I made a little Hole in the midft of the Paper for that Light to pafs through and fall on a black cloth behind it ; and then I faw the two ftreams plainly. They were like one another, and pretty nearly equal in length and breadth, and quantity of Light. Their Light at that end next the Sun's direct Light was pretty ftrong for the face of about a quarter of an Inch, or half an Inch, and in all its progrefs from that direct Light decreafed gradually till it became infenfible. The whole length of either of thefe ftreams meafured upon the Paper at the diftance of three Feet from the Knife was about fix or eight Inches; fo that it fubtended an Angle at the edge of the Knife of about io or 12 , or at moft 14 degrees. Yet fometimes I thought I faw it fhoot three or four degrees further, but with a Light fo very faint that I could fcarce perceive it, and fufpected it might (in fome meafure at leaft) arife from fome other caufe than the two ftreams did. For placing my Eye in that Light beyond the end of that ftream which was behind the Knife, and looking towards the Knife, I could fee a Fine of Light upon its edge, and that not only when my Eye was in the line of the ftreams, but alfo when it was without that line either towards the point of the Knife, or towards the handle. This line of Light appeared contiguous to the edge of the Knife, and was narrower than the Light of the innermoft fringe, and

## [122]

narroweft when my Eye was furtheft from the direct Light, and therefore feemed to pafs between the Light of that fringe and the edge of the Knife, and that which paffed neareft the edge to be moft bent, though not all of it.

## O B S. VI.

I placed another Knife by this fo that their edges might be parallel and look towards one another, and that the beam of Light might fall upon both the Knives, and fome part of it pals between their edges. And when the diftance of their edges was about the 400th part of an Inch the ftream parted in the middle, and left a fhadow between the two parts. This fhadow was fo black and dark that all the Light which paffed between the Knives feemed to be bent, and turned afide to the one hand or to the other. And as the Knives fill approached one another the fhadow grew broader, and the ftreams fhorter at their inward ends which were next the fhadow, until upon the contact of the Knives the whole Light vanifhed leaving its place to the fhadow.

And hence I gather that the Light which is leaft bent, and goes to the inward ends of the ftreams, paffes by the edges of the Knives at the greateft diftance, and this diftance when the fhadow begins to appear between the ftreams is about the eight-hundredth part of an Inch. And the Light which paffes by the edges of the Knives at diftances ftill lefs and lets is more and more bent, and goes to thofe parts of the ftreams which are further and turther from the direct Light, becaufe when

$$
[123]
$$

when the Knives approach one another till they touch, thofe parts of the ftreams vanifh laft which are furtheft from the direct Light.

## O B S. VII.

In the fifth Obfervation the fringes did not appear, but by reafon of the breadth of the Hole in the Window became fo broad as to run into one another, and by joyning make one continued Light in the beginning of the ftreams. But in the fixth, as the Knives approached one another, a little before the fhadow appeared between the two ftreams, the fringes began to appear on the inner ends of the ftreams on either fide of the direct Light, three on one fide made by the edge of one Knife, and three on the other fide made by the edge of the other Knife. They were diftincteft when the Knives were placed at the greateft diftance from the Hole in the Window, and ftill became more diftinct by making the Hole lefs, infomuch that I could fometimes fee a faint lineament of a fourth fringe beyond the three above-mentioned. And as the Knives continually approached one another, the fringes grew diftincter and larger until they vanifhed. The outmoft fringe vanifhed firft, and the middlemoft next, and the innermoft laft. And after they were all vanifhed, and the line of Light which was in the middle between them was grown very broad, enlarging it felf on both fides into the ftreams of Light defcribed in the fifth Obfervation, the above-mentioned fhadow began to appear in the middle of this line, and divide it along the middle into two lines of Light, and increafed until the whole Rr ${ }_{2}$

## [124]

Light vanifhed. This inlargement of the fringes was fo great that the rays which go to the innermoft fringe feemed to be bent above twenty times more when this fringe was ready to vanifh, than when one of the Knives was taken away.

And from this and the former Obfervation compared, I gather, that the Light of the firft fringe paffed by the edge of the Knife at a diftance greater than the eighthundredth part of an Inch, and the Light of the fecond fringe paffed by the edge of the Knife at a greater diftance than the Light of the firft fringe did, and that of the third at a greater diftance than that of the fecond, and that of the ftreams of Light defcribed in the fifth and fixth Obfervations paffed by the edges of the Knives at lefs diftances than that of any of the fringes.

## O B S. VIII.

I caufed the edges of two Knives to be ground truly ftreight, and pricking their points into a board fo that their edges might look towards one another, and meeting near their points contain a rectilinear Angle, I faftned their handles together with Pitch to make this Angle invariable. The diftance of the edges of the Knives from one another at the diftance of four Inches from the angular point, where the edges of the Knives met, was the eighth part of an Inch, and therefore the Angle contained by the edges was about i degr. $54^{\prime}$ : The Knives thus fixed together I placed in a beam of the Sun's Light, let into my darkened Chamber through a Hole the 42 th part of an Inch wide, at the diftance

## [125]

of ten or fifteen Feet from the Hole, and let the Light which paffed between their edges fall very obliquely upon a fmooth white Ruler at the diftance of half an Inch, or an Inch from the Knives, and there faw the fringes made by the two edges of the Knives run along the edges of the fhadows of the Knives in lines parallel to thofe edges without growing fenfibly broader, till they met in Angles equal to the Angle contained by the edges of the Knives, and where they met and joyned they ended without croffing one another. But if the Ruler was held at a much greater diftance from the
 as they approached one another, and after they met they crofied one another, and then became much broader than before.

Whence I gather that the diftances at which the fringes pafs by the Knives are not increafed nor altered by the approach of the Knives, but the Angles in which the rays are there bent are much increaled by that approach ; and that the Knife which is neareft any ray determines which way the ray fhall be bent, and the other Knife increafes the bent.

## O B S. IX.

When the rays fell very obliquely upon the Ruler at the diftance of the third part of an Inch from the Knives, the dark line between the firft and fecond fringe of the fhadow of one Knife, and the dark line between the firft and fecond fringe of the thadow of the other Knife met with one another, at the diftance of the fifth part of an Inch from the end of the Light which paffed be-
tween:

## [126]

tween the Knives at the concourfe of their edges. And therefore the diftance of the edges of the Knives at the meeting of thefe dark lines was the 160th part of an Inch. For as four Inches to the eighth part of an Inch, fo is any length of the edges of the Knives meafured from the point of their concourfe to the diftance of the edges of the Knives at the end of that length, and fo is the fifth part of an Inch to the 160th part. So then the dark lines above-mentioned meet in the middle of the Light which paffes between the Knives where they are diftant the 160 th part of an Inch, and the one half of that Light paffes by the edge of one Knife at a diftance not greater than the 320 th part of an Inch, and falling upon the Paper makes the fringes of the fhadow of that Knife, and the other half paffes by the edge of the other Knife, at a diftance not greater than the 320 th part of an Inch, and falling upon the Paper makes the fringes of the fhadow of the other Knife. But if the Paper be held at a diftance from the Knives greater than the third part of an Inch, the dark lines above-mentioned meet at a greater diftance than the fifth part of an Inch from the end of the Light which paffed between the Knives at the concourfe of their edges; and therefore the Light which falls upon the Paper where thofe dark lines meet paffes between the Knives where their edges are diftant above the 160th part of an Inch.

For at another time when the two Knives were diftant eight Feet and five Inches from the little Hole in the Window, made with a fmall Pin as above, the Light which fell upon the Paper where the aforefaid dark lines met, paffed between the Knives, where the di-
france between their edges was as in the following Table, when the diftance of the Paper from the Knives was alto as follows.


And hence I gather that the Light which makes the fringes upon the Paper is not the fame Light at all difrances of the Paper from the Knives, but when the Paper is held near the Knives, the fringes are made by Light which paffes by the edges of the Knives at a lei's diftance, and is more bent than when the Paper is held at a greater diftance from the Knives.

> OB S. X.

When the fringes of the fhadows of the Knives fell perpendicularly upon a Paper at a great diftance from the Knives, they were in the form of Hyperbolas, and their dimenfions were as follows. Let CA, CB reprefont lines drawn upon the Paper parallel to the edges of the Knives, and between which all the Light would fall, if it paffed between the edges of the Knives without inflexion; DE a right line drawn through C making
the Angles ACD BCE , equal to one another, and terminating all the Light whith falls upon the Paper from the point where the edges of the Knives meet ; eis, fk t, and glv , three hyperbolical lines reprefenting the terminus of the fhadow of one of the Knives, the dark line between the firft and fecond fringes of that fhadow, and the dark line between the fecond and third fringes of the fame fhadow; xip, ykq and zlr, three other Hyperbolical lines reprefenting the terminus of the fhadow of the other Knife, the dark line between the firft and fecond fringes of that fhadow, and the dark line between the fecond and third fringes of the fame fhadow. And conceive that thefe three Hyperbolas are like and equal to the former three, and crofs them in the points i, k and 1 , and that the fhadows of the Knives are terminated and diftinguifhed from the firft luminous fringes by the lines eis and xip, until the meeting and croffing of the fringes, and then thofe lines crofs the fringes in the form of dark lines, terminating the firft luminous fringes within fide, and diftinguifhing them from another Light which begins to appear at i , and illuminates, all the triangular fpace ipDEs comprehended by thefe dark lines, and the right line DE. Of thefe Hy perbolas one Afymptote is the line DE , and their other Afymptotes are parallel to the lines CA and CB. Let rv reprefent a line drawn any where upon the Paper parallel to the Afymptote DE, and let this line crofs the right lines AC in m and BC in n , and the fix dark hyperbolical lines in $\mathrm{p}, \mathrm{q}, \mathrm{r} ; \mathrm{s}, \mathrm{t}, \mathrm{v}$; and by meafuring the diftances $\mathrm{ps}, \mathrm{qt}, \mathrm{rv}$, and thence collecting the the length of the ordinates $\mathrm{n} p, \mathrm{nq}, \mathrm{nr}$ or $\mathrm{ms}, \mathrm{mt}$, mv , and doing this at feveral diftances of the line $\mathrm{r} \mathrm{v}_{\text {, }}$ from

## $[129]$

from the Afymptote DE you may find as many points of thefe Hyperbolas as you pleafe, and thereby know that thefe curve lines are Hyperbolas differing little from the conical Hyperbola. And by meafuring the lines $\mathrm{Ci}, \mathrm{Ck}, \mathrm{Cl}$, you may find other points of thefe Curves.

For inftance, when the Knives were diftant from the Hole in the Window ten Feet, and the Paper from the Knives 9 Feet, and the Angle contained by the edges of the Knives to which the Angle ACB is equal, was fubtended by a chord which was to the Radius as I to 32 , and the diftance of the line rv from the Afymptote DE was half an Inch: I meafured the lines $\mathrm{ps}, \mathrm{qt}$, rv , and found them $0^{\prime} 35,0^{\prime} 65,0^{\prime} 98$ Inches refpectively, and by adding to their halfs the line $\frac{1}{2} \mathrm{mn}$ (which here was the 128 th part of an Inch, or $0^{\prime} 0078$ Inches) the fums $n \mathrm{p}, \mathrm{nq}, \mathrm{nr}$, were $\mathrm{o}^{2} 1828,0^{\prime} 3328,0^{\prime} 4978$ Inches. I meafured alfo the diftances of the brighteft parts of the fringes which run between pq and $\mathrm{st}, \mathrm{qr}$ and $t v$, and next beyond $r$ and $v$, and found them $O^{\prime} 5$, $0^{\prime} 8$, and $\mathrm{I}^{\prime} \mathrm{I} 7$ Inches.

## O B S. XI.

The Sun fhining into my darkened Room through a fmall round Hole made in a plate of Lead with a tlender Pin as above; I placed at the Hole a Prifm to refract the Light, and form on the oppofite Wall the Spectrum of Colours, defcribed in the third Experiment of the firft Book. And then I found that the fhadows of all Bodies held in the coloured Light between the Prifm and the Wall, were bordered with fringes of the Colour

## $[130]$

of that Light in which they were held. In the full red Light they were totally red without any fenfible blue or violet, and in the deep blue Light they were totally blue without any fenfible red or yellow ; and fo in the green Light they were totally green, excepting a little yellow and blue, which were mixed in the green Light of the Prifm. And comparing the fringes made in the feveral coloured Lights, I found that thofe made in the red Light were largeft, thofe made in the violet were leaft, and thofe made in the green were of a middle bignefs. For the fringes with which the fhadow of a Man's Hair were bordered, being meafured crofs the fhadow at the diftance of fix Inches from the Hair ; the diftance between the middle and moft luminous part of the firft or innermoft fringe on one fide of the fhadow, and that of the like fringe on the other fide of the fhadow, was in the full red Light $\frac{1}{3} \frac{1}{32}$ of an Inch, and in the full violet $\frac{1}{40}$. And the like diftance between the middle and moft luminous parts of the fecond fringes on either fide the fhadow was in the full red Light $\frac{1}{22}$, and in the violet $\frac{1}{2 \pi}$ of an Inch. And thefe diftances of the fringes held the fame proportion at all diftances from the Hair without any fenfible variation.

So then the rays which made thefe fringes in the red Light paffed by the Hair at a greater diftance than thofe did which made the like fringes in the violet; and therefore the Hair in caufing thefe fringes acted alike upon the red Light or leaft refrangible rays at a greater diftance, and upon the violet or moft refrangible rays at a lefs diftance, and by thofe actions difpofed the red Light into larger fringes, and the violet into frmaller, and the Lights of intermediate Colours into fringes of inter.

## $[131]$

intermediate bigneffes without changing the Colour of of any fort of Light.

When therefore the Hair in the firft and fecond of thefe Obfervations was held in the white beam of the Sun's Light, and caft a fhadow which was bordered with three fringes of coloured Light, thofe Colours arofe not from any new modifications impreft upon the rays of Light by the Hair, but only from the various inflections whereby the feveral forts of rays were feparated from one another, which before feparation by the mixture of all their Colours, compofed the white beam of the Sun's Light, but whenever feparated compore Lights of the feveral Colours which they are originally difipofed to exhibit. In this oblh Obervation, where the Colours are feparated before the Light paffes by the Hair, the leaft refrangible rays, which when feparated from the reft make red, were inflected at a greater diftance from the Hair, fo as to make three red fringes at a greater diftance from the middle of the fhadow of the Hair ; and the moft refrangible rays which when feparated make violet, were inflected at a lefs diftance from the Hair, fo as to make three violet fringes at a lefs diftance from the middle of the fhadow of the Hair. And other rays of intermediate degrees of refrangibility were inflected at intermediate diftances from the Hair, fo as to make fringes of intermediate Colours at intermediate diftances from the middle of the fhadow of the Hair. And in the fecond Obfervation, where all the Colours are mixed in the white Light which paffes by the Hair, thefe Colours are feparated by the various inflexions of the rays, and the fringes which they make, appear all together, and the innermof? Ss 2
fringes

## $[132]$

fringes being contiguous make one broad fringe compofed of all the Colours in due order, the violet lying on the infide of the fringe next the fhadow, the red on the outfide furtheft from the fhadow, and the blue, green and yellow, in the middle. And, in like manner, the middlemoft fringes of all the Colours lying in order, and being contiguous, make another broad fringe compofed of all the Colours; and the outmoft fringes of all the Colours lying in order, and being contiguous, make a third broad fringe compofed of all the Colours. Thefe are the three fringes of coloured Light with which the fhadows of all Bodies are bordered in the fecond Obfervation.

When I made the foregoing Obfervations, I defigned to repeat moft of them with more care and exactnefs, and to make fome new ones for determining the manner how the rays of Light are bent in their paffage by Bodies for making the fringes of Colours with the dark lines between them. But I was then interrupted, and cannot now think of taking thele things into further confideration. And fince I have not finifhed this part of my Defign, I fhall conclude, with propofing only fome Queries in order to a further fearch to be made by others.

2uery 1. Do not Bodies act upon Light at a diftance ${ }_{3}$ and by their action bend its rays, and is not this action (cateris paribus) ftrongeft at the leaft diftance?

2u. 2. Do not the rays which differ in refrangibility differ alfo in flexibility, and are they not by their different inflexions feparated from one another, fo as after feparation to make the Colours in the three fringes

## [133]

above defcribed? And after what manner are they inflected to make thofe fringes?
2u.3. Are not the rays of Light in paffing by the edges and fides of Bodies, bent feveral times backwards and forwards, with a motion like that of an Eel ? And do not the three fringes of coloured Light above-mentioned, arife from three fuch bendings?

2u. 4. Do not the rays of Light which fall upon Bodies, and are reflected or refracted, begin to bend before they arrive at the Bodies; and are they not reflected, refracted and inflected by one and the fame Principle, acting varioufly in various circumftances?
24. 5. Do not Bodies and Light act mutually upon one another, that is to fay, Bodies upon Light in emitting, reflecting, refracting and inflecting it, and Light upon Bodies for heating them, and putting their parts into a vibrating motion wherein heat confiits ?

Qu. 6. Do not black Bodies conceive heat more eafily from Light than thofe of other Colours do, by reafon that the Light falling on them is not reflected outwards, but enters the Bodies, and is often reflected and refracted within them, until it be ftifled and loft?
24.7. Is not the ftrength and vigor of the action between Light and fulphureous Bodies obferved above, one reafon why fulphureous Bodies take fire more readily, and burn more vehemently, then other Bodies do?

2u. 8. Do not all fixt Bodies when heated beyond a. certain degree, emit Light and fhine, and is not this emiffion performed by the vibrating motions of their parts?

## [134]

24. 9. Is not fire a Body heated fo hot as to emit Light copioufly ? For what elfe is a red hot Iron than fire? And what elfe is a burning Coal than red hot Wood?

2u. in. Is not flame a vapour, fume or exhalation heated red hot, that is, fo hot as to fhine? For Bodies do not flame without emitting a copious fume, and this fume burns in the flame. The Ionis Fatuus is a vapour thining without heat, and is there not the fame difference between this vapour and flame, as between rotten Wood fhining without heat and burning Coals of fire? In diftilling hot Spirits, if the head of the ftill be taken off, the vapour which afcends out of the Still will take fire at the flame of a Candle, and turn into flame, and the flame wifl run along the vapour from the Candle to the Still. Some Bodies heated by motion or fermentation, if the heat grow intenfe fume copioufly, and if the heat be great enough the fumes will fhine and become flame. Metals in fufion do not flame for want of a copious fume, except Spelter which fumes copioully, and thereby flames. All flaming Bodies, as Oyl, Tallow, Wax, Wood, foffil Coals, Pitch, Sulphur, by flaming wafte and vanifh into burning fmoke, which fmoke, if the flame be put out, is very thick and vifible, and fometimes fimells ftrongly, but in the flame lofes its fmell by burning, and according to the nature of the finoke the flame is of feveral Colours, as that of Sulphur blue, that of Copper opened with Sublimate green, that of Tallow yellow. Smoke paffing through Hame cannot but grow red hot, and red hot imoke can have no other appearance than that of Hlame. पundever in

## [ 135 ]

Qu. II. Do not great Bodies conferve their heat the longeft, their parts heating one another, and may not great denfe and fix'd Bodies, when heated beyond a certain degree, emit Light fo copioufly, as by the emilfin and reaction of tits Light, and the reflexions and refractions of tex rays within tiv e pores, to grow frill hotSing ter, till It comes to a certain period of heat, foch as is that of the Sun? And are not the Sun and fix'd Stars great Earths vehemently hot, whole heat is conferved by the greatnefs of the Bodies, and the mutual action and reaction between them, and the Light which they emit, and whole parts are kept from fuming away, not only by their fixity, but alfo by the vat weight and denfity of the Atmospheres incumbent upon them, and very ftrongly compreffing them, and condenfing the va-


Qu. I2. Do not the rays of Light in falling upon the 4 any ain ban bottom of the Eye excite vibrations in the Tunic reDraw soul of the verse: tina? Which vibrations, being propagated along the $\begin{gathered}\text { ta with will Goblin } \\ \text { vacs a min }\end{gathered}$ fold fibres of the optick Nerves into the Brain, caufe vacu as verimanly, the fenfe of feeing. For becaufe denfe Bodies conferve mel grate heat their heat a long time, and the denfeft Bodies conferve their heat the longeft, the vibrations of their parts are of a lafting nature, and therefore may be propagated along folid fibres of uniform denfe matter to a great di- keeps down the rappers france, for conveying into the Brain the impreffions \& hinders the wats made upon all the Organs of fenfe. For that motion from fooling wal he he mused grace which can continue long in one and the fame part of a then is requisite. Body, can be propagated a long way from one part to make in boyle in another, fuppofing the Body homogeneal, fo that the motion may not be reflected, refracted, interrupted or difordered by any unevennefs of the Body.
in the oping a a from for the wright of the in combined chamosphine keeps Down the vippos vacuo. Ant so the vast wright of the Sun's almospzáere may there hinder
ling of fuming away without a much griahor heal then would suffice to make them waporate of fume away on the surface of the earth, \& only recondenge the vapors \& escalations as fash as they rise from the fun quktaterower again upon his body of increase his heat by their action as the Air with us
Eneveass the kat of a culinary fire, fy neconeming tapers incl body from washing olervise that n or his emission of light.

## [136]

2u. 13 . Do not feveral fort of rays make vibrations of feveral bigneffes, which according to their bigneffes excite fenfations of feveral Colours, much after the manner that the vibrations of the Air, according to their feveral bigneffes excite fenfations of feveral founds? And particularly do not the moft refrangible rays excite the fhorteft vibrations for making a fenfation of deep violet, the leaft refrangible the largeft for making a fenfation of deep red, and the feveral intermediate forts of rays, vibrations of feveral intermediate bigneffes to make fenfations of the feveral intermediate Colours?
24. I4. May not the harmony and difcord of Colours arife from the proportions of the vibrations propagated through the fibres of the optick Nerves into the Brain, as the harmony and difcord of founds arifes from the proportions of the vibrations of the Air? For fome Colours are agreeable, as thofe of Gold and Indico, and others difagree.
24. 15 . Are not theSpecies of Objects feen with both Eyes united where the optick Nerves meet before they come into the Brain, the fibres on the right fide of both Nerves uniting there, and after union going thence into the Brain in the Nerve which is on the right fide of the Head, and the fibres on the left fide of both Nerves uniting in the fame place, and after union going into the Brain in the Nerve which is on the left fide of the Head, and thefe two Nerves meeting in the Brain in fuch a manner that their fibres make but one entire Species or Picture, half of which on the right fide of the Senforium comes from the right fide of both Eyes through the right fide of both

## [137]

both optick Nerves to the place where the Nerves meet, and from thence on the right fide of the Head into the Brain, and the other half on the left fide of the Senforium comes in like manner from the left fide of both Eyes. For the optick Nerves of fuch Animals as look the fame way with both Eyes (as of Men, Dogs, Sheep, Oxen, $\mathcal{V}^{\prime} c$.) meet before they come into the Brain, but the optick Nerves of fuch Animals as do not look the fame way with both Eyes (as of Fifhes and of the Chameleon) do not meet, if I am rightly informed.

2u. I6. When a Man in the dark preffes either corner of his Eye with his Finger, and turns his Eye away from his Finger, he will fee a Circle of Colours like thofe in the Feather of a Peacock's Tail ? Do not thefe Colours arife from fuch motions excited in the bottom of the Eye by the preffure of the Finger, as at other times are excited there by Light for caufing Vifion? And when a Man by a ftroke upon his Eye fees a Flafh of Light, are not the like Motions excited in the Retina by the ftroke?

Tt,
$8[817$



 ab ars elsminA rlont zo brta aodlis to ans) askillod ditio $\qquad$
 dil anuoloD 7o slouio so gol llive sh
 bnA $\qquad$ mitio9


## [138]

## ENUMERATIO

## LINEARUM

TERTII ORDINIS.

MUЯATVI」
BIVICSO JITSAIT

## [I39]

ENUMERATIO

# LINEARUM TERTII ORDINIS. 

LInex Geometricæ fecundum numerum dimenfionum æquationis qua relatio inter Ordinatas 1. \& Abfciffas definitur, vel (quod perinde eft) fecundum numerum punctorum in quibus a linea recta fecari poffunt, optime diftinguuntur in Ordines. Qua ratione linea primi Ordinis erit Recta fola, ex fecundi five quadratici ordinis erunt fectiones Conicæ \& Circulus, \& ex tertii five cubici Ordinis Parabola Cubica, Parabola Neiliana, Ciffois veterum \& reliquæ quas hic enumerare fufcepimus. Curva autem primi generis, (fiquidem recta inter Curvas non eft numeranda) eadem eft cum Linea fecundi Ordinis, \& Curva fecundi generis eadem cum Linea Ordinis tertii. Et Linea Ordinis infinitefimi ea eft quam recta in punctis infinitis fecare poteft, qualis eft Spiralis, Cyclois, Quadratrix \& linea omnis quæ per radii vel rotæ revolutiones infinitas generatur.

$$
\mathrm{Tt}_{2}
$$

Sectionum

## [140]

II. Sectionum Conicarum proprietates præcipuæ a

ProprietatesSeEtionem Conicarum competunt curvis fuperiorum generum.

Geometris paffim traduntur. Et confimiles funt proprietates Curvarum fecundi generis \& reliquarum, ut ex fequenti proprietatum precipuarum enumeratione conftabit.
III. Nam fi rectæ plures parallelæ \& ad conicam feCurvarum Se- $^{\text {andi }}$ Ctionem utrinq; terminatæ ducantur, recta duas eacundi generis Ordinate, Diametri, Vertices, Centra, Axes. rum bifecans bifecabit alias omnes, ideoq; dicitur $\mathcal{D}$ iūmeter figurx \& reCtx bifectx dicuntur Ordinatim ap- plicate ad Diametrum, \& concurfus omnium Diametrorum eft Centrum figurx, \& interfectio Curvx \& diametri Vertex nominatur, \& diameter illa $A x$ is eft cui ordinatim applicatre infiftunt ad angulos reCtos. Et ad eunden modum in Curvis fecundi generis, fir rectx duæ quævis parallelæ ducantur occurrentes Curvæ in tribus punctis: recta quæ ita fecat has parallelas ut fumma duarum partium ex uno fecantis latere ad curvam terminatarum æquetur parti tertix ex altero latere ad curvam terminatr, eodem modo fecabit omnes alias his parallelas curvæq; in tribus panctis occurrentes rectas, hoc eft, ita ut fumma partium duarum ex uno ipfius latere femper æquetur parti tertix ex altero latere. Has itaq; tres partes quæ hinc inde æquantur, Ordinatim applicatas \& rectam fecantem cui ordinatim applicantur Diametrum \& interfectionem diametri \& curvx $V$ erticem \& concurfum duarum diametrorum Centrum nominare licet. Diameter autem ad Ordinatas reEtangula fi modo aliqua fit, etiam Axis dici poteft, \& ubi omnes diametri in eodem puncto concurrunt iftud erit Centrum generale.

Hyper-

$$
[141]
$$

Hyperbola primi generis duas $A$ fymptotos, ea fecundi tres, ea tertii quatuor \& non plures habere po- earum proprietateft, \& fic in reliquis. Et quemadmodum partes tes. lineæ cujufvis rectæ inter Hyperbolam Conicam \& duas ejus Afymptotos funt hinc inde æquales: fic in Hyperbolis fecundi generis fi ducatur recta quævis fecans tam Curvam quàm tres ejus Afymptotos in tribus punctis, fumma duarum partium iftius recta quæ a duobus quibufvis Afymptotis in eandem plagam ad duo puncta Curvæ extenduntur æqualis erit parti tertiæ quæ a tertia Afymptoto in plagam contrariam ad tertium Curvæ punctum extenditur.

Et quemadmodum in Conicis fectionibus non Pa rabolicis quadratum Ordinatim applicatæ, hoc eft, Latera rectacis rectangulum Ordinatarum quæ ad contrarias partes Diametri ducuntur, eft ad rectangulum partium Diametri quæ ad Vertices Ellipfeos vel Hyperbolæ terminantur, ut data quædam linea quæ dicitur Latus rectum, ad partem diametri quæ inter Vertices jacet \& dicitur Latus tranfverfum: fic in Curvis non Parabolicis fecundi generis Parallelepipedum fub tribus Ordinatimapplicatis eft ad Parallelepipedum fub partibus Diametriad Ordinatas \& tres Vertices figuræabfciffis, in ratione quadam data: in qua ratione fi fumantur tres rectæ ad tres partes diametri inter vera tices figuræ fitas fingulæ ad fingulas, tunc illæ tres rectæ dici poffunt Latera recta figuræ, \& illæ partes Diametri inter Vertices Latera tranfverfa. Et ficut in Parabola Conica quæ ad unam \& eandem diametrum unicum tantum habet Verticem, rectangulum fubOrdinatis æquatur rectangulo fub parte Diametri. quæ ad Ordinatas \& Verticem abfcinditur \& recta: quadam:

## [142]

quadam data quæ Latus rectum dicitur, fic in Curvis fecundi generis quæ non nifi duos habent Vertices ad eandem Diametrum, Parallelepipedum fubOrdinatis tribus æquatur Parallelepipedo fub duabus partibus Diametri ad Ordinatas \& Vertices illos duos abfciffis, \& recta quadam data qux proinde Latus rectum dici poteft.
vi. Deniq; ficut in Conicis fectionibus ubi duæ paralRatio contento- lelæ ad Curvam utrinq; terminatæ fecantur a duarum Jub ParalleJarum feg ment is. bus parallelis ad Curvam utrinq; terminatis, prima a tertia \& fecunda a quarta, rectangulum partium primx eft ad rectangulum partium tertix ut rectangulum partium fecundæ ad rectangulum partium quartæ: fic ubi quatuor tales rect $x$ occurrunt Curvæ fecundi generis fingulæ in tribus punctis, parallelepipedum partium primæ rectæ erit ad parallelepide. dum partium tertiæ, ut parallelepipedum partium fecund $x$ ad parallelepipedum partium quartx.

## VII.

Crura Hyperbolica © Parabolicaco eorum pla- vel Hyperbolici funt generis vel Parabolici. Crus Hyge.

Curvarum fecundi \& fuperiorum generum æque atq; primi crura omnia in infinitum progredientia perbolicum voco quod ad Afymptoton aliquam in in- finitum appropinquat, $P_{\text {arabolicum quod A fymptoto }}$ deftituitur. Hxc crura ex tangentibus optime dignofcuntur. Nam fipunctum contactus in infinitum abeat tangens cruris Hyperbolici cum Afymptoto coincidet \& tangens cruris Parabolici in infinitum recedet, evanefcet \& nullibi reperictur. Invenitur igitur Afymptotos cruris cujufvis quarendo tangentem cruris illius ad punctum infinite diftans. Plaga autem cruris infiniti invenitur quærendo pofitionem rectæ cujufvis quæ tangenti parallela eft ubi pun-

## [143]

Etum contactus in infinitum abit. Nam hæc reCta in eandem plagam cum crure infinito dirigitur:

Linex omnes Ordinis primi, tertii, quinti, feptimi \& imparis cujufq; duo habent ad minimum $\begin{gathered}\text { Redurutio Ciir- } \\ \text { vinnium }\end{gathered}$ crura in infinitum verfus plagas oppofitas progre- genereisisecundiad dientia. Et linex omnes tertii Ordinis duo habent equationum caffus: ejufmodi crura in plagas oppofitas progredientia in primus. quas nulla alia earum crura infinita (preterquam in Parabola Cartelianal ) tendunt. A $\mathrm{Si}_{1}$ crura illa fint Hyperbolici generis, fit GAS eorum Afymptotos \& huic parallela agatur recta quævis CBC ad Curvam utrinque (fi fieri poteft) terminata - eademq; bifecetur in puncto X, \& locus puncti il- Fig-w. lius X erit Hyperbola Conica (puta X $\Phi$ ) cujus una Afymptotos eft AS. Sit ejus altera Arymptotos $A B$, \& æquatio qua relatio inter Ordinatam BC \& Abfciffam AB definitur, fi AB dicatur x \& BC $y$,femper induet hanc formam $x y y+e y=a x^{3}$十bxx+cx-d. Ubi termini e, a, b, c, d, defignant quantitates datas emm fignis fuis $+\mathcal{\&}-$ affeCtas, quarum qualibet deeffe poffunt modo ex earum defectu figura in fectionem conicam non vertatur. Potef autem Hyberbola illa Conica cum afymptotis fuis coincidere, id eft punctum X in recta AB . locari: \& tunc terminus - ey deeft.
At fi recta illa CBc non poteft utrinq; ad Curvam terminari fed Curvæ in unico tantum puncto occurrit: age quamvis pofitione datam rectam $\mathrm{A} B$ afympCafius fecundius. toto $A S$ occurrentem in $A$, ut \& aliam quamvis BC. afymptoto illi parallelam Curveque occurrentem in puncto C, \& equatio qua relatio inter Ordinatam.
$B C$ \& Abfifflam $A B$ definitur, remper induet hanc formam $x y=a x^{3}-b x x+c x+d$.
X. Quod fi crura illa oppofita Parabolici fint generis, Cafistertius. recta CB cad Curvam utrinque, fi fieri poteft, terminata in plagam crurum ducatur \& bifecetur in $B$, \& locus puncti $B$ erit linea recta. Sit ifta $A B$, terminata ad datum quodvis punctum $A, \&$ xquatio qua relatio inter Ordinatam BC \& Abfciffam AB definitur, femper induet hanc formam, $y y=a x^{3}$ $+b x x+c x+d$.
xi. At vero fi recta illa CB c in unico tantum puncto Cafus quartus. occurrat Curvæ, ideoq; ad Curvam utrinq; terminari non poffit: fit punctum illud $\mathrm{C}, \&$ incidat recta illa ad punctum $B$ in rectam quamvis aliam pofitione datam \& ad datum quodvis punctum A terminatam A B: \& æquatio qua relatio inter Ordinatam BC \& Abfciffam AC definitur femper induet hanc formam, $y=a x^{3}+b x x+c x+d$.
xiI. Enumerando curvas horum cafuum, Hyperbolam Nominaforma- vocabimus inforiptam quæ tota jacet in Alymptotôn angulo ad inftar Hyperbolæ conicæ, circumfcriptam quæ Afymptotos fecat \& partes abfciffas in finu fuo amplectitur, ambigenam quæ uno crure infinito infcribitur \& altero circumfcribitur, convergentem cujus crura concavitate fua feinvicem refpiciunt \& in plagam eandem diriguntur, divergentem cujus crura convexitate fua feinvicem reslpiunt \& in plagas contrarias diriguntur, cruribus contrariis praditam cujus crura in partes contrarias convexa funt \& in plagas contrarias infinita, Concboidalem quæ vertice concavo \& cruribus divergentibus ad afymptoton applicatur, anguineam quæ flexibus contrariis afymptoton fecat

## [ 145 ]

\& utrinq; in crura contraria producitur, cruciformem quæ conjugatam decuffat, nodatam quæ feipfam decuffat in orbem redeundo, culpidatam cujus partes dux in angulo contactus concurrunt \& ibi terminantur, punitatam qux conjugatam habet Ovalem infinite parvam id eft punctum, \& puram qux per impoffibilitatem duarum radicum Ovali, Nodo, Cufpide \& Puncto conjugato privatur. Eodem fenfu Parabolam quoq; convergentem, divergentem, cruribus contrariis preditam, cruciformem, nodatam, cufpidatam, punctatam \& puram nominabimus.

In calu primo fi terminus a $x^{3}$ affirmativus eft Figura erit Hyperbola triplex cum fex cruribus Hy perbolicis qux juxta tres Afymptotos quarum nullæ lunt parallelx in infinitum progrediuntur, binx juxta unamquamq; in plagas contrarias. Et hæ Afymptoti fi terminus bxx non deeft fe mutuo fecabunt in tribus punctis triangulum ( $\mathrm{Dd}^{\circ}$ ) inter fe continentes, fin terminus bxx deeft convergent omnes ad idem punctum. In priori cafu cape $\mathrm{AD}=$ $\frac{b}{2 a}$, \& $A d=A_{0}=\frac{b}{2 r z}$, ac junge $D d, D^{\circ}$, \& erunt $\mathrm{A} p, \mathrm{Dd}, \mathrm{D}$ o tres. Afymptotian ordinatam quamvis $\mathrm{BC} \mathrm{C}_{\mathrm{N}}$ a in ea utrinq; producta cape hine inde BF \& ${ }^{N} \mathrm{Bf}$ fibi mutuo æquales \& in ea ratione ad A B quam habet, jangeq; $\mathrm{AF}, \mathrm{Af}, \&$ erunt $\mathrm{A} \nmid \mathrm{G}, \mathrm{AF}, \mathrm{Af}$ tres Afympoti. Hanc autem Hyperbolam vocamus redundantem quia numero crurum Hyperbolicorum Sectiones Conicas fuperat.

In Hyperbola omni redundante fi neq; terminus ey defit neq; fit bb-4ac xquale $\pm$ ae $/$ a, curva nul-perbole dxiamertris lam habebit diametrum, fin eorum alterutrum ac-o finfuiterumme ua
XIII. De Hyberbola De Hyberbol
redundante © ejus tribus $A$ Jymptotio.

## [146]

 cidat curva habebit unicam diametrum, \& tres fis utrumque. Diameter autem femper tranfit per interfectionem duarum Afymptoton \& bifecat rectas omnes quæ ad Afymptotos illas utrinq; terminanturXV: Si Hyperbola redundans nullam habet diametrum \& parallelæ funt \& Afymptoto tertiæ. Eftq; abfciffa AB diameter Figuræ quoties terminus ey deeft. Diametrum vero abfolute dictam hic \& in fequentibus in vulgari fignificatu ufurpo, nempe pro abfciffa quæ paffim habet ordinatas binas æquales ad idem punctum hinc inde infiftentes. vem rediametronte- de- $\stackrel{\text { ee }}{=} 0$ radices quatuor feu valores ipfius $x$. Ex fitumintur $\begin{gathered}\text { tres } \\ \text { funto }\end{gathered}$ AP, $A_{w}, A_{\pi}, A p$. Erigantur ordinatæ babent A/ympto- P T tos triangulum capientes.

Fig. 1,2 . Nam firadices omnes $A P, A{ }^{\boldsymbol{w}}, A \pi, A p$ funt reales, ejufdem figni \& inæquales, Curva conftat ex tribus Hyperbolis, (infcripta circumfcripta \& ambigena) cum Ovali. Hyperbolarum una jacet verfus $D$, altera verfus $d$, tertia verfus ${ }^{\circ}$, \& Ovalis femper jacet intra triangulam $\mathrm{Dd}^{0}$, atq; etiam inter medios limites $7 \& \tau$, in quibus utiq; tangitur ab ordinatis $\pi \%{ }^{7} \%$. Et hæc eft fpecies prima.

Si e radicibus duæ maximæ $A_{\pi}$, A $p$, vel duæ minimæ AP, $A$ ш æquantur inter fe, \& ejufdem funt figni cum alteris duobus, Ovalis \& Hyperbola circumfcripta fibi inxicem junguntur coeuntibus earum punctis contactus $T \& t$ vel $T \&{ }_{\tau}$, \& crura Hyperbolæ fefe decuffando in Ovalem continuantur, figuram nodatam efficientia. Quæ fpecies eft fecunda.

## [147]

Si e radicibus tres maximx Ap,A $\pi, A$ w, vel tres Fig. 5,60 minimæ $A \pi, A \varpi, A P$ rquentur inter $f e$, Nodus in culpidem acutiffimum convertetur. Nam crura duo Hyperbolx circumfcriptæ ibi in angulo contactus concurrent \& non ultra producentur. Et hæc eft fpecies tertia.

Si e radicibus duæ medix $A \varpi \& A \pi$ æquentur in- Fig. 7\% ter fe, puncta contactus $\tau$ \& 7 coincidunt, \& propterea Ovalis interjecta in punctum evanuit, \& conftat figura ex tribus Hyperbolis, infcripta, circumfcripta \& ambigena cum puncto conjugato. Quæ eft fpecies quarta.

Si duæ ex radicibus funt impoffibiles \& reliquæ Fig. $7,8, \sqrt{3} 3,140$ duæ inæquales \& ejufdem figni (nam figna contraria habere nequeunt, ) pure habebuntur Hyperbolæ tres fine Ovali vel Nodo vel cufpide vel puncto conjugato, \& hæ Hyperbolæ vel ad latera trianguli ab Afymptotis comprehenfi vel ad angulos ejus jacebunt \& perinde feciem vel quintam vel fextam conftituent.

Si e radicibus duæ funt æquales \& alteræ duæ Fig. 9,10, $15,10^{\circ}$. vel impoffibiles funt vel reales cum fignis quæ a fignis $x q u a l i u m$ radicum diverfa funt, figura cruciformis habebitur, nempe duæ ex Hyperbolis feinvicem decuffabunt idq; vel ad verticem trianguli ab Afymptotis comprehenfi, vel ad ejus bafem. Quæ duæ feecies funt feptima \& octava.

Si deniq; radices omnes funt impoffibiles vel fi Fig. $\mathrm{II}_{2} \mathrm{I}_{2}$ ? omnes funt reales \& inæquales \& earum duæ funt affirmativæ \& alteræ duæ negativæ, tunc duæ habebuntur Hyperbolæ ad angulos oppofitos duarum

Afymptotôn cum Hyperbola anguinea circa Afymptoton tertiam. Quæ fecies eft nona.

Et hi funt omnes radicum cafus poffibiles. Nam fi duæ radices funt æquales inter fe, \& aliæ duæfunt etiam inter fe æquales, Figura evadet Sectio Conica cum linea recta.
xvi. Si Hyperbola redundans habet unicam tantum Hyperbole duo- Diametrum, fit ejus Diameter Abfciffa AB, \& æqua-
lecim redundandecim redundan-tescumunicatantum Diametro.

Fig. 17.

Fig. 18.

Fig. 19.

Fig. 20. tionis hujus $a x^{3}+b x x+c x-1=0$ quære tres radices feu valores $x$.

Si radices illæ funt omnes reales \& ejufdem figni, Figura conftabit ex Ovali intra triangulum Dd d jacente \& tribus Hyperbolis ad angulos ejus, nempe circumfcripta ad angulum D \& infcriptis duabus ad angulos d \& $d$. Et hæc eft fpecies decima.

Si radices duæ majores funt æquales \& tertia ejufdem figni, crura Hyperbolæ jacentis verfus D fefe decuffabunt in forma Nodi propter contactum Ovalis. Quæ fpecies eft undecima.

Si tres radices funt $x$ quales, Hyperbola ifta fit cufpidata fine Ovali. Quæ feecies eft duodecima.

Si radices duæ minores funt æquales \& tertia ejufdem figni, Ovalis in punctum evanuit. Quæ fpecies eft decima tertia. In fpeciebus quatuor noviffimis Hyperbola quæ jacet verfus D Afymptotos in finu fuo amplectitur, reliquæ duæ in finu Afymptotôn jacent.
Si duæ ex radicibus funt impoffibiles habebuntur tres Hyperbolæ pure fine Ovali decuffatione vel cufpide. Et hujus cafus feecies funt quatuor, nempe decima quarta fi Hyperbola circumicripta jacet verfus D \& decima

## [ 149 ]

decima quinta fi Hyperbola infcripta jacet verfus D, decima fexta fi Hyperbola circumfcripta jacet fub bafi do trianguli Ddsf, \& decima feptima fi Hyperbola infcripta jacet fub eadem bafi.

Si duæ radices funt æquales \& tertia figni diverfi Fig. 24, figura erit cruciformis. Nempe dux ex tribus Hy- ${ }^{\text {Fig. }}$. 25 perbolis feinvicem decuffabunt idq; vel ad verticem trianguli ab Afymptotis comprehenfi vel ad ejus bafem. Qux duæ feecies funt decima octava \&' decima nona.

Si dux radices funt inæquales $\&$ ejufdem figni $\&$ tertia eft figni diverfi, dux habebuntur Hyperbolæ in oppofitis angulis duarum afymptotôn cum Conchoidali intermedia. Conchoidalis autem vel jace- Fig. 27. bit ad eafdem partes afymptoti fux cum triangulo ab afymptotis conftituto, vel ad partes contrarias; \& hi duo cafus conftituunt feciem vigefimam \& vigefimam primam.
Hyperbola redundans qux habet tres diametros conftat ex tribus Hyperbolis in finubus afymptotôn redundanderte de due jacentibus, idq; vel ad angulos trianguli ab afympto- - tribus Diametris. tis comprehenfi vel ad ejus latera. ${ }^{\circ}$ Cafus prior dat ${ }_{F}{ }_{F i g}^{\text {Fig. } 28 .} 28$. fpeciem vigefimam fecundam,\& pofterior feeciem vigefimam tertiam.

Si tres afymptoti in puncto communi fe mutuo decuffant, vertuntur fpecies quinta \& fexta in vigefimam quartam, feptima \& octava in vigefimam cum redurdantes quintam, \& nona in vigefimam fextam ubi Anguinea tribus adcommunon tranfit per concurfum afymptoton, \& in vigefi- vergentitiom? mam feptimam ubi tranfit per concurfum illum, quo ${ }_{\text {Fig. }}^{\text {Fig. } 30 \text {. }}$ cafu termini b ac d defunt, \& concurfus afympto- ${ }^{\text {Fig. }} \cdot 31$. tôn eft centrum figure ab omnibus ejus partibus Fig. 33 . oppofitis

## $[150]$

oppofitis æqualiter diftans. Et hæ quatuor fpecies Diametrum non habent.

Fig. 34
Fig. 35.
Fig. 36
Fig. 37.

Fig. 38.

Vertuntur etiam fpecies decima quarta ac decima fexta in vigefimam octavam, decima quinta ac decima feptima in vigefimam nonam, decima octava \& decima nona in tricefimam, \& vigefima cum vigefima prima in tricefimam primam. Et hæ fpecies unicam habent diametrum.

Ac deniq; fpecies vigefima fecunda \& vigefima tertia vertuntur in fpeciem tricefimam fecundam cujus tres funt Diametri per concurfum afymptotôn tranfeuntes. Quæ omnesiconverfiones facillime intelliguntur faciendo ut triangulum $a b$ afymptotis comprehenfum diminuatur donec in punctum evanefcat.

Si in primo æquationum cafu terminus a $x^{3}$ negativus eft, Figura erit Hyberbola defectiva unicam habens afymptoton \& duo tantum crura Hyperbolica juxta afymptoton illam in plagas contrarias infinite progredientia. Et afymptotos illa eft Ordinata prima \& principalis A G. Si terminus ey non deeft figura nullam habebit Diametrum, fi deeft habebit unicam. In priori cafu fpecies fic enumerantur.

Si æquationis hujus a $x^{4}=b x^{3}+c x x+d x+\frac{1}{4} e e$, radices omnes $A_{\pi}, A P, A_{p}, A_{\pi}$, funt reales \& inrquales, Figura erit Hyperbola anguinea alymptoton flexu contrario amplexa, cum Ovali conjugata. Quæ fpecies eft tricefima tertia.

Si radices duæ medix AP \& Ap xquentur inter fe, Ovalis \& Anguinea junguntur fefe decuffantes in forma Nodi. Quæ eft fecies tricelima quarta.

## $[151]$

Si tres radices funt æquales, Nodus vertetur in Fig. 4t. cuppidem acutiffimum in vertice anguineæ. Et hæc eft fpecies tricesima quinta.

Si e tribus radicibus ejufdem figni duæ maximæ Fig. 43. Ap\&A © fibi mutuo æquantur, Ovalis in punctum evanuit. Quæ fpecies eft tricefima fexta.

Si radices duæ quævis imaginariæ funt, fola manebit Anguinea pura fine Ovali, decuffatione, cufpide vel puncto conjugato. Si Anguinea illa non Fig. 42. tranfit per punctum A fpecies eft tricefima feptima, fin tranfit per punctum illud A (id quod contingit Fig. 43* ubi termini $b$ ac d defunt, punctum illud A erit centrum figuræ rectas omnes per ipfum ductas \& ad Curvam utrinq; terminatas bifecans. Et hæc eft fpecies tricefima octava.

In altero cafu ubi terminus ey deeft \& propterea figura Diametrum habet, fi æquationis hujus ax ${ }^{3}$ Hyperbola fepo $=\mathrm{bxx}+\mathrm{cx}+\mathrm{d}$ radices omnes AT, At, A $\tau$, funt ametrum babenreales, inæquales \& ejufdem figni, figura erit Hyper- ${ }^{\text {tes. }}$ Fig. 45. bola Conchoidalis cum Ovali ad convexitatem. Quæ eft fpecies tricefima nona.

Si duæ radices funt inæquales \& ejufdem figni \& Fig. $44^{\circ}$ tertia eft figni contrarii, Ovalis jacebit ad concavitatem Conchoidalis. Eftq; fpecies quadragefima.

Si radices duæ minores A:T, At, funt æquales Fig. 46. \& tertia A $\tau$ eft ejufdem figni, Ovalis \& Conchoidalis jungentur fefe decuffando in modum Nodi. Quæ f́pecies eft quadragefima prima.

Si tres radices funt æquales, Nodus mutabitur in $\mathrm{Fig}_{\mathrm{o}} \mathrm{A}_{4} 7{ }^{\circ}$ Cufpidem \& figura erit Ciflois Veterum. Et hæc eft fpecies quadragefima fecunda.

## $[152]$

Fig. 49.
Si radices duæ majores funt æquales, \& tertia eft ejufdem figni, Conchoidalis habebit punctum conjugatum ad convexitatem fuam, eftq; Ípecies quadragefima tertia.

Si radices dux funt æquales \& tertia eft figni contrarii Conchoidalis habebit punctum conjugatum ad concavitatem fuam, eftq; ipecies quadragefima quarta.

Si radices duæ funt impoffibiles habebitur Conchoidalis pura fine Ovali, Nodo, Cufpide vel puncto conjugato. Quæ feecies eft quadragefima quinta.
xxi. Siquando in primo æquationum cafu terminus a $\mathrm{x}^{3}$ Hyperbole fep- deeft \& terminus bxx non deeft, Figura erit Hy -
tem Parabolice Diametrum non babentes. perbola Parabolica duo habens crura Hyperbolica ad unam Afymptoton SAG\& duo Parabolica in plagam unam \& eandem convergentia. Si terminus ey non deeft figura nullam habebit diametrum, fin deeft habebit unicam. In priori cafu fpecies funt hæ.

IFig. 51.

Si tres radices $A P, A \varpi, A \pi$ æquationis hujus $b x^{3}+c x+d x-\frac{1}{4} c e=0$ funt inæquales \& ejufdem figni, figura conftabit ex Ovali \& aliis duabus Curvis quæ partim Hyperbolicæ funt \& partim Parabolicæ. Nempe crura Parabolica continuo ductu junguntur cruribus Hyperbolicis fibi proximis. Et hæc eft fpecies quadregefima fexta.

Si radices duæ minores funt æquales \& tertia eft ejufdem figni, Ovalis \& una Curvarum illarum Hyperbolo-Parabolicarum junguntur \& fe decuffant in formam Nodi. Quæ fpecies eft quadragefima feptima.

## $[153]$

Si tres radices funt rquales, Nodus ille in Cuff Fir. 52. pidem vertitur. Eftq; fpecies quadragefima octava.

Si radices dux majores funt æquales \& tertia eft Fig. 53. ejufdem figni, Ovalis in punctum conjugatum evanuit. Quæ fpecies eft quadragefima nona.

Si duæ radices funt impoffibiles, manebunt pura $\boldsymbol{a}_{\text {Fig. }}$. $3,5,54$ ille duæ curvx Hyperbolo-parabolicx fine Ovali, decuffation e, cufpide vel puncto conjugato, \& feeciem quinquagefimam conftituent.

Si radices dux funt æquales \& tertia eff figni con- Fig. 55 trarii, Curvx illæ hyperbolo-parabolicx junguntur fefe decuffando in morem crucis. Eftq; fpecies quinquagefima prima.

Si radices dux funt inxquales \& ejufdem figni \& ${ }^{\text {Fig. } 56 .}$ tertia eff figni contrarii, figura evadet Hyperbola anguinea circa Afymptoton A G, cum Parabola conjugata. Et hxc eft fpecies quinquagefima fecunda.

In altero cafu ubi terminus ey deef \& figura xxir. Diametrum habet, fi dux radices æquationis hujus tuor Pyperbole quaticea $b \mathrm{xx}+\mathrm{cx}+-\mathrm{d}=0$ funt impoffibiles, dux habentur Diametrum bao figurx hyperbolo-parabolicx a Diametro AB hinc bentes. gore hyperbolo-parabolica a Diametro AB hinc Fij. 57. inde æqualiter diftantes. Quæ fpecies eft quinquageffima tertia.

Si æquationis illius radices duæ funt impoffibiles, Fiig. 58. Figuræ hyperbolo-parabolicæ junguntur fefe decuffantes in morem crucis, \& feeciem quinquagefimam quartam conftituunt.

Si radices illæ funt inæquales \& ejufdem figni, ha- Fig. 59. betur Hyperbola Conchoidalis cum Parabola ex eodem latere Afymptoti. Eftq; fpecies quinquagefima quinta.

## [154]

Si radices illæ funt figni contrarii, habetur Conchoidalis cum Parabola ad alteras partes Afymptoti. Quæ feecies eft quinquagefima fexta.
XxIII. Siquando in primo æquationum cafu terminus Ouatuor Hy- uterq; $\mathrm{a}^{3} \& \mathrm{bxx}$ deeft, figura erit Hyperbolifmus perbolifmi Hyper-
bola. fectionis alicujus Conicæ. Hyperbolifmum figuræ voco cujus Ordinata proditapplicando contentum fub Ordinata figuræ illius \& recta data ad Abfciffam communem. Hac ratione linea recta vertitur in hyperbolam Conicam, \& fectio omnis Conica vertitur in aliquam figurarum quas hic Hyperbolifmos fectionum Conicarum voco. Nam æquatio ad figuras de quibus agimus, nempe xy y 十e ey $=c x+d$, pqe ordinatam $y=\frac{-e \pm \sqrt{e e+4 d x+4 c x x}}{2 x}$ guaneratur applicando contentum fub Ordinata fectionis Conicæ $\frac{-e \pm \sqrt{e e+4 d x-4 c x x}}{2 m}$ recta data m, ad curvarum Abfciffam communem $x$. Unde liquet quod figura genita Hyperbolifmus erit Hyperbolæ, Ellipfeos vel Parabolx, perinde ut terminus cx affirmativus eft vel negativus vel nullus.

Hyperbolifmus Hyperbolæ tres habet afymptotos quarum una eft Ordinata prima \& principalis $A d$, alteræ duæ funt parallelæ Abfciffæ AB \& ab eadem hinc inde æqualiter diftant. In Ordinata principali Ad cape $\mathrm{Ad}, \mathrm{A}^{\circ}$ hinc inde æquales quantitati $V \mathrm{c}$ $\&$ per puncta $d$ ac ${ }^{\curvearrowright}$ age $d g$, or Afymptotos $A b$. fciffr A B parallelas.

Ulbi terminus ey non deeft figura nullam habet diametrum. In hoc cafu fi requationis hujus $c x x+d x+\frac{1}{4} e e=0$ radices duæ AP, Ap funt reales

## [155]

\& inxquales (nam æquales effe nequeunt nifi figura Fig. 6 ri? fit Conica fectio) figura conftabit ex tribus Hyperbolis fibi oppofitis quarum una jacet inter afymptotos parallelas \& alteræ dux jacent extra. Et hæc eft fpecies quinquagefima feptima.

Si radices illæ dux funt impoffibiles, habentur Hy perbolæ duæ oppofitæ extra afymptotos parallelas \& Anguinea hyperbolica intra eafdem. Hæc figura duarum eft fecierum. Nam centrum non habet Fig. 62. ubi terminus d non deeft ; fed fi terminus ille deeft ${ }^{\mathrm{Fig} .63 \mathrm{~d}}$ punctum $A$ eft ejus centrum. Prior fpecies eft quinquagefima octava, pofterior quinquagefima nona.

Quod fi terminus ey deeft, figura conftabit ex Fig. 640 tribus hyperbolis oppofitis quarum una jacet inter - afymptotos parallelas \& alteræ duæ jacent extra ut in fecie quinquagefima quarta, \& praterea diametrum habet qux eft abfciffa AB. Et hxc eft fpecies fexagefima.
Hyperbolifmus Ellipfeos per hanc aquationem de- xxiv:
 toton qux eft Ordinata principalis Ad. Si terminus Fig $^{\circ}$. 5 . ey non deeft, figura eft Hyperbola anguinea fine diametro atq; etiam fine centro fi terminus $d$ non deeft. Qux fpeeies eft fexagefima prima.

At fi terminus d deeft, figura habet centrum fine Fig. 66. diametro \& centrum ejus eft punctum A. Species vero eft fexagefima fecunda.
Et fi terminus ey deeft \& terminus d non deeft, Fig. 67. figura eft Conchoidalis ad afymptoton A G, habetq; diametrum fine centro, \& diameter ejus eft Abfcifla A B. Qux feecies eft fexagefima tertia.

Xx 2
Hyper-

## $[156]$

xxv. Hyperbolifmus Parabolæ per hanc, xquationem lifmi parabula. Abfciffam AB \& Ordinatam primam \& principalem A G. Hyperbolæ vero in hac figura funt duæ, non in afymptotôn angulis oppofitis fed in angulis qui

Fig. 68.

Fig. 69.
XXVI. Tridens.

Fig. 76. funt deinceps jacentes, idq; ad utrumq; latus abfciffx $A B$, ${ }^{2}$ vel fine diametro fi terminus ey habetur, vel cum diametro fi terminus ille deef. Quæ duæ fecies funt fexagefima quarta \& fexagefima quinta.

In fecundo æquationum cafu habebatur æquatio $x y=a x^{3}+b x x+c x+d$. Et figura in hoc cafu habet quatuor crura infinita quorum duo funt hyperbolica circa afymptoton A G in contrarias partes tendentia \& duo Parabolica convergentia \& cum prioribus fpeciem Tridentis fere efformantia. Eftq; hæc Figura Parabola illa per quam Cartefius æquationes fex dimenfionum conftruxit. Hæc eft igitur fpecies fexagefima fexta.
xxvil. In tertio cafu æquatio erat $y \mathrm{y}=\mathrm{a} \mathrm{x}^{3}+\mathrm{bxx}+\mathrm{cx}$
Parabola quinn +d, \& Parabolum defignat cujus crura divergunt que divergentes. ab invicem \& in contrarias partes infinite progrediuntur. Abfciffa $A B$ eft ejus diameter \& fpecies ejus funt quinq; fequentes.
Fig. 70, 71.
Si xquationis a $x^{3}+b x^{2}+c x+d=0$ radices omnes $A_{\tau}, A T, A t$ funt reales \& inæquales, figura eft Parabola divergens campaniformis cum Ovali ad verticem. Et fpecies eft fexagefima feptima.
Fig. 72. Fig. 73.

Si radices duæ funt æquales, Parabola prodit vel nodata contingendo Ovalem, vel punctata ob Ovalem infinite parvam. Quæ duæ fpecies funt fexagefima octava \& fexagefima nona.

Si tres radices funt aquales Parabola erit cufpi- Fig. 75 áata in vertice. Et hæc eft Parabola Neiliana quæ vulgo femicubica dicitur.

Si radices dur funt impoffibiles, habetur Parabola Fig. $73,74$. pura campaniformis feeciem feptuagefimam primam conftituens.

In quarto cafu xquato erat $y=a x+b x x+c x$ xxviri. t-d, \& hæc equatio Parabolam illam Wallifianam Parabola cubbicato defignat qux crura habet contraria \& cubica di- Fis. 77 . ci folet. Et fic fpecies omnino funt feptuaginta dur.

Si in planum infinitum a puncto lucido illuminatum umbre figurarum projiciantur, umbre fectio- rumper Unmbraus num Conicarum femper erunt fectiones Conicæ, ex Curvarum fecundi generis femper erunt Curvæ fecundi generis, ex curvarum tertii generis femper erunt Curvæ tertii generis, \& fic deinceps in infinitum. Et quemadmodum Circulus umbram projiciendo generat fectiones omnes conicas, fic Parabolx quinq; divergentes umbris fuis generant \& exhibent alias omnes fecundi generis curvas, \& fic. Curvæ quædam fimpliciores aliorum generum inveniri poffunt qux alias omnes corundem generum curvas umbris fuis a puncto lucido in planum projectis formabunt.

Diximus Curvas fecundi generis a linea recta in punctis tribus fecari poffe. Horum duo nonnuno carruaram p quam coincidunt. Ut cum recta per Ovalem infinite parvam tranfit vel per concurfum duarum partium Curvæ fe mutuo fecantium vel in cufpidem coeuntium ducitur. Et fiquando rectæ omnes in plagam

## [158]

plagam cruris alicujus infiniti tendentes Curvam in unico tantum puncto fecant (ut fit in ordinatis Parabolæ Cartefianæ \& Parabolæ cubicæ, nec non in rectis Abfciffæ Hyperbolifmorum Hyberbolæ\& Parabolx parallelis ) concipiendum eft quod rectæ illæ per alia duo Curvæ puncta ad infinitam diftantiam fita (ut ita dicam) tranfeunt. Hujufmodi interfectiones duas coincidentes five ad finitam fint diftantiam five ad infinitam, vocabimus punctum duplex. Curvæ autem quæ habent punCtum duplex defcribi poffunt per fequentia Theoremata.
XXXI.

Theorematade Curvarum deforiptione organica.
Fig. 78.

1. Si anguliduo magnitudine dati $\mathrm{PAD}, \mathrm{PBD}$ circa polos pofitione datos $A, B$ rotentur, \& eorum crura A P, BP concurfu fuo P percurrant lineam rectam; crura duo reliqua $\mathrm{AD}, \mathrm{BD}$ concurfu fuo D defcribent fectionem Conicam per polos $\mathrm{A}, \mathrm{B}$ tranfeuntem : præterquam ubi linea illa recta tranfit per polorum alterutrum $A$ vel $B$, vel anguli $B A D, A B D$ fimul evanefcunt, quibus in cafibus punctum $D$ defrribet lineam rectam.
2. Si crura prima A P, B P concurfu fuo $P$ percurrant fectionem Conicam per polum alterutrum $A$ tranfeuntem, crura duo reliqua $A D, B D$ concurfu fuo D defcribent Curvam fecundi generis per polum alterum B tranfeuntem \& punCtum duplex habentem in polo primo A per quem fectio Conica tranfit : præterquam ubi anguli $B A D, A B D$ fimul evanefcunt, quo cafu punctum

## [159]

Ctum D defrribet aliam fectionem Conicam per polum A tranfeuntem.
3. At fi fectio Conica quam punctum $P$ percurrit tranfeat per neutrum polorum $\mathrm{A}, \mathrm{B}$, punctum D defcribet curvam fecundi vel tertii generis punctum duplex habentem. Et punctum illud duplex in concurfu crurum defcribentium, $\mathrm{AD}, \mathrm{BD}$ invenietur ubi anguli BAP, A BP fimul evanefcunt. Curva autem defcripta fecundi erit generis fi anguli BAD, A BD fimul evanefcunt, alias erit tertii generis \& alia duo habebit puncta duplicia in polis A \& B.

Jam fectio Conica determinatur ex datis ejus punctis quinq; \& per eadem fic defcribi poteft. nicartiom def CoripDentur ejus puncta quinq; A, B, C, D, E. Jun- tio per data guningantur eorum tria quxvis $\mathrm{A}, \mathrm{B}, \mathrm{C}$ \& trianguli A BC ${ }^{\text {que puntac }}$ rotentur anguli duo quivis $\mathrm{CAB}, \mathrm{CBA}$ circa vertices fuos $\mathrm{A} \& \mathrm{~B}$, \& ubi crurum $\mathrm{AC}, \mathrm{BC}$ interfectio C fucceffive applicatur ad puncta duo reliqua $\mathrm{D}, \mathrm{E}$, incidat interfectio crurum reliquorum AB \& BA in puncta $P$ \& Q . Agatur \& infinite producatur recta $P Q$, \& anguli mobiles ita rotentur ut interfectio crurum $\mathrm{AB}, \mathrm{BA}$ percurrat rectam PQ , \& crurum reliquorum interfectio C defcribet propofitam fectionem Conicam per Théorema primum.
XXXIII.

Curve omnes fecundi seneris punctum duplex Curraramm Sehabentes determinantur ex datis earum punctis thum dupples bafeptem, quorum unum eft punctum illud duplex, bentioum defer dap$\&$ tem punta.

## [160]

\& per eadem puncta fic defcribi poffunt. Dentur Curvæ defcribend $æ$ puncta quælibet feptem $A, B, C$, D, E, F, G quorum A eft punctum duplex. Jungantur punctum $\mathrm{A} \&$ alia duo quævis e punctis puta B \& C ; \& trianguli ABC rotetur tum angulus $C A B$ circa verticem fuum $A$, tum angulorum reliquorum alteruter $A B C$ circa verticem fuum $B$. Et ubi crurum AC, BC concurfus $C$ fucceffive applicatur ad puncta quatuor reliqua $D, E, F, G$ incidat concurfus crurum reliquorum $\mathrm{AB} \& \mathrm{BA}$ in puncta quatuor $P, Q, R, S$. Per puncta illa quatuor \& quintum A defcribatur fectio Conica, \& anguli prefati CAB, CBA ita rotentur ut crurum AB, BA. concurfus percurrat fectionem illam Conicam, \& concurfus reliquorum crurum AC, BC defcribet Curvam propofitam per Theorema fecundum.

Si vice puncti $C$ datur pofitione recta $B C$ quæ Curvam defcribendam tangit in $B$, lineæ AD, A P coincident, \& vice anguli D A P habebitur linea recta circa polum A rotanda.

Si punctum duplex A infinite diftat debebit Recta ad plagam puncti illius perpetuo dirigi \& motu parallelo ferri interea dum angulus A BC circa polum $B$ rotatur.

Defcribi etiam poffunt hre curvæ paulo aliter per Theorema tertium, fed defcriptionem fimpliciorem pofuiffe fufficit.

Eadem methodo Curvas tertii, quarti \& fuperiorum generum defcribere licet, non omnes quidem fed quotquot ratione aliqua commoda per motum localem defcribi poffunt. Nam curvam aliquam

## [161]

fecundi vel fuperioris generis punctum duplex non habentem commode defcribere Problema eft inter difficiliora numerandum.

Curvarum ufus in Geometria eft ut per earum interfectiones Problemata folvantur. Proponatur æquatio conftruenda dimenfionum novem $\mathrm{x}^{9}{ }^{*}+\mathrm{bx}^{7}$ $+c x^{6}+-d x^{5}+e x^{4}+f x^{3}+g x x+h x+k=0$. $u b i$ - m
$\mathrm{b}, \mathrm{c}, \mathrm{d}, \not \mathcal{J}_{c}$. fignificant quantitates quafvis datas fignis fuis $+\&-$ affectas. Affumatur æquatio ad Parabolam cubicam $x^{3}=y$, \& xquatio prior, fcribendo y pro $x^{3}$, evadet $y^{3}+b x y y+c y y+d x x y$ $+e x y+m y+f x^{3}+g x x+h x-k=0$, æquatio ad Curvam aliam fecundi generis. Ubi m vel f deeffe poteft vel pro lubitu affumi. Et per harum Curvarum defcriptiones \& interfectiones dabuntur radices æquationis conftruendx. Parabolam cubicam femel defcribere fufficit.
Si æquatio conftruenda per defectum duorum terminorum ultimorum hx \& k reducatur ad feptem dimenfiones, Curva altera delendo $m$, habebit punCtum duplex in principio abfciffix, \& inde facile defcribi poteft ut fupra.
Si xquatio conftruenda per defectum terminorum trium ultimorum $\mathrm{gxx}+\mathrm{h} x+\mathrm{k}$ reducatur ad fex dimenfiones, Curva altera delendo f evadet fectio Conica.
Et fi per defectum fex ultimorum terminorum requatio coniftruenda reducatur ad tres dimenfiones, incidetur in conftructionem Wallifianam per Parabolam cubicam \& lineam rectam.

## $\left[1 \sigma_{2}\right]$

Conftrui etiam poffunt æquationes per Hyperbolifmum Parabolx cum diametro. Ut fi conftruenda fit hæc æquatio dimenfionum novem termino penultimo carens, $a+c x x+d x^{3}+e x^{4}+f x+g x^{6}+h x^{7}$ $+k x^{8}+1 x^{9}=0$; affumatur xquatio ad Hyperbolifmum illum $\mathrm{xxy}=\mathrm{I}$, \& fcribendo y pro $\frac{1}{x x}$, æquatio conftruenda vertetur in hanc $a y^{3}+c y y+d x y y+e y$ $+f x y+m x x y+g+h x+k x x+1 x^{3}=0$, quæ curvam fecundi generis defignat cujus deicriptione Problema folvetur. Et quantitatum mac g alterutra hic deeffe poteft, vel pro lubitu affumi.

Per Parabolam cubicam \& Curvas tertii generis conftruuntur etiam æquationes omnes dimenfionum non plufquam duodecim, \& per eandem Parabolam \& curvas quarti generis conftruuntur omnes dimenfionum non plufquam quindecim, Et fic deinceps in infinitum. Et curve illæ tertii quarti \& fuperiorum generum defcribi femper poffunt inveniendo eorum puncta per Geometriam planam. Ut fi conftruenda fit æquatio $x^{13} *+a x^{10}+b x^{9}+c x^{8}+d x^{7}+e x^{6}+f x^{5}$ $+g x^{4}+h x^{3}+i x x+k x+1=0, \quad \&$ defcripta habeatur Parabola Cubica; fit æquatio ad Parabolam illam cubicam $x^{3}=y, \&$ fcribendo $y$ pro $x^{3}$ æquatio conftruenda vertetur in hanc $y_{4}+a x^{3}+c x x y y+f x x y+i x x=0$, qua eft $\begin{array}{ccc}+\mathrm{b} & +\mathrm{dx}+\mathrm{gx}+\mathrm{k} \\ 4 \mathrm{e}+\mathrm{h}+1\end{array}$
xquatio ad Curvam tertii generis cujus defcriptione Problema folvetur. Defcribi autem poteft hec Curvà inveniendo ejus puncta per Geometriam planam, propterea quod indeterminata quantitas x non nifi ad duas dimenfiones afcendit.



Curvarum Tal. III.




Curvarum Tal: VI.


# TRACTATUS 

D E

Quadratura Curvarum.

$$
\text { Yy } 2
$$

$$
\begin{aligned}
& \text { C10RADDAMI } \\
& \text { I. CI }
\end{aligned}
$$

## introductio.

QUantitates Mathematicas non ut ex partibus quam minimis conftantes, fed ut motu continuo defcriptas hic confidero. Linex defcribuntur ac defcribendo generantur non per appofitionem partium fed per motum continuum punctorum, fuperficies per motum linearum, folida per motum fuperficierum, anguli per rotationem laterum, tempora per fluxum continuum, \& fic in cx. teris. Hæ Genefes in rerum natura locum vere habent $\&$ in motu corporum quotidie cernuntur. Et ad hunc modum Veteres ducendo rectas mobiles in longitudinem rectarum immobilium genefin docuerunt rectangulorum.

Confiderando igitur quod quantitates æqualibus temporibus crefcentes \& crefcendo genita, pro velocitate majori vel minori qua crefcunt ac generantur, evadunt majores vel minores; methodum quarebam deter:

## [166]

determinandi quantitates ex velocitalibus motuum vel incrementorum quibus generantur ; \& has motuum vel incrementorum velocitates nominando $F / l_{u-}$ ziones \& quantitates genitas nominando Fhuentes, incidi paulatim Annis 1665 \& 1666 in Methodum Fluxionum qua hic ufus fum in Quadratura Curvarum.

Fluxiones funt quam proxime ut Fluentium augmenta æqualibus temporis particulis quam minimis genita, \& ut accurate Ioquar, funt in prima ratione augmentorum nafcentium; expeni autem poffunt per lineas quafcunq; qux funt ipfis proportionales. Ut fi arex $\mathrm{ABC}, \mathrm{A} B D \mathrm{G}$ Ordinatis $\mathrm{BC}, \mathrm{BD}$ fuper bafi A B uniformi cum motu progredientibus defcribantur, harum arearum fluxiones erunt inter fe ut Ordinatæ defcribentes BC \& BD \& per Ordinatas. illas exponi poffunt, propterea quod Ordinatæ illa funt ut arearum augmenta nafcentia. Progrediatur Ordinata BC de loco fio BC in locum quemvis novum bc. Compleatur parallelogrammum BCEb, ac ducatur recta VTH qux Curvam tangat in $\mathbf{C}$ ipfifq; bc \& B A productis occurrat in $T$ \& $V:$ \& Abfiffle $A B$, Ordinate $B C$, \& Linex Curva ACc augmenta modo genita erunt $\mathrm{Bb}, \mathrm{Ec} \& \mathrm{Cc}$; \& in horum augmentorum nafcentium ratione prima funt latera trianguli CET , ideoq; fluxiones ipfarum $\mathrm{AB}, \mathrm{BC} \& \mathrm{AC}$ fint ut trianguli illius CET latera CE, ET \& CT \& per eadem latera exponi poffunt, vel quod perinde eft per latera trianguli confimilis VBC.

Eodem recidit fi fumantur fluxiones in ultima xatione partium evanefcentium. Agatur recta $C c$ \& producatur eadem ad K. Redeat Ordinata bc

## $[167]$

in locum fuum priorem BC, \& coeuntibus punctis C \& c , recta CK coincidet cum tangente CH , \& triangulum evanefcens CEc in ultima fua forma evadet fimile triangulo CET, \& ejus latera evanefcentia $\mathrm{CE}, \mathrm{Ec} \& \mathrm{Cc}$ erunt ultimo inter fe ut funt trianguli alterius CET latera CE, ET \& CT T, \& propterea in hac ratione funt fluxiones linearum $A B$, $\mathrm{BC} \& \mathrm{AC}$. Si puncta C \& c parvo quovis intervallo ab invicem diftant recta CK parvo intervallo a tangente CH diftabit. Ut recta CK cum tangente CH coincidat \& rationes ultimæ linearum CE, Ec \& Cc inveniantur, debent puncta C \& c coire \& omnino coincidere. Errores quam minimi in rebus mathematicis non funt contemnendi.

Simili argumento fi circulus centro B radio BC defcriptus in longitudinem Abfciffe AB ad angulos rectos uniformi cum motu ducatur, fluxio folidi geniti ABC erit ut circulus ille generans, \& fluxio fuperficiei ejus erit ut perimeter Circuli illius \& fluxio linex curve AC conjunctim. Nam quo tempore folidum ABC generatur ducendo circulum illum in longitudinem Abfciffæ A B, eodem fuperficies ejus generatur ducendo perimetrum circuli illius in longitudinem Curvæ AC.
Recta PB circa polum datum $P$ revolvens fecet aliam Fig. 2. pofitione datam rectam $A B$ : queritur proportio fluxionum rectarum illarum $A B$ ७ै $\mathcal{P} B$. Progrediatur recta PB de loco fuo PB in locum novum Pb . In Pb capiatur PC ipfi PB æqualis, \& ad AB ducatur PD fic, ut angulus bPD xqualis fit angulo bBC ; \& ob fimilitudinem triangulorum bBC , bPD erit augmentum Bb ad augmentum Cb ut Pb ad Db . Redeat

## [168]

Redeat jam Pb in locun fuum priorem PB ut augmenta illa evanefcant, \& evanefcentium ratio ultima, id eft ratio ultima Pb ad Db , ea erit qux eft PB ad D B, exiftente angulo PDB recto, \& propterea in hac ratione eft fluxio ipfius AB ad fluxionem ipfius PB.

Reda $\mathcal{P} B$ circa datum Polum Prevolvens fecet alias duas pofitione datas rectas $A B$ खै $A E$ in $B$ 'ै E: queritur proportio fluxionum rectarum illarum $A B$ Э $A E$. Progrediatur recta revolvens PB de loco fuo PB in locum novum Pb rectas $\mathrm{AB}, \mathrm{AE}$ in punctis $b$ \& e fecantem, \& reCtx AE parallela BC ducatur ipfi Pb occurrens in C , \& erit Bb ad BC ut Ab ad Ae, \& BC ad Ee ut P B ad PE, \& conjunctis rationibus Bb ad Ee ut AbxPB ad AexPE . Redeat jam linea Pb in locum fuum priorem $\mathrm{PB}, \&$ augmentum evanefcens Bb erit ad augmentum evanefcens Ee ut ABxPB ad A ExPE , ideoq; in hac ratione eft fluxio rectx AB ad fluxionem rectre A E.

Hinc fi recta revolvens PB lineas quafvis Curvas pofitione datas fecet in punctis $\mathrm{B} \& E, \&$ rectx jam mobiles $\mathrm{AB}, \mathrm{AE}$ Curvas illas tangant in Sectionum punctis $B \& E$ : erit fluxio Curvæ quam rectay $A B$ tangit ad Huxionem Curvx quam recta AE tangit ut $\mathrm{A} B \times \mathrm{PB}$ ad A ExPE. Id quod etiam eveniet. fi recta P B Curvam aliquain pofitione datam perpetuo tangat in puncto mobili $P$.

Fluat quantitas $x$ uniformiter b invenienda fit fluxio quantitatis $x$. . Quo tempore quantitas $x$ fluendo evadit $x+o$, quantitas $x^{n}$. evadet $\left.\overline{x-10}\right|^{n}$, id eft per methordum ferierum infinitarum, $x^{n}-J$ no $x^{n-1}$

## [169]

$4-\frac{n n-n}{2} 00 x^{n-2}+\sigma^{c} c$. Et augmenta $o$ \& nox $x^{n-1}+\frac{n n-n}{2} 00 x^{n-2}$ $-1-\delta c$. funt ad invicem ut $1 \& n x^{n-1}+-\frac{n-n}{2} 0 x^{n-2}+\delta c$ 。 Evanefcant jam augmenta illa, \& eorum ratio ultima erit I ad $\mathrm{nx}^{\mathrm{n}-1}$ : ideoq; fluxio quantitatis $x$ eft ad fluxionem quantitatis $x^{n}$ ut $I$ ad $n x^{n-1}$.

Similibus argumentis per methodum rationum primarum \& ultimarum colligi poffunt fluxiones linearum feu rectarum feu curvarum in cafibus quibufcunque, ut \& fluxiones fuperficierum, angulorum \& aliarum quantitatum. In finitis autem quantitatibus Analyfin fic inftituere, \& finitarum nafcentium vel evanefcentium rationes primas vel ultimas inveftigare, confonum eft Geometrix Veterum : \& volui oftendere quod in Methodo Fluxionum non opus fit figuras infinite parvas in Geometriam introducere. Peragi tamen poteft Analyfis in figuris quibufcunq; feu finitis feu infinite parvis quæ figuris evanefcentibus finguntur fimiles, ut \& in figuris quæ pro infinite parvis haberi folent, modo caute procedas.

Ex Fluxionibus invenire Fluentes Problema difficilius eft, \& folutionis primus gradus æquipollet Quadraturæ Curvarum; de qua fequentia olim fcripfi.

## [170]

## TRACTATUS

D E

## Quadratura Curvarum.

QUantitates indeterminatas ut motu perpetuo crefcentes vel decrefcentes, id eft ut fluentes vel defluentes in fequentibus confidero, defignoq; literis $\mathrm{z}, \mathrm{y}, \mathrm{x}, \mathrm{v}$, \& earum fluxiones feu celeritates crefcendi noto iifdem literis punctatis $z, y, x, v$. Sunt \& harum fluxionum fluxiones feu mutationes magis aut minus celeres quas ipfarum $z, y, x, v$ fluxiones fecundas nominare licet \& fic dignare $z, y, x, v, \&$ harum fluxiones primas feu ipfarum $z, y, x, v$ fluxiones tertias fic $\ddot{z}, \dot{y}, \ddot{x}, \dot{v}, \&$ quartas fic $\ddot{z}, \ddot{y}, \ddot{x}, \stackrel{\rightharpoonup}{v}$. Et quemadmodum $\ddot{z}, \ddot{y}, \ddot{x}, \ddot{v}$ funt fluxiones quantitatum $z, y, x, v, \&$ hæ funt fluxiones quantitatum $\mathrm{z}, \mathrm{y}, \mathrm{x}, \mathrm{v} \&$ hæ funt fluxiones quantitatum primarum $\mathrm{z}, \mathrm{y}, \mathrm{x}, \mathrm{v}$ : fic hæ quantitates confiderari poffunt ut fluxiones aliarum quas fic defignabo,

## [171]

$\dot{z}, \dot{y}, \dot{x}, \dot{v}, \&$ hæ ut fluxiones aliarum $z_{z}, y^{\prime \prime},{ }_{x}^{\prime \prime}, \stackrel{\prime}{v}, \&$ he ut fluxiones aliarum ${ }^{\prime \prime \prime},{ }^{\prime \prime \prime},{ }^{\prime},{ }^{\prime \prime \prime},{ }^{\prime \prime \prime}$. Defignant igitur $\bar{z}, \dot{z}, z, \dot{z}, \ddot{z}, \ddot{z},:: \quad \because, z \in c$. feriem quantitatum quarum quælibet pofterior eft fluxio præcedentis \& quælibet prior eft fluens quantitas fluxionem habens fubfequentem. Similis eft feries $\sqrt{\mathrm{az}-\mathrm{zz}}, \quad \sqrt[\mathrm{az}-\mathrm{zz}]{ }$, $\sqrt{\mathrm{az}-\mathrm{zz}}, \sqrt{\mathrm{az}-\mathrm{zz}}, \sqrt{\mathrm{az}-\mathrm{zz}}, \sqrt{\sqrt{\mathrm{az}}-\mathrm{zz}}$, ut $\&$ feries $\frac{a z+z^{2}}{a-z}, \frac{a z-1-z^{2}}{a-z}, \frac{a z+z^{2}}{a-z}, \frac{a z+z^{2}}{a-z}, \frac{a z+z^{2}}{a-z}$,
$\frac{a z+z^{2}}{a-z}$. Et notandum eft quod quantitas qualibet prior in his feriebus eft ut area figuræ curviliniæ cujus ordinatim applicata rectangula eft quantitas pofterior \& abfciffa eft $z$ : uti $\vee \overline{a z-z z}$ area curvæ cujus ordinata eft $\sqrt{a z-z z} \&$ abfciffa z. Quo autem fpectant hæc omnia patebit in Propofitionibus quæ fequuntur.

# $[172]$ <br> <br> PROP.I. PROB. I. 

 <br> <br> PROP.I. PROB. I.}

Data aquatione quotcunq; fluentes quantitates involvente, invenire fluxiones.

## Solutio.

Multiplicetur omnis æquationis terminus per indicem dignitatis quantitatis cujufq; fluentis quam involvit, \& in fingulis multiplicationibus mutetur dignitatis latus in fluxionem fuam, \& aggregatum factorum omnium fuh propriis fignis erit æquatio nova.

## Explicatio.

Sunto a, b, c, d bcc. quantitates determinatæ \& immutabiles, \& proponatur æquatio quævis quantitates fluentes $\mathrm{z}, \mathrm{y}, \mathrm{x}$ Əेc. involvens, uti $\mathrm{x}^{3}-\mathrm{x} \mathrm{y}$ y $+a a z-b^{3}=0$. Multiplicentur termini primo per indices dignitatum x, \& in fingulis multiplicationibus pro dignitatis latere, feu x unius dimenfionis, fcribatur $\mathrm{x}, \&$ fumma factorum erit $3 \mathrm{xx}^{2}-\mathrm{xy}$ y.Idem fiat in y \& prodibit- ${ }^{2} \mathrm{x} y \mathrm{y}$. Idem fiat in z \& prodibitaaz. Ponatur fumma factorum xqualis nihilo, \& habebitur xquatio $3 \dot{x} x^{2}-x y y-{ }^{2} x y y$ Haz $=0$. Dico quod hac $x q u a t i o n e ~ d e f i n i t u r ~ r e-~$ latio fluxionum.

## [173]

## Demonftratio.

Nam fit o quantitas admodum parva \& funto oz , oy, ox, quantitatum $\mathrm{z}, \mathrm{y}, \mathrm{x}$ momenta id eft incrementa momentanea fynchrona. Et fi quantitates fluentes jam funt $z, y \& x$, hæ poft momentum temporis incrementis fuis oz, oy, ox aucte, evadent
 $z, y \& x$ fcriptr dant $x q u a t i o n e m ~ x^{3}+3 x \times 0 x$ - 3 xoox $\ddot{x}+0^{3} x^{3}-\mathrm{xyy}-0 \mathrm{xyy}-2 x 0 y \mathrm{y}-2 \dot{x} 00 \mathrm{y} y$ $-x o o y y-0^{3} y y+a a z+a a o z-b_{3}=0$. Subducatur xquatio prior, \& refiduum divifum per o erit $3 \times x^{2}$ +3 xxox $+\dot{x^{3} 00-x y y-2 x y y-2 x o y y-x o y y-x o o y y}$ -1 -aaz $=0$. Minuatur quantitas o in infinitum, $\&$ neglectis terminis evanefcentibus reftabit $3 x^{2}-\dot{x y y}$ $-{ }_{2} x y y+a a z=0$. Q. E. D.

## Explicatio plenior.

Ad eundem modum fi $æ$ æquatio effet $x^{3}-x y y$ f aa $\sqrt{a x-y y}-b_{3}=0$, produceretur $3 x^{2} x-x y y$ $-2 x y y+a a \sqrt{a x-y y}=0$. Ubi fi fluxionem $\sqrt{a x-y y}$ tollere velis, pone $\sqrt{\text { ax-y } y}=z$, \& erit ax-yy $=z^{3}$

$$
[174]
$$

\& (per hanc Propofitionem) $\dot{a} \dot{x}-{ }^{2} \dot{y} y={ }^{2} \angle z$ feu $\frac{a x-2 y y}{{ }^{2} z}=\dot{z}$, hoc eft $\frac{a x-2 y y}{\sqrt{a x-y y}}=\stackrel{\rightharpoonup}{\sqrt{a x}-y y}$. Et
inde $3 x^{2} x-x y y-2 x y y+\frac{a^{3} x-2 a a y y}{\sqrt[2]{\sqrt{x-y y}}}=0$
Et per operationem repetitam pergitur ad fluxiones fecundas, tertias $\&$ fequentes. Sit æquatio $z^{3}-z^{3}+-a^{4}=0, \&$ fiet per operationem primam $\dot{z} y^{3}+\neg 3 z \dot{y} y^{2}-4 z z^{3}=0$, per fecundam $\ddot{z} y^{3}+6 \ddot{z y y^{2}}$ $+3 z y y^{2}+6 z y^{2} y-4 z z 3-12 z^{2} z^{2}=0$, per tertiam $\ddot{z y^{3}}+9 \ddot{z y y^{2}}+-9 z y y_{2}+18 \ddot{z} y_{2} y+3 z y y^{2}+18 z y y y$ $-1-6 z y^{3}-4 z z 3-36 z z z^{2}-24 z^{3} z=0$.

Ubi vero fic pergitur ad fluxiones fecundas, tertias \& fequentes, convenit quantitatem a liquam ut uniformiter fluentem confiderare, \& pro ejus fluxione prima unitatem fcribere, pro fecunda vero \& fequentibus nihil. Sit æquatio $z^{3}-z^{4}-\mathrm{a}_{4}=0$, ut fupra; \& fluat z uniformiter, fitq; ejus fluxio unitas, $\&$ fiet per operationem primam $y^{3}+3 z y y^{2}-4 z_{3}=0$, per fecundam $6 y y^{2}+3 z y y^{2}+6 z y^{2} y-12 z^{2}=0$, per tertiam $9 y y^{2}+18 y^{2} y+3 z y y^{2}+18 z y y y-1-6 z y 3$ $-24 z=0$ 。

## $[175]$

In hujus autem generis æquationibus concipiendum eft quod fluxiones in fingulis terminis fint ejufdem ordinis, id eft vel omnes primi ordinis $y, z$, vel omnes fecundi $y, y^{2}, y z, z^{2}$, vel omnes tertii $y, y y, y z, y^{3}, y^{2} z, y z^{2} z^{3} \& c$. Et ubi res aliter fe habet complendus eft ordo per fubintellectas fluxiones quantitatis uniformiter fluentis. Sic æquatio noviffima complendo ordinem tertium fit $9 z y y^{2}$ $+18 z y^{2} y-+3 z y y^{2}+18 z y y y+6 z y^{3}-24 z z^{3}=0$.

## PROP. II. PROB. II.

Invenire Curvas que quadrari polfunt.

Sit ABC figura invenienda, BC Ordinatim ap-Fig. 4*plicata rectangula, \& AB abfciffa. Producatur CB ad E ut fit $\mathrm{BE}=1$, \& compleatur parallelogrammum $\mathrm{ABED}:$ \& arearum $\mathrm{ABC}, \mathrm{ABED}$ fluxiones erunt ut $\mathrm{BC} \& \mathrm{BE}$. Affumatur igitur æquatio quevis qua relatio arearum definiatur, \& inde dabitur relatio ordinatarum BC \& BE per Prop. I. Q. E. I.

Hujus rei exempla habentur in Propofitionibus duabus fequentibus.

> PROP.

## [176]

## PROP. III. THEOR. I.

Si pro abfciffa $A B \&$ area $A E$ feu $A B \times I$ promifcue fcribatur $\mathbf{z}, \&$ fi pro e $-1-\mathrm{fz}^{n}+\mathrm{gz}^{2 n}-1-\mathrm{h} z^{3 n}+\& c$. fcribatur R: fit autem area Curvæ $z_{\theta} \mathrm{R}^{\wedge}$ erit. ordinatim applicata $\mathrm{BC}=$

$$
\theta \mathrm{e}+\theta{ }_{2 n} \mathrm{fz}^{n}+{ }_{2 \lambda n}^{\theta} \mathrm{g} \mathrm{z}^{2 n}+\theta+3 \lambda n \mathrm{~h} \mathrm{z}^{3 n}+\& \mathrm{c} . \text { in } \mathrm{z}^{\theta-1} \mathrm{R} \mathrm{~A}^{\lambda-1} .
$$

## Dcmonftratio.

Nam fifit $z^{\theta} R^{\lambda}=v$, erit per Prop. $I^{1}{ }^{\theta} z^{\theta} z^{\theta-1} R_{\lambda}$ $H^{-\lambda} z^{\theta} \dot{R} R^{\lambda-1}=v$. Pro $R_{\lambda}$ in primo $x q u a t i o n i s ~ t e r-~$ mino \& $z^{\theta}$ in fecundo fcribe $R R^{\lambda-1} \& z^{\theta-1}, ~ \& ~ f i e t$ ${ }_{8 Z R}+\lambda z R$ in $z^{\theta-x} R^{\lambda}{ }_{-1}=v$. Erat autem $R=e f_{-} f z_{n}$ $\forall \mathrm{gz}^{2 n}-1-h z^{3 n} \& c$. \& inde per Prop. 1. fit $\dot{\mathrm{R}}=$ ${ }_{n} \dot{f z}^{n-1}+2 n g z z^{2 n-1}+3 n h z z^{3 n-1}+\& c$ quibus fubftitutis \& fcripta BE feu I pro $\dot{z}$, fiet
 Q. E. D.

## PROP. IV. THEOR. II.

Si Curvæ abfciffa AB fit z, \& fi pro e-f $f z^{n}+\mathrm{gz}^{2 *}$ - \& c. fcribatur R, \& pro $\mathrm{k}+1 \mathrm{z}^{n}+\mathrm{mz}^{2 n}+\& \mathrm{c}$. fcribatur $S$; fit autem area Curvæ $z^{\wedge} \mathrm{R}^{\wedge} \mathrm{S}^{\mu}$ : erit ordinatim applicata $\mathrm{BC}=$


Demonftratur ad modum Propofitionis fuperioris.

## PR OP.V. THEOR. III.

Si Curvæ abfciffa AB fit $z$, \& pro e-1-fzn $+\mathrm{gz}^{2 n}$ - $\mathrm{hz} z^{3 n}+\& \mathrm{c}$. fcribatur R : fit autem ordinatim applicata $z^{\theta-1} \mathrm{R}^{\lambda-1}$ in $\mathrm{a}-1-\mathrm{b} z^{n}+\mathrm{cz} z^{2 n}+\mathrm{dz} z^{n}+\& \mathrm{c}$. \& ponatur $\frac{\theta}{n}=r . r+\lambda=s . s+\lambda=t . t+\lambda=v . \& c$. erit area
 $+\frac{{ }_{-3}^{-s} \mathrm{fD}_{-2}^{\mathrm{t}} \mathrm{gC} \mathrm{C}_{-1}^{-v} \mathrm{hB}}{\overline{r+4}, \mathrm{e}} \mathrm{z}^{4 n}+\& c$. Ubi $A, B, C, D, \& c$. Aaa denotant

## [1778]

denotant totas coefficientes datas terminorum fingulorum in ferie cum fignis fuis $-\downarrow$-, nempe A primi termini coefficientem $\frac{\frac{1}{n a}}{\mathrm{r} e}$, B fecundi coefficientem
 fic deinceps.

## Demonflratio.

## Sunto juxta Propofitionem tertiam,

Curvarum Ordinatex

1. $\theta \mathrm{e} \mathrm{A}_{-1-2 n}^{+\theta} \mathrm{fA} z_{-1-2 \lambda n}^{+-\theta} \mathrm{gAz} z_{-z_{-3 n}^{2 n}}^{-\theta} \mathrm{hA} z^{3 n} \& c$.



\& earundem arex.

$$
z^{\theta-1} R^{\lambda-1}
$$

Bzot R^.
$\mathrm{Cz}^{\theta}+2 n \mathrm{R}^{2}$.
$\mathrm{Dz}^{\theta-1-3 n} \mathrm{R}^{n}$.

Et fi fumma ordinatarum ponatur xqualis ordinatæ $\mathrm{a}-\mathrm{bz} z^{n}--\mathrm{cz} z^{2 n}-1-\mathrm{d} z^{3 n}+\& \mathrm{c}$. in $z^{9-1} \mathrm{R}^{n-1}$, fumma arearum $z^{\theta} \mathrm{R}^{\wedge}$ in $\mathrm{A}+\mathrm{Bz}^{n}-\mathrm{Cz}^{2 n}-\mathrm{D} \mathrm{z}^{3^{n}}-1-\& c$. æqualis erit areæ Curvæ cujus ifta eft ordinata. Æquentur igitur Ordinatarum termini correfpondentes, \&


 nitum.

## [ 179 ]

nitum. Pone jam $\frac{\theta}{n}=r . r-t_{\lambda}=s . s+t_{\lambda}=t \& c . \&$ in area $z^{6} \mathrm{R}^{2} \times \mathrm{A}+-\mathrm{Bz}^{n}+\mathrm{Cz}^{2 n}+\mathrm{D} z^{3 n} \& \mathrm{c}$. fcribe ipforum A, B, C, \&c. valores inventos \& prodibit feries propofita. Q. E. D.

Et notandum eft quod Ordinata omnis duobus modis iu feriem refolvitur. Nam index" vel affirmativus eft poteft vel negativus. Proponatur Ordinata $3 \mathrm{k}-1 \mathrm{zz}$ $\left.z-\frac{3}{2} \times 3^{k}-1 z z \times \overline{k-l z z-1-m z 3}\right)^{-\frac{1}{2}}$, vel fic $z x-\overline{1-3 k z^{-2}}$ $\overline{x_{m}-1 z^{-1}-1 k^{-3}}-\frac{1}{2}$. In cafu priore eft $a=3 k \cdot b=0$. $c=-1 . e=k . f=0 . \quad g=-1 . \quad h=m . \lambda=-\frac{1}{2} \cdot n=1$. $\theta-\mathrm{I}=-\frac{5}{2} . \quad \theta=-\frac{3}{2}=\mathrm{r} . \quad \mathrm{s}=-\mathrm{I} . \quad \mathrm{t}=-\frac{1}{2} . \mathrm{v}=0$. In pofteriore eft $\mathrm{a}=-1 . \mathrm{b}=0 . \mathrm{c}=3 \mathrm{k} . \mathrm{e}=\mathrm{m} . \mathrm{f}=-1$, $\mathrm{g}=0 . \mathrm{h}=\mathrm{I} . \lambda=-\frac{\mathrm{r}}{2} \cdot n=-1 . \theta-\mathrm{I}=\mathrm{I} . \theta=2 . \mathrm{r}=-2$. $\mathrm{s}=-\mathrm{I}_{2} \mathrm{Y} . \mathrm{t}=-\mathrm{I} \cdot \mathrm{v}=-{ }_{2}^{\mathrm{r}}$. Tentandus eft cafus uterque. Et fi ferierum alterutra ob terminos tandem deficientes abrumpitur ac terminatur, habebitur area Curvæ in terminis finitis. Sic in exempli hujus priore cafu fcribendo in ferie valores ipforum $a, b$, $c, e, f, g, h, \lambda, \theta, r, s, t, v$, termini omnes poft primum evanefcunt in infinitum \& area Curvæ prodit $-2 \sqrt{\frac{k}{k}-172-1 \mathrm{~m} 23} \mathrm{z}^{2}$. Et hac area ob fignum negativum adjacet abfciffæ ultra ordinatam productæ. Nam area omnis affirmativa adjacet tam abfciffæ quam ordinatx, negativa vero cadit ad contrarias partes ordinatæ \& adjacet abfciffæ productæ, manente fcilicet figno Ordinatr. Hoc modo feries alterutra \& nonnunquam utraque femper terminatur \& finita evadit fi Curva geometrice quadrari poteft. At fi Curva talem quadraturam non admit. tit, feries utraq; continuabitur in infinitum, \& eaA aa 2
rum

## [180]

rum altera converget \& aream dabit approximando, præterquam ubi r ( propter aream infinitam) vel nihil eft vel numerus integer \& negativus, vel ubi $\frac{z_{e}}{\stackrel{*}{*}}$ rqualis eft unitati. $\mathrm{Si}_{\mathrm{e}}^{\mathrm{z}}$ minor eft unitate, converget feries in qua index ${ }_{n}$ affirmativus eft: fin $\frac{z}{e}$ unita te major eft, converget feries altera. In uno cafu area adjacet abfciffix ad ufq; ordinatam ductx, in altero adjacet abfciffæ ultra ordinatam productx.

Nota infuper quod fi Ordinata contentum eft fub factore rationali $Q$ \& factore furdo irreducibili $R^{x}$, \& factoris furdi latus R non dividit factorem rationalem Q ; erit $\lambda-\mathrm{I}=\pi \& \mathrm{R}^{\lambda-1}=\mathrm{R}^{\pi}$. Sin factoris furdi latus R dividit factorem rationalem femel, erit ${ }^{2}-\mathrm{I}=\pi-1-\mathrm{I} \& \mathrm{R}^{x-1}=\mathrm{R}^{\pi+1}$ : fi dividit bis, erit $\lambda-1=\pi+2 \& R^{\lambda-1}=R^{\pi-1-2}$ : fi ter, erit $\lambda-1=\pi-13$, $\& \mathrm{R}^{\lambda-1}=\mathrm{R}^{\pi+3}: \&$ fic deinceps.

Si Ordinata eft fractio rationalis irreducibilis cum Denominatore ex duobus vel pluribus terminis compofito : refolvendus eft denominator in divifores fuos omnes primos. Et fi divifor fit aliquis cui nullus alius eft æqualis, Curva quadrari nequit: Sin duo vel plures fint divifores æquales, rejiciendus eft eorum unus, \& fi adhuc alii duo vel plures fint fibi mutuo æquales \& prioribus inæquales, rejiciendus eft etiam eorum unus, \& fic in aliis omnibus æqualibus fi adhuc plures fint: deinde divifor qui relinquitur vel contentum fub diviforibus omnibus qui relinquuntur, fi plures funt, ponendum eft pro $R$, \& ejus quadrati reciprocum $R^{-2}$ pro $R^{n-1}$, preterquam ubi contentum illud eft quadratum vel cubus vel quadrato quadratum, \&c. quo cafu ejus latus
ponen.

## [ 18 I ]

ponendum eft pro R \& poteftatis index 2 vel 3 vel 4 negative fumptus pro $\lambda$. \& Ordinata ad denominatorem $R^{2}$ vel $R^{3}$ vel $R^{4}$ vel $R^{s}$ \& $x$. reducenda.

Ut fi ordinata fit $\frac{25-124-823}{25-74-25-53-22-82-4}$; quoniam hxc fractio irreducibilis eft $\& \in$ denominatoris divifores funt pares, nempe $z-1, z-1, z-1 \& z+2$, $z+2$, rejicio magnitudinis utriufque diviforem unum \& reliquorum $z-1, z-1, z+2$ contentum $2^{3}-3^{z-1}-2$ pono pro R \& ejus quadrati reciprocum $\frac{1}{R^{2}}$ feu $R-2$ pro $R^{x-1}$. Dein Ordinatam ad denominatorem $R^{2}$ feu $R^{1-\lambda}$ reduco, \& fit $z^{6}-9 z^{4}-1-8 z^{3}$ $\overline{z^{3}-3 z+2}$ quad. , id eft $z_{3} \times 8 \overline{-9 z+z_{3}} \times \overline{2-3 z+z^{3} 7^{-2}}$ Et inde eft $a=8 . b=-9 . c=0 . d=-1, \& c$. $\mathrm{e}=2 . \quad \mathrm{f}=-3 . \quad \mathrm{g}=0 . \quad \mathrm{h}=\mathrm{I}, \quad \mathrm{x}-\mathrm{I}=-2 . \quad, \quad \mathrm{l}=-\mathrm{I}$. ${ }_{n}=1, \quad \theta-1=3, \quad \theta=4=r, s=3, t=2, v=1$. Et his in ferie feriptis prodit area $\frac{z^{+}}{z^{3}-3 z-2}$, terminis omnibus in tota ferie poff primum evanefcentibus.

Si deniq; Ordinata eft fractio irreducibilis \& ejus denominator contentum eft fub factore rationali $\mathbf{Q}$ \& factore furdo irreducibili $\mathrm{R}^{\pi}$, inveniendi funt lateris R divifores omnes primi, \& rejiciendus eft divifor unus magnitudinis cujufq; \& per divifores qui reftant, fiqui fint, multiplicandus eft factor rationalis Q : \& fi factum æquale eft lateri R vel lateris illius poteftati alicui cujus index eft numerus integer, efto index ille $m$, \& erit $n-1=-\pi-m$, \&

quoniam divifores habet $q+x, q+x$, $q-x q u i$ duarum funt magnitudinum, rejicio diviforem unum magnitudinis utriuf $q$; \& per diviforem $q+x$ qui relinquitur multiplico factorem rationalem qq-xx. Et quoniam factum $\mathrm{q} 3+\mathrm{qqx}-\mathrm{qxx}-\mathrm{x} 3$ xquale eft lateri R ,pono $\mathrm{m}=\mathrm{I}$. \& inde, cum $\pi$ fit $\frac{1}{3}$, fit $\lambda-1=-\frac{4}{3}$. Ordinatam igitur reduco ad denominatorem $\mathrm{R}^{-4}$ \& fit $Z 0 \times 3 q^{6}+2 q^{5} x+8 q^{4} x x+8 q^{3} x^{3}-7 q q x^{1}-6 q x^{5}$ $\times \overline{q^{3}-|q q x-q \times x-x|-\frac{9}{3}}$. Unde eft $a=3 q^{6} \cdot b=2 q^{5} \& c$. $\mathrm{e}=\mathrm{q} 3 . \mathrm{f}=\mathrm{qq} \& \mathrm{c} . \theta-\mathrm{r}=0 . \theta=\mathrm{I}={ }^{n} \cdot \lambda=-\frac{1}{3} \cdot \mathrm{r}=\mathrm{I}$. $s=\frac{2}{3} \cdot t={ }_{3}^{1} \cdot v=0$. Et his in ferie frriptis prodit area $\frac{3 \text { and }}{\sqrt{\text { cabb: } 33-\operatorname{lax}-x^{3}-2 \times x x-x^{3}}{ }^{3}}$ terminis omnibus in ferie tota poft tertium evanefcentibus.

## PROP. VI. THEOR. IV.

Si Curvæ abfciffa AB fit z, \& fcribantur R pro e-ffin $-\mathrm{gg}^{2 n}+\mathrm{h} z^{3^{n}}+\&$ \&c. \& S pro $\mathrm{k}+\mathrm{l} \mathrm{z}^{n}+\mathrm{mz}^{2^{2 n}}$ $+n z^{3 n} \& \mathrm{c}$. fit autem ordinatim applicata $z^{q^{-1}} \mathrm{R}^{n-1} S^{\mu-1}$ in a-b $b z^{n}+-\mathrm{cz}^{2 n}+\mathrm{d} z^{3 n}$ \&c. \& fi terminorum, $\mathrm{e}, \mathrm{f}$, $\mathrm{g}, \mathrm{h}, \& \mathrm{cc} . \& \mathrm{k}, 1, \mathrm{~m}, \mathrm{n} . \& \mathrm{c}$. rectangula fint.


## $[183]$

Et fi rectangulorum illorum coefficientes numerales fint refpective

$$
\begin{aligned}
& \lambda_{n}=r . \quad r f_{\lambda}=s . \quad s+f_{\lambda}=t . \quad t+f_{\lambda}=v . \& c . \\
& r-f \mu=\dot{s} \text {. } s-f_{\mu}=t . \quad t-f \mu=\dot{v} . \quad v-f \mu=w . \& c \text {. } \\
& s-f_{\mu}=t . \quad t-\mu=v^{\prime \prime} . \quad v-\mu={ }^{\prime \prime} \text {. } \quad w+\mu=x \text {. } 2 c \text {. }
\end{aligned}
$$

area Curvæ erit hæc



Ubi A denotat termini primi coefficientem datams ${ }_{\frac{i}{r} \mathrm{a} \text { a }}^{\frac{1}{r e k}}$ cum figno fuo - vel -, B coefficientem datam fecundi, C coefficientem datam tertii, \& fic deinceps.
 vel plures deeffe poffunt. Demonffratur Propofitio ad modum pracedentis, \& quæ ibi notantur hic obtinent. Pergit autem feries talium Propofitionum in infinitum, \& Progreffio feriei manifefta eft.

## [184]

## PROP. VII. THEOR. V.

Si pro e $+\mathrm{fz}^{n}-1-\mathrm{gz}^{2 n}+\& \mathrm{c}$. fcribatur R ut fupra, $\&$ in Curvæ alicujus Ordinata $2 \theta^{ - \pm n \sigma} \mathrm{R} x-\tau$ maneant quantitates datæ $\theta, n, \lambda, e, f, g, \& c . \&$ pro $\sigma$ ac $\tau$ fcribantur fucceffive numeri quicunq; integri : \& fi detur area unius ex Curvis quæ per Ordinatas innumeras fic prodeuntes defignantur fi Ordinatæ funt duorum nominum in vinculo radicis, vel fi dentur arex duarum ex Curvis fi Ordinatæ funt trium nominum in vinculo radicis, vel areæ trium ex Curvis fi Ordinatæ funt quatuor nominum in vinculo radicis, \& fic deinceps in infinitum : dico quod dabuntur areæ curvarum omnium. Pro nominibus hic habeo terminos omnes in vinculo radicis tam deficientes quam plenos quorum indices dignitatum funt in progreffione arithmetica. Sic ordinata $\sqrt{a^{4}-a x^{3}} \mp x^{4}$ ob terminos duos inter $a^{4} \&-a x^{3}$ deficientes pro quinquinomio haberi debet. At $\sqrt{a^{4}-1-x^{4}}$ binomium eft $\& \sqrt{a^{4}-x^{4}-x^{8}} \frac{x}{4}^{4}$ trinonium, cum progreffio jam per majores differentias procedat. Propofitio vero fic demonftratur.

$$
C A S .
$$

Sunto Curvarum duarum Ordinatæ $\mathrm{pz}^{\theta-\mathrm{I}} \mathrm{R}^{\lambda-1}$ \& $q^{z^{\theta} \mid n-1} R^{n-1}$, \& arex $p A \& q B$, exiftente $R$ quantitate trium nominum $e+f \mathrm{fz}^{n}-1-\mathrm{gz}^{2 n}$. Et cum per Prop.

Prop. III. fit $z^{\theta} \mathrm{R}^{\wedge}$ area curvæ cujus Ordinata eft oe ${ }_{-1-\lambda n}^{-\theta} \mathrm{f}_{\mathrm{Z}^{n}-1-\lambda_{2 \lambda}}^{-\theta} \mathrm{gz}^{2 n}$ in $\mathrm{z}^{\theta-1} \mathrm{R}^{\lambda-1}$, fubduc Ordinatas \& areas priores de area \& Ordinata pofteriori, \& manebit
 $-q_{z}{ }^{n}$
$z^{9} R^{\lambda}-p A-q B$ ejufdem area. Pone $\varepsilon \in=p \&$ ${ }^{\theta f} \uparrow-\lambda n \mathrm{f}=\mathrm{q}$ \& Ordinata evadet ${ }_{+2 \lambda n}^{\theta} \mathrm{gz}^{2 n}$ in $\mathrm{z}^{\theta-1} \mathrm{R}^{\lambda-\mathrm{I}}, \&$ area $z^{\theta} \mathrm{R}^{\wedge}-\theta e \mathrm{~A}-{ }_{\theta} \mathrm{fB}-\operatorname{nn}^{\mathrm{n}} \mathrm{B}$. Divide utramq; per $\operatorname{gg}-\left.\right|^{2} \lambda n g, \&$ aream prodeuntem dic C, \& affumpta utcunq; r, erit rC area Curvæ cujus Ordinata eft $r z^{\theta-2 n-1} \mathrm{R}^{\lambda-1}$. Et qua ratione ex areis $\mathrm{pA} \& \mathrm{qB}$ aream rC Ordinatæ $r z^{\theta-1-2 n^{-1}} \mathrm{R}^{A-1}$ congruentem invenimus, licebit ex areis qB \& rC aream quartam puta $s D$, ordinatæ $s z^{\theta--3^{n-1}} R^{\lambda-1}$ congruentem invenire, \& fic deinceps in infinitum. Et par eft ratio progreffionis $a b$ areis $B \& A$ in partem contrariam pergentis. Si terminorum $\theta, \theta-{ }^{2 n}, \& \theta+2 \lambda_{n}$ aliquis deficit \& feriem abrumpit, affumatur area pA in principio progreffionis unius \& area $q B$ in principio al terius, \& ex his duabus areis dabuntur areæ omnes in progreffione utraque. Et contra, ex aliis duabus areis affumptis fit regreffus per analyfin ad areas $A$ $\& B$, adeo ut ex duabus datis cæteræ omnes dentur. Q. E. O. Hic eft cafus Curvarum ubi ipfius z index $\theta$ augetur vel diminuitur perpetua additione vel fubductione quantitatis n. Cafus alter eft Curvarum ubi index ${ }^{\lambda}$ augetur vel diminuitur unitatibus.

$$
\mathrm{Bbb}
$$

## [186]

## $C A S$. II.

Ordinatæ $\mathrm{pz}^{\theta-1} \mathrm{R}^{\lambda} \& \mathrm{q}^{\theta-1--1} \mathrm{R}^{\lambda}$, quibus areæ pA \& qB jam refpondeant, fi in R،feu e+fzn $+\mathrm{gz}^{2 n}$ ducantur ac deinde ad $R$ viciffim applicentur, evadunt $\mathrm{pe}+\mathrm{pfz}^{n}+\mathrm{pgz}^{2 n} \times \mathrm{z}^{\theta-1} \mathbf{R}^{n-1} \& \mathrm{qez}^{n}+\mathrm{qfz}^{2 n}$ $+9 \mathrm{zz}^{3 n} \times \mathrm{z}^{\theta-1} \mathrm{R}^{\lambda-1}$. Et per Prop. III. eft $a z^{\theta} \mathrm{R}^{\lambda}$ area Curvæ cujus Ordinata eft $\theta a e_{+\lambda n}^{+\theta} \mathrm{afz}^{n,-1-2 \lambda n} \mathrm{agz}^{2 n}$ in $\mathrm{z}^{\theta-1} \mathrm{R}^{\lambda-1}$, \& $\mathrm{bz}^{\theta-1 n} \mathrm{R}^{\lambda}$ area Curvæ cujus ordinata
 tuor arearum fumma eft $p A+q B+a z^{\theta} R^{2}+b z^{\theta+n} R^{\lambda}$ \& fumma refpondentium ordinatarum

$$
\begin{aligned}
& \begin{array}{ll}
+\mathrm{pf} & +\mathrm{pg} \\
+\mathrm{qe} & +\mathrm{qf}
\end{array}
\end{aligned}
$$

Si terminus primus tertius \& quartus ponantur feorfim æquales nihilo, per primum fiet $\theta_{a}+\mathrm{pe}=0$ feu $\rightarrow a=p$, per quartum $-\theta b-n b-2 n b=q$, \& per tertium (eliminando $p \& q)^{\frac{2 a q}{f}}=b$. Unde fecundus fit $\frac{\text { גaffi-4nage }}{f}$, adeoq; fumma quatuor Ordinatarumeft
 arearurn eft a $z^{\theta} R^{\lambda}-\frac{2 a z}{f} z^{\theta+n} R_{x}=\theta a A-\frac{2 \theta+2 n+4 n a}{f} a g B$.

## $[187]$

Dividantur hæ fummæ per $\frac{\text { 2.aff-4naqze }}{f}$ \& fi Quotum pofterius dicatur $D$, erit $D$ area curve cujus ordinata eft Quotum prius $z^{\theta+n-R^{1-1}}$. Et eadem ratione ponendo omnes Ordinata terminos prater primum æquales nihilo poteft area Curvæ inveniri cujus Ordinata eft $z^{\theta-1} \mathrm{R}^{1-1}$. Dicatur area ifta $C$, \& qua ratione ex areis $\mathrm{A} \& \mathrm{~B}$ invente funt arex C ac D , ex his areis C ac D inveniri poffunt aliæ dux E \& F ordinatis $z^{9-1} R^{n-2} \& z^{9-1-n-1} R^{1-2}$ congruentes, \& fic deinceps in infinitum. Et per analyfin contrariam regredi licet ab areis $\mathrm{E} \& \mathrm{~F}$ ad areas Cac D , \& inde ad areas A \& B, aliafq; quæ in progreffione fequuntur. Igitur fi index $\lambda$ perpetua unitatum additione vel fubductione augeatur vel minuatur, \& ex areis quæ Ordinatis fic prodeuntibus refpondent dux fimpliciffimx habentur ; dantur alix omnes in infinitum. Q. E. O.

## $C A S$. III.

Et per cafus hofce duos conjunctos, fi tam index a perpetua additione vel fubductione ipfius $n$, quam index $\lambda$ perpetua additione vel fubductione unitatis, utcunq; augeatur vel minuatur, dabuntur arex fingulis prodeuntibus Ordinatis refpondentes. Q. E. O.

Bbbs

## [188]

## $C A S$ IV.

Et fimili augmento fi ordinata conftat ex quatuor nominibus in vinculo radicali \& dantur tres arearum, vel fi conftat ex quinq; nominibus \& dantur quatuor arearum, \& fic deinceps : dabuntur arex omnes qua addendo vel fubducendo numerum $n$ indici ${ }^{9}$ vel unitatem indici $\lambda$ generari poffunt. Et par eft ratio Curvarum ubi ordinatæ ex binomiis conflantur, \& area una earum qux non funt geometrice quadrabiles datur. Q.E. O.

## PROP. VIII. THEOR. VI.

Si proe $+\mathrm{fz}^{n}+-\mathrm{gz}^{2 n}-\mid \& \mathrm{c} . \& \mathrm{k}+1 \mathrm{l}^{n}+\mathrm{mz}^{2 n}+-\& \mathrm{c}$. fcribantur R \& S ut fupra, \& in Curvx alicujus Ordinata $z^{9}-1-n \boldsymbol{R} R- \pm \tau S \mu \pm v$ maneant quantitates datx $\theta^{2}$, ${ }^{n},{ }^{\lambda}, \mu, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{k}, 1, \mathrm{~m}, \& \mathrm{c} . \&$ pro $^{\sigma}, \tau^{\tau}, \& \nu$, fcribantur fucceffive numeri quicunq; integri : \& fi dentur arex duarum ex curvis qux per ordinatas fic prodeuntes defignantur fi quantitates $R \& S$ funt binomia, vel fi dentur arex trium ex curvis fi $R$ \& $S$ conjunctim ex quinq; nominibus conftant, vel arex quatuor ex curvis fi $R \& S$ conjunctim ex fex nominibus conftant, \& fic deinceps in infinitum : dico quod dabuntur arex curvarum omnium.

Demonftratur ad modum Propofitionis fuperioris.

## [189]

## PROP. IX. THEOR. VII.

Æquantur Curvarum areæ inter fe quarum Ordinatæ funt reciproce ut fluxiones Abfciffarum.

Nam contenta fub Ordinatis \& fluxionibus Abfciffarum erunt æqualia, \& fluxiones arearum funt ut hæc contenta.

$$
C O R O L . \quad \mathrm{I} .
$$

Si affumatur relatio quævis inter Abfciffas duarum Curvarum, \& inde per Prop. I. quæratur relatio fluxionum Abfciffarum, \& ponantur Ordinatæ reciproce proportionales fluxionibus, inveniri poffunt innumeræ Curvæ quarum areæ fibi mutuo æquales erunt.

## COROL. II.

Sic enim Curva omnis cujus hæc eft Ordinata
 quamvis pro $\&$ ponendo $\frac{n}{v}=s \& z^{s}=x$, migrat in aliam fibi æqualem cujus ordinata eft $\frac{v}{n} \times \frac{v \theta-n}{n}$ in


## $[190]$ COROL. III.

Et Curva omnis cujus Ordinata eft $z^{\theta-\mathrm{x}}$ in $\overline{a+b z^{n}-c z^{2 n}+\& \bar{c} .} \times \overline{e+f z^{n}+g z^{2 n} \& c} .^{\lambda}$, affumendo quantitatem quamvis pro" \& ponendo $\frac{n}{\nu}=5$ \& $z^{s}=x$, migrat in aliam fibi æqualem cujus ordinata


## COROL. IV.

Et Curva omnis cujus Ordinata eft $z^{\theta-1}$ in $\overline{a-1-b z^{n}+c z^{2 n}+\& c} \times\left.\overline{e+f z^{n}+g z^{2 n}+\& c}\right|^{n}$ $x \overline{\mathrm{k}+1 \mathrm{z}^{n}-\mathrm{mz}^{2 n}+\& \mathrm{c}} . \mu$, affumendo quantitatem quamvis pro $\nu$ \& ponendo $\frac{n}{2}=s \& z^{s}=x$, migrat in aliam fibiæqualem cujus ordinata eft $: \frac{n}{n} \frac{\Delta \theta-n}{n}$ in $\overline{a+b x_{v}}$


## COROL. V.

Et Curva omnis cujus Ordinata eft $z^{\theta-1}$ in $\mathrm{e}-1-\mathrm{f}{z^{n}-g z^{2 n}+\& \mathrm{c}}_{\mathrm{\mid}}{ }^{n}$ ponendo $\frac{1}{2}=\mathrm{x}$ migrat in aliam fibi æqualem cujus ordinata eft $\frac{1}{x^{\theta+1}} \overline{x+f^{-\mu}}$ $\overline{+g x^{-2 n}+\alpha_{0}} l^{\lambda}$ id eft $\frac{1}{x-1-1-T^{-2} \lambda} \times \overline{f+e x^{\prime}} \|^{\lambda}$ fi duo funt nomina in vinculo radicis vel $\frac{1}{x^{\theta+1+n^{2}}} \times \overline{\mathrm{g}+\mathrm{fx}^{n}+-\mathrm{ex}^{2} \eta^{n}}$ fi tria funt nomina ; \& fic deinceps.

## [191]

## $C O R O L . \quad$ VI.

Et Curva omnis cujus Ordinata eft $z^{\theta-1}$ in $\left.\overline{e-f z^{n}-g z^{2 n}-1} \& c \cdot\right|^{n} \times\left.\overline{k-1 z^{n}+m z^{2 n}-1-\& c} \cdot\right|^{\mu}$ ponendo $\frac{1}{z}=x$ migrat in aliam fibi æqualem cujus ordinata eft $\frac{1}{x^{\theta-1-1}} \times \overline{e+f x^{-n}+\mathrm{gx}^{-2 n}-1-\left.\& c \cdot\right|^{2}}$ $\left.x \overline{\mathrm{k}+\mid \mathrm{x}^{-n}+\mathrm{mx}^{-2 n}-1 \& \mathrm{c}}\right|^{\mu}$ id eft $\frac{1}{\mathrm{x}^{\theta-1-1-x_{n}-\eta_{\mu \mu}}} \times \overline{\mathrm{f}+\mathrm{ex}^{n} \eta^{n}}$ $x \overline{\overline{1}+\mathrm{kx}^{n}} \mathrm{fi}$ bina funt $n_{\text {omina }}$ in vinculis radicum, vel $\overline{x^{\theta+1}-\frac{1}{2 n \lambda}--_{n \mu}} \times \overline{\mathrm{g}+\mathrm{fx}^{n}+\mathrm{ex}^{2 \eta} \|^{n}} \times \overline{1+\mathrm{kx} \|^{\mu}}$ fi tria funt nomina in vinculo radicis prioris ac duo in vinculo pofterioris: \& fic in aliis. Et nota quod areæ duæ æquales in noviffimis hifce duobus Corollariis jacent ad contrarias partes ordinatarum. Si area in alterutra curva adjacet abfciffix, area huic æqualis in altera curva adjacet abfciffæ productæ.

## COROL. VII.

Si relatio inter Curvæ alicujus Ordinatam y \& Abfciffam $z$ definiatur per xquationem quamvis fectam hujus formx, $y^{a}$ in $\mathrm{e}+\mathrm{fy}^{n} z^{0}-\left[\mathrm{gy}^{2 n} z^{2 \infty}+\mathrm{hy}^{3 n} z^{3^{8}}\right.$ $+\& c \cdot=z^{\beta}$ in $k+1 y^{n} z^{\delta}+m y^{2 n} z^{2 \delta}+\& c$. hac figura affumendo $s=\frac{n-\delta}{n}, x=\frac{1}{8} \mathrm{z}^{5} \& \lambda=\frac{n-\delta}{\alpha \delta-1-\beta_{n}}$, migrat in aliam fibi æqualem cujus Abfciffa $x$, ex data Ordinata

## [192]

Ordinata v , determinatur per æquationem non adectam $\frac{1}{5} v^{v \lambda} \times e \overline{e-f v^{n}-1-g^{2 n}+h v^{2 n}+\& c .}{ }^{2} \times \overline{k+1 v^{n}}$ $\overline{+\mathrm{mv}^{2 n}+\& \mathrm{c} .1^{-1}}=\mathrm{x}$.

## COROL. VIII.

Si relatio inter Curvæ alicujus Ordinatam y \& Abfciffam $z$ definitur per $æ$ quationem quamvis affectam hujus formx, $y^{\alpha}$ in $\mathrm{e}-1-\mathrm{fy}^{n} z^{\delta}+g y^{2 n} z^{2 \delta}+\& c$.
 Fry $\mathrm{y}^{2 n} \mathrm{z}^{2 \delta}+\& \mathrm{cc}$. hæc figura affumendo $\mathrm{s}=\frac{n-\delta}{n}, \mathrm{x}=\frac{1}{\mathrm{~s}} \mathrm{z}^{\mathrm{s}}$, $\mu=\frac{\alpha \delta-1-\beta n}{n-\delta} \& \nu=\frac{\alpha \delta-1-\gamma_{n}}{n-\delta}$, migrat in aliam fibi $æ$ qualem cujus Abfciffa x ex data Ordinata v determinatur per æquationem minus affectam $v^{\alpha}$ in $e+f v^{n}+\mathrm{gv}^{2 n}$十\&c. $=s^{\mu} x^{\mu}$ in $k+1 v^{n}-1-m v^{2 n}+\& c$. $+s^{\nu} x^{n}$ in $p+q v^{n}+r v^{2 n}+\& c$ 。

## COROL. IX.

Curva omnis cujus Ordinata eft $\pi_{2}{ }^{8-3}$ in

 affumantur $\mathrm{x}=\overline{\mathrm{e} z^{\nu}+\mathrm{fz}^{\mu+n}+\mathrm{gz}^{\nu-12 n}+\& \mathrm{c}} .{ }^{\boldsymbol{x}} \quad, \quad{ }^{\sigma}=\frac{\tau}{\pi}$ $\& v=\frac{\lambda-\pi}{\pi}$, migrat in aliam fibi æqualem cujus ordinata eft $x^{9} \times \overline{a+b x^{\sigma}}$. Et nota quod ordinata prior
in hoc Corollario evadit fimplicior ponendo $\lambda=1$, vel ponendo $\tau=1$ \& efficiendo ut radix dignitatis extrahi poffit cujus index eft $\omega$, vel etiam ponendo ${ }_{\omega}=-1 \& \lambda=1=\tau=\sigma=\pi$, ut alios cafus præteream.

## COROL. X.


 $+2 n m z^{2 n-1}-\mid-\& c$. fcribantur $R, \dot{r}, S \& \dot{s}$ refpective, $\&$ Curva omnis cujus ordinata eft $\pi \dot{\mathrm{Sr}} f_{\bullet} \mathrm{Rs}^{\dot{s}}$ in $\mathrm{R}^{x-1} \mathrm{~S}^{\mu-\mathrm{s}}$ $\times \overline{\mathrm{aS}^{v}+\left.\mathrm{bR}^{\tau}\right|^{\omega}}$, fi fit $\frac{\mu-\omega^{\omega}}{\lambda}=\frac{\nu}{\tau}=\frac{0}{\pi}, \frac{\tau}{\pi}=\sigma, \frac{\lambda-\pi}{\pi}=s$, $\& R^{\pi} S^{\varphi}=x$, migrat in aliam fibi æqualem cujus ordinata eft $x^{9} \times \overline{a-1-b x^{9}}$. Et nota quod Ordinata prior evadit fimplicior, ponendo unitates pro $\tau, v$ ? \& a vel $\mu$, \& faciendo ut radix dignitatis extrahi poffit cujus index eft $\omega$, vel ponendo $\omega=-$ I vel $\mu=0$.

## PROP. X. PROB. III.

Invenire figuras fimpliciffimas cum quibus Curva quævis geometrice compari poteft, cujus ordinatim applicata y per æquationem non affectam ex data $a b$ fciffa $z$ determinatur.

$$
\operatorname{Ccc} \quad C A S
$$

## [194]

## $C A S$. I.

Sit Ordinata az $z^{\theta-1}, \&$ area erit $\frac{1}{\theta} a z^{\theta}$, ut ex Prop.V. ponendo $\mathrm{b}=\mathrm{o}=\mathrm{c}=\mathrm{d}=\mathrm{f}=\mathrm{g}=\mathrm{h} \& \mathrm{e}=\mathrm{I}$, facile colligitur.

$$
C A S . \mathrm{II} .
$$

Sit Ordinata $a z^{\theta-1} \times\left.\overline{e-f-f z^{n}-g z^{2} \mid}\right|^{\lambda-1}+\& c . \& f 1$ curva cum figuris rectilineis geometrice comparari poteft, quadrabitur per Prop. V. ponendo $b=o=c$ $=\mathrm{d}$. Sin minus convertetur in aliam curvam fibi æqualem cujus Ordinata eft $\frac{a}{n} \times \frac{8-n}{n} \times\left.\overline{e-1-f x+g x^{2} \& c}\right|^{n-1}$ per Corol. 2. Prop. IX. Deinde fi de dignitatum indicibus $\frac{\theta-n}{n} \&{ }^{x-1}$ per Prop. VII. rejiciantur unitates donec dignitates illæ fiant quam minimæ, devenietur ad figuras fimpliciffimas quæ hac ratione colligi poffunt. Dein harum unaquæq; per Corol.5. Prop. IX. dat aliam quæ nonnunquam fimplicior eft. Et ex his per Prop. III. \& Corol. 9 \& Io, Prop. IX. inter fe collatis, figuræ adhuc fimpliciores quandoq; prodeunt. Deniq; ex figuris fimpliciffimis affumptis, facto regreffu computabitur area quafita.

## [195]

Sit Ordinata $z^{\theta-1} \times \overline{a+b z^{n}-1-c z^{2 n}-1-\& c}$ $\times\left.\overline{\mathrm{e}-\mathrm{fz}^{n}+\mathrm{gz}^{2 n}+\& c}\right|^{\lambda-1}$, \& hæc figura fi quadrari poteft, quadrabitur per Prop. V. Sin minus, diftinguenda eft ordinata in partes $\mathrm{z}^{\theta-1} \times \mathrm{a} \times \overline{\mathrm{e}+\mathrm{f} \mathrm{z}^{\boldsymbol{\theta}}}$ $\overline{-1 z^{2 n}-1-\left.\& c \cdot\right|^{\lambda-1}}, z^{\theta-1} \times b z^{n} \times\left.\overline{e+f z^{n}+g z^{2 n}-1-\& c} \cdot\right|^{\lambda-1}$, \&c. \& per Caf. 2. inveniend funt figuræ fimpliciffimæ cum quibus figuræ partibus illis refpondentes comparari poffunt. Nam areæ figurarum partibus illis refpondentium fub fignis fuis $+\&-$ conjunctæ component aream totam quæfitam.

## $C A S . \quad \mathrm{IV}$.

Sit Ordinata $z^{\theta-1} \times \overline{a+b z^{n}+c z^{2 n}+\& c} \times$ $\left.\overline{e-1 f z^{n}-1-g z^{2} n+\& c}\right|^{\lambda-1} \times \overline{k+1 z^{n}+m z^{2 n}-1-\& c} . \mid{ }_{k-1}$ : \& fi Curva quadrari poreft, quadrabitur per Prop.VI. Sin minus, convertetur in fimpliciorem per Corol.4. Prop. IX. ac deinde comparabitur cum figuris fimpliciffimis per Prop. VIII. \& Corol. 6, 9 \& 10. Prop. IX. ut fit in Cafu 2 \& 3.

$$
c^{2} A S . \quad V .
$$

Si Ordinata ex variis partibus conftat, partes fingulæ pro ordinatis curvarum totidem habendæ funt, \& curvæ illæ quotquot quadrari poffunt,figilla-

$$
\mathrm{Cuc}_{2}
$$

tim

## [ 196 ]

tim quadrandx funt, earumq; ordinatæ de ordinata tota demendx. Dein Curva quam ordinatæ pars refidua defignat feorfim (ut in Cafu 2, 3 \& 4, ) cum figuris fimpliciffimis comparanda eft cum quibus comparari poteft. Et fumma arearum omnium pro area Curvx propofitæ habenda eft.

COROL. I.

Hinc etiam Curva omnis cujus Ordinata eft radix quadratica affecta xquationis fux, cum figuris fimpliciffimis feur rectilineis feu curvilineis compari poteft. Nam radix illa ex duabus partibus femper conftat qux feorfim feectatæ non funt æquanum radices affectx. Proponatur rquatio aayy + $z z y y=2 a^{3} y+{ }^{2} z^{3} y-z^{4}$, \& extracta radix erit $y=\frac{a^{3}+z^{3+} a \sqrt{a^{4}-l^{2}} z^{3}-z^{4}}{2 a+2 z}$ cujus pars rationalis $\frac{a 3+z 3}{a a+z z}$ \& pars irrationalis $\frac{a \sqrt{a^{4}+2 a z^{3}-z^{4}}}{a^{4}-+z z}$ funt ordinatæ curvarum qux per hanc Propofitionem vel quadrari poffunt vel cum figuris fimpliciffimis comparari cum quibus collationem geometricam admittunt.

## COROL. II.

Et curva omnis cujus Ordinata per æquationem quamvis affectam definitur quæ per Corol. 7. Prop. IX. in xquationem non affectam migrat, vel quadratur
dratur per hanc Propofitionem fi quadrari potef vel comparatur cum figuris fimpliciffimis cum quibus compari poteft. Et hac ratione Curva omnis quadratur cujus æquatio eft trium terminorum. Nam æquatio illa fi affecta fit tranfmutatur in non affectam per Corol.7. Prop.IX. ac deinde per Corol. 2 \& 5. Prop. IX. in fimplicffimam migrando, dat vel quadraturam figuræ fi quadrari poteft, vel curvam fimpliciffimam quacum comparatur.

## COROL. III.

Et Curva omnis cujus Ordinata per æquationem quamvis affectam definitur qux per Corol. 8. Prop. IX. in æquationem quadraticam affectam migrat; vel quadratur per hanc Propofitionem \& hujus Corol. I. fi quadrari poteft, vel comparatur cum figuris fimpliciffimis cum quibus collationem geometricam admittit.

## SCHOLIUM.

Ubi quadrandæ funt figurx; ad Regulas hafce generales femper recurrere nimis moleftum effet: praftat Figuras quæ fimpliciores funt \& magis ufui effe poffunt femel quadrare \& quadraturas in Tabulam referre, deinde Tabulam confulere quoties ejufmodi Curvam aliquam quadrare oportet. Hujus autem generis funt Tabulæ dux fequentes, in quibus $z$ denotat Abfciffam, y Ordinatam rectan. gulam

## [198]

gulam \& t Aream Curvæ quadrand $x, \& \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$, g. h, " funt quantitates datæ cum fignis fuis-f-\&-.

## $T A B U L A$

Curvarum fimpliciorum que quadrari poffunt.
Curvarum formæ. Curvarum arex.
Forma prima.

$$
\mathrm{dz} z^{n-1}=\mathrm{y} . \quad-\quad{ }_{n}^{\mathrm{d}} \mathrm{z}^{n}=\mathrm{t} .
$$

Forma fecunda.

$$
\frac{d z^{n-1}}{e---2 e f f_{n}-1-f z_{2}}=y . \quad \frac{d z_{n}}{n^{n e-}-n^{e f z_{n}}}=t \text {, vel } \frac{-d}{n e f--n^{f z_{n}}}=t .
$$

Forma tertia.

1. $d z_{-1}^{n} \sqrt{e-f-f z^{n}}=y \cdot \frac{2 d}{3 n^{n}} R^{3}=t$, exiftente $R \equiv \sqrt{e-f z^{n}}$
2. $d z_{-1}^{2 n} \sqrt{e-1-f z^{n}}=y . \frac{-4 e+6 f z_{n}}{15 n n^{\prime}} \mathrm{dR}^{3}=t$.
3. $\mathrm{dz}_{-1}^{3 n} \sqrt{\mathrm{e}-1-\mathrm{fz}}=\mathrm{y} . \frac{16 e e-24 \mathrm{efz}_{n} n-30 \mathrm{ffz} 2 n}{105 n f_{3}} \mathrm{dR}^{3}=\mathrm{t}$.

Forma quarta.

$$
\begin{array}{ll}
\text { 1. } \frac{d z^{r-1}}{\sqrt{e-f z_{\eta}}}=y . & \frac{2 d}{n^{f}} R=t . \\
\text { 2. } \frac{d z^{2 n-1}}{\sqrt{e-f z n}}=y . & \frac{-4 e+2 f z n}{3 \psi^{f f}} d R=t .
\end{array}
$$



## $T A B U L A$

Curvarum fimpliciorum que cum Elliph ف Hyperbola comparari poffunt.

Sit jam aGD vel PGD vel GDS Sectio Conica cujus area ad Quadraturam Curvæ pro- Fig. $5,67,7,8$. pofitæ requiritur, fitq; ejus centrum A , Axis Ka , Vertex a, Semiaxis conjugatus AP, datum Abfciffe principium $A$ vel a vel $\alpha$, $A b f c i f f a ~ A B$ vel a $B$ ved ${ }_{a} \mathrm{~B}=\mathrm{x}$, Ordinata rectangula $\mathrm{BD}=\mathrm{v}$, \& Area ABDP vel a BDG vel $a \mathrm{BDG}=\mathrm{s}$, exiftente $a \mathrm{G}$ Ordinata ad punctum a. Jungantur KD,AD, a D. Ducatur Tangens DT occurrens Abfciffe AB in T, \& compleatur parallelogrammum ABDO. Et fiquando ad quadraturam Cutvx propofite requiruntur arex duarum Sectionem Conicarum, dicatur pofterioris Abfciffa $\varepsilon$, Ordinata $r$, \& Area $\sigma_{\text {: }}$ Sit autem $\div$ differentia duarum quantitatum ubi incertum eft utrum pofterior de priori an prior de pofteriori fubduci debeat.

Curvarum Formx. Sectionis Conicx. Curvarum Arex.
Forma prima. Abfciffa. Ordinata:
Fig. 5. $\quad$ I. $\frac{d z^{n-1}}{e-f-f Z_{n}}=y . \quad 2^{n}=x . \quad \frac{d}{e-f x_{x}}=v . \quad \frac{1}{n} s=t=\frac{\alpha G D B}{n}$
2. $\frac{d z^{2 n-1}}{e-f z^{n}}=y \cdot \quad z^{n}=x . \quad \frac{d}{e-1-f x}=v \cdot \quad \frac{d}{n^{\hbar}} z^{n}-\frac{e}{n f} s=t$
$3 \cdot \frac{d z^{3 n-\mathrm{I}}}{e-f-f Z^{n}}=y \cdot \quad 2^{n}=x . \quad \frac{d}{e-f-f x}=v . \quad \frac{d}{2 n\}} Z^{2 n}-\frac{d e}{n f f^{n}} Z^{n}-\left(-\frac{e e}{n f f} s=t\right.$.
Forma fecunda.
Fig. 6,7. I. $\frac{d z^{\frac{s}{2} n-1}}{e+f z^{n}}=y \cdot \sqrt{\frac{d}{e-f z_{n}}}=x \cdot \sqrt{\frac{d}{f}-\frac{e}{f} x x}=v \cdot \frac{2 x v \div 4 s}{n}=t=\frac{4}{\eta} A D G$.
2. $\frac{d z^{\frac{3}{2} n-1}}{e f-f z^{n}}=y \cdot \sqrt{\frac{d}{e-f z_{n}}}=x \cdot \sqrt{\frac{d}{f}-\frac{e}{f} x x}=v \cdot \frac{2 d e}{n^{f}} z \frac{n}{2}+\frac{4 e s-{ }_{n}^{2} e x v}{n f}=t$.
$3 \cdot \frac{d z^{\frac{s}{n-1}}}{e+f Z^{n}}=y \cdot V \frac{d}{e-f f i n}=x \cdot \sqrt{\frac{d}{f}-\frac{e}{f} X X}=v \cdot \frac{2 d e}{3 n f} z_{2}^{3 n}-\frac{2 d e e}{n f f} Z \frac{n}{2}-1-\frac{2 e e x v-4 \operatorname{cees}}{n f f}=t$.

Forma tertia。
Fig.6,7,8. $1 \cdot \frac{d}{z} \sqrt{\overline{e-1-f z_{n}}}=y \cdot \frac{1}{z_{n}}=x x \cdot \sqrt{t-1-\operatorname{exx}}=v \cdot \frac{4 d e}{n^{f}}$ in $\frac{V_{3}}{2 e x}-s=t=\frac{4 d e}{\eta^{f}}$ in aGDT, vel in APDB $\div$ TDB.
Vel fic, $\frac{1}{2 n}=x \cdot \sqrt{\frac{f x+e x x}{f x}}=v \cdot \frac{8 d e e}{n f f}$ in $s-\frac{1}{2} x v-\frac{f v}{4 e}+\frac{f f v}{4 \operatorname{eex}}=t=\frac{8 d e e}{n^{f f}}$ in aGDA+1$\frac{f f v}{4 \text { eex. }}$ 2. $\frac{d}{z_{+1}^{n}} \sqrt{\sqrt{e-t z_{n}}}=y \cdot \frac{1}{z_{n}}=x x \cdot \sqrt{\frac{1-\operatorname{exx}}{}}=v \cdot \frac{-2 d}{n} s=t=\frac{2 d}{n} A P D B$, feu $\frac{2 d}{n} a G D B$.

Vel fic, $\frac{x}{z_{n}}=x . \sqrt{\sqrt{f x-r e x x}}=v \cdot \frac{4 d e}{n^{f}}$ in $s-\frac{x}{2} x v-\frac{f v}{2 e}=t=\frac{4 d e}{n^{f}} \times a G D K$. $3 \cdot \frac{d}{z_{-1}^{2 n}} \sqrt{\overline{e+t z_{n}}}=y \cdot \frac{1}{z_{n}}=x \cdot \sqrt{\overline{f-1-e x x}}=v \cdot \frac{d}{n} s=t=\frac{d}{n} x-a G D B$ vel BDPK. $4 \cdot \frac{d}{z_{-T-I}^{3 n}} \sqrt{\overline{e-f f_{z n}}}=y \cdot \frac{1}{z_{n}}=x \cdot \sqrt{e_{x-1-\mathrm{exx}}}=v \cdot \frac{3 d f_{s}-2 d v_{3}}{\sigma_{n e}}=t$.

Forma quarta.
Fig. 6. I. $\frac{d}{z \sqrt{e-f z_{n}}}=y \cdot \frac{1}{z_{n}}=x x \cdot \sqrt{\frac{1+e x x}{}}=v \cdot \frac{4 d}{n^{f}}$ in $\frac{1}{2} x v \div s=t=\frac{4 d}{n^{n}}$ in PAD vel in aGDA.
Vel fic, $\frac{1}{x_{n}}=x . \sqrt{f x-1-e x x}=v \cdot \frac{8 d e}{n f f}$ in $s-\frac{1}{2} x v-\frac{f v}{4 e}=t=\frac{8 d e}{n \cdot f}$ in aGDA.
0 2. $\frac{d}{z_{+1}^{n} \sqrt{e-1-f_{n}}}=y \cdot \frac{1}{z_{n}}=x x \cdot \sqrt{f+e x x}=v \cdot \frac{2 d}{n e}$ in $s-x v=t=\frac{2 d}{n e}$ in POD, vel in $A O D G a$.

Vel fic, $\frac{1}{x_{n}}=x . \quad \sqrt{\operatorname{tx-tex}}=v \cdot \frac{4 \mathrm{~d}}{n^{t}}$ in $\frac{1}{2} x v \div s=t=\frac{4 \mathrm{~d}}{n^{\frac{1}{s}}}$ in aDGa.


Forma quinta.

Vel fic, $V \frac{d 22 n}{e-f 2 \pi-1-522 n}=x . \sqrt{e_{e}^{d}-\frac{f f-4 e g}{4 e e} x x}=v \cdot \frac{2 s-x v}{n}=t$.

Forma fexta, ubi fcribitur p pro $\sqrt{f-4 e g .}$



## Forma feptima.

$-2 d f g x v+4 d \lg v$

Fig. 6,7. 2. $d z_{-1}^{n} \sqrt{e+f z^{n}-g z^{2 n}}=y \cdot z^{n}=x \cdot \sqrt{e-f-f x-g x x}=v \cdot \frac{a}{n} s=t=\frac{d}{n}$ in ${ }^{a} G D B$. $3 \cdot d z_{-1}^{2 n} \sqrt{e-1 f z^{n}+g z^{2 n}}=y \cdot z^{n}=x \cdot \sqrt{e-1-t x-g x x}=v \cdot \frac{d}{3 n g} v 3-\frac{d f}{2 n g} s=t$.


Forma octava.
Fig. 6. I. $\frac{d z^{n-1}}{\sqrt{e-1-f z_{n}+g^{2} m}}=y \cdot z^{n}=x \cdot \sqrt{e-1-f x-i g x x}=v \cdot \frac{8 d g s-4 d g x v-2 d f v}{4 n e g-n f f}=t=\frac{8 d g}{4 n e g-n f f}$ in $\alpha G D B \pm \triangle D B A$.




## Forma nona.



Forma decima.
Fig. 6,7. 1. $\frac{d z^{n^{-1}}}{g+h z_{n}} \sqrt{e-f f_{z M}}=y \cdot V \frac{d}{g-h z_{\eta}}=x \cdot \sqrt{\frac{d t}{h}+\frac{e h-f g}{h} x x}=v \cdot \frac{2 x v-4 s}{n^{f}}=t=\frac{4}{n^{f}} A D G a$.
2. $\frac{d z^{2 n-I}}{g-1-h z_{n} \sqrt{e-1-f z_{n}}}=y \cdot \sqrt{\frac{d}{g-f z_{n}}}=x \cdot \sqrt{\frac{d f}{h}+-\frac{e h-f g}{h} X x}=v \cdot \frac{4 s^{s-2 g x v-1-\frac{2 d v}{x}}}{{ }_{n}^{f h}}=t$.

Forma undecima.




## $[205]$

In Tabulis hifce, feries Curvarum cujufq; forme utrinq; in infinitum continuari potef. Scilicet in Tabula prima, in numeratoribus arearum for$m æ$ tertix \& quartx, numeri coefficientes initialium terminorum ( $2,-4,16,-96,868, \& c$. . ) generantur multiplicando numeros $-2,-4,-6,-8,10, \$ c$. in fe continuo, \& fubfequentium terminorum coefficientes ex initialibus derivantur multiplicando ipfos gradatim, in Forma quidem tertia, per - -3, $-\frac{1}{4},-\frac{2}{6}, \frac{2}{8}, \frac{11}{10} \& c$. in quarta vero per $-\frac{1}{2},-\frac{2_{4}^{2}}{4} \%$ $\frac{5}{6},-\frac{2}{8},-9$, \&c. Et Denominatorum coefficientes $3,15,105$, \&c. prodeunt multiplicando numeros I, $3,5,7,9, \& \mathrm{c}$. in fe continuo.
In fecunda vero Tabula, feries Curvarum forme primx, fecundx, quintx, fextx, non $\&$ decimx ope folius divifionis, \& formæ reliquæ ope Propofitionis tertix \& quartæ, utrinq; producuntur in infinitum.

Quinetiam hæ feries mutando fignum numeri ${ }^{n}$ variari folent. Sic enim, e. g. Curva $\frac{d}{2} \sqrt{e-f z^{4}}=y$, evadit $\frac{d}{z_{2 n+1}} \sqrt{f+z^{n}}=y$

## PROP. XXI . THEOR. VIII.

Sit ADIC Curva quævis Abfciffam habens Fig. ou $A B=z$ \& Ordinatam $B D=y$, \& fit AEKC Curva alia cujus Ordinata $B E$ xqualis eft prioris arex ABC

ADB ad unitatem applicatx, \& AFLC Curva tertia cujus Ordinata B F æqualis eft fecundæ areæ AEB ad unitatem applicatx, \& AGMC Curva quarta cujus Ordinata $B G$ æqualis eft tertiæ areæ AFB ad unitatem applicatæ, \& AHNC Curva quinta cujus Ordinata BH æqualis eft quartæ areæ $A G B$ ad unitatem applicatæ, \& fic deinceps in infinitum. Et funto A, B, C, D, E, \&c. Areæ Curvarum Ordinatas habentium $y, z y, z^{2} y, z^{3} y, z^{4} y$, \& Abfciffam communem z.

Detur Abfciffa quævis $A C=t$, fitq; $B C=t-z$ $=\mathrm{x}, \&$ funto $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$ areæ Curvarum Ordinatas habentium $x, x y, x x y, x^{3} y, x^{4} y \& A b f c i f f a m$ communem x.

Terminenter autem hæ areæ omnes ad Abfciffam totam datam AC, nec non ad Ordinatam pofitione datam \& infinite productam CI : \& erit arearum fub initio pofitarum prima $\mathrm{ADIC}=\mathrm{A}=\mathrm{P}$, fecunda $A E K C=t A-B=Q$. Tertia AFLC $=\frac{t t A-2 t B+C}{2}=\frac{1}{2} R$. Quarta AGMC=$=\frac{t_{3} A-3 t+B-{ }_{3} t C-D}{6}={ }_{6} \mathrm{~F}$, Quinta $\mathrm{AHNC}=\frac{\mathrm{t}_{4} \mathrm{~A}-4 \mathrm{t} 3 \mathrm{~B}+6 \mathrm{ttC}-4 \mathrm{tD}+\mathrm{E}}{24}={ }_{24}^{\mathrm{I}} \mathrm{T}$.

## [207]

## COROL.

Unde fi Curvæ quarum Ordinatæ funt $y$, $z y$, $z^{2} y, z^{3} y, \& c$. vel $y, x y, x^{2} y, x^{3} y, \& c$. quadrari poffunt, quadrabuntur etiam Curvæ ADIC, AEKC, AFLC, AGMC, \&c. \& habebuntur Ordinatæ BE, $\mathrm{BF}, \mathrm{BG}, \mathrm{BH}$ areis Curvarum proportionales.

## SCHOLIUM.

Quantitatum fluentium fluxiones effe primas, fecundas, tertias, quartas, aliafq; diximus fupra. $H x$ Huxiones funt at termini ferierum infinitarum convergentium. Ut fiz $\mathrm{z}^{\prime \prime} \mathrm{fit}$ quantitas fluens \& fluendo evadat $\overline{\mathrm{z}+\mathrm{of}}$, deinde refolvatur in feriem
 $\nmid \& c$. terminus primus hujus feriei $z^{n}$ erit quantitas illa fluens, fecundus nozri-1 erit ejus incrementum primum feu differentia prima cui nafcenti proportionalis eft ejus fluxio prima, tertius $\frac{\mathrm{mmn}}{2} \mathrm{oz} \mathrm{Zr}^{-2}$ erit ejus incrementum fecundum feu differentia fecunda cui nafcenti proportionalis eft ejus fluxio fecunda, quartus $\frac{13-3 m+2 n}{6} 0^{3} z^{n-3}$ erit ejus incrementum tertium feu differentia tertia cui nafcenti fluxio tertia proportionalis eft, \& fic deinceps in infinitum.

## Exponi

Exponi autem poffunt hxfluxiones per Curvarum Ordinatas $\mathrm{BD}, \mathrm{BE}, \mathrm{BF}, \mathrm{BG}, \mathrm{BH}$, \&c. Ut fi Ordinata $B E\left(=\frac{A D B}{I}\right)$ fit quantitas fluens, erit ejus fluxio prima ut ordinata BD . $\mathrm{Si} \mathrm{BF}\left(=\frac{\mathrm{ABB}}{1}\right)$ fit quantitas fluens, erit ejus fluxio prima ut Ordinata BE \& fluxio fecunda ut Ordinata BD. Si $B H$ ( $=\frac{A G B}{1}$ ) fit quantitas fluens, erunt ejus fluxiones, prima, fecunda, tertia \& quarta, ut Ordinatæ $B G, B F, B E, B D$ refpective.

Et hinc in æquationibus quæ quantitates tantum duas incognitas involvunt, quarum una eft quantitas uniformiter fluens \& altera eft fluxio qualibet quantitatis alterius fluentis, inveniri poteft fluens illa altera per quadraturam Curvarum. Exponatur enim fluxio ejus per Ordinatam BD, \& fi hæc fit fluxio prima, quaratur area ${ }^{2} \mathrm{ADB}=\mathrm{BE} \times \mathrm{I}$, fi fluxio fecunda, quxratur area $\mathrm{AEB}=\mathrm{BFx}$, fi fluxio tertia, quxratur area $A F B=B G \times I$, \&c. \& area inventa erit exponens fluentis quefita.

Sed \& in xquationibus qux fluentem \& ejus fluxionem primam fine altera fluente, vel duas ejufdem fluentis fluxiones, primam \& fecundam, vel fecundam \& tertiam, vel tertiam \& quartam, \&c. fine alterutra fluente involvunt : inveniri pofYunt fluentes per quadraturam Curvarum. Sit equatio $a \mathfrak{a v}=a v+v v$, exiftente $v=B E$, $\dot{y}=\mathrm{BD}, \mathrm{z}=\mathrm{AB} \& \dot{\mathrm{z}}=\mathrm{I}, \&$ xquatio illa complendo dimenfiones fluxionum, evadet aav=avz $+\bar{W} V \dot{Z}$, fel $\frac{a \dot{v}}{\mathrm{av}+\mathrm{wv}}=\dot{\mathrm{z}}$. Jam fluat v uniformiter \&

## [209]

fit cjus fluxio $\dot{v}=1$ \& erit $\frac{a z}{\mathrm{av}-\mathrm{vv}}=\dot{z}$, \& quadrando Curvam cujus Ordinata eft $\frac{a \mathrm{az}}{\mathrm{av}-\mathrm{vv}}$ \& Abfciffa v , habebitur fluens $z$. Adhæc fit xquatio $a \mathfrak{v} \dot{v}=a \dot{v}+\dot{\mathrm{v}} \dot{\mathrm{v}}$ exiftente $v=B F, \dot{v}=B E, \ddot{v}=B D \& z=A B$ \& per relationem inter $\ddot{v} \& \dot{v}$ feu $B D$ \& $B E$ invenietur relatio inter $A B \& B E$ ut in exemplo fuperiore. Deinde per hanc relationem invenietur relatio inter $A B$ \& $B F$ quadrando Curvam $A E B$.

Æquationes qux tres incognitas quantitates involvunt aliquando reduci poffunt ad æquationes qux duas tantum involvunt, \& in his cafibus fluentes invenientur ex fluxionibus ut fupra. Sit æquatio $a-b x^{m}=c y^{n} \dot{y}-f-d \dot{y}^{2 n} \dot{y} \dot{y}$. Ponatur $y^{n} \dot{y}=\dot{v}$ \& erit $a-b x^{m} c x v \nmid-d \dot{v} \dot{v}$, Hæc æquatio quadrando Curvam cujus Abfciffa eft x \& Ordinata v dat aream v, \& xquatio altera $y^{n} y=\dot{v}$ regrediendo ad fluentes, dat $\frac{1}{n-1} y^{n-r}=\mathrm{v}$. Unde habetur fluens y .

Quinetiam in æquationibus quæ tres incognitas involvunt \& ad æquationes quæ duas tantum involvunt reduci non poffunt, fluentes quandoq; prodeunt per quadraturam Curvarum. Sit æquatio
 $\dot{x}=1$. Et pars pofterior rex $x^{r-1} y^{s}+$ sex $^{x} \dot{y} y^{s-1}-\frac{f y}{} y^{t}, \quad x=1$. regrediendo ad fluentes, fit ex. $y^{s}-\frac{\mathrm{f}}{t_{-1-1}} y^{t-1-1}$, que proinde eft ut area Curva cujus Abfciffa eft $\times$ \& Ordinata $a \overline{x^{m}} \mid-\mathrm{bxyp}$, \& inde datur fluens y .

Eee
Sit

## [250]

 cujus fluxio eft $x \times \overline{a x^{m}-b x y^{p}}$ erit ut area Curvæ cujus Abfciffa eft x \& Ordinata eft $\overline{\mathrm{a}} \mathrm{x}$ m $+\mathrm{bx}, \mathrm{p}$. Item fluens cujus fluxio eft $\frac{d y_{y m-1}}{\sqrt{e+f_{y}}}$ erit ut area Curve cujus Abfciffa eft $y$ \& Ordinata $\frac{d y y}{\sqrt{y+-1 y_{y}}}$, id eft ( per Cafum I. Formæ quarte Tab. I.) ut area $\frac{2 d}{n^{i}} \overline{\sqrt{e}+f y^{n}}$. Pone ergo ${ }^{2 d} \sqrt{n t} \overline{e+f y^{\prime \prime}}$ xqualem arex
 \& habebitur fluens $y$ :

Et nota quod fluens omnis qux ex fluxione prima colligitur augeri poteft vel minui quantitate quavis mon fluente. Qux ex fluxione fecunda colligitur augeri poteft vel mimui quantitate quavis cujus fluxio fecunda nulla eft. Qux ex fluxione tertia colligitur augeri poteft vel minui quantitate quavis cujus fluxio tertia nulla eft. Et fic deinceps in infniturf:

Poftquam vero fluentes ex fluxionibus collectz funt, fi de veritate Conclufionis dubitatur, fluxiones fluentium inventarum viciffim colligendx funt \& cumfluxionibus fub initio propofitis camparandx. Nam fie prodeunt xquales Conclufio recte fe ha-

## $[211]$

bet: fin minus, corrigendæ funt fluentes fic, ut earum fluxiones fluxionibus fub initio propofitis æquentur. Nam \& Fluens pro lubitu affumi poteft \& affumptio corrigi ponendo fluxionem fluentis affumptæ æequalem fluxioni propofitx, \& terminos homologos inter fe comparando.

Et his principiis via ad majora fternitur:

## FINIS:

## $E R R A T A$.

B O OK I. Of Opticks.

PArt I. p.3.1.20. Properties which, ib.p.5.1.5. and that $C$, p.6. 1.9. DE, p.21. 1.23.0 are two Rays, p.27.1.6. in the Margin put Fig. 14 E5 15, p.30.1.7. MN, 1.9. M, p. 44.1.15. as was propofed, p.52.1.17. a paper Circle, p.57.1.ult. emerging, p.60.1.25. contain with the, p.64. 1.18. and 14th, p.65.1.13. at the, p.66. 1.3. Semicircular, p. 67. 1.25.Center, $1.31 \cdot 4 \frac{7}{8}$ Inches, p.68.1.8. to 16, 1.9. or $5^{\frac{1}{3}}$, p.71.1.1. bifect, p.72.1.13. falls, 1.20. being. Part II. p.86.1.5. lelopipede, p.89. 1.9.made by, p.93.1.18. to $77 \frac{1}{3}$, 1.28,29, by the third Axiom of the firft Part of this Book, the Laws, p.105.1.5. See reprefented, p. 144 . 1. $24, \frac{1}{9}, \frac{1}{16}, \frac{1}{10}, \frac{1}{9}, \frac{1}{10}, \frac{1}{16}, \frac{1}{9}$. P. II8, IIg. for Lib.1. Lib.2. write Part 1. Part2. p.I22.1.9. indico, p. 130. 1.19. to the Angle, p.132.1.6. by the brightnefs, p.135.1.14. For if it the, 1.16. firft Part you, p.136. 1.26. firft Part, 1.27. lights, p.137.1.20. green, accordingly as, P. 138.1. 21. Prop.6. Part.2. p.139. 1.5. on which, p.142.1.17.XY which bave been, P.143.1.7.purple, 1.16. Several Lights, 1.24. of wobite.

## B OOK. II.

P.5. 1. 5.nicely the, p. 7.1.9.y, z denote, 1.28. them divers, p. 10.1.24. $1000^{\circ}$ to 1024 , p.II.1.11.oliquities, I. P.17. 1.4. $14 \frac{1}{3}$ to 9 , p. 25.1. I1. I $0 \frac{ \pm}{5}$, p.31.1.12. nore compounded, p.55.1.3. Sizes reflect, 1.24. and therefore their Colours arife, p. $65.1 .5 \cdot$ corpuf. cles can, P.71.1.17. given breadth, p.84.1.4. are to thofe, p. 96. 1. 24. obfervation of this Part of this Book, P.103.1.17. pas to the thicknefs, P.105.1. I9. of this white Ring, p.107. 1.20. become equal to the third of thofe.

Enumeratio Linearum.
p.143.1.20. datas fignisfuis, p. I44.1.27. refpiciunt, p. I46. 1.5. funt Afymptoto, p. 154.1.13. $c x-1$ dat Ordinatam $y=$, 1.14. que generatur.

## Quadratura Curvarum.

p.168.1.24.reita $A B, \mathrm{p} \cdot 176 \cdot 1 \cdot \mathrm{ult}+{ }_{2 n}+\mathrm{fZ}^{n}, \mathrm{p} \cdot 183 \cdot 1.13 \cdot a, b, c, \xi_{c} \cdot e, f, g, G_{c}, k, l, m$,末́c. p. 185.1.4. in $z^{\theta-1}$, p.188.1.14. $z^{\theta}$ 士 no, p.190. 1. 19. vel $\frac{1}{x^{\theta+1}+\frac{2 m \lambda}{2} \text {. }}$ p.192.1.18. gzo $+2 n_{0}$ p.193.1.11. $\bar{a} u-1-b R \pi \omega_{0}$

## Quadr: Tal.I.



## NEWTON'S OPTICKS (1704)

Annotations and corrections in Sir Isaac Newton 's Opticks, or, A treatise of the reflexions, refractions, inflexions and colours of light : also two treatises of the species and magnitude of curvilinear figures (London : Printed for Sam. Smith, and Benj. Walford ..., 1704), in the copy in Rare Books and Special Collections, McGill University Library.

Page numbers in brackets [] mean that the only correction on the page is the correction that listed in the Errata (p. 212 of the second pagination).

Underlined page numbers indicate that other corrections in addition to those in the Errata appear on the page.

Page numbers neither underlined nor in brackets [] contain additional corrections and / or annotations.
A) Book I:
 [67], [68], [71], [72], 73, 80, [86], [89], 91, 93, 94, 102, [105], [118], [119], 122, 125, 126, [130], [132], [135], [136], [137], [138], 139, 140, [142], [143], 144.

The corrections called for in the Errata on page 144 have not been made; 144 is an error page 114.
B) Book II:
pp. $4,9, \underline{10}, 12,17,25,36,47,50,66,73,74,75,83,95, \underline{96}, 97,99,107,115,117,125,127,131$, 134, 135, 143, [144], 145, [146], 154, 155, Tab[le] III.

The corrections called for in the Errata were not made on the following pages: 5, 7, 11, 17, 25, 31, 55, 65, 71, 84, 103, 105, 107 in Book II.
C) Tractates:
pp. [168], [176], 180, 182, [183], [185], [188], [190 but correction incorrectly made in line 18 not 19], [192], 193, 199, 203, 205, 209 and on Errata leaf - Book. II. p. 10. 1. 24. 10000 to 1024
D) On the verso of rear fly leaf.

6 October 2008

L1. p.80. l. 15. square square rool. Sif $11 . p .3 x$ Fig 6 in thangine 2.1, p. 6


$$
\begin{aligned}
& Q C 353 \\
& N 57 \\
& 1704
\end{aligned}
$$

SHELVED IN MS SAFE AS MS 46


[^0]:    Hh 2
    reafon

